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Abstract 10 

This study analyzes the influence of local and regional climatic factors on the stable isotopic composition of rainfall in the 

Vietnamese Mekong Delta (VMD) as part of the Asian monsoon region. It is based on 1.5 years of weekly rainfall samples. In 

a first step, the isotopic composition of the samples is analyzed by local meteoric water lines (LMWL) and single-factor linear 

correlations. Additionally, the contribution of several regional and local factors is quantified by multiple linear regression 

(MLR) of all possible factor combinations and by relative importance analysis. This approach is novel for the interpretation of 15 

isotopic records and enables an objective quantification of the explained variance in isotopic records for individual factors. In 

this study, the local factors are extracted from local climate records, while the regional factors are derived from atmospheric 

backward trajectories of water particles. The regional factors, i.e. precipitation, temperature, relative humidity and moving 

distance of the backward trajectories, are combined with equivalent local climatic parameters to explain the response variables 

δ18O, δ2H, and d-excess of precipitation at the station of measurement.  20 

The results indicate that (i) MLR can much better explain the isotopic variation of precipitation (R2 = 0.8) compared to single-

factor linear regression (R2 = 0.3); (ii) the isotopic variation in precipitation is controlled dominantly by regional moisture 

regimes (~70%) compared to local climatic conditions (~30%); (iii) the most important climatic parameter during the rainy 

season is the precipitation amount along the trajectories of air mass movement; (iv) the influence of local precipitation amount 

and temperature is not significant during the early rainy season, unlike the regional precipitation amount effect; (v) secondary 25 

fractionation processes (e.g. sub-cloud evaporation) take place mainly in the dry season, either locally for δ18O and δ2H, or 

along the air mass trajectories for d-excess. The analysis shows that regional and local factors vary in importance over the 

seasons and that the source regions and transport pathways, and in particular the climatic conditions along the pathways have 

a large influence on the isotopic composition of rainfall. While the general results have been reported qualitatively in previous 

studies (proving the validity of the approach), the proposed method provides quantitative estimates of the controlling factors, 30 

both for the whole data set and for distinct seasons. Therefore it is argued that the approach constitutes an advancement in the 
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statistical analysis of isotopic records in rainfall that can supplement and precede more complex studies utilizing atmospheric 

models. Due to its relative simplicity, the method can be easily transferred to other regions, or extended with other factors. 

The results illustrate that the interpretation of the isotopic composition of precipitation as a recorder of local climatic 

conditions, as for example performed for paleorecords of water isotopes, may not be adequate in the Southern part of the 

Indochinese Peninsula, and likely neither in other regions affected by monsoon processes. However, the presented approach 5 

could open a pathway towards better and seasonally differentiated reconstruction of paleoclimates based on isotopic records. 

1 Introduction 

The analysis of stable water isotopes (δ18O and δ2H) and their use as tracers have become an effective tool in hydrology. They 

are widely used to characterize water resources in a given region and to understand dynamics of hydro-geo-ecological 

processes such as precipitation, groundwater recharge or groundwater-surface water interactions – from the plot to the 10 

catchment scale.  

Precipitation is typically composed of regional contributions where atmospheric moisture has been transported over large 

distances and local contributions, where the moisture has been provided by evapotranspiration within the close vicinity. 

Understanding the sources of precipitation and their relative contribution is critical for basin-wide water balance studies 

(Ingraham, 1998). Stable isotopes offer the possibility to identify the sources of precipitation and to quantify the contribution 15 

of regional and local sources (Gat, 1996). Furthermore, they can be used to investigate hydrological processes such as 

mechanisms responsible for streamflow generation (e.g. Kendall and Caldwell, 1998), in groundwater studies (e.g. Gonfiantini 

et al., 1998) and in rainfall-runoff studies (e.g. Genereux and Hooper, 1998).   

Isotopic variation in precipitation has been correlated with climatic parameters such as precipitation amount, air temperature, 

and air mass history (Dansgaard, 1964;Rozanski et al., 1992;Gat, 1996), termed amount effect, temperature effect (Dansgaard, 20 

1964), and circulation effect (Tan, 2009;Tan, 2014), respectively. The circulation effect describes the changes in isotopic 

composition in precipitation that appear because arriving moisture is coming from different areas of the ocean. 

Delineating the present-day relationship between climatic factors and stable isotope variation in precipitation can also help to 

understand past climatic conditions at regional and global scales. However, the factors controlling isotopic variation of 

precipitation are numerous and complex; hence a better understanding of the climatic influences on isotopic values would 25 

improve the use of precipitation isotopes as a proxy to reconstruct paleoclimates (Yang et al., 2016). 

In the Asian monsoon region, the isotopic signature of precipitation has been found to correlate with large-scale climatic 

parameters such as sea surface temperature and relative humidity of the air masses (Dansgaard, 1964;Merlivat and Jouzel, 

1979;Clark and Fritz, 1997;Lachniet, 2009), ENSO (Ichiyanagi and Yamanaka, 2005;Tan, 2014;Yang et al., 2016) and the 

vertical wind shear index (Vuille et al., 2005). Other relevant processes were identified as distillation during vapor transport 30 
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(Araguás‐Araguás et al., 1998;Yoshimura et al., 2003;Vuille et al., 2005;Dayem et al., 2010;Pausata et al., 2011;Lee et al., 

2012;Liu et al., 2014) , re-evaporation and rain-vapor interactions (Risi et al., 2008b;Chakraborty et al., 2016).  

Relations between climate and water isotopes have been analyzed by univariate statistical regression methods (e.g. Araguás‐

Araguás et al., 1998;Bowen, 2008), isotope-enabled global climate models (GCMs) (Yoshimura et al., 2008;Risi et al., 

2010b;Yoshimura et al., 2014;Okazaki and Yoshimura, 2017), isotope-incorporated Lagrangian models (Pfahl and Wernli, 5 

2008;Sodemann et al., 2008), or the combination of GCMs (or Lagrangian models) with statistical analysis (Vuille et al., 

2003;Vuille et al., 2005;LeGrande and Schmidt, 2009;Tindall et al., 2009;Ishizaki et al., 2012;Conroy et al., 2013). While 

statistical models are not able to represent the actual process causing a phenomenon (e.g. the physical controls of isotope 

variations in precipitation), in contrast to physical models (e.g. GCMs or Lagrangian models), they can, however, detect the 

results of a process, and thus help to identify the responsible processes. Both approaches have their advantages and 10 

disadvantages and hence coexist supplementing each other. We argue that clearly taking into consideration the limitations and 

advantages of both statistical and physical models (discussed in next paragraphs) can enhance their power to interpret the 

relations between climate and water isotopes. 

As illustrated in previous studies (e.g. Noone and Simmonds, 2002) and discussed in Sturm et al. (2010), the inherent 

limitations of empirical (or statistical) climate reconstructions from precipitation isotopes can lead to incorrect paleoclimate 15 

reconstructions. A major limitation is the assumption that the isotopic signal is controlled by a single climatic factor and that 

the stationary relationship (e.g. between temperature and δ18O) remains valid over the entire proxy record. This mono-factorial 

relationship does not consider the interplay of different climatic factors and is possibly biased. Another limitation is the 

assumption of a constant precipitation source or similar isotopic signatures of different moisture sources throughout the study 

period when using only local parameters (e.g. local precipitation) to interpret precipitation isotopes. In real cases, these 20 

assumptions are rarely fulfilled and often unrealistic because of the changes in seasonality and atmospheric circulation patterns. 

This is particularly true in those parts of the Asian monsoon region located in the transition zone between the Indian and 

Western North-Pacific monsoon where precipitation originates from both the Indian and Pacific Oceans (Delgado et al., 

2012a), with the isotopic signatures of air masses originating from the Indian Ocean differing considerably from those of the 

Pacific Ocean (Araguás‐Araguás et al., 1998). Seasonally varying sources of precipitation have also been observed in China 25 

(Tan, 2014, and references therein), India (e.g. Breitenbach et al., 2010;Chakraborty et al., 2016), Korea (Lee et al., 2003), 

Thailand (Ishizaki et al., 2012), and elsewhere (Araguás‐Araguás et al., 1998).  

Since the pioneering work of Joussaume et al. (1984), GCMs have been frequently used for isotopic studies with at least a 

half-dozen GCMs (Risi et al., 2010b;Sturm et al., 2010). For a more detailed discussion about advances in the development of 

GCMs, the reader is referred to Galewsky et al. (2016) and references therein. Although GCMs could provide the physical 30 

links between climate and water isotopes (Yoshimura et al., 2008), the model parameterizations are still far from perfect due 

to downscaling issues and intrinsic atmospheric variability (Sturm et al., 2010). Modeling isotopic composition in precipitation 

by GCMs has some limitations stemming from the model uncertainties, e.g. the frequently reported biases in precipitation or 
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temperature simulation (Mathieu et al., 2002;Lee et al., 2007;Yoshimura et al., 2008), and/or numerical inaccuracies in 

transport processes (Noone and Sturm, 2010). For example, the moist bias persisting in many GCMs in the tropical and 

subtropical middle and upper troposphere is due to excessively diffusive vertical advection (Risi et al., 2012). These limitations 

have obvious consequences (e.g. low correlation between simulated and observed δ18O) for the simulation of isotopic variations 

in precipitation.  5 

For paleoclimate reconstruction, the proxy data assimilation method has been proven to obtain adequate results (Yoshimura et 

al., 2014;Okazaki and Yoshimura, 2017). This approach, however, requires in-depth knowledge of the atmospheric modeling 

and/or data assimilation algorithm (Sturm et al., 2010). In any case, it takes a lot of effort to establish such a system if it is not 

already present. Particularly, even though the underlying physics is relatively simple, it would be a daunting task to develop a 

GCM source code which requires tens of thousands of code lines to simulate the hydrological cycle (Sturm et al., 2010). 10 

Generally, the complexity of GCMs impedes their interpretation. 

While GCMs are typically Eulerian in the sense that mass is exchanged between fixed discrete volumes, Lagrangian models 

(e.g. the HYSPLIT model used in this study, mentioned in section 3.5) are used to calculate the composition of infinitesimal 

air parcels in the atmosphere according to the mean wind field data (Galewsky et al., 2016). The transport pathway along 

which air parcels travel is called a trajectory. In contrast to Eulerian models, Lagrangian models are not subject to numerical 15 

diffusion, hence they are computationally cheaper to simulate moisture sources. Because of their relative simplicity, these 

models are suitable to study the influences of different processes along transport trajectories (Helsen et al., 2006).They also 

more explicitly retain information about the history of the air parcels, which is useful to investigate controls on the isotopic 

composition of vapor arriving at a site of interest (Galewsky et al., 2016). In spite of their high suitability for exploring stable 

isotopes in paleoclimate reconstructions, using GCMs for simulating single meteorological events is more difficult due to their 20 

coarse spatial resolution (Pfahl and Wernli, 2008). Moreover, GCMs cannot capture the seasonal cycle of water isotopes on 

local scales (Angert et al., 2008). For these reasons, Lagrangian models are more suitable than GCMs to investigate controls 

on precipitation isotopes at a given location. 

Although relationships between atmospheric circulation patterns and precipitation isotopes are frequently acknowledged and 

applied to reconstruct past climates, the actual causes of these relationships remain unclear (Ishizaki et al., 2012). Similarly, 25 

even if GCMs or Lagrangian models could provide much more detailed information about the fractionation processes along 

the transport pathways of water in the atmosphere, they cannot be used in a straightforward way to extract the impact of 

dominant factors and weight their relative importance for the variability of the observed isotopic signal. Statistical techniques 

are required to quantify the correlation between observed isotopic signal variability and regional climate change patterns 

(Sturm et al., 2010). Statistical analysis techniques such as principal component analysis (PCA) (Vuille et al., 2003;Curio and 30 

Scherer, 2016), sensitivity experiments (Ishizaki et al., 2012), or machine learning techniques like random forests (Sánchez-

Murillo et al., 2016) have been used to investigate dominant factors controlling isotopic composition in precipitation.  
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Recently, many studies have presented evidence that large-scale monsoon circulation is the primary driver of variations in 

precipitation isotopes instead of local controls (e.g. local precipitation amount or temperature) in some parts of the Asian 

monsoon region. This evidence has been found at different temporal scales including daily isotopic variability (Yoshimura et 

al., 2003;Yoshimura et al., 2008), seasonal isotopic variability (Araguás‐Araguás et al., 1998;Kurita et al., 2009;Dayem et al., 

2010;Peng et al., 2010;Baker et al., 2015), and/or interannual isotopic variability (Vuille et al., 2005;LeGrande and Schmidt, 5 

2009;Ishizaki et al., 2012;Tan, 2014;Kurita et al., 2015). However, the influence of the different factors has been described 

qualitatively only, with the exception of the study of Ishizaki et al. (2012), in which the quantitative analysis of the controls is 

limited to two factors (local precipitation amount and distillation of the moisture along its transport trajectories). That means, 

to our best knowledge, there is no study considering quantitatively the interplay of several local and regional factors. 

It has been frequently stated and agreed to that local and regional factors should be considered simultaneously to explain the 10 

isotopic variation in rainfall (e.g. Johnson and Ingram, 2004). Hence, it can be hypothesized that using multiple factors in a 

single linear model is able to explain a larger share of the observed variance in isotopic composition. We aim at developing 

and testing a model-based statistical approach for the quantification of the contribution of isotopic separation processes for 

explaining the isotopic variation of precipitation. Such a model-based statistical method could also be applied in paleoclimate 

studies, separating and quantifying the impacts of local and regional factors on the isotopic composition of local precipitation 15 

(Sturm et al., 2010), thus overcoming the shortcomings of single factor analysis. 

This study uses the Vietnamese Mekong Delta (VMD) as a test case, for which isotopic data in precipitation has been collected 

for the first time. The rainfall samples (δ18O and δ2H) were collected comparatively frequently (bi-weekly to weekly) over a 

period of 18 months. This dataset enables a better analysis of the temporal dynamics of the isotopic composition as compared 

to the typical monthly Global Network of Isotopes in Precipitation (GNIP) data (IAEA/WMO, 2016). The collected data was 20 

used to characterize the isotopic composition for the Mekong Delta by means of local meteoric water lines, which were 

compared to other locations in South-East Asia. The local meteoric water lines (LMWLs) developed in this study can be used 

as a baseline for other studies using isotopic data to investigate hydrological processes in the Mekong Delta. Furthermore, the 

data was used to test the proposed approach for the identification and quantification of the controls on the isotopic variation of 

precipitation. 25 

The main objective of this study is to develop a model-based statistical approach that quantitatively estimates the relative 

contribution and the interplay of regional and local factors in controlling the isotopic variation of precipitation for a given 

study site. The proposed approach is based on backward trajectory analysis exploiting the benefits of a Lagrangian model (the 

HYSPLIT model mentioned in section 3.5), in combination with multiple linear regression (MLR) of all factor combinations 

specifically considering the widespread issue of multicollinearity of the regression factors, and relative importance analysis. 30 

The effort in this study is not meant to develop a universal model to predict precipitation isotopic composition, but rather to 

test a comparatively simple and transferable method utilizing easily obtainable atmospheric spatial and climatic information 

(trajectories) to quantitatively investigate the drivers and their interplay in controlling the isotopic variation of precipitation.   
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2 Study area 

The study area, the Plain of Reeds (Fig. 1), is located in the northern part of the Vietnamese Mekong Delta (VMD), between 

latitudes 10°42’7"N to 10°48’9"N and longitudes 105°22’45"E to 105°33’54"E. With an area of 697,000 ha, it accounts for 

17.7% of the total area of the VMD. About 95% of the Plain of Reeds is used for rice paddy and vegetable cultivating, and 

shrimp and fish farming (Hung et al., 2014). The average elevation ranges from 1-4 m above sea level.  5 

Located in a tropical monsoon region, the climate of the VMD has a distinct seasonality with two seasons: the rainy season 

(May to November) resulting from the flow of moisture from the Indian Ocean and Western North-Pacific Ocean accounting 

for approximately 80-90% of the annual rainfall (Tri, 2012), and the dry season (December to April) controlled by high-

pressure systems over the Asian continent (Wang et al., 2001). Precipitation from the Indian monsoon is forced by the 

convective heat sources over the Bay of Bengal (Wang et al., 2001) and arrives earlier than precipitation from the Western 10 

North-Pacific monsoon (Delgado et al., 2012), forced by a convective heat source over the South China Sea – Philippine Sea. 

The average annual rainfall is 1400-2200 mm, characterized by an uneven distribution, both spatially and temporally (Renaud 

and Kuenzer, 2012;GSO, 2014).  

During the study period, i.e. the period of isotope sampling in rainfall lasting from June 2014 to December 2015, the rainy and 

dry seasons are defined by the monthly precipitation amounts and the monthly number of days with precipitation for Cao Lanh 15 

(Fig. 2). The dry season is defined as the months with rainfall amount smaller than the overall average (blue line), and a 

monthly number of days with precipitation smaller than the overall average (red line). All other months are included in the 

rainy season. The definition used here is particularly developed for the local climatic conditions, the problem to be solved, and 

the data available. Other definitions could cause some data points to be assigned to the other season. However, those data 

points will most likely be from the transition period from one season to the other, i.e. other definitions would affect samples 20 

that have the least explanatory value for the actual dry and wet seasons. 

The data indicates that the rainy season in 2014 lasted from May to November, and in 2015 from June to November. The dry 

season is thus defined from December 2014 to May 2015 and starts again in December 2015. The study period was very dry 

with an annual rainfall of 985 mm compared to the long-term average of 1550 mm at the station Cao Lanh. This anomaly 

needs to be considered in the interpretation of the results.  25 

The annual average temperature is 27°C with the small interannual variability of about 1°C. Variation of temperature 

throughout the year is small with monthly averages of 25°C to 29°C (Fig. 3). The average annual relative humidity ranges 

from 82% to 85%, with a seasonal variation of 80% to 88% during the rainy season and 77% to 83% during the dry season 

(Fig. 3). The mean annual evaporation is 984 mm with a significant difference between the rainy season and the dry season. 

The monthly evaporation rate ranges from 67 to 80 mm and from 76 to 109 mm in the dry and rainy season, respectively. Daily 30 

sunshine duration is about 8.7 to 9.6 hours in the dry season and 5.5 to 5.9 hours in the rainy season (Renaud and Kuenzer, 

2012;GSO, 2014). 
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3 Methodology 

An overview of the proposed methodology is given in Fig. 4. For the derivation of local factors relevant for the isotopic 

composition of precipitation climate data from nearby meteorological stations were collected (section 3.1). At the test location, 

precipitation samples were analyzed for their isotopic composition (section 3.2 and 3.3). For the construction of local meteoric 

water lines (LMWL), three regression methods were applied, in order to test the robustness of the LMWL against different 5 

regression methods (section 3.4). The regional factors were derived from atmospheric back trajectory modeling (section 3.5). 

All possible combinations of local and regional predictors were included in multiple linear regressions, and their ability to 

explain the observed variance of the isotopic composition of precipitation was determined with performance statistics (MLR, 

section 3.6). Finally, the influence of the different factors on the explained variance of isotopic composition was determined 

by relative importance analysis (section 3.7).  10 

3.1 Climatic and isotopic data collection 

Daily precipitation, air temperature, and relative humidity were obtained from the National Centre for Hydro-Meteorological 

Forecasting (NCHMF) of Vietnam at two stations (Chau Doc, Cao Lanh, Fig. 1) for the period 2012-2015. Long-term (more 

than 30 years) climatic data at these stations was provided by SIWRP (2014). Precipitation isotopic data from six selected 

GNIP stations (IAEA/WMO, 2016) located in the Indochinese Peninsula (Fig. 1) was collected for comparison with the 15 

isotopic data sampled in this study in the Plain of Reeds. 

3.2 Precipitation sampling at An Long 

Precipitation at An Long in the Plain of Reeds (Fig. 1) was sampled on a weekly basis between June 2014 and May 2015 and 

twice a week between June 2015 and December 2015. The rain collector was a dip-in sampler type as described in the 

guidelines of the IAEA technical procedure for precipitation sampling (IAEA, 2014). It consists of a 5 L accumulation glass 20 

bottle fitted with a vertical 14 cm diameter plastic funnel that reaches almost to the bottom to prevent evaporative losses, and 

a pressure equilibration plastic tube (2 mm in diameter and 15 m in length) to minimize evaporation. All collected samples 

were stored in 30 mL plastic sample bottles with tight screw caps to avoid evaporation effects. Between collection and 

laboratory analysis, the samples were stored in the dark. 

3.3 Isotopic laboratory analysis 25 

All stable isotope samples were analyzed at the laboratory of the Alfred-Wegener-Institute (AWI) in Potsdam, Germany. The 

measurements were performed with a Finnigan MAT Delta-S mass spectrometer using equilibration techniques to determine 

the ratio of stable oxygen (18O/16O) and hydrogen (2H/1H) isotopes. Analytical results were reported as δ2H and δ18O (‰, 

relative to Vienna Standard Mean Ocean Water - VSMOW) with internal 1σ errors of better than 0.8‰ and 0.1‰ for δ2H and 
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δ18O, respectively. The measuring procedure is described in detail in Meyer et al. (2000). The deuterium excess (d-excess) was 

calculated following Eq. 1 (Dansgaard, 1964): 

d-excess = δ2H - 8*δ18O           (1)  

3.4 Development of local meteoric water lines 

For the development of local meteoric water lines (LMWL) three methods of linear correlation between δ18O and δ2H values 5 

were applied, in order to test the robustness of the LMWL against different regression methods: 

 1) ordinary least squares regression (OLSR), 

 2) reduced major axis (RMA) regression, 

 3) precipitation amount weighted least squares regression (PWLSR). 

OLSR and RMA give equal weight to all data points regardless of their precipitation amount, while PWLSR minimizes the 10 

effect of smaller precipitation amounts (Hughes and Crawford, 2012), which are more likely to have a lower d-excess due to 

re-evaporation of raindrops below the cloud base (Jacob and Sonntag, 1991), or biases in the sampling method (Froehlich, 

2001). OLSR tends to be more useful when investigating the interaction between hydro-climatic processes and stable isotope 

signatures in precipitation, whereas PWLSR is adequate in studying surface and groundwater hydrology (Hughes and 

Crawford, 2012). For a more detailed discussion, the reader is referred to IAEA (1992); Hughes and Crawford (2012); 15 

Crawford et al. (2014). 

The quality of fit of the three LMWLs resulting from OLSR, RMA, and PWLSR was evaluated based on the coefficient of 

determination R2, also referred to as explained variance, the standard error SE and the statistical significance value (p-value). 

The regression model indicates a good fit to the data when R2 is close to 1.0, the standard error is small in relation to the 

magnitude of the data, and the p-value is smaller than 0.0001 (Helsel and Hirsch, 2002). 20 

3.5 Back trajectory modeling 

The potential locations of atmospheric moisture sources and the direction of the air mass causing precipitation before reaching 

An Long station were investigated via back-trajectory analysis. This investigation was performed using the PC Windows-

based HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model developed by NOAA (National Oceanic and 

Atmospheric Administration) at the Air Resources Laboratory (ARL) (www.arl.noaa.gov/HYSPLIT_info.php). The model 25 

builds on the Lagrangian approach, using a moving frame of reference for the advection and diffusion calculation as the air 

parcels move from their initial location (Draxler and Rolph, 2003;Stein et al., 2015). The model parameters and inputs are 

starting time and height of the trajectories, trajectory duration, vertical motion options, type of climatic dataset, and the number 

of trajectories. The back-trajectory outputs are the hourly locations of the trajectory segment endpoints, the altitude of 

trajectories, and climatic parameters (e.g. precipitation, temperature, relative humidity) along each trajectory.  30 
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The 1ox1o climatic dataset generated by the global data assimilation system (GDAS) was used as input to the HYSPLIT model. 

This dataset was downloaded from the ARL web server using the HYSPLIT graphical user interface. 10-day backward 

trajectory analysis was performed every 6 hours between 01-JUN-2014 and 31-DEC-2015 at the sampling site (10.72oN, 

105.24oE) for three levels at 1000, 1500, and 2000 m above ground (corresponding to barometric surfaces of approximately 

900, 850, and 800 hPa). These barometric surfaces were chosen because the 850-hPa vorticity is highly indicative of the 5 

strength of the boundary layer moisture convergence and of rainfall in regions away from the equator (Wang et al., 2001), 

hence rainfall is expected to mostly originate from these altitudes. Consequently, the combination of 800 hPa and 850 hPa 

barometric surfaces accounts for the fact that rainfall is expected to mostly originate between 1500 and 2000 m above ground 

level. Correspondingly, the combination of the barometric surfaces of 800, 850 and 900 hPa means that rainfall is expected to 

mostly originate between 1000 and 2000 m above ground level. In total, 6948 backward trajectories were computed. The 10 

HYSPLIT outputs, i.e. precipitation, temperature, relative humidity, and moving distance of moisture sources, were used to 

investigate the influence of the different moisture sources on the variation of the isotopic composition of precipitation at An 

Long. In order to derive figures representative for each trajectory, accumulated precipitation, mean values of temperature and 

humidity of the hourly HYSPLIT output were calculated along the trajectory and used as predictors in the MLR. 

Single backward trajectory computations by the HYSPLIT model can have large uncertainties. The horizontal uncertainty of 15 

the trajectory calculations by HYSPLIT has been estimated to be 10–20 % of the travel distance (Draxler and Hess, 1998). 

While errors in trajectory calculation computed from analyzed wind fields seem to be typical on the order of 20% of the 

distance travelled (Stohl, 1998), the statistical analysis of a large number of trajectories arriving at a study site would increase 

the accuracy of the trajectory analysis (Cabello et al., 2008). Harris et al. (2005) studied trajectory model sensitivity to the 

input meteorological data (focusing on ERA-40 and NCEP/NCAR reanalysis data) and to the vertical transport method. They 20 

pointed out five causes of trajectory uncertainty, expressed as percentage of deviation of the average travel distance: 1) minor 

differences in the computational methodology: 3–4%; 2) time interpolation: 9–25%; 3) vertical transport method: 18–34%; 4) 

meteorological input data: 30–40%; and 5) combined two-way differences in the vertical transport method and meteorological 

input data: 39–47%. However, it would be difficult to prove that in all situations a single meteorological data set or a single 

method of trajectory modeling was superior to another one (Gebhart et al., 2005;Harris et al., 2005). More details about the 25 

uncertainties in trajectory modeling were provided by (Stohl, 1998), later by (Fleming et al., 2012) and references therein. 

In this study, several quality control measures were applied, as recommended in Stohl (1998), to increase confidence in the 

HYSPLIT-generated back trajectories and to improve the validity of the air mass history. Firstly, trajectories were computed 

for three pressure levels (900, 850, and 800 hPa). Similar origins of atmospheric moisture for these pressure levels suggest that 

resolution errors and atmospheric shearing instabilities are negligible which increases the confidence in the results. Secondly, 30 

we use the shortest possible integration time step (i.e. 1 h) and a small value for the parameter TRATIO (0.25), which is the 

fraction of a grid cell that a trajectory is permitted to transit in one advection time step. Smaller values of TRATIO help to 

minimize the trajectory computation error using the HYSPLIT model. Thirdly, the statistical analysis of a large number of 
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trajectories (e.g. trajectory cluster analysis) arriving at the study site was applied to confirm the accuracy of the trajectory 

analysis. The trajectory cluster analysis is conducted by the HYSPLIT model to group trajectories with similar pathways. The 

cluster analysis merges these trajectories that are near each other and represents those clusters by their mean trajectory. 

Differences between trajectories within a cluster are minimized while differences between clusters are maximized. 

Computationally, trajectories are combined to decrease the number of clusters until the total spatial variance (TSV) starts to 5 

increase significantly. This occurs when disparate clusters are combined. This number of clusters is then selected as the optimal 

cluster number for sorting and combining similar trajectories. More information about the HYSPLIT cluster analysis can be 

found at https://ready.arl.noaa.gov/documents/Tutorial/html/. 

3.6 Analysis of factors controlling isotopic variation in precipitation  

Multiple linear regression (MLR) was used to assess how the isotopic variation in precipitation is related to regional and local 10 

controlling factors. As indicators of regional factors the output of the HYSPLIT model was used, consisting of the accumulated 

precipitation amount along the transport pathways (hereafter P_hysplit), mean temperature (T_hysplit) and mean relative 

humidity (H_hysplit) along the trajectory, and the distance of moisture sources travelled within the time frame of 10 days 

(D_hysplit). The local climatic factors are weekly precipitation amount (P_AL) at An Long station, and weekly mean air 

temperature (T_AL) and weekly mean relative humidity (H_AL) taken from the nearby Cao Lanh station during the sampling 15 

period. These seven predictors were related to isotopic values (δ18O, δ2H, and d-excess) defined as response variables in the 

MLR. Pearson linear correlation coefficients were computed to show inter-correlations between response and predictor 

variables and then used to determine the importance of predictors in the MLR. 

All possible subset regression models consisting of all possible combinations of predictors (27-1 = 127 models) were applied 

separately for δ18O, δ2H and d-excess. The coefficient of determination R2 for the MLR was calculated for each subset 20 

regression. The goodness of each MLR model was evaluated based on the Prediction Residual Error Sum of Squares (PRESS) 

(Eq. 2) and adjusted R2 (Eq. 3) (Helsel and Hirsch, 2002). The PRESS residuals are defined as  𝑒𝑒(𝑖𝑖) = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�(𝑖𝑖) where 𝑦𝑦�(𝑖𝑖) is 

the regression estimate of 𝑦𝑦𝑖𝑖  based on a regression equation computed leaving out the ith observation. The process is repeated 

for all n observations: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  ∑ 𝑒𝑒(𝑖𝑖)
2𝑛𝑛

𝑖𝑖=1            (2)  25 

The selection of best models with PRESS is equivalent to a leave-one-out cross-validation, which tests the regression models 

for robustness and reduces the chances of model over-fitting, i.e. the chances of finding spurious regression models that provide 

good results for the given combination of factors and selected time period only.  

The adjusted R2 (𝑅𝑅𝑎𝑎2) is defined as follows 

𝑅𝑅𝑎𝑎2 = 𝑅𝑅2 − (1 − 𝑅𝑅2) 𝑝𝑝
(𝑛𝑛−𝑝𝑝−1)

          (3)  30 
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Where p is the total number of predictors in the MLR model and n is the number of observations. The statistical significance 

of all linear regression was evaluated based on the p-value for the F-test as part of a one-way ANOVA analysis. A good MLR 

model is hereby characterized by: 

(i) PRESS close to zero, 

(ii) Adjusted R2 (R2
a) close to 1.0, 5 

(iii) a p-value smaller than 0.0001. 

For each response variable, six pressure layers (800 hPa, 850 hPa, 900 hPa, and mean values of their combinations) and 10 

durations of backward trajectories (from 1-day to 10-day backward) were used. The different pressure levels and combinations 

were chosen in order to tackle the inherent uncertainty regarding the pressure levels from which the rainfall actually stems. 

Similarly, different durations of the trajectories were chosen in order to avoid fixing the a-priori unknown travel time of 10 

precipitation reaching An Long.  Overall, this resulted in 7620 MLR models for each response variable δ18O, δ2H and d-excess 

(6 pressure levels times 10 trajectory durations times 127 predictor sets). The best MLR model was then identified by the 

smallest PRESS value (Eq. 2). Furthermore, the goodness of fit of the MLR models was characterized based on the adjusted 

R2 values. 

3.7 Relative importance analysis  15 

Relative importance analysis determines the proportion of the variance explained by the individual predictors in the regression. 

However, this is difficult when predictors are correlated, since multicollinearity can lead to a high sensitivity of regression 

coefficients caused by small changes in the model. This means that the importance can strongly shift from one predictor to 

another well correlated one if the data set is changed even only slightly. The leave-one-out cross-validation may be particularly 

vulnerable to this effect. Therefore two methods were applied, namely relative weight analysis (Johnson, 2000) which has 20 

been developed to quantify the power of predictors when they are correlated, and the relative partial sum of squares (Gardner 

and Trabalka, 1985). For a review of approaches to estimate predictor importance, readers are referred to Tonidandel and 

LeBreton (2011); Kraha et al. (2012).  

Relative weight analysis approximates the relative importance of a set of predictors by creating a set of variables that are highly 

related to the original set of variables but are uncorrelated with each other. The response variable is then regressed on the 25 

uncorrelated set of predictors to approximate the relative weight of the original set of predictors, defined as the relative 

contribution of each predictor to R2. This method is computationally efficient even for a large number of predictors and 

produces very similar results compared to more complex methods. Details are given in Johnson (2000); Tonidandel et al. 

(2009). 

In the relative partial sum of squares (RPSS) method (Gardner and Trabalka, 1985), the total sum of squares of the response 30 

variable is partitioned based on multiple linear regression between all predictors. Briefly, the RPSS represents the percentage 

of the total sum of squares attributable to each of the predictors. To calculate RPSS for predictor Vi, the difference between 
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the regression sum of squares (RSS) for the full model and the regression sum of squares for the model with Vi missing (RSS-

i) is divided by the total sum of squares (TSS) (Rose et al., 1991), and expressed as a percentage using Eq. 4. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 100 ∗ (𝑅𝑅𝑅𝑅𝑅𝑅 −  𝑅𝑅𝑅𝑅𝑅𝑅−𝑖𝑖)/𝑇𝑇𝑇𝑇𝑇𝑇         (4)  

The relative importance derived by the methods above quantifies the proportion of the variance explained by the individual 

regression factors, and thus identifies the dominant controls on the isotopic composition of rainfall. 5 

4 Results and discussion 

4.1 Variability of moisture sources 

Because there is no daily precipitation data recorded at An Long, we used daily precipitation data at Cao Lanh instead. This is 

the closest national meteorological station, located approximately 37 km Southeast of An Long. Backtracking trajectories in 

Fig. 5 are plotted for the days when rainfall was recorded at Cao Lanh. This is based on assumption that days with precipitation 10 

at Cao Lanh and An Long coincide. 

Figure 5 shows back-calculated trajectories of atmospheric moisture prior to rainy days at An Long for the sampling period 

from June 2014 to December 2015. Left and right panels show the results of 850 hPa trajectories for 2014 and 2015, and the 

upper, middle, and lower panels show the results for the early (June – September) and late (October – November) rainy season 

and dry season (December – May), respectively. Figure 6 shows the spatial distribution of vapour trajectories (cluster means) 15 

for precipitation days at An Long for 3 barometric surfaces (800, 850, 900 hPa) between June 2014 and December 2015, and 

the change in total spatial variance (TVS) for different cluster numbers. The TSV was used to identify the optimum number 

of clusters. The similarity of back-calculated trajectories (Fig. 5) and trajectory cluster analysis (Fig. 6) at three barometric 

surfaces (900, 850, and 800 hPa) illustrates that the trajectories and thus the source regions do not differ between different 

atmospheric layers. This indicates a barotropic atmosphere, with the consequence that it is unlikely that the selection of the 20 

pressure layer for the HYSPLIT trajectories modifies the results of the MLR significantly. 

Figure 5 and Figure 6 demonstrate that the dry-season precipitation (from December to May) in the Plain of Reeds mainly 

originates from the moisture sources of the Asian continental air masses and the oceanic air masses carried by the equatorial 

easterlies, whereas during the rainy season (from June to November) air masses travel a longer distance over the tropical Indian 

Ocean (from June to September) and the South Pacific Ocean (October to November).  25 

These findings for An Long agree with the general characterization of monsoonal circulation and precipitation over the 

Southeast Asia region, with moisture from the Indian Ocean dominating during the initial stage of monsoon evolution, and the 

Pacific Ocean dominating in the later stages. This indicates that the HYSPLIT model provides valid trajectories to be used in 

the MLR. 

The mean δ18O values for the 5 clusters are plotted in Figure 6 (in brown). The mean cluster values are similar for the three 30 

pressure levels. Also, the mean values of the two clusters from the Indian Ocean, as well as the two clusters from the Pacific, 
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are similar. For a fingerprinting one also has to consider the variation of the values within the clusters, which partly overlap. 

This means that the δ18O values of precipitation in the Mekong Delta cannot be used to uniquely identify the origin of the 

trajectory. However, they provide a coarse indication of their origin. 

4.2 Isotopic composition of precipitation 

4.2.1 Meteoric water lines 5 

The linear-regression analyses of 74 pairs of δ18O and δ2H values at An Long yield LMWLs for the Plain of Reeds as follows: 

1) Ordinary least squares regression (OLSR): 

δ2H = (7.56 ±0.11)* δ18O + (7.26 ±0.67) 

(SE = 2.26; r2 = 0.99; p < 0.0001; n = 74), 

2) Reduced major axis regression (RMA): 10 

δ2H = (7.61 ±0.11)* δ18O + (7.58 ±0.68) 

(SE = 2.27; r2 = 0.99; p < 0.0001; n = 74), 

3) Precipitation amount weighted least squares regression (PWLSR): 

δ2H = (7.61 ±0.11)* δ18O + (7.87 ±0.73) 

(SE = 2.29; r2 = 0.99; p < 0.0001; n = 74). 15 

The numbers in brackets indicate the estimates of slope and intercept plus/minus the standard deviation, indicating the 

parameter uncertainty.  

The close fit of all considered regressions indicates a very good linear relationship between δ18O and δ2H in the study area that 

is independent of the applied regression method. On a global scale, a good linear relationship between δ18O and δ2H is usually 

observed at sites where secondary fractionation processes, e.g. sub-cloud evaporation, are insignificant (Crawford et al., 2014).  20 

The LMWL for An Long is slightly different from the global meteoric water line (GMWL; defined by δ2H = 8*δ18O + 10 

using OLSR, (Craig, 1961) and the LMWLs derived for six selected GNIP stations (IAEA/WMO, 2016) located in the 

Indochinese Peninsula (Fig. 7). The small difference in slope between these LMWLs compared to that of GMWL, and the 

distribution of isotope values along the GMWL indicate that evaporative isotopic enrichment during rainfall is not significant. 

However, the less positive intercepts of LMWLs (<10‰) (Fig. 7) may reflect smaller kinetic effects during evaporation 25 

(Ingraham, 1998) over the Mekong Delta compared to the worldwide average.  

4.2.2 Seasonal variation and spatial homogeneity 

The 74 precipitation samples at An Long showed that δ18O ranges between -12.6‰ and -1.0‰, with an arithmetic mean value 

and standard deviation of -5.8‰ ± 2.5‰, and δ2H ranges between -89.3‰ and 0.9‰, with an arithmetic mean value and 

standard deviation of -36.2‰ ± 18.7‰. Generally, less negative isotopic values are observed in the dry-season precipitation 30 

samples. The most negative values occur in the second half of the rainy season (September and October), whereas the least 
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negative values are observed in the late dry season in April and May (Fig. 7 and Fig. 8). This shows that the isotopic 

composition of precipitation at An Long station exhibits marked seasonal variations, which in turn indicates different dominant 

moisture sources and/or processes in the different seasons. A comparison of the seasonal variation of δ18O with the short-term 

(2014-2015) and long-term (1968-2015) monthly averages of Bangkok (Fig. 8) reveals very similar seasonality, both in terms 

of timing and magnitude. The differences between δ18O for An Long and Bangkok are likely caused by the exceptional low 5 

rainfall in the study period compared to the long-term monthly values, particularly during May and July. Considering 

additionally the similarity of general factors controlling stable isotopic composition of precipitation between the two stations, 

i.e. annual rainfall amount, air temperature, altitude and latitude (Dansgaard, 1964;Ingraham, 1998), it can be concluded that 

the isotopic variations of An Long and Bangkok follow the same dynamics and controls, both on an annual and seasonal scale, 

and can represent or complement each other. 10 

In order to test the representativeness of the An Long data for a wider area, the variability of the monthly mean δ18O data of 

An Long was compared to the available GNIP data of the Indochinese Peninsula (Table 1). The Levene test (Levene, 1960) 

for equality of variances was used to compare the data of the different stations. As shown in Fig. 9, the test results in four 

distinct groups of data series with similar variances: the Northern part of the Indochinese Peninsula (Hanoi and Luang Prabang, 

Fig. 9b), the Southern part of the Indochinese Peninsula (Bangkok and An Long, Fig. 9c), the islands in the Gulf of Thailand 15 

(Ko Samui and Ko Sichang, Fig. 9d), and finally Kuala Lumpur showing only little seasonal variability. The Northern and 

Southern parts of the Indochinese Peninsula show generally a similar seasonal behavior with a distinct higher depletion during 

the rainy season, but in the Northern part the highest depletion is one month earlier (August) than in the Southern part, and the 

magnitude of the depletion is larger. The seasonal δ18O variability in precipitation on the islands is much lower than on the 

stations located on the continent. This is likely due to the maritime setting and could indicate a continental effect. In addition, 20 

the short-term time series of Bangkok and An Long (i.e. 2014-2015) show similar variances, resulting in a highly significant 

Levene test statistic of 0.98. The variation of the short-term time series of Bangkok and An Long is also very similar to the 

long-term time series, again shown by a highly significant Levene test statistic of 0.90 (Fig. 9c). This indicates that the isotopic 

variation of the An Long time series is almost identical to the one from Bangkok. In summary, the analyzed GNIP data suggests 

that the data and results from this study are likely to be representative of the Southern continental part of the Indochinese 25 

Peninsula. 

4.3 Factors controlling isotopic composition of precipitation 

Prior to the MLR, the correlation of the predictors was analyzed (Table 2). The absolute values of the correlation coefficients 

between local (P_AL, T_AL, H_AL) and regional (P_hysplit, T_hysplit, H_hysplit, D_hysplit) climatic parameters are 

relatively small and mostly not significant (|r| < 0.4, Table 2b). However, the correlation coefficients between regional 30 

predictors are in most cases high and significant (Table 2c). Highest correlations are found between temperature and humidity 

for local factors, and between the regional humidity and precipitation for regional factors. Interestingly, the correlation between 
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P_AL and H_AL is quite low. This indicates that the local precipitation is mainly controlled by large-scale circulation. The 

correlation between the predictors underlines the necessity to consider multicollinearity when investigating how the predictors 

control the response variables (δ18O and δ2H). 

4.3.1 Local factors and isotopic composition in precipitation 

Typically, in tropical regions subject to a monsoon climate the correlation between δ18O and δ2H values of precipitation and 5 

air temperature is virtually nonexistent, whereas a strong relation between δ18O and amount of precipitation has been observed 

(Rozanski et al., 1992;Araguás‐Araguás et al., 1998). Our data show that the correlation of local precipitation amount (P_AL) 

and local temperature (T_AL) with isotopic values (δ18O and δ2H) are both low (|r| < 0.45, Table 2a). This suggests that δ18O 

and δ2H variation is neither dominated by local precipitation amount nor by local temperature during the sampling period. This 

lack of a significant correlation (|r| < 0.5) between δ18O and local rainfall amount was also observed in other regions affected 10 

by the Asian monsoon climate such as Bangkok, Hong Kong, New Delhi (Ishizaki et al., 2012), and Cherrapunji, India 

(Breitenbach et al., 2010). This again supports the statement that δ18O may not be an adequate proxy for local climatic 

conditions (e.g. temperature or rainfall amount) in the Asian monsoon region (Aggarwal et al., 2004;Vuille et al., 2005).  

Secondary fractionation processes such as sub-cloud evaporation or secondary evaporation from open water bodies tend to 

decrease d-excess in the residual rainwater (Stewart, 1975) and enrich it in the heavy isotopes (Guan et al., 2013). The negative 15 

correlation of humidity (H_AL) with δ18O and δ2H (r = -0.53, Table 2a) combined with a positive correlation with d-excess (r 

= 0.2, Table 2a), indicates that some secondary fractionation processes (Risi et al., 2008b;Crawford et al., 2017) may take 

place during some months at An Long. To examine in which month secondary fractionation processes are likely significant, 

amount-weighted mean and arithmetic mean, for both δ18O and d-excess are compared. The rationale is that if secondary 

fractionation processes are important (with the assumption that the moisture sources of different events within the month are 20 

the same), the arithmetic mean should have a δ18O value that is more enriched in heavy isotopes, and a much smaller d-excess 

than the weighted mean (Guan et al., 2013). Figure 10 shows that secondary fractionation processes may take place during the 

dry season, in December 2014, and in April and May 2015, because in these months a) less negative δ18O values and lower d-

excess values compared to the overall arithmetic mean are observed, while at the same time the monthly arithmetic means are 

higher for δ18O, and lower for d-excess compared to the monthly weighted means. 25 

To further corroborate this finding, linear regression was performed for different seasons to derive seasonal LMWL’s and 

relations between local humidity and δ18O and d-excess. Table 3 suggests that secondary fractionation processes are likely to 

take place in the dry season between December 2014 and May 2015. This is depicted by a slope of lower than 8 (slope = 6.9) 

for the dry season, the slightly negative correlation between δ18O and local relative humidity, and the markedly positive 

correlation between humidity and d-excess. This is a distinctly different behavior compared to the rainy season as a whole, but 30 

also for the first (early monsoon) and second (late monsoon) parts of the rainy season. In summary, these findings indicate that 

secondary fractionation processes influence the isotopic composition of precipitation primarily in the dry season, which is 
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characterized by lower humidity and higher temperature in the Plain of Reeds. While this conclusion is plausible due to the 

climatic conditions and low rainfall amounts, one has to consider the low number of rainfall samples during the dry season, 

which associates some uncertainty to the regressions and thus the interpretation. 

4.3.2 Regional factors and isotopic composition in precipitation 

In comparison to other regional and local parameters, the precipitation amount along the transport pathways of moisture 5 

sources (P_hysplit) shows the strongest correlation with δ18O and δ2H as depicted by a correlation coefficient of -0.76 (Table 

2a). Thus, P_hysplit is likely the dominant factor controlling the isotopic composition of precipitation. Other predictors show 

weaker correlations with |r| < 0.55. This, however, does not exclude that these predictors do have some predictive power for 

the isotopic composition of precipitation in An Long when used in combination with other predictors. Although δ18O and δ2H 

are rather well correlated with some climatic parameters, d-excess (which is a function of both) is not well correlated. This is 10 

because of the relative difference of the variation of δ18O and d-excess, which is expressed by a low correlation coefficient 

between two these variables (r = -0.44). The weak correlation between d-excess and all climatic parameters (|r|<0.36) indicates 

that the selected predictors (i.e. selected climatic parameters) are not sufficient to explain the processes responsible for the 

variability of the d-excess. On a global scale, drivers controlling d-excess variation are likely sea surface temperature or near-

surface relative humidity of moisture sources (Pfahl and Wernli, 2008;Uemura et al., 2008;Pfahl and Sodemann, 2014), which 15 

are not considered in this study. In tropical areas, a major contribution to the seasonal variation in d-excess can be convective 

processes, e.g. re-evaporation and rain–vapor interactions (Risi et al., 2008a;Risi et al., 2010a), or the influence of large-scale 

processes, e.g. conditions at the vapor source, convection and recycling of moisture along trajectories (Landais et al., 2010). 

A complete investigation of factors controlling d-excess in precipitation is thus not possible by the presented study design and 

selected predictors. However, some conclusions about the factors controlling the d-excess can be obtained with the presented 20 

method, see below. 

4.4 MLR and relative importance analysis 

The results of the MLR indicate that δ18O signal in precipitation at An Long is best explained by moisture sources of 5-day 

backward trajectories (Fig. 11). The MLR of these trajectories produces the lowest PRESS and highest R2 values, indicating 

that about 80% of the variability of precipitation δ18O (Fig. 11) and δ2H (not shown) at An Long can be explained by the best 25 

MLR model. The explained variance differs only slightly between the different pressure levels used. But still, the best 

performance in terms of the lowest PRESS value was obtained by the mean backward trajectories of the 800 hPa and 850h Pa 

levels.  

Contrary to δ18O and δ2H, the MLR fails to explain the variation of d-excess over the whole study period to a large extent, 

with a maximal R2 of 0.3 (Fig. 11). This indicates that the climatic parameters used in our MLR models have only little impact 30 

on the annual d-excess variation, which corroborates the findings of the linear correlation analysis in section 4.3.2. 
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In the next step, the importance of the MLR predictors was analyzed. Figure 12 shows the results applying Johnson’s relative 

weight analysis for the best performing MLR models, i.e. using the mean of the 800 hPa and 850 hPa 5-day backward 

trajectories. In general, the predictive power of the MLR models increases with increasing number of predictors. Both 

importance methods, i.e. relative weight analysis and the relative partial sum of squares, yield very similar results (not shown).  

The results indicate that regional factors are always more important than local factors if the R2 value is above 0.5. The local 5 

factors dominate only in MLR models with low performance, or when no regional factors are used as predictors. This is also 

highlighted by the sum ratio line (black line in Fig. 12), defined as the fraction of R2 explained by regional factors normalized 

to the overall R2. In the best MLR model (124th model) with the lowest PRESS value and an R2 of 0.80, which is equivalent to 

an explained variance of 80%, the regional factors explain 56% of the absolute δ18O variance (which is equivalent to 70% 

relative to R2 = 0.80), while local factors explain only 24% (30% relative to R2 = 0.80). This result agrees with the two-factor 10 

analysis of Ishizaki et al. (2012) who stated that distillation during transport from source regions is the dominant contributor 

to inter-annual variability of δ18O precipitation in Bangkok, Bombay, and Hong Kong, accounting for 70%, 60% and 70% 

relative to the overall explained variance, while the amount of local precipitation contributed the remaining 27%, 33%, and 

25% of the explained variance, respectively.  

In all models where precipitation amount along transport pathways from moisture source regions (P_hysplit) is included, this 15 

factor explains the highest proportion of R2, which is always at least double and up to triple of the explained variance of other 

factors (Fig. 12). In turn, the absence of P_hysplit as a predictor in the MLR model considerably decreases the R2, indicating 

that P_hysplit is the most dominant factor. In the best MLR model (124th model) the most important predictor is P_hysplit, 

explaining 47% of the total δ18O variance (partial R2 = 0.47, Fig. 12). The second dominant factor is T_AL, accounting for 

21% of the explained the total variance. The remaining factors account for less than 13% of the δ18O variance. This result 20 

indicates that the regional amount effect is a dominant process in controlling isotopic variation, whereas the local amount 

effect is not important in the VMD. Similar findings are reported for other regions in Asia (e.g. Rozanski et al., 1992;Araguás‐

Araguás et al., 1998). The local temperature T_AL, however, can be regarded as a modulating factor for the isotopic 

composition on top of P_hysplit.  

In a next step, the predictor importance analysis is performed for different seasons, in order to analyze if seasonal differences 25 

in the dominating factors for the isotopic composition exist, as the correlation analysis of local factors and isotopic composition 

suggests (section 4.3.1). The samples were split into dry season and rainy season subsets, for which the MLR was applied 

individually. The definition of the seasons follows the analysis in section 2, i.e. the dry season lasts from December to May. 

However, due to the low number of samples during this period, the dry season samples were taken from mid-November to 

mid-June in order to increase the sample number, thus enabling a more robust MLR fitting. This selection can be justified: 30 

Because the delineation of the dry and wet season above is based on monthly data, the “sharp” distinction between the rainy 

and dry season is forced by the temporal resolution of the data used. In reality, the transition between rainy and dry season is 
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rather gradual, thus the delineation between the rainy and dry season should rather be regarded as fuzzy. Using data from the 

last two weeks of November and the first two weeks of June can be seen as one way to consider this. 

Furthermore, the rainy season was subdivided according to the different moisture source regions shown in section 4.1: the 

Indian Ocean, dominating during the initial and high stage of the Indian monsoon from June to September/mid-October, and 

the South China Sea – Philippine Sea and the North-West Pacific Ocean from October to May during the late rainy and dry 5 

seasons, with some contribution from continental Asia (Fig. 5). In order to test if the factors have different importance caused 

by different source regions during the rainy season, the MLR models and relative importance analysis were applied for these 

two time periods in addition to the dry season. The number of samples for the different subsets was 42, 18 and 14 for the early 

rainy season, late rainy season and dry season, respectively. 

Figure 13 shows the results of the MLR and importance analysis for the three seasonal subsets for δ18O. The sorting of the 10 

models is the same as in Fig. 12. On a first glance, the results for the rainy season subsets (Fig. 13a and Fig. 13b) are quite 

similar to each other and to the overall data set. The best performing model in terms of the lowest PRESS value is in all cases 

the model 124. However, in terms of R2, the performance of the early rainy season is somewhat lower compared to the overall 

data set, while for the late rainy season it is significantly better, with R2 = 0.96. This increase in explained variance is caused 

by an increased contribution of the regional factors. In the late rainy season, the regional factors alone contribute 76% to the 15 

overall R2 of 0.96 of the best PRESS model, which equals 79% of the explained variance (Table 4).  

This is a much larger contribution compared to the partial R2 values of 56% and 51% for the whole data set and the early rainy 

season, respectively. The increase stems from a larger importance of the other regional factors H_hysplit and/or T_hysplit. 

While their contribution to the whole data set and the early rainy period is rather low and P_hysplit dominates the contribution 

of the regional factors, it is raised to about 30% in the late rainy season, either individually or in combination. For the best 20 

PRESS model marked with the cyan dot in Fig. 13b, T_hysplit contributes 27% to the overall R2 of 0.96.  It indicates that 

temperature and humidity play a larger role in the isotopic fractionation along the trajectories of water stemming from the 

North-West Pacific/South China Sea and continental Asia compared to water stemming from the Indian Ocean during the 

boreal summer months. The large regional and thus climatic heterogeneity of water sources during the late rainy season offers 

a plausible explanation for this result. The source regions during this period are located in oceans and continental regions in 25 

higher latitudes outside the tropics, where large climatic differences may occur during the transport along the trajectories. 

Therefore, fractionation processes caused not only by the rainfall amount, but also by evaporation and condensation are likely 

to have a larger effect on the final isotopic composition of rainfall reaching An Long during this period, as compared to the 

low climatic variability of the tropical Indian Ocean region, where the rainfall during the early rainy seasons originates. 

A completely different picture reveals the MLR fitting and importance analysis for the dry seasons shown in Fig. 13c. While 30 

the overall performance in terms of R2 is comparable to the early rainy season, the importance of the local and regional factors 

is very different from the other seasons. For the dry season, the local factors dominate. In the best performing MLR model 

with the lowest PRESS value (cyan dot in Fig. 13c), T_AL contributes 78% of the explained variance. Similar results are 
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obtained for almost all of the MLR models. For the models with R2 > 0.5, T_AL is the most important factor, followed by 

P_AL and H_AL with similar importance. The regional factors generally do not contribute more than 22% of the explained 

variance, if R2 > 0.6. This finding corroborates the assumed higher importance of secondary fractionation processes during the 

dry season in the VMD, as already hypothesized in section 4.3.1. However, in combination with other predictors, T_AL seems 

to be a better predictor of the secondary fractionation processes compared to H_AL, which was used in 4.3.1. As T_AL and 5 

H_AL are closely correlated (Table 2), the findings of section 4.3.1 and the MLR of the dry season presented in this section 

agree well.  

The MLR modeling of δ2H shows very similar results to δ18O leading to the same conclusions (Fig. S1 and Fig. S2 in the 

supplement). The MLR modeling of seasonal d-excess also shows an improved fit for the late rainy and dry seasons (Fig. S3 

and Fig. S4 in the supplement), while for the early rainy season the results are not as satisfying as for the whole dataset. In 10 

contrast to δ18O and δ2H, regional factors explain the bulk of the d-excess variance also for the dry season. Among the regional 

factors, P_hysplit has the lowest importance for d-excess, while the others factors T_hysplit, H_hysplit, and D_hysplit explain 

about 65% of the best R2 of 0.66. This is also a distinctively different result compared to δ18O and δ2H, where P_hysplit always 

dominated the regional factor contribution. The remaining explained variance stems mainly from the local precipitation P_AL, 

with some contribution of T_AL. This finding is in line with the rationale outlined in section 4.3.1, that evaporation along the 15 

transport pathway decreases the d-excess (Stewart, 1975). This effect is much more variable during the late rainy and dry 

season due to the transport pathways from higher latitudes, as compared to the rather uniform climatic conditions along the 

transport pathways during the rainy season, as already argued in the previous paragraph for the late rainy season results of 

δ18O. This means in summary that the MLR and relative importance analysis of d-excess for the late rainy and dry season 

corroborate the hypothesis that secondary fractionation processes caused by evaporation are relevant during the dry season, 20 

respectively for rainfall stemming from the Pacific region and continental Asia. However, for δ18O and δ18H local factors 

describing evaporation are more important, while for d-excess regional factors and thus evaporation processes along the 

transport pathways dominate. 

Overall, applying all possible subset regression MLR models can much better explain the isotopic variation in rainfall 

compared to approaches considering only one predictor, i.e. a simple correlation analysis. Moreover, the associated relative 25 

importance analysis enables the identification of the dominant factors, thus offering interpretation aids for the identification of 

the processes responsible for the isotopic signature of local rainfall. The presented analysis illustrates that the investigation of 

dominant factors controlling isotopic composition in precipitation with simple correlation analyses may lead to wrong 

conclusions, particularly when predictors are correlated. Additionally, MLR is able to consider the combination of different 

local and regional factors, thus enabling a better identification and interpretation of the manifold processes controlling the 30 

isotopic composition of rainfall. 
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5 Conclusions 

This study analyzes the influence of local and regional meteorological factors on the isotopic composition of rainfall, expressed 

as δ18O, δ2H, and d-excess, in the Vietnamese Mekong Delta (VMD). For this purpose rainfall samples were taken on a weekly 

to a bi-weekly basis for a period of 1.5 years at An Long in the North-Eastern part of the VMD and analyzed for stable water 

isotopes. The regional factors potentially influencing isotopic composition were derived by back-tracing of water particles up 5 

to 10 days from the target location using the HYSPLIT model, while the local factors were derived from local climate records. 

The influence of the different factors on the isotopic condition was quantified by multiple linear regression (MLR) of all factor 

combinations and relative importance analysis.  

The MLR showed that up to 80% of the total variation of δ18O can be explained by linear combinations of the selected factors. 

Similar results are obtained for δ2H. Contrary to this, only about 30% of the total variation of the d-excess can be explained 10 

by the selected factors, if the whole data series is used. General considerations regarding the controls of d-excess in tropical 

areas suggest that additional factors, like sea surface temperatures of the source region, need to be taken into account for an 

improved modeling of d-excess variation by MLR overall seasons and source regions. 

The study showed that local climatic factors, specifically rainfall amount and temperature, play a minor role in controlling the 

isotopic composition of the rainfall at An Long. However, there is evidence that sub-cloud evaporation has a small effect 15 

during the dry season. Regional factors, on the contrary, dominate the isotopic composition of rainfall at An Long. 70% of the 

explained variance, i.e. a partial R2 of up to 0.56, can be attributed to regional factors, among which precipitation amount along 

the transport pathway can explain most of the variance. The remaining 30% of the explained variance is attributed to local 

factors, among which the temperature plays the most important role. These findings indicate that local secondary fractionation 

processes like sub-cloud evaporation modulate the isotopic composition, which is otherwise dominated by the rainout along 20 

the transport pathway of the precipitation.  

Furthermore, the analysis of transport durations implies that the moisture-producing precipitation reaching An Long travels 

about 4-6 days from its source, as the best regression results are obtained for these durations. For longer travel durations the 

explained variability of the regression decreases, suggesting that the moisture is recycled, i.e. precipitated and evaporated 

again, when the travel time exceeds 6 days. 25 

If the data set is divided into seasonal subsets defined by precipitation amount and water source regions, the MLR and 

importance analysis enables a better identification of factors and thus processes controlling the isotopic composition in the 

different seasons. For the late rainy and dry seasons (i.e. October to May), the importance of regional (late rainy season) and 

local (dry season) factors increases compared to P_hysplit, raising the explained variance, particularly for the late rainy season. 

The source regions and the associated transport pathways as well as local processes are more important for these periods, 30 

indicating that secondary fractionation processes by evaporation, either along the pathway (for d-excess) or locally (for δ18O 

and δ2H), are more important than the amount effect, which is dominant during the Indian monsoon period. This is reasonable, 

because moisture transported to the Mekong Delta from the Pacific region and continental Asia passes through different 
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climatic regimes, compared to the more uniform climatic conditions along the pathway from the Indian Ocean during the 

Indian summer monsoon.  

In summary, it can be concluded that the proposed approach, consisting of simultaneous testing of all possible factors by MLR 

combined with relative importance analysis, is able to detect the relevant factors controlling the isotopic composition of rainfall 

as well as their individual contributions. If applied to seasonal data subsets, the predictions can be improved and the seasonal 5 

differences in controlling factors and processes can be identified. The validity of the approach is confirmed by similar, but 

mainly qualitative results obtained in other studies. The comparable results provide a strong indication that the method is able 

to identify the dominant factors responsible for the isotopic composition of rainfall without a priori knowledge or assumptions. 

In contrast to previous studies, the presented approach and results provide, however, a quantitative assessment of the impact 

of different factors, and thus information about the dominant processes of isotopic fractionation. It can support the 10 

interpretation of processes responsible for observed patterns of isotopic composition. The rather simple approach can, of 

course, not provide detailed information about atmospheric dynamics, but it provides a relatively simple and easy to apply 

approach supplementing or preceding more complex studies of isotopic composition with circulation models. Due to the 

simplicity, any scientist can easily apply this method in order to investigate factors controlling isotopic composition in 

precipitation at any given study area around the world without the requirement of setting up and in-depth knowledge about 15 

running a complex numerical atmospheric circulation model. Furthermore, the approach is easily reproducible and contains a 

rigorous quantitative analysis of the interplay of different driving factors.  Moreover, the analysis can easily be extended to 

other factors and processes of importance in order to capture particularly the d-excess better, e.g. the sea surface temperatures 

at the source regions. 

The similarity of isotopic signatures and LMWLs of stations all over Southeast Asia, as well as similar general climatic 20 

conditions, allows the conclusion that the findings are representative of a larger area. Particularly the similarity of the LMWLs, 

the variability of the monthly isotopic composition of rainfall, and climatic conditions of the VMD and Bangkok suggests that 

the results are representative for the whole Mekong Delta, and possibly for large areas of the southern tip of the continental 

Indochinese Peninsula.  

The results have direct implications for the interpretation of paleorecords of stable water isotopes in terms of past climate 25 

conditions for Southeast Asia. Because this study shows that the factors controlling the isotopic signature of precipitation are 

changing between and even within seasons and that regional factors have large impacts on the local isotopic composition of 

rainfall. This needs to be considered in the reconstruction of past climates based on isotopic records: δ18O and δ2H values are 

likely to be representative for the rainfall during the dry season. However, as regional factors dominate during most of the 

rainy season (receiving the bulk of the total annual rainfall), reconstructions of the past climate have to be carefully interpreted. 30 

The proposed approach might open a pathway for an improved reconstruction of paleoclimates based on isotopic records. It 

may e.g. be used for identifying suitable variables to improve the performance of proxy data assimilation in paleoclimate 

reconstruction. 
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Table 1. Isotopic composition of precipitation at An Long and six selected GNIP stations throughout the Indochinese Peninsula. 

Station 
Name Location Country AL P  

(mm) 
T  

(oC) Period 
δ18O δ2H d-

excess 
LMWL 
(OLSR) 

LMWL 
(RMA) 

LMWL 
(PWLSR) 

WM M WM M WM S Int. S Int. S Int. 

An Long 105.24o E 
- 10.72o N Vietnam 2 985*   

(1550) 
27.4*     
(27.2) 

06.2014 
- 

12.2015 

-6.4  
±1.5 

-5.8 
±2.5 

-40.9 
±11.5 

-36.2 
±18.7 

10.4 
±1.8 

7.56 
±0.11 

7.26 
±0.67 

7.61 
±0.11 

7.58 
±0.67 

7.61 
±0.11 

7.87 
±0.73 

Hanoi ** 105.84o E 
- 21.02o N Vietnam 10 1659 

±257 
24.8 
±0.5 

2004-
2007 

-8.8  
±0.7 

-5.9 
±0.5 

-56.9 
±4.2 

-33.8 
±3.6 

13.5 
±1.5 

7.91 
±0.10 

12.45 
±1.25 

7.99 
±0.18 

12.90 
±1.22 

7.77 
±0.21 

10.92 
±1.91 

Bangkok 
** 

100.50o E 
- 13.73o N Thailand 2 1558 

±314 
28.5 
±0.6 

1968-
2015 

-6.5 
±1.0 

-5.2 
±1.0 

-42.6 
±7.6 

-33.2 
±7.2 

9.4 
±1.6 

7.35  
±0.04 

5.36  
±0.47 

7.53 
±0.08 

6.29 
±0.47 

7.68 
±0.07 

7.25 
±0.49 

Ko Samui 
** 

100.03o E 
- 09.28o N Thailand 7 1265 

±611 
27.9 
±0.2 

1979-
1983 

-5.8  
±1.4 

-4.8 
±0.9 

-28.8 
±7.1 

-24.1 
±4.4 

10.8 
±0.0 

7.18 
±0.10 

6.89 
±1.20 

7.30 
±0.25 

7.41 
±1.16 

7.45 
±0.25 

7.89 
±1.26 

Ko 
Sichang 

** 

100.80o E 
- 13.17o N Thailand 26 877 

±320 
27.9 
±0.6 

1983-
1995 

-6.2  
±0.6 

-6.2 
±1.1 

-39.3 
±5.1 

-39.7 
±8.8 

10.2 
±0.6 

7.62 
±0.06 

7.61 
±1.15 

7.72 
±0.18 

8.16 
±1.12 

7.77 
±0.23 

8.65 
±1.44 

Luang 
Prabang 

** 

102.13o E 
- 19.88o N Lao PDR 305 1228 

±178 
25.7 
±0.7 

1961-
1967 

-7.8  
±1.2 

-6.7 
±0.3 

-54.2 
±7.6 

-45.9 
±0.9 

8.4   
±1.9 

7.90 
±0.13 

7.97 
±2.00 

8.01 
±0.27 

8.70 
±1.93 

7.80 
±0.28 

7.52 
±2.29 

Kuala 
Lumpur 

** 

101.68o E 
- 03.13o N Malaysia 26 1801 

±787 - 1993-
2012 

-7.3  
±0.8 

-7.0 
±0.7 

-46.6 
±7.7 

-45.1 
±6.8 

11.8 
±4.1 

7.63 
±0.07 

8.10 
±1.93 

8.26 
±0.26 

12.53 
±1.92 

7.73 
±0.29 

8.95 
±2.24 

 

Note:  

* Measured at An Long in 2015; numbers in parentheses show mean values of long-term measurements at Cao Lanh. 

** Data is from https://nucleus.iaea.org/wiser/gnip.php (IAEA/WMO, 2016)  

P: annual precipitation (mm/year); T: average temperature (oC); AL: altitude (meter above sea level); WM: weighted mean value; M: mean value; 

S: slope; Int.: intercept 
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Table 2. Pairwise correlation coefficients between regional factors (P_hysplit, T_hysplit, H_hysplit, D_hysplit) and local factors 
(P_AL, T_AL, H_AL) and stable isotopic values (δ18O, δ2H, and d-excess). Bold and italic numbers denote significance at the 0.01 
and 0.05 level (2-tailed), respectively. The meteorological data are aggregated to weekly values corresponding to the precipitation 
sampling at An Long. 

(a) P_hysplit H_hysplit T_hysplit D_hysplit P_AL H_AL T_AL 
Isotopic values 

vs. Regional 
and Local 

factors 

δ 18O -0.74 -0.45 -0.38 0.24 -0.34 -0.53 0.45 

δ 2H -0.76 -0.47 -0.39 0.20 -0.32 -0.53 0.45 

d-excess 0.18 0.04 0.07 -0.36 0.27 0.20 -0.15 

(b) P_hysplit H_hysplit T_hysplit D_hysplit 

Regional factors vs. Local factors 
P_AL 0.13 0.23 0.04 0.03 

H_AL 0.38 0.17 0.21 0.10 

T_AL -0.21 0.05 0.17 -0.33 

(c) P_hysplit H_hysplit T_hysplit D_hysplit 

Regional factors vs. Regional factors 

P_hysplit 1    

H_hysplit 0.77 1   

T_hysplit 0.59 0.67 1  

D_hysplit -0.10 -0.17 -0.49 1 

(d) P_AL H_AL T_AL 

Local factors vs. Local factors 
P_AL 1   

H_AL 0.20 1  

T_AL -0.14 -0.78 1 
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Table 3. Results of the linear regression analysis between local relative humidity (H_AL) and isotopic values at An Long. Regressions 
that are statistically significant at the 0.05 level are marked in bold.  

  Linear regression line r R2 p-value n Period 

δ18O - δ2H 

δ2H = 7.56*δ18O+7.26 0.99 0.99 0.000 74 full year 

δ2H = 7.62*δ18O+7.74 0.99 0.99 0.000 67 rainy season (Jun-Nov) 

δ2H = 7.58*δ18O+7.21 0.99 0.98 0.000 42 early monsoon (Jun-Sep) 

δ2H = 7.68*δ18O+8.6 0.99 0.99 0.000 25 late monsoon (Oct-Nov) 

δ2H = 6.9*δ18O+3.98 0.98 0.96 0.000 7 dry season (Dec-May) 

δ18O - 
Humidity 

δ18O = -0.51*H_AL+36.05 -0.53 0.28 0.000 74 full year 

δ18O = -0.46*H_AL+32.09 -0.47 0.22 0.000 67 rainy season (Jun-Nov) 

δ18O = -0.33*H_AL+21.84 -0.42 0.17 0.006 42 early monsoon (Jun-Sep) 

δ18O = -0.83*H_AL+63.12 -0.61 0.37 0.001 25 late monsoon (Oct-Nov) 

δ18O = -0.56*H_AL+41.34 -0.88 0.77 0.010 7 dry season (Dec-May) 

d-excess - 
Humidity 

d-excess = 0.2*H_AL-6.36 0.20 0.04 0.090 74 full year 

d-excess = 0.13*H_AL-0.46 0.13 0.02 0.301 67 rainy season (Jun-Nov) 

d-excess = 0.18*H_AL-5.35 0.21 0.04 0.211 42 early monsoon (Jun-Sep) 

d-excess = -0.08*H_AL+17.44 -0.07 0.01 0.734 25 late monsoon (Oct-Nov) 

d-excess = 0.34*H_AL-19.42 0.31 0.10 0.455 7 dry season (Dec-May) 

 

 

Table 4. Explained variance (partial R2) of regional and local factors of the best MLR model according to the PRESS value. The 
first value indicates the absolute partial R2, the second value the relative contribution to the overall explained variance.  

 Whole period Early rainy season Late rainy season Dry season 

Regional factors 0.56 | 70% 0.51 | 68% 0.76 | 79% 0.14 | 22% 

Local factors 0.24 | 30% 0.24 | 32% 0.20 | 21% 0.51 | 78% 

Total 0.80 | 100% 0.75 | 100% 0.96 | 100% 0.65 | 100% 
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 Figure 1: Sampling and monitoring sites in the study area 
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Figure 2: Monthly precipitation (mm) and a monthly number of days with precipitation for Cao Lanh station. Light blue background 
indicates rainy season. 

 
Figure 3: Climate data from the Cao Lanh meteorological station for the study period. Daily temperature (T) is given together with 
monthly and daily precipitation (P) and daily relative humidity (H). Weekly and bi-weekly δ18O (‰ VSMOW) values of rainwater 
are presented as red circles. 
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Figure 4: Methodology used in the study. Local precipitation (P_AL), air temperature (T_AL), and relative humidity (H_AL) at An 
Long. Precipitation amount (P_hysplit), mean temperature (T_hysplit) and relative humidity (H_hysplit) along the transport 
pathways, and moving distance from moisture sources (D_hysplit). 

3.4 Development of a 
Local Meteoric Water 
Line 

- Ordinary least squares 
regression (OLSR) 
- Reduced major axis 
(RMA) regression  
- Precipitation amount 
weighted least squares 
regression (PWLSR)  
 

3.1 Climatic data 
collection 
- At Chau Doc and Cao 
Lanh (Figure 1) 
- Precipitation (P)  
- Air temperature (T) 
- Relative humidity (H) 
 

3.2 Precipitation 
sampling 
- At An Long 
- Weekly sampling 
- Jun. 2014 – Dec. 2015  
3.3 Laboratory analysis 
- δ2H and δ18O (‰) 
- d-excess = δ2H - 8*δ18O  
 

3.5 Back trajectory modeling  
- HYSPLIT model (PC version) 
- 10-day backward trajectories 
- 6-hour interval 
- 01/06/2014 and 31/12/2015 
- Target location (10.72o N, 105.24o E) 
- Barometric surfaces (900, 850, 800 hPa) 

3.6 Analysis of factors controlling isotopic variation in 
precipitation 
- All possible subset regressions  
- Best MLR model defined by Predicted Residual Error Sum of 
Squares (PRESS) and adjusted R2 

3.7 Relative importance analysis 
- Important weights by Johnson’s method 
- Relative partial sum of squares (RPSS) method 
            Dominant factor (Local or regional) 

Response 
variables (y) 

δ
18

O, δ
2
H, d-excess 

Multiple linear regression (MLR) model  

y = β0 + β1 x1 + β2 x2 +.... + βn xn + ε 

Predictors (x1, x2, x3, x4) 
P_hysplit, T_hysplit, H_hysplit, 
D_hysplit  
(Regional factors) 

Predictors (x5, x6, x7) 
P_AL, T_AL, H_AL 
(Local factors) 



33 
 
 

 

Figure 5: Back-trajectories indicating potential moisture sources of precipitation (plotted only for days with precipitation) at An 
Long station for the barometric surfaces at 850 hPa between June 2014 and December 2015. Left panels show the results for 2014, 
right panels for 2015; top row (a, d) early rainy season (June – September), middle row (b, e) late rainy season (October – November), 
bottom row (c, f) dry season (December – May). In January, February and March 2015 no rainfall was recorded. 
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Figure 6: Spatial distribution of vapor trajectories (cluster means) for precipitation days at An Long for 3 barometric surfaces (800, 
850, 900 hPa) between June 2014 and December 2015, and change in total spatial variance (TVS) for different cluster numbers. The 
TSV was used to identify the optimum number of clusters (hereby 5 clusters). Red texts indicate the cluster number (1-5) and the 
percent of all trajectories assigned to each of the five clusters. Brown texts indicate the mean δ18O values for each cluster plus/minus 
the standard deviation of each cluster.  
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Figure 7: The LMWL of An Long in comparison to the GMWL. 

 

Figure 8: Seasonal variation of the average monthly precipitation for An Long and Cao Lanh and δ18O values of precipitation for 
An Long (for the period of observation (red)) and Bangkok (both for the period of observation (blue) and the long-term mean 
(black)). 
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Figure 9: Seasonal monthly mean δ18O values for An Long and GNIP data from the Indochinese Peninsula. The data is grouped 
according to similar variability tested with the Levene test. The p-values given in (b) to (d) are the test statistics. High values indicate 
similar variance. The time series of Bangkok is plotted for short-term (2014-2015) and long-term (1968-2015) periods.  
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Figure 10: Arithmetic mean and amount-weighted mean monthly δ18O (left) and d-excess (right) at An Long for the sampling period 
June 2014 to December 2015. 

 

Figure 11: Evaluation of multiple linear regression (MLR) models applied for δ18O and d-excess as response variables for different 
pressure levels used for three HYSPLIT backward trajectories and their combinations (mean values of the different levels). The best 
MLR model is highlighted with red text. 
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Figure 12. MLR with response variable δ18O and relative importance analysis applied for all possible subsets. The 127 MLR models 
are sorted according to their R2 values in ascendant order. Colors represent the relative contribution (in %) of the predictors. The 
sum ratio line separates the contribution of local (in red and orange) and regional (in blue) factors. PRESS and adjusted R2 values 
indicate the quality of the MLR model. The best MLR model depicted by the lowest PRESS (model 124, highlighted by the cyan dot) 
explains 80% of the δ18O variation (R2 = 0.8). 
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Figure 13. MLR with response variable δ18O and relative importance analysis applied for all possible subsets (127 MLR models) for 
different seasons: a) early monsoon from June to September, b) late monsoon from October to mid-November, and c) the dry season 
from mid-November to mid-June.  
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