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Re: HESS-2017-164 
Dear Dr. Wang, 

enclosed please find a fully revised, original manuscript now titled “What controls the stable 
isotope composition of precipitation in the Mekong Delta? A model-based statistical 
approach”, which is renamed from the previous title “What controls the stable isotope composition 
of precipitation in the Asian monsoon region?” (Reference #HESS-2017-164) by Nguyen Le Duy, 
Ingo Heidbüchel, Hanno Meyer, Bruno Merz, Heiko Apel. We are respectfully submitting our 
revised manuscript for your consideration in Hydrology and Earth System Sciences. 

We have fully revised the paper to take into consideration the constructive comments from the two 
referees. Given the manuscript required major revision, we have not provided a line-by-line list of 
the changes since line numbers have been altered significantly. Instead, we summarize here the 
major revisions we have made: 

- Rewriting of the abstract 
- Rewriting of the introduction (focusing more specifically on highlighting the novelties and recent 

literature) 
- Rewriting of the study area description (including a discussion about the definition of the dry/wet 

season) 
- Rewriting of the methodology – Section 3.5 (adding a discussion about the uncertainties of 

trajectory analysis and applied measures to mitigate these uncertainties) 
- Rewriting of the results and discussion (based on reviewers’ feedback) 
- Rewriting of the conclusions (focusing more specifically on highlighting the novelties). 

This manuscript has neither been previously published in any language nor is it under consideration 
for publication by another journal. All authors have carefully read the revised manuscript and have 
agreed to its submission to Hydrology and Earth System Sciences. All results and innovations were 
developed by the authors using Matlab. Figures were generated using ArcGIS and Matlab. We also 
published the isotopic data in the open access data repository of GFZ. The data is already available 
to reviewers under:  
http://pmd.gfz-
potsdam.de/panmetaworks/review/9e1af507c8fce65a8d740033e5fea31c2e7c58ade81762c235c6f6bbab91166e/ 
Thank you for handling the manuscript during the review process, and to the reviewers for their 
valuable feedback and edits. We look forward to hearing from you. 
 
Sincerely yours, 
Nguyen Le Duy 
Corresponding Author  



RESPONSE TO THE REFEREES’ COMMENTS 

 
We sincerely thank both referees for their thorough reviews and most constructive comments on 
our manuscript (Reference #HESS-2017-164). We fully appreciate the reviewers’ efforts in 
providing these informative reports on our research and their insights have led to an improved 
interpretation of our results. We have taken into full consideration all of these comments and have 
prepared responses to these as well as information on how the paper was revised following the 
referees’ suggestions. Our responses to reviewers are provided below in blue following the 
individual comments requiring action from both reviewers, followed by a marked up version of the 
manuscript (all changes in the text are marked in red). 

 

Anonymous Referee #1 

General Comments: 
In recent years, a number of empirical, theoretical, and modeling studies have attempted to identify, 
characterize, and quantify the dominant controls of the stable isotopic composition of rainfall in 
tropics, particularly in the Asian monsoon domain. Duy et al manuscript, which at a first glance, 
seems like yet another manuscript along this line, indeed dives much deeper than the previous 
studies and attempts to provide more rigorous and quantitative assessments of various climatic 
factors that control stable isotope composition of rainfall in the Asian monsoon domain. Authors 
present a robust body of observational precipitation isotope data (weekly to bi-weekly samples over 
∼1.5 years) collected from Vietnamese Mekong Delta region. This observational isotope data has 
been examined in the context of both local-and-regional-scale station-based climate data 
(temperature, precipitation amount, humidity), GNIP data, and finally climate data extracted from 
GDAS gridded dataset, the latter being used to drive the NOAA’s HYSPLIT models. Authors 
conclude that the influence of the different factors on the isotopic condition is best quantified by 
multiple linear regressions (MLR) of all factor combinations and that explains up to 80% of the 
variation of δ18O of precipitation. This study, like many previous studies, shows that local rainfall 
amount and temperature play a minor role in controlling the isotopic composition of the rainfall 
with upstream precipitation amount emerging as the dominant regional control again a result 
consistent with previous studies, but the author’s conclusion is backed by solid quantitative 
analysis. The manuscript is well-written, free of excessive jargon, logically structured with high-
quality figures and graphics that are instructive and easy to understand. In sum, I did not find any 
major issues with this manuscript and I highly recommend its publication. I have provided here a 
few comments, which authors may find useful in further improving their manuscript. 

We thank the first anonymous referee for the positive and constructive comments. 

 

Specific Comments: 
1. Are results of this manuscript sensitive to the choice of gridded dataset (for example, R1/R2) 
vs GDAS, which was used to drive the HYSPLIT model? 

Yes, we acknowledge that the results of this manuscript migh t  be  sensitive to the choice of the 
climate dataset driving the HYSPLIT model. Moreover, the backward-trajectory simulations by 
HYSPLIT are also influenced by other parameters that have to be defined for running HYSPLIT, 
such as starting time and height of the trajectories, trajectory duration, vertical motion options, and 
number of trajectories. Studying the sensitivity of HYSPLIT backward-trajectory simulations 
would be an interesting topic, but exceeds the scope of this study.  

In order to discuss the sensitivity with regard to the choice of the gridded dataset as well as the 
uncertainties of trajectory analysis, we included this paragraph to the revised manuscript: 



 “Single backward trajectory computations by the HYSPLIT model can have large uncertainties. 
The horizontal uncertainty of the trajectory calculations by HYSPLIT has been estimated to be 10–
20 % of the travel distance (Draxler and Hess, 1998). While errors in trajectory calculation 
computed from analyzed wind fields seem to be typical on the order of 20% of the distance travelled 
(Stohl, 1998), the statistical analysis of a large number of trajectories arriving at a study site would 
increase the accuracy of the trajectory analysis (Cabello et al., 2008). Harris et al. (2005) studied 
trajectory model sensitivity to the input meteorological data (focusing on ERA-40 and 
NCEP/NCAR reanalysis data) and to the vertical transport method. They pointed out five causes 
of trajectory uncertainty, expressed as percentage of deviation of the average travel distance: 1) 
minor differences in the computational methodology: 3–4%; 2) time interpolation: 9–25%; 3) 
vertical transport method: 18–34%; 4) meteorological input data: 30–40%; and 5) combined two-
way differences in the vertical transport method and meteorological input data: 39–47%. However, 
it would be difficult to prove that in all situations a single meteorological data set or a single method 
of trajectory modeling was superior to another one (Gebhart et al., 2005;Harris et al., 2005). More 
details about the uncertainties in trajectory modeling were provided by (Stohl, 1998), later by 
(Fleming et al., 2012) and references therein.” 

 

2. Figure 5 shows backtracking trajectories (only those which produced rainfall). Perhaps I missed 
reading about it but can authors more clearly elaborate on the criteria they applied to establish 
when a certain air parcel was considered to produce rainfall? 

This paragraph was included to the revised manuscript (in section 4.1) to elaborate on the criteria 
applied to establish when a certain air parcel was considered to produce rainfall in Figure 5.  

“Because there is no daily precipitation data recorded at An Long, we used daily precipitation data at 
Cao Lanh instead. This is the closest national meteorological station, located approximately 37 km 
Southeast of An Long. Backtracking trajectories in Fig. 5 are plotted for the days when rainfall was 
recorded at Cao Lanh. This is based on assumption that days with precipitation at Cao Lanh and An 
Long coincide.” 

 

3. Additionally, I think it will be useful to have another figure that shows major cluster tracks 
(instead of trajectories) and their relative weights. For example, what percentage of trajectories 
originate from the Indian Ocean vs continental sources during the rainy season?  

Thank you very much for this constructive suggestion. We added Figure 6 to the manuscript. 

This paragraph was also included to the revised manuscript (in section 3.5) to discuss the trajectory 
cluster analysis. 

“The trajectory cluster analysis is conducted by the HYSPLIT model to group trajectories with 
similar pathways. The cluster analysis merges these trajectories that are near each other and 
represents those clusters by their mean trajectory. Differences between trajectories within a cluster 
are minimized while differences between clusters are maximized. Computationally, trajectories are 
combined to decrease the number of clusters until the total spatial variance (TSV) starts to increase 
significantly. This occurs when disparate clusters are combined. This number of clusters is then 
selected as the optimal cluster number for sorting and combining similar trajectories. More 
information about the HYSPLIT cluster analysis can be found at 
https://ready.arl.noaa.gov/documents/Tutorial/html/.” 



 
Figure 6: Spatial distribution of vapor trajectories (cluster means) for precipitation days at An Long for 3 barometric 
surfaces (800, 850, 900 hPa) between June 2014 and December 2015, and change in total spatial variance (TVS) for different 
cluster numbers. The TSV was used to identify the optimum number of clusters. Red texts indicate the cluster number (1-5) 
and the percent of all trajectories assigned to each of the five clusters. Brown texts indicate the mean δ18O values for each 
cluster plus/minus the standard deviation of each cluster.  
 

Furthermore, can these tracks be fingerprinted with their typical d18O values? I suppose this should 
not be too difficult given that authors have access to the d18O values of precipitation. 
Thank you for this constructive suggestion. This paragraph was included to the revised 
manuscript (in section 4.1) to discuss how backward trajectories can be fingerprinted with their 
typical d18O values:  
“The mean δ18O values for the 5 clusters are plotted in Figure 6 (in brown). The mean cluster values 
are similar for the three pressure levels. Also, the mean values of the two clusters from the Indian 
Ocean, as well as the two clusters from the Pacific, are similar. For a fingerprinting one also has to 
consider the variation of the values within the clusters, which partly overlap. This means that the 
δ18O values of precipitation in the Mekong Delta cannot be used to uniquely identify the origin of 
the trajectory. However, they provide a coarse indication of their origin.”   

 

4. I think the authors need to be more specific (as opposed to providing generic comments) in 
suggesting how their conclusions need to be considered in paleoclimate studies. It would be helpful 
if they can cite some paleoclimate studies where proxy data may have been misinterpreted in light 
of the results obtained from this study. 

The suggestion of citing paleoclimate studies where our findings could have made a difference seems to 
be appealing, but we have to admit that paleoclimate is not our research focus and that we don’t have an 
encompassing picture about all the past and ongoing research in this field. We thus don’t feel qualified 
to criticize published studies in this field. We rather hope that the paleoclimate community will become 
aware of our results and model-based statistical approach, and that they might be considered in their 
future research.  



Anonymous Referee #2 

General Comments: 
In this paper, the authors used their new weekly precipitation isotope dataset in Vietnam’s Mekong 
river delta region for 1.5 years, and they tried to reveal the controls of the temporal variation of the 
precipitation isotope ratio. To do so, they conducted some statistical analyses, and they concluded 
that the isotope ratio is controlled by mainly regional scale phenomena (mainly by the previous 
rainfall activity along the trajectory of air mass) especially during the early rainy season, and the 
contribution of the control varies by season. 

We thank the second anonymous referee for the constructive comments. Our answers are also 
included in the revised version of the manuscript. 

In my opinion, even though they conducted multiple methods, nothing is quite new. The control of 
precipitation isotope had been discussed by many researchers as the authors mentioned, and the 
authors’ findings were already pointed out by many, too. For example, the quantification of the 
controls was attempted by several model studies including Yoshimura et al., 2003; Risi et al., 2008; 
Kurita et al., 2011; Ishizaki et al., 2012; etc. Some of these studies do not necessarily focus only 
Asian monsoon regions, but basically, they tried to reveal more general controls. In these studies, 
they used GCM or equivalent models to reveal the controls, whereas the present paper used 
statistical models. Furthermore, by the recent efforts, researchers already began to realize that it is 
indeed not appropriate to make a simple relationship between precipitation isotopes and climate 
parameters. The present paper’s conclusion of necessity of consideration of multiple climate 
impacts and temporal (and spatial) dependency on the controls have been explicitly or implicitly 
stated many times. Therefore, nowadays, more advanced techniques of utilization of isotopic 
information have been utilized. One of them is data assimilation.  

We acknowledge the fact that the results are not new, and that the focus of the paper is the 
development and testing of the model-based statistical method instead. We also recognize that the 
title can be quite misleading (as mentioned in major issue #2), and thus may lead to a 
misunderstanding about the novelty of this study. We therefore modified the title to “What controls 
the stable isotope composition of precipitation in the Mekong Delta? A model-based statistical 
approach” and discussed the transferability to the greater region, i.e. SE-Asia. Actually, isotopic 
data of rainfall has never been collected for the Mekong delta, and therefore the fact that the isotopic 
variation of the Mekong data is similar to that of Asian monsoon region has never been confirmed 
before.  

We revised the introduction and conclusion to specifically highlight the novelties of the study. 
Recent literature was also included accordingly. Because the revised introduction and conclusion 
are too long to present here, please find them in the submitted revised manuscript.  

 

From the above aspect, I have to tell that this paper’s methods (multiple regression and trajectory 
analysis) is no longer insufficient to fulfill the objectives of this study. What I mean is, there is no 
guarantee that this study’s number of 70% regional control can be applied to any other year’s 
temporal variation of precipitation isotopes. In this regard, 1.5-yr long data is not sufficient, too. 

Of course, due to the limited length of the time series we cannot be 100% sure that the identified 
contribution of local and regional factors will be the same in other years. However, as shown in 
figure 7, the long term monthly isotopic values in Bangkok and the values of our two rainy seasons 
in the Mekong delta are quite similar. Considering also the climatic similarities between the two 
locations, this indicates that the recorded isotopic variation is likely to be representative for a longer 
period and a wider area. This suggests in turn that the identified contribution of the factors could 
also be the same in other years. Also, the fact that our findings agree with the ones of Ishizaki et 
al. (2012) supports this assumption. 

Figure 7 (in the old-version of manuscript) was edited to include the short-term mean monthly 



isotopic signature of precipitation of Bangkok, and renamed to Figure 8 (in the revised manuscript). 
The number of the other figures was edited accordingly. 

 
Figure 8: Seasonal variation of the average monthly precipitation for An Long and Cao Lanh and δ18O values of 
precipitation for An Long (for the period of observation (red)) and Bangkok (both for the period of observation (blue) and 
the long-term mean (black)). 
 
Major issue:  
1. Drop unnecessary and unrelated analyses. Especially the parts with local meteoric line is not 
directly related to the conclusion of the study. It is too simple analysis. Even global meteoric line 
is just conceptual idea (slope of 8 and intercept of 10 is not certain). There maybe some physical 
reason to have smaller slope, especially by kinetic effect, but in this study, it is out discussed 
enough. It’s better to drop the part. 

You are right that the derivation of a local meteoric water line is a very simple analysis. We still 
think it provides valuable information for the following reasons: 

• From our point of view the analysis of isotopic data by means of a meteoric water lines is 
a standard for such kind of data and should always be conducted, just as descriptive 
statistics of other data.  

• Up to now, there is neither a LMWL for the Vietnamese Mekong Delta (VMD) nor for the 
Indochinese Peninsula, which could be used as a baseline for other studies using isotopic 
data to investigate hydrological processes in this area. 

• The close fit of all considered regressions is one piece of evidence indicating that secondary 
fractionation processes, e.g. sub-cloud evaporation, are insignificant in the study area. This 
provides support for the discussion of sub-cloud evaporation in Sec. 4.3.1. 

 

2. One point data cannot represent Asian monsoon. Perhaps Mekong river delta data had some 
similarity with Bangkok, but with only 1.5-yr long data, the authors cannot reject possibility of “by 
chance”. Furthermore, such similarity is nothing related to that Mekong data represent all Asian 
monsoon region. The title is quite misleading. 

We acknowledge that the title is too generic.  We changed it to “What controls the stable isotope 
composition of precipitation in the Mekong Delta? A model-based statistical approach” and 
discussed the transferability to the greater region, i.e. SE-Asia. Actually, isotopic data of rainfall 
has never been collected for the Mekong delta, and therefore the fact that the isotopic variation of 



the Mekong data is similar to that of Asian monsoon region has never been confirmed before.  

We also went at length to illustrate that the variability of the isotopic data is similar to the long term 
data from Bangkok in order to provide evidence that the derived results might be representative for 
SE-Asia. This was already discussed in section 4.2, but we added some critical discussion of the 
issue of representability in the discussion and conclusion of the revised manuscript.  

 

3. Organize the previous literature with focused temporal and spatial scales. The authors listed 
many previous studies, which partly investigated on precipitation isotope controls, and (implicitly) 
stated that there is still huge discussion on the controls. However, it is misleading and not true. 
What is confusing is the controls can be different dependent on temporal and spatial scales. For 
example, daily variation of precipitation isotopes in some parts of the world is quite likely 
determined by synoptic-scale moisture circulation, in which previous rainfall activity along the 
trajectory matters a lot, rather than local precipitation or temperature, and nowadays there is 
consensus on this in the research community. However, even in the same place, the controls of 
monthly or interannual time series can be different. It is simply because those smaller scale impact 
can be offset each other in those scales, so that local signal only remains. 

We completely agree that scales matter. This is fundamental to hydrology. What we present is the 
result for daily variation (or bi-weekly, to be exact) in rainfall, in a monsoonal climate region with 
a strong seasonal variation. We stressed this more in the discussion and conclusion, and sorted the 
cited literature according to the scales considered.  

 

4. Limitation of statistical approach with such short-term data. The conclusion of the study is 
based on the statistical regression using all samples. The authors should validate their statistical 
model(s) with different independent samples. In this regard, the observation data is perhaps too 
short. 

As described in section 3.6, we use PRESS for selecting the best model. Within PRESS the model 
is fitted to all data except one, and the missing value is predicted with the fitted model, i.e. not all 
data is used for fitting the models at once. This procedure is repeated for every data point. Thus 
PRESS is equivalent to a so called leave-one-out cross validation (LOOCV), as described in section 
3.6. LOOCV is the cross validation procedure appropriate for a limited data set, when a standard 
split sample validation cannot be applied. There are numerous papers available employing this 
method in different fields of environmental sciences. LOOCV is actually a split sample validation 
of the regression, where the data is split as often as data points are available. This means that our 
results are in fact validated. 

 

5. Most importantly, what is new in this study? As I wrote above, it is well known that 
precipitation isotope is not controlled by a single factor and the relationship can be different in time 
and space. The finding in this paper is nothing more than these. 

We revised the introduction and conclusion to highlight more specific the novelties of this study. 
As we have stated previously, we acknowledge the fact that our methods (trajectory analysis, 
multiple linear regression and relative importance analysis) are relatively simple and easy to apply, 
but we would like to stress again that the combination of these methods to investigate factors 
controlling isotopic composition in precipitation has never been applied before.  

Moreover, our study focuses on the quantification of the impact of the various factors controlling 
isotopic composition in precipitation. This has not been performed in such an exhaustive way as 
presented here (as reviewer 1 actually points out particularly). Of course, the qualitative outcome 
of the study is not novel in itself, but the way we achieved these results constitutes a novel approach. 
Furthermore, this approach is easily reproducible and contains a rigorous analysis and 



quantification of the interplay of the different factors. Thus we argue that the manuscript indeed 
goes beyond just stating that regional factors are more important than local factors for the daily 
rainfall isotopic composition of the study region. It rather supports this finding by a thorough and 
reproducible method that combines trajectory modelling and statistical analysis. 

In order to stress the novelty of this study, we also included this paragraph to the conclusion:  

“The validity of the approach is confirmed by similar, but mainly qualitative results obtained in 
other studies. The comparable results provide a strong indication that the method is able to identify 
the dominant factors responsible for the isotopic composition of rainfall without a priori knowledge 
or assumptions. In contrast to previous studies, the presented approach and results provide, 
however, a quantitative assessment of the impact of different factors, and thus information about 
the dominant processes of isotopic fractionation. It can support the interpretation of processes 
responsible for observed patterns of isotopic composition. The rather simple approach can, of 
course, not provide detailed information about atmospheric dynamics, but it provides a relatively 
simple and easy to apply approach supplementing or preceding more complex studies of isotopic 
composition with circulation models. Due to the simplicity, any scientist can easily apply this 
method in order to investigate factors controlling isotopic composition in precipitation at any given 
study area around the world without the requirement of setting up and in-depth knowledge about 
running a complex numerical atmospheric circulation model. Furthermore, the approach is easily 
reproducible and contains a rigorous quantitative analysis of the interplay of different driving 
factors.  Moreover, the analysis can easily be extended to other factors and processes of importance 
in order to capture particularly the d-excess better, e.g. the sea surface temperatures at the source 
regions.” 

 
Minor issues: 
P2L17: what is “circulation effect”? Describe. 

The term “circulation effect” (Tan, 2009;Tan, 2014) is used to describe the changes in isotopic 
composition in precipitation that appear because arriving moisture is coming from different areas 
of the ocean. The revised manuscript now includes this explanation. 

 

P2L23: what is difference between “distillation during vapor transport” and “upstream rainout”. 
Aren’t they essentially the same? 

Yes, thank you for pointing this out. We used only the term “distillation during vapor transport” in 
the revised manuscript. 

 

P2L22-P3L3: Different temporal scales are mixed. 

We sorted the references according to scale. The paragraph was revised as follows: 

“Recently, many studies have presented evidence that large-scale monsoon circulation is the 
primary driver of variations in precipitation isotopes instead of local controls (e.g. local 
precipitation amount or temperature) in some parts of the Asian monsoon region. This evidence 
has been found at different temporal scales including daily isotopic variability (Yoshimura et al., 
2003;Yoshimura et al., 2008), seasonal isotopic variability (Araguás‐Araguás et al., 1998;Kurita et 
al., 2009;Dayem et al., 2010;Peng et al., 2010;Baker et al., 2015), and/or interannual isotopic 
variability (Vuille et al., 2005;LeGrande and Schmidt, 2009;Ishizaki et al., 2012;Tan, 2014;Kurita 
et al., 2015).” 

 

P3L21: Before the authors’ conclusion, there are many studies which state necessity of 
consideration of multiple parameters. 



Yes, the paragraph is misleading. We replaced the whole paragraph in the introduction with: 

“It has been frequently stated and agreed to that local and regional factors should be considered 
simultaneously to explain the isotopic variation in rainfall (e.g. Johnson and Ingram, 2004). Hence, 
it can be hypothesized that using multiple factors in a single linear model is able to explain a larger 
share of the observed variance in isotopic composition. We aim at developing and testing a model-
based statistical approach for the quantification of the contribution of isotopic separation processes 
for explaining the isotopic variation of precipitation. Such a model-based statistical method could 
also be applied in paleoclimate studies, separating and quantifying the impacts of local and regional 
factors on the isotopic composition of local precipitation (Sturm et al., 2010), thus overcoming the 
shortcomings of single factor analysis.” 

 

P3L27: For quantification of the controls, usually researchers try to develop a physical simulator. 
Any statistical model principally cannot explain the real control. 

Physical models are one way to address this problem. But statistical models are an alternative way 
and have in fact be applied many times in all sorts of environmental studies. Both approaches have 
their advantages and disadvantages, and they coexist, respectively supplement each other. And 
while statistical models are not able to represent the actual process causing a phenomenon, they are 
able to detect results of a process. And this is what we actually are aiming at. Therefore we are 
arguing that the proposed model-based statistical approach is valid and accepted by the majority of 
researchers, as long as the limitations are clearly taken into consideration. We underlined this point 
in more detail in the introduction (P3L3-P4L33) of revised manuscript.  

 

P4L20: There are many other definition of dry/wet season. What is the impact?  

We included this paragraph in the revised manuscript (Section 2. Study area) to discuss the impact 
of the definition of dry/wet season.  

“The definition used here is particularly developed for the local climatic conditions, the problem 
to be solved, and the data available. Other definitions could cause some data points to be assigned 
to the other season. However, those data points will most likely be from the transition period from 
one season to the other, i.e. other definitions would affect samples that have the least explanatory 
value for the actual dry and wet seasons.” 

  

P5L5: “three methods” are not really regarded as different “method”. 

Thank you for this point. “three methods” was changed to “three regression methods” 

 

P6L4-L20: drop 

As discussed in the 1st comment under ‘major issues’, we consider this part relevant and important 
for the manuscript. Therefore we would like to keep it. 

 

P7L18: what is TRATIO? 

We modified the sentence from P7L17-L19 in the old version of the manuscript as follows: 

“Secondly, we use the shortest possible integration time step (i.e. 1 h) and a small value for the 
parameter TRATIO (0.25), which is the fraction of a grid cell that a trajectory is permitted to transit 
in one advection time step. Smaller values of TRATIO help to minimize the trajectory computation 
error using the HYSPLIT model”. 

 



P7L20: The uncertainty of trajectory analysis is not quantified. Perhaps it is minimized in the 
suggested framework, but how large is the “minimized” uncertainty and what is its potential 
consequence? 

In order to discuss the sensitivity with regard to the choice of the gridded dataset as well as the 
uncertainties of the trajectory analysis, we included this paragraph to the methodology (Section 
3.5) in the revised manuscript:  

“Single backward trajectory computations by the HYSPLIT model can have large uncertainties. 
The horizontal uncertainty of the trajectory calculations by HYSPLIT has been estimated to be 10–
20 % of the travel distance (Draxler and Hess, 1998). While errors in trajectory calculation 
computed from analyzed wind fields seem to be typical on the order of 20% of the distance travelled 
(Stohl, 1998), the statistical analysis of a large number of trajectories arriving at a study site would 
increase the accuracy of the trajectory analysis (Cabello et al., 2008). Harris et al. (2005) studied 
trajectory model sensitivity to the input meteorological data (focusing on ERA-40 and 
NCEP/NCAR reanalysis data) and to the vertical transport method. They pointed out five causes 
of trajectory uncertainty, expressed as percentage of deviation of the average travel distance: 1) 
minor differences in the computational methodology: 3–4%; 2) time interpolation: 9–25%; 3) 
vertical transport method: 18–34%; 4) meteorological input data: 30–40%; and 5) combined two-
way differences in the vertical transport method and meteorological input data: 39–47%. However, 
it would be difficult to prove that in all situations a single meteorological data set or a single method 
of trajectory modeling was superior to another one (Gebhart et al., 2005;Harris et al., 2005). More 
details about the uncertainties in trajectory modeling were provided by (Stohl, 1998), later by 
(Fleming et al., 2012) and references therein.” 

 

P8L4: PRESS is essentially the same as root mean square error (RMSE), which is more popular in 
the community. 

RMSE is calculated from the residuals of the model fitted to all data, while PRESS is based on the 
residuals resulting from the model fitted to all data except one, for which the residual is calculated. 
Repeating this for all data points and summing the calculated residuals results in PRESS. PRESS 
is therefore a cross validation method. See also our comment above, and for example the definition 
in WIKIPEDIA as reference (https://en.wikipedia.org/wiki/PRESS_statistic).  

 

P8L5: what is “leave-one-out cross validation”? and what does it mean by “equivalent to” it? 

See our reply to major comment 4 and to the previous comment. 

 

P8L16: what is physical meaning of using “mean values of their combinations”? Combination of 
800hPa and 850hPa represent 825hPa level (somehow the precipitation was formed at that level at 
that time)? In this regard, what is meaning of 800/850/900hPa combination? 

In P7L4-L7 we discuss that the three levels at 1000, 1500, and 2000 m above ground are 
corresponding to barometric surfaces of approximately 900, 850, and 800 hPa. These barometric 
surfaces were chosen because the 850 hPa vorticity is highly indicative of the strength of the 
boundary layer moisture convergence and of rainfall in regions away from the equator (Wang et 
al., 2001). Hence rainfall is expected to mostly originate from these altitudes. We included this 
paragraph in the revised manuscript (in section 3.5) to elaborate on the physical meaning of using 
“mean values of their combinations” as follows: 

“Consequently, the combination of 800 hPa and 850 hPa barometric surfaces accounts for the fact 
that rainfall is expected to mostly originate between 1500 and 2000 m above ground level. 
Correspondingly, the combination of the barometric surfaces of 800, 850 and 900 hPa means that 
rainfall is expected to mostly originate between 1000 and 2000 m above ground level.” 



P10L4-L27: drop 

As discussed in the 1st comment under ‘major issues’, we argue that this part is relevant for the 
manuscript. We would like to keep it. 

 

P11L23-L24: I don’t agree with this statement. More evidence is needed.  

The Levene test (Levene, 1960) for equality of variances was used to compare the data of the 
different stations across the Indochinese Peninsula. We argue that the observed similarity of the 
isotopic values and their seasonal variances between An Long and the long term time series of 
Bangkok (Fig. 8c) (of which the visible similarity is also confirmed with high significance by the 
statistical Levene test) provides sufficient evidence for our statement. In order to substantiate this 
finding we added the time series of Bangkok covering the same time span as our data collected in 
the Mekong Delta to the analysis (new figure 8c, shown below). This time series is even more 
similar to the one of An Long, resulting in a highly significant Levene test statistic of 0.98. This 
means that the isotopic variation of the An Long time series is almost identical to the one from 
Bangkok, and that the variation of the short term time series of Bangkok and An Long is also very 
similar to the long term time series. In turn, one can infer from this that the data collected in An 
Long are likely to be representative for the area (i.e. the southern part of SE-Asia). This evidence 
was included in the revised manuscript (Section 4.2.2) as follows: 

“In addition, the short-term time series of Bangkok and An Long (i.e. 2014-2015) show similar 
variances, resulting in a highly significant Levene test statistic of 0.98. The variation of the short-
term time series of Bangkok and An Long is also very similar to the long-term time series, again 
shown by a highly significant Levene test statistic of 0.90 (Fig. 9c). This indicates that the isotopic 
variation of the An Long time series is almost identical to the one from Bangkok.” 

We also modified the statement acknowledging the remaining uncertainty to:  

“In summary, the analyzed GNIP data suggests that the data and results from this study are likely 
to be representative of the Southern continental part of the Indochinese Peninsula.” 

Figure 8 (in the old version of the manuscript) was replaced by the following figure (Figure 9 in 
the revised manuscript), where the time series of Bangkok for the same period as our observation 
is added: 

 



P14L9: Why was 124th model chosen as best? 

Because the PRESS value of the 124th model is smallest. The sentence provides this information. 
We also stated this in the methodology section (P8L13) in the old version of the manuscript. In 
revised manuscript, this evidence is at P11L4.  

 

P15L2: It is good idea. Why don’t you do this trial? 

We actually did this. The result are shown in Figure 12 and discussed in section 4.4 (from P15L6 
to P16L8) in the old version of the manuscript. In revised manuscript, the result are shown in Figure 
13 and discussed in section 4.4 (from P18L6 to P19L7). 
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Abstract 

This study analyzes the influence of local and regional climatic factors on the stable isotopic composition of rainfall in the 

Vietnamese Mekong Delta (VMD) as part of the Asian monsoon region. It is based on 1.5 years of weekly rainfall samples. 

TheirIn a first step, the isotopic contentcomposition of the samples is analyzed by local meteoric water lines (LMWL) and 

single-factor regressionslinear correlations. Additionally, the contribution of several regional and local factors is quantified by 15 

multiple linear regressions (MLR) of all possible factor combinations and by relative importance analysis, a novel. This 

approach is novel for the interpretation of isotopic records. and enables an objective quantification of the explained variance 

in isotopic records for individual factors. In this study, the local factors are extracted from local climate records, while the 

regional factors are derived from atmospheric backward trajectories of water particles. The regional factors, i.e. precipitation, 

temperature, relative humidity and moving distance of the backward trajectories, are combined with equivalent local climatic 20 

parameters to predictexplain the response variables δ18O, δ2H, and d-excess of precipitation at the station of measurement.  

The results indicate that (i) MLR can much better explain the isotopic variation of precipitation (R2 = 0.8) compared to single-

factor linear regression (R2 = 0.3); (ii) the isotopic variation in precipitation is controlled dominantly by regional moisture 

regimes (~70%) compared to local climatic conditions (~30%); (iii) the most important climatic parameter during the early 

rainy season is the precipitation amount along the trajectories of air mass movements; (iv) the influence of local precipitation 25 

amount and temperature is not significant during the early rainy season, unlike the regional precipitation amount effect; (v) 

secondary fractionation processes (e.g. sub-cloud evaporation) take place mainly in the dry season, either locally for δ18O and 

δ2H, or along the air mass trajectories for d-excess. The analysis shows that regional and local factors vary in importance over 

the seasons, and that the source regions and transport pathways, and in particular the climatic conditions along the pathways, 

have a large influence on the isotopic composition of rainfall. While the general results have been reported qualitatively in 30 

previous studies (proving the validity of the approach), the proposed methods thus proved to be valuablemethod provides 
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quantitative estimates of the controlling factors, both for the interpretation of the whole data set and for distinct seasons. 

Therefore it is argued that the approach constitutes an advancement in the statistical analysis of isotopic records in rainfall and 

the factors controlling it. that can supplement and precede more complex studies utilizing atmospheric models. Due to its 

relative simplicity, the method can be easily transferred to other regions, or extended with other factors. 

The results illustrate that the interpretation of the isotopic composition inof precipitation as a recorder of local climatic 5 

conditions, as for example performed for paleo recordspaleorecords of water isotopes, may not be adequate in the Southern 

part of the Indochinese Peninsula, and likely also notneither in other regions affected by monsoon processes. However, the 

presented approach could open a pathway towards better and seasonally differentiated reconstruction of paleoclimates based 

on isotopic records. 

1 Introduction 10 

The analysis of stable water isotopes (δ18O and δ2H) and their use as tracers have become an effective tool in hydrology. They 

are widely used to characterize water resources in a given region and to understand dynamics of hydro-geo-ecological 

processes such as precipitation, groundwater recharge or groundwater-surface water interactions – from the plot to the 

catchment scale.  

Precipitation is typically composed of regional contributions where atmospheric moisture has been transported over large 15 

distances and local contributions, where the moisture has been provided by evapotranspiration within the close vicinity. 

Understanding the sources of precipitation and their relative contribution is critical for basin-wide water balance studies 

(Ingraham, 1998). Stable isotopes offer the possibility to identify the sources of precipitation and to quantify the contribution 

of regional and local sources (Gat, 1996). Furthermore, they can be used to investigate hydrological processes such as 

mechanisms responsible for streamflow generation (e.g. Kendall and Caldwell, 1998), in groundwater studies (e.g. Gonfiantini 20 

et al., 1998) orand in rainfall-runoff studies (e.g. Genereux and Hooper, 1998).   

Isotopic variation in precipitation at a given location has been correlated with climatic parameters such as precipitation amount, 

air temperature, and air mass history (Dansgaard, 1964;Rozanski et al., 1992;Gat, 1996), termed amount effect, temperature 

effect (Dansgaard, 1964), and circulation effect (Tan, 2009;Tan, 2014), respectively. The circulation effect describes the 

changes in isotopic composition in precipitation that appear because arriving moisture is coming from different areas of the 25 

ocean. 

Delineating the present-day relationship between climatic factors and stable isotopice variation in precipitation maycan also 

help to understand past climatic conditions at regional and global scales. However, the factors controlling isotopic variation of 

precipitation are numerous and complex; hence a better understanding of the climatic influences on isotopic values would 

improve the use of precipitation isotopes as a proxy to reconstruct paleoclimates (Yang et al., 2016). 30 
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In the Asian monsoon region, the isotopic variationsignature of precipitation has been found to correlate with many otherlarge-

scale climatic parameters and processes, such as distillation during vapor transport , the source of water vapor and changes in 

its temperature , upstream rainout , sea surface temperature and relative humidity of the air masses (Dansgaard, 1964;Merlivat 

and Jouzel, 1979;Clark and Fritz, 1997;Lachniet, 2009), ENSO (Ichiyanagi and Yamanaka, 2005;Tan, 2014;Yang et al., 2016), 

and the vertical wind shear index (Vuille et al., 2005), and convective. Other relevant processes suchwere identified as 5 

distillation during vapor transport (Araguás‐Araguás et al., 1998;Yoshimura et al., 2003;Vuille et al., 2005;Dayem et al., 

2010;Pausata et al., 2011;Lee et al., 2012;Liu et al., 2014) , re-evaporation and rain–-vapor interactions (Risi et al., 

2008b;Chakraborty et al., 2016). Recently, many studies have presented evidence that large-scale monsoon circulation is the 

primary driver of variations in precipitation isotopes instead of local precipitation amount in some parts of the Asian monsoon 

region . However, the influence of the different factors has been described qualitatively only, with the exception of the study 10 

of  . Hence, a better quantitative understanding of the climatic influences on isotopic values over the Asian monsoon region is 

required.   

Relations between climate and water isotopes have been analyzed by univariate statistical regression methods (e.g. Araguás‐

Araguás et al., 1998;Bowen, 2008), isotope-enabled global climate models (GCMs) (Yoshimura et al., 2008;Risi et al., 

2010b;Yoshimura et al., 2014;Okazaki and Yoshimura, 2017), isotope-incorporated Lagrangian models (Pfahl and Wernli, 15 

2008;Sodemann et al., 2008), or the combination of GCMs (or Lagrangian models) with statistical analysis (Vuille et al., 

2003;Vuille et al., 2005;LeGrande and Schmidt, 2009;Tindall et al., 2009;Ishizaki et al., 2012;Conroy et al., 2013). While 

statistical models are not able to represent the actual process causing a phenomenon (e.g. the physical controls of isotope 

variations in precipitation), in contrast to physical models (e.g. GCMs or Lagrangian models), they can, however, detect the 

results of a process, and thus help to identify the responsible processes. Both approaches have their advantages and 20 

disadvantages and hence coexist supplementing each other. We argue that clearly taking into consideration the limitations and 

advantages of both statistical and physical models (discussed in next paragraphs) can enhance their power to interpret the 

relations between climate and water isotopes. 

As illustrated in previous studies (e.g. Noone and Simmonds, 2002) and discussed in Sturm et al. (2010)Firstly, the 

interpretation of isotopic data using only local climatic factors, such as temperature or rainfall amount, can lead to incorrect 25 

paleoclimate reconstructions . For example, using δ18O as a tracer of local precipitation is usually based on, the inherent 

limitations of empirical (or statistical) climate reconstructions from precipitation isotopes can lead to incorrect paleoclimate 

reconstructions. A major limitation is the assumption that the isotopic signal is controlled by a single climatic factor and that 

the stationary relationship (e.g. between temperature and δ18O) remains valid over the entire proxy record. This mono-factorial 

relationship does not consider the interplay of different climatic factors and is possibly biased. Another limitation is the 30 

assumption of a constant precipitation source or similar isotopic signatures of different moisture sources. However, both 

throughout the study period when using only local parameters (e.g. local precipitation) to interpret precipitation isotopes. In 

real cases, these assumptions are rarely fulfilled and often unrealistic. because of the changes in seasonality and atmospheric 
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circulation patterns. This is particularly true in those parts of the Asian monsoon region located in the transition zone between 

the Indian and Western North-Pacific monsoon where precipitation originates from both the Indian and Pacific Oceans 

(Delgado et al., 2012a), with the isotopic signatures of air masses originating from the Indian Ocean differing considerably 

from those of the Pacific Ocean (Araguás‐Araguás et al., 1998).. Seasonally varying sources of precipitation have also been 

observed in China (Tan, 2014, and references therein), India (e.g. Breitenbach et al., 2010;Chakraborty et al., 2016), Korea 5 

(Lee et al., 2003), Thailand (Ishizaki et al., 2012), and elsewhere (Araguás‐Araguás et al., 1998). The isotopic signatures of 

air masses originating from the Indian Ocean differ considerably from those stemming from the Pacific Ocean, where the 

average δ18O of the latter is about 2.5‰ more negative . 

Since the pioneering work of Joussaume et al. (1984), GCMs have been frequently used for isotopic studies with at least a 

half-dozen GCMs (Risi et al., 2010b;Sturm et al., 2010). For a more detailed discussion about advances in the development of 10 

GCMs, the reader is referred to Galewsky et al. (2016) and references therein. Although GCMs could provide the physical 

links between climate and water isotopes (Yoshimura et al., 2008), the model parameterizations are still far from perfect due 

to downscaling issues and intrinsic atmospheric variability (Sturm et al., 2010). Modeling isotopic composition in precipitation 

by GCMs has some limitations stemming from the model uncertainties, e.g. the frequently reported biases in precipitation or 

temperature simulation (Mathieu et al., 2002;Lee et al., 2007;Yoshimura et al., 2008), and/or numerical inaccuracies in 15 

transport processes (Noone and Sturm, 2010). For example, the moist bias persisting in many GCMs in the tropical and 

subtropical middle and upper troposphere is due to excessively diffusive vertical advection (Risi et al., 2012). These limitations 

have obvious consequences (e.g. low correlation between simulated and observed δ18O) for the simulation of isotopic variations 

in precipitation.  

For paleoclimate reconstruction, the proxy data assimilation method has been proven to obtain adequate results (Yoshimura et 20 

al., 2014;Okazaki and Yoshimura, 2017). This approach, however, requires in-depth knowledge of the atmospheric modeling 

and/or data assimilation algorithm (Sturm et al., 2010). In any case, it takes a lot of effort to establish such a system if it is not 

already present. Particularly, even though the underlying physics is relatively simple, it would be a daunting task to develop a 

GCM source code which requires tens of thousands of code lines to simulate the hydrological cycle (Sturm et al., 2010). 

Generally, the complexity of GCMs impedes their interpretation. 25 

While GCMs are typically Eulerian in the sense that mass is exchanged between fixed discrete volumes, Lagrangian models 

(e.g. the HYSPLIT model used in this study, mentioned in section 3.5) are used to calculate the composition of infinitesimal 

air parcels in the atmosphere according to the mean wind field data (Galewsky et al., 2016). The transport pathway along 

which air parcels travel is called a trajectory. In contrast to Eulerian models, Lagrangian models are not subject to numerical 

diffusion, hence they are computationally cheaper to simulate moisture sources. Because of their relative simplicity, these 30 

models are suitable to study the influences of different processes along transport trajectories (Helsen et al., 2006).They also 

more explicitly retain information about the history of the air parcels, which is useful to investigate controls on the isotopic 

composition of vapor arriving at a site of interest (Galewsky et al., 2016). In spite of their high suitability for exploring stable 
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isotopes in paleoclimate reconstructions, using GCMs for simulating single meteorological events is more difficult due to their 

coarse spatial resolution (Pfahl and Wernli, 2008). Moreover, GCMs cannot capture the seasonal cycle of water isotopes on 

local scales (Angert et al., 2008). For these reasons, Lagrangian models are more suitable than GCMs to investigate controls 

on precipitation isotopes at a given location. 

Although relationships between atmospheric circulation patterns and precipitation isotopes are frequently acknowledged and 5 

applied to reconstruct past climates, the actual causes of these relationships remain unclear (Ishizaki et al., 2012). Similarly, 

even if GCMs or Lagrangian models could provide much more detailed information about the fractionation processes along 

the transport pathways of water in the atmosphere, they cannot be used in a straightforward way to extract the impact of 

dominant factors and weight their relative importance for the variability of the observed isotopic signal. Statistical techniques 

are required to quantify the correlation between observed isotopic signal variability and regional climate change patterns 10 

(Sturm et al., 2010). Statistical analysis techniques such as principal component analysis (PCA) (Vuille et al., 2003;Curio and 

Scherer, 2016), sensitivity experiments (Ishizaki et al., 2012), or machine learning techniques like random forests (Sánchez-

Murillo et al., 2016) have been used to investigate dominant factors in controlling isotopic composition in precipitation.  

Recently, many studies have presented evidence that large-scale monsoon circulation is the primary driver of variations in 

precipitation isotopes instead of local controls (e.g. local precipitation amount or temperature) in some parts of the Asian 15 

monsoon region. This evidence has been found at different temporal scales including daily isotopic variability (Yoshimura et 

al., 2003;Yoshimura et al., 2008), seasonal isotopic variability (Araguás‐Araguás et al., 1998;Kurita et al., 2009;Dayem et al., 

2010;Peng et al., 2010;Baker et al., 2015), and/or interannual isotopic variability (Vuille et al., 2005;LeGrande and Schmidt, 

2009;Ishizaki et al., 2012;Tan, 2014;Kurita et al., 2015). However, the influence of the different factors has been described 

qualitatively only, with the exception of the study of Ishizaki et al. (2012), in which the quantitative analysis of the controls is 20 

limited the analysis to two factors only (local precipitation amount and distillation of the moisture along its transport 

trajectories). That means, to our best knowledge, there is no study considering quantitatively the interplay of several local and 

regional factors. 

Hence, we conclude It has been frequently stated and agreed to that local and regional factors should be considered 

simultaneously to explain the isotopic variation of precipitation in rainfall (e.g. Johnson and Ingram, 2004). Hence, it can be 25 

hypothesized that using multiple factors in a single linear model explainsis able to explain a larger share of the observed 

variance in isotopic composition. We aim at developing and testing a model-based statistical approach for the quantification 

of the contribution of regional and local factors controllingisotopic separation processes for explaining the isotopic variation 

of precipitation. Such a model-based statistical method could also be applied in paleoclimate studies, separating and 

quantifying the impacts of local and regional factors on the isotopic composition of local precipitation (Sturm et al., 2010), 30 

thus overcoming the shortcomings of the regression factors, in combination with a regressionsingle factor importance analysis. 

Theis study uses the Vietnamese Mekong Delta (VMD) as a test case. During a field campaign, isotopic , for which isotopic 

data in precipitation has been collected for the first time. The rainfall samples (δ18O and δ2H) were collected with comparatively 
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high frequencyfrequently (bi-weekly to weekly) fover a period of 18 months. This data setdataset enables a better analysis of 

the temporal dynamics of the isotopic composition as compared to the typically monthly Global Network of Isotopes in 

Precipitation (GNIP) data (IAEA/WMO, 2016). The collected data was used to characterize the isotopic composition for the 

Mekong Delta for the first time. This was achieved byby means of local meteoric water lines, which were set in 

relationcompared to other locations in South-East Asia. The local meteoric water lines (LMWLs) developed in this study can 5 

be used as a baseline for other studies using isotopic data to investigate hydrological processes in the Mekong Delta. 

Furthermore, the data was used to test the proposed approach for the identification and quantification of the controls on isotopic 

composition in rainfall in South-East Asia.the isotopic variation of precipitation. 

The main objective of this study is to develop a model-based statistical approach that quantitatively estimates the relative 

contribution and the interplay of regional and local factors in controlling the isotopic variation of precipitation for a given 10 

study site. The proposed approach is based on backward trajectory analysis exploiting the benefits of a Lagrangian model (the 

HYSPLIT model mentioned in section 3.5), in combination with multiple linear regression (MLR) of all factor combinations 

specifically considering the widespread issue of multicollinearity of the regression factors, and relative importance analysis. 

The effort in this study is not meant to develop a universal model to predict precipitation isotopic composition, but rather to 

test a comparatively simple and transferable method utilizing easily obtainable atmospheric spatial and climatic information 15 

(trajectories) to quantitatively investigate the drivers and their interplay in controlling the isotopic variation of precipitation.   

2 Study area 

The study area, the Plain of Reeds (Fig. 1), is located in the northern part of the Vietnamese Mekong Delta (VMD), between 

latitudes 10°42’7"N to 10°48’9"N and longitudes 105°22’45"E to 105°33’54"E. With an area of 697,000 ha, it accounts for 

17.7% of the total area of the VMD. About 95% of the Plain of Reeds is used for rice paddy and vegetable cultivating, and 20 

shrimp and fish farming (Hung et al., 2014). The average elevation ranges from 1-4 m above sea level.  

Located in a tropical monsoon region, the climate of the VMD has a distinct seasonality with two seasons: the rainy season 

(May to November) resulting from the flow of moisture from the Indian Ocean and Western North-Pacific Ocean accounting 

for approximately 80-90% of the annual rainfall (Tri, 2012), and the dry season (December to April) controlled by high-

pressure systems over the Asian continent (Wang et al., 2001). Precipitation from the Indian monsoon is forced by the 25 

convective heat sources over the Bay of Bengal (Wang et al., 2001) and arrives earlier than precipitation from the Western 

North-Pacific monsoon (Delgado et al., 2012), forced by a convective heat source over the South China Sea – Philippine Sea. 

The average annual rainfall is 1400-2200 mm, characterized by an uneven distribution, both spatially and temporally (Renaud 

and Kuenzer, 2012;GSO, 2014).  

During the study period, i.e. the period of isotope sampling in rainfall lasting from June 2014 to December 2015, the rainy and 30 

dry seasons are defined by the monthly precipitation amounts and the monthly number of days with precipitation for Cao Lanh 
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(Fig. 2). The dry season is defined as the months with rainfall amount smaller than the overall average (blue line), and a 

monthly number of days with precipitation smaller than the overall average (red line). All other months are included in the 

rainy season. The definition used here is particularly developed for the local climatic conditions, the problem to be solved, and 

the data available. Other definitions could cause some data points to be assigned to the other season. However, those data 

points will most likely be from the transition period from one season to the other, i.e. other definitions would affect samples 5 

that have the least explanatory value for the actual dry and wet seasons. 

The data indicates that the rainy season in 2014 lasted from May to November, and in 2015 from June to November. The dry 

season is thus defined from December 2014 to May 2015 and starts again in December 2015. The study period was very dry 

with an annual rainfall of 985 mm compared to the long-term average of 1550 mm at the station Cao Lanh. This anomaly 

needs to be considered in the interpretation of the results.  10 

The annual average temperature is 27°C with the small interannual variability of about 1°C. Variation of temperature 

throughout the year is small with monthly averages of 25°C to 29°C (Fig. 3). The average annual relative humidity ranges 

from 82% to 85%, with a seasonal variation of 80% to 88% during the rainy season and 77% to 83% during the dry season 

(Fig. 3). The mean annual evaporation is 984 mm with a significant difference between the rainy season and the dry season. 

The monthly evaporation rate ranges from 67 to 80 mm and from 76 to 109 mm in the dry and rainy season, respectively. Daily 15 

sunshine duration is about 8.7 to 9.6 hours in the dry season and 5.5 to 5.9 hours in the rainy season (Renaud and Kuenzer, 

2012;GSO, 2014). 

3 Methodology 

An overview of the proposed methodology is given in Fig. 4. For the derivation of local factors relevant for the isotopic 

composition of precipitation climate data from nearby meteorological stations were collected (section 3.1). At the test location, 20 

precipitation samples were analyzed for their isotopic composition (section 3.2 and 3.3). For the construction of local meteoric 

water lines (LMWL), three regression methods were applied, in order to test the robustness of the LMWL against different 

regression methods (section 3.4). The regional factors were derived from atmospheric back trajectory modeling (section 3.5). 

All possible combinations of local and regional predictors were included in multiple linear regressions, and their ability to 

explain the observed variance of the isotopic composition of precipitation was determined with performance statistics (MLR, 25 

section 3.6). Finally, the influence of the different factors on the explained variance of isotopic composition was determined 

by relative importance analysis (section 3.7).  

3.1 Climatic and isotopic data collection 

Daily precipitation, air temperature, and relative humidity were obtained from the National Centre for Hydro-Meteorological 

Forecasting (NCHMF) of Vietnam at two stations (Chau Doc, Cao Lanh, Fig. 1) for the period 2012-2015. Long-term (more 30 
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than 30 years) climatic data at these stations was provided by SIWRP (2014). Precipitation isotopic data from six selected 

GNIP stations (IAEA/WMO, 2016) located in the Indochinese Peninsula (Fig. 1) was collected for comparison with the 

isotopic data sampled in this study in the Plain of Reeds. 

3.2 Precipitation sampling at An Long 

Precipitation at An Long in the Plain of Reeds (Fig. 1) was sampled on a weekly basis between June 2014 and May 2015 and 5 

twice a week between June 2015 and December 2015. The rain collector was a dip-in sampler type as described in the 

guidelines of the IAEA technical procedure for precipitation sampling (IAEA, 2014). It consists of a 5 L accumulation glass 

bottle fitted with a vertical 14 cm diameter plastic funnel that reaches almost to the bottom to prevent evaporative losses, and 

a pressure equilibration plastic tube (2 mm in diameter and 15 m in length) to minimize evaporation. All collected samples 

were stored in 30 mL plastic sample bottles with tight screw caps to avoid evaporation effects. Between collection and 10 

laboratory analysis, the samples were stored in the dark. 

3.3 Isotopic laboratory analysis 

All stable isotope samples were analyzed at the laboratory of the Alfred-Wegener-Institute (AWI) in Potsdam, Germany. The 

measurements were performed with a Finnigan MAT Delta-S mass spectrometer using equilibration techniques to determine 

the ratio of stable oxygen (18O/16O) and hydrogen (2H/1H) isotopes. Analytical results were reported as δ2H and δ18O (‰, 15 

relative to Vienna Standard Mean Ocean Water - VSMOW) with internal 1σ errors of better than 0.8‰ and 0.1‰ for δ2H and 

δ18O, respectively. The measuring procedure is described in detail in Meyer et al. (2000). The deuterium excess (d-excess) was 

calculated following Eq. 1 (Dansgaard, 1964): 

d-excess = δ2H - 8*δ18O           (1)  

3.4 Development of local meteoric water lines 20 

For the development of local meteoric water lines (LMWL) three methods of linear correlation between δ18O and δ2H values 

were applied, in order to test the robustness of the LMWL against different regression methods: 

 1) ordinary least squares regression (OLSR), 

 2) reduced major axis (RMA) regression, 

 3) precipitation amount weighted least squares regression (PWLSR). 25 

OLSR and RMA give equal weight to all data points regardless of their precipitation amount, while PWLSR minimizes the 

effect of smaller precipitation amounts (Hughes and Crawford, 2012), which are more likely to have a lower d-excess due to 

re-evaporation of raindrops below the cloud base (Jacob and Sonntag, 1991), or biases in the sampling method (Froehlich, 

2001). OLSR tends to be more useful when investigating the interaction between hydro-climatic processes and stable isotope 

signatures in precipitation, whereas PWLSR is adequate in studying surface and groundwater hydrology (Hughes and 30 



9 
 
 

Crawford, 2012). For a more detailed discussion, the reader is referred to IAEA (1992); Hughes and Crawford (2012); 

Crawford et al. (2014). 

The quality of fit of the three LMWLs resulting from OLSR, RMA, and PWLSR was evaluated based on the coefficient of 

determination R2, also referred to as explained variance, the standard error SE and the statistical significance value (p-value). 

The regression model indicates a good fit to the data when R2 is close to 1.0, the standard error is small in relation to the 5 

magnitude of the data, and the p-value is smaller than 0.0001 (Helsel and Hirsch, 2002). 

3.5 Back trajectory modeling 

The potential locations of atmospheric moisture sources and the direction of the air mass causing precipitation before reaching 

An Long station were investigated via back-trajectory analysis. This investigation was performed using the PC Windows-

based HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model developed by NOAA (National Oceanic and 10 

Atmospheric Administration) at the Air Resources Laboratory (ARL) (www.arl.noaa.gov/HYSPLIT_info.php). The model 

builds on the Lagrangian approach, using a moving frame of reference for the advection and diffusion calculation as the air 

parcels move from their initial location (Draxler and Rolph, 2003;Stein et al., 2015). The model parameters and inputs are 

starting time and height of the trajectories, trajectory duration, vertical motion options, type of climatic dataset, and the number 

of trajectories. The back-trajectory outputs are the hourly locations of the trajectory segment endpoints, the altitude of 15 

trajectories, and climatic parameters (e.g. precipitation, temperature, relative humidity) along each trajectory.  

The 1ox1o climatic dataset generated by the global data assimilation system (GDAS) was used as input to the HYSPLIT model. 

This dataset was downloaded from the ARL web server using the HYSPLIT graphical user interface. 10-day backward 

trajectory analysis was performed every 6 hours between 01-JUN-2014 and 31-DEC-2015 at the sampling site (10.72oN, 

105.24oE) for three levels at 1000, 1500, and 2000 m above ground (corresponding to barometric surfaces of approximately 20 

900, 850, and 800 hPa). These barometric surfaces were chosen because the 850-hPa vorticity is highly indicative of the 

strength of the boundary layer moisture convergence and of rainfall in regions away from the equator (Wang et al., 2001), 

hence rainfall is expected to mostly originate from these altitudes. Consequently, the combination of 800 hPa and 850 hPa 

barometric surfaces accounts for the fact that rainfall is expected to mostly originate between 1500 and 2000 m above ground 

level. Correspondingly, the combination of the barometric surfaces of 800, 850 and 900 hPa means that rainfall is expected to 25 

mostly originate between 1000 and 2000 m above ground level. In total, 6948 backward trajectories were computed. The 

HYSPLIT outputs, i.e. precipitation, temperature, relative humidity, and moving distance of moisture sources, were used to 

investigate the influence of the different moisture sources on the variation of the isotopic composition inof precipitation at An 

Long. In order to derive figures representative for each trajectory, accumulated precipitation, mean values of temperature and 

humidity of the hourly HYSPLIT output were calculated along the trajectory and used as predictors in the MLR. 30 

Single backward trajectory computations by the HYSPLIT model can have large uncertainties. The horizontal uncertainty of 

the trajectory calculations by HYSPLIT has been estimated to be 10–20 % of the travel distance (Draxler and Hess, 1998). 
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While errors in trajectory calculation computed from analyzed wind fields seem to be typical on the order of 20% of the 

distance travelled (Stohl, 1998), the statistical analysis of a large number of trajectories arriving at a study site would increase 

the accuracy of the trajectory analysis (Cabello et al., 2008). Harris et al. (2005) studied trajectory model sensitivity to the 

input meteorological data (focusing on ERA-40 and NCEP/NCAR reanalysis data) and to the vertical transport method. They 

pointed out five causes of trajectory uncertainty, expressed as percentage of deviation of the average travel distance: 1) minor 5 

differences in the computational methodology: 3–4%; 2) time interpolation: 9–25%; 3) vertical transport method: 18–34%; 4) 

meteorological input data: 30–40%; and 5) combined two-way differences in the vertical transport method and meteorological 

input data: 39–47%. However, it would be difficult to prove that in all situations a single meteorological data set or a single 

method of trajectory modeling was superior to another one (Gebhart et al., 2005;Harris et al., 2005)Backward trajectory 

computations by the HYSPLIT model can have large uncertainties. More details about the uncertainties in trajectory modeling 10 

were provided by (Stohl, 1998), later by (Fleming et al., 2012). and references therein. 

In this study, several quality control measures were applied, as recommended in Stohl (1998), to increase confidence in the 

HYSPLIT-generated back trajectories and to improve the validity of the air mass history. Firstly, trajectories were computed 

for three pressure levels (900, 850, and 800 hPa). Similar origins of atmospheric moisture for these pressure levels suggest that 

resolution errors and atmospheric shearing instabilities are negligible which increases the confidence in the results. Secondly, 15 

we use the shortest possible integration time step (i.e. 1 h) and a small value for the parameter TRATIO (0.25), which definesis 

the fraction of a grid cell that a trajectory is permitted to transit in one advection time step,. Smaller values of TRATIO help 

to minimize the trajectory computation error. using the HYSPLIT model. Thirdly, the statistical analysis of a large number of 

trajectories (e.g. trajectory cluster analysis) arriving at the study site was applied to confirm the accuracy of the trajectory 

analysis. The trajectory cluster analysis is conducted by the HYSPLIT model to group trajectories with similar pathways. The 20 

cluster analysis merges these trajectories that are near each other and represents those clusters by their mean trajectory. 

Differences between trajectories within a cluster are minimized while differences between clusters are maximized. 

Computationally, trajectories are combined to decrease the number of clusters until the total spatial variance (TSV) starts to 

increase significantly. This occurs when disparate clusters are combined. This number of clusters is then selected as the optimal 

cluster number for sorting and combining similar trajectories. More information about the HYSPLIT cluster analysis can be 25 

found at https://ready.arl.noaa.gov/documents/Tutorial/html/. 

3.6 Analysis of factors controlling isotopic variation in precipitation  

Multiple linear regression (MLR) was used to assess how the isotopic variation in precipitation is related to regional and local 

controlling factors. As indicators of regional factors we used the output of the HYSPLIT model was used, consisting of the 

accumulated precipitation amount along the transport pathways (hereafter P_hysplit), mean temperature (T_hysplit) and mean 30 

relative humidity (H_hysplit) along the trajectory, and the distance of moisture sources travelled within the time frame of 10 

days (D_hysplit). The local climatic factors are weekly precipitation amount (P_AL) at An Long station, and weekly mean air 
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temperature (T_AL) and weekly mean relative humidity (H_AL) taken from the nearby Cao Lanh station during the sampling 

period. These seven predictors were related to isotopic values (δ18O, δ2H, and d-excess) defined as response variables in the 

MLR. Pearson linear correlation coefficients were computed to show inter-correlations between response and predictor 

variables, and then used to determine the importance of predictors in the MLR. 

All possible subset regression models consisting of all possible combinations of predictors (27-1 = 127 models) were applied 5 

separately for δ18O, δ2H and d-excess. The coefficient of determination R2 for the MLR was calculated for each subset 

regression. The goodness of each MLR model was evaluated based on the Prediction Residual Error Sum of Squares (PRESS) 

(Eq. 2) and adjusted R2 (Eq. 3) (Helsel and Hirsch, 2002). The PRESS residuals are defined as  𝑒𝑒(𝑖𝑖) = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�(𝑖𝑖) where 𝑦𝑦�(𝑖𝑖) is 

the regression estimate of 𝑦𝑦𝑖𝑖  based on a regression equation computed leaving out the ith observation. The process is repeated 

for all n observations: 10 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  ∑ 𝑒𝑒(𝑖𝑖)
2𝑛𝑛

𝑖𝑖=1            (2)  

The selection of best models with PRESS is equivalent to a leave-one-out cross-validation, which tests the regression models 

for robustness and reduces the chances of model over-fitting, i.e. the chances of finding spurious regression models that provide 

good results for the given combination of factors and selected time period only.  

The adjusted R2 (𝑃𝑃𝑎𝑎2) is defined as follows 15 

𝑃𝑃𝑎𝑎2 = 𝑃𝑃2 − (1 − 𝑃𝑃2) 𝑝𝑝
(𝑛𝑛−𝑝𝑝−1)

          (3)  

Where p is the total number of predictors in the MLR model and n is the number of observations. The statistical significance 

of all linear regressions was evaluated based on the p-value for the F-test as part of a one-way ANOVA analysis. A good MLR 

model is hereby characterized by: 

(i) PRESS close to zero, 20 

(ii) Adjusted R2 (R2
a) close to 1.0, 

(iii) a p-value smaller than 0.0001. 

For each response variable, six pressure layers (800 hPa, 850 hPa, 900 hPa, and mean values of their combinations) and 10 

durations of backward trajectories (from 1-day to 10-day backward) were used. The different pressure levels and combinations 

were chosen in order to tackle the inherent uncertainty regarding the pressure levels from which the rainfall actually stems. 25 

Similarly, different durations of the trajectories were chosen in order to avoid fixing the a-priori unknown travel time of 

precipitation reaching An Long.  Overall, this resulted in 7620 MLR models for each response variable δ18O, δ2H and d-excess 

(6 pressure levels times 10 trajectory durations times 127 predictor sets). The best MLR model was then identified by the 

smallest PRESS value (Eq. 2). Furthermore, the goodness of fit of the MLR models was characterized based on the adjusted 

R2 values. 30 
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3.7 Relative importance analysis  

Relative importance analysis determines the proportion of the variance explained by the individual predictors in the regression. 

However, this is difficult when predictors are correlated, since multicollinearity can lead to a high sensitivity of regression 

coefficients caused by small changes in the model. This means that the importance can strongly shift from one predictor to 

another well correlated one if the data set is changed even only slightly. The leave-one-out cross-validation may be particularly 5 

vulnerable to this effect. Therefore two methods were applied, namely relative weight analysis (Johnson, 2000) andwhich has 

been developed to quantify the power of predictors when they are correlated, and the relative partial sum of squares (Gardner 

and Trabalka, 1985), which have both been developed to quantify the power of predictors when they are correlated.. For a 

review of approaches to estimate predictor importance, readers are referred to Tonidandel and LeBreton (2011); Kraha et al. 

(2012).  10 

Relative weight analysis approximates the relative importance of a set of predictors by creating a set of variables that are highly 

related to the original set of variables but are uncorrelated with each other. The response variable is then regressed on the 

uncorrelated set of predictors to approximate the relative weight of the original set of predictors, defined as the relative 

contribution of each predictor to R2. This method is computationally efficient even for a large number of predictors and 

produces very similar results compared to more complex methods. Details are given in Johnson (2000); Tonidandel et al. 15 

(2009). 

In the relative partial sum of squares (RPSS) method (Gardner and Trabalka, 1985), the total sum of squares of the response 

variable is partitioned based on multiple linear regression between all predictors. Briefly, the RPSS represents the percentage 

of the total sum of squares attributable to each of the predictors. To calculate RPSS for predictor Vi, the difference between 

the regression sum of squares (RSS) for the full model and the regression sum of squares for the model with Vi missing (RSS-20 

i) is divided by the total sum of squares (TSS) (Rose et al., 1991), and expressed as a percentage using Eq. 4. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 100 ∗ (𝑃𝑃𝑃𝑃𝑃𝑃 −  𝑃𝑃𝑃𝑃𝑃𝑃−𝑖𝑖)/𝑇𝑇𝑃𝑃𝑃𝑃         (4)  

The relative importance derived by the methods above quantifies the proportion of the variance explained by the individual 

regression factors, and thus identifies the dominant controls on the isotopic composition of rainfall. 

4 Results and discussion 25 

4.1 Variability of moisture sources 

Because there is no daily precipitation data recorded at An Long, we used daily precipitation data at Cao Lanh instead. This is 

the closest national meteorological station, located approximately 37 km Southeast of An Long. Backtracking trajectories in 

Fig. 5 are plotted for the days when rainfall was recorded at Cao Lanh. This is based on assumption that days with precipitation 

at Cao Lanh and An Long coincide. 30 
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Figure 5 shows back-calculated trajectories of atmospheric moisture prior to rainy days at An Long for the sampling period 

from June 2014 to December 2015. Left and right panels show the results of 850 hPa trajectories for 2014 and 2015, and the 

upper, middle, and lower panels show the results for the early (June – September) and late (October – November) rainy season 

and dry season (December – May), respectively. Figure 6 shows the spatial distribution of vapour trajectories (cluster means) 

for precipitation days at An Long for 3 barometric surfaces (800, 850, 900 hPa) between June 2014 and December 2015, and 5 

the change in total spatial variance (TVS) for different cluster numbers. The TSV was used to identify the optimum number 

of clusters. The similarity of back-calculated trajectories (Fig. 5) and trajectory cluster analysis (Fig. 6) at three barometric 

surfaces (900, 850, and 800 hPa) (not shown) illustrates that the trajectories and thus the source regions do not differ between 

different atmospheric layers. This indicates a barotropic atmosphere, with the consequence that it is unlikely that the selection 

of the pressure layer for the HYSPLIT trajectories modifies the results of the MLR significantly. 10 

Figure 5 and Figure 6 demonstrates demonstrate that the dry-season precipitation (from December to May) in the Plain of 

Reeds mainly originates from the moisture sources of the Asian continental air masses and the oceanic air masses carried by 

the equatorial easterlies, whereas during the rainy season (from June to November) air masses travel a longer distance over the 

tropical Indian Ocean (from June to September) and the South Pacific Ocean (October to November).  

These findings for An Long agree with the general characterization of monsoonal circulation and precipitation over the 15 

Southeast Asia region, with moisture from the Indian Ocean dominating during the initial stage of monsoon evolution, and the 

Pacific Ocean dominating in the later stages. This indicates that the HYSPLIT model provides valid trajectories to be used in 

the MLR. 

The mean δ18O values for the 5 clusters are plotted in Figure 6 (in brown). The mean cluster values are similar for the three 

pressure levels. Also, the mean values of the two clusters from the Indian Ocean, as well as the two clusters from the Pacific, 20 

are similar. For a fingerprinting one also has to consider the variation of the values within the clusters, which partly overlap. 

This means that the δ18O values of precipitation in the Mekong Delta cannot be used to uniquely identify the origin of the 

trajectory. However, they provide a coarse indication of their origin. 

4.2 Isotopic composition of precipitation 

4.2.1 Meteoric water lines 25 

The linear-regression analyses of 74 pairs of δ18O and δ2H values at An Long yield LMWLs for the Plain of Reeds as follows: 

1) Ordinary least squares regression (OLSR): 

δ2H = (7.56 ±0.11)* δ18O + (7.26 ±0.67) 

(SE = 2.26; r2 = 0.99; p < 0.0001; n = 74), 

2) Reduced major axis regression (RMA): 30 

δ2H = (7.61 ±0.11)* δ18O + (7.58 ±0.68) 

(SE = 2.27; r2 = 0.99; p < 0.0001; n = 74), 
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3) Precipitation amount weighted least squares regression (PWLSR): 

δ2H = (7.61 ±0.11)* δ18O + (7.87 ±0.73) 

(SE = 2.29; r2 = 0.99; p < 0.0001; n = 74). 

The numbers in brackets indicate the estimates of slope and intercept plus/minus the standard deviation, indicating the 

parameter uncertainty.  5 

The close fit of all considered regressions indicates a very good linear relationship between δ18O and δ2H in the study area that 

is independent of the applied regression method. On a global scale, a good linear relationship between δ18O and δ2H is usually 

observed at sites where secondary fractionation processes, e.g. sub-cloud evaporation, are insignificant (Crawford et al., 2014).  

The LMWL for An Long is slightly different from the global meteoric water line (GMWL; defined by δ2H = 8*δ18O + 10 

using OLSR, (Craig, 1961) and the LMWLs derived for six selected GNIP stations (IAEA/WMO, 2016) located in the 10 

Indochinese Peninsula (Fig. 67). The small difference in slope between these LMWLs compared to that of GMWL, and the 

distribution of isotope values along the GMWL indicate that evaporative isotopic enrichment during rainfall is not significant. 

However, the less positive intercepts of LMWLs (<10‰) (Fig. 67) may reflect smaller kinetic effects during evaporation 

(Ingraham, 1998) over the Mekong Delta compared to the worldwide average.  

4.2.2 Seasonal variation and spatial homogeneity 15 

The 74 precipitation samples at An Long showed that δ18O ranges between -12.6‰ and -1.0‰, with an arithmetic mean value 

and standard deviation of -5.8‰ ± 2.5‰, and δ2H ranges between -89.3‰ and 0.9‰, with an arithmetic mean value and 

standard deviation of -36.2‰ ± 18.7‰. Generally, less negative isotopic values are observed in the dry-season precipitation 

samples. The most negative values occur in the second half of the rainy season (September and October), whereas the least 

negative values are observed atin the late dry season in April and May (Fig. 67 and Fig. 78). This shows that the isotopic 20 

composition of precipitation at An Long station exhibits marked seasonal variations, which in turn indicates different dominant 

moisture sources and/or processes in the different seasons. A comparison of the seasonal variation of δ18O with the short-term 

(2014-2015) and long-term (1968-2015) monthly averages of Bangkok (Fig. 78) reveals very similar seasonality, both in terms 

of timing and magnitude. The differences between δ18O for An Long and Bangkok are likely caused by the exceptional low 

rainfall in the study period compared to the long-term monthly values, particularly during May and July. Considering 25 

additionally the similarity of general factors controlling stable isotopic composition of precipitation between the two stations, 

i.e. annual rainfall amount, air temperature, altitude and latitude (Dansgaard, 1964;Ingraham, 1998), it can be concluded that 

the isotopic variations of An Long and Bangkok follow the same dynamics and controls, both on an annual and seasonal scale, 

and can represent or complement each other. 

In order to test the representativeness of the An Long data for a wider area, the variability of the monthly mean δ18O data of 30 

An Long was compared to the available GNIP data of the Indochinese Peninsula (Table 1). The Levene test (Levene, 1960) 

for equality of variances was used to compare the data of the different stations. As shown in Fig. 89, the test results in four 
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distinct groups of data series with similar variances: the Northern part of the Indochinese Peninsula (Hanoi and Luang Prabang, 

Fig. 8b9b), the Southern part of the Indochinese Peninsula (Bangkok and An Long, Fig. 8c9c), the islands in the Gulf of 

Thailand (Ko Samui and Ko Sichang, Fig. 8d9d), and finally Kuala Lumpur showing only little seasonal variability. The 

Northern and Southern parts of the Indochinese Peninsula show generally a similar seasonal behavior with a distinct higher 

depletion during the rainy season, stillbut in the Northern part the highest depletion is one month earlier (August) in the 5 

Northern part than in the Southern part, and the magnitude of the depletion is larger. The seasonal δ18O variability in 

precipitation on the islands is much lower than on the stations located on the continent. This is likely due to the maritime 

setting and could indicate a continental effect. In addition, the short-term time series of Bangkok and An Long (i.e. 2014-2015) 

show similar variances, resulting in a highly significant Levene test statistic of 0.98. The variation of the short-term time series 

of Bangkok and An Long is also very similar to the long-term time series, again shown by a highly significant Levene test 10 

statistic of 0.90 (Fig. 9c). This indicates that the isotopic variation of the An Long time series is almost identical to the one 

from Bangkok. In summary, the analyzed GNIP data suggests that the data and results from this study are likely to be 

representative forof the Southern continental part of the Indochinese Peninsula. 

4.3 Factors controlling isotopic composition of precipitation 

Prior to the MLR, the correlation of the predictors was analyzed (Table 2). The absolute values of the correlation coefficients 15 

between local (P_AL, T_AL, H_AL) and regional (P_hysplit, T_hysplit, H_hysplit, D_hysplit) climatic parameters are 

relatively small and mostly not significant (|r| < 0.4, Table 2b). However, the correlation coefficients between regional 

predictors are in most cases high and significant (Table 2c). Highest correlations are found between temperature and humidity 

for local factors, and between the regional humidity and precipitation for regional factors. Interestingly, the correlation between 

P_AL and H_AL is quite low. This indicates that the local precipitation is mainly controlled by large-scale circulation. The 20 

correlation between the predictors underlines the necessity to consider multicollinearity when investigating how the predictors 

control the response variables (δ18O and δ2H). 

4.3.1 Local factors and isotopic composition in precipitation 

Typically, in tropical regions subject to a monsoon climate the correlation between δ18O and δ2H values of precipitation and 

air temperature is virtually nonexistent, whereas a strong relation between δ18O and amount of precipitation has been observed 25 

(Rozanski et al., 1992;Araguás‐Araguás et al., 1998). Our data show that the correlation of local precipitation amount (P_AL) 

and local temperature (T_AL) with isotopic values (δ18O and δ2H) are both low (|r| < 0.45, Table 2a). This suggests that δ18O 

and δ2H variation is neither dominated by local precipitation amount nor by local temperature during the sampling period. This 

lack of a significant correlation (|r| < 0.5) between δ18O and local rainfall amount was also observed in other regions affected 

by the Asian monsoon climate such as Bangkok, Hong Kong, New Delhi (Ishizaki et al., 2012), and Cherrapunji, India 30 
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(Breitenbach et al., 2010). This again supports the statement that δ18O may not be an adequate proxy for local climatic 

conditions (e.g. temperature or rainfall amount) in the Asian monsoon region (Aggarwal et al., 2004;Vuille et al., 2005).  

Secondary fractionation processes such as sub-cloud evaporation or secondary evaporation from open water bodies tend to 

decrease d-excess in the residual rainwater (Stewart, 1975) and enrich it in the heavy isotopes (Guan et al., 2013). The negative 

correlation of humidity (H_AL) with δ18O and δ2H (r = -0.53, Table 2a) combined with a positive correlation with d-excess (r 5 

= 0.2, Table 2a), indicates that some secondary fractionation processes (Risi et al., 2008b;Crawford et al., 2017) may take 

place during some months at An Long. To examine in which month secondary fractionation processes are likely significant, 

amount-weighted mean and arithmetic mean, for both δ18O and d-excess are compared. The rationale is that if secondary 

fractionation processes are important (with the assumption that the moisture sources of different events within the month are 

the same), the arithmetic mean should have a δ18O value that is more enriched in heavy isotopes, and a much smaller d-excess 10 

than the weighted mean (Guan et al., 2013). Figure 10 shows that secondary fractionation processes may take place during the 

dry season, in December 2014, and in April and May 2015, because in these months a) less negative δ18O values and lower d-

excess values compared to the overall arithmetic mean are observed, while at the same time the monthly arithmetic means are 

higher for δ18O, and lower for d-excess compared to the monthly weighted means. 

To further corroborate this finding, linear regression werewas performed for different seasons to derive seasonal LMWL’s and 15 

relations between local humidity and δ18O and d-excess. Table 3 suggests that secondary fractionation processes are likely to 

take place in the dry season between December 2014 and May 2015. This is depicted by a slope of lower than 8 (slope = 6.9) 

for the dry season, the slightly negative correlation between δ18O and local relative humidity, and the markedly positive 

correlation between humidity and d-excess. This is a distinctly different behavior compared to the rainy season as a whole, but 

also for the first (early monsoon) and second (late monsoon) parts of the rainy season. In summary, these findings indicate that 20 

secondary fractionation processes influence the isotopic composition of precipitation primarily in the dry season, which is 

characterized by lower humidity and higher temperature in the Plain of Reeds. While this conclusion is plausible due to the 

climatic conditions and low rainfall amounts, one has to consider the low number of rainfall samples during the dry season, 

which associates some uncertainty to the regressions and thus the interpretation. 

4.3.2 Regional factors and isotopic composition in precipitation 25 

In comparison to other regional and local parameters, the precipitation amount along the transport pathways of moisture 

sources (P_hysplit) shows the strongest correlation with δ18O and δ2H as depicted by a correlation coefficient of -0.76 (Table 

2a). Thus, P_hysplit is likely the dominant factor controlling the isotopic composition of precipitation. Other predictors show 

weaker correlations with |r| < 0.55. This, however, does not exclude that these predictors do have some predictive power for 

the isotopic composition of precipitation in An Long when used in combination with other predictors. Although δ18O and δ2H 30 

are rather well correlated with some climatic parameters, d-excess (which is a function of both) is not well correlated. This is 

because of the relative difference of the variation of δ18O and d-excess, which is expressed by a low correlation coefficient 
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between two these variables (r = -0.44). The weak correlation between d-excess and all climatic parameters (|r|<0.36) indicates 

that the selected predictors (i.e. selected climatic parameters) are not sufficient to explain the processes responsible for the 

variability of the d-excess. On a global scale, drivers controlling d-excess variation are likely sea surface temperature or near-

surface relative humidity of moisture sources (Pfahl and Wernli, 2008;Uemura et al., 2008;Pfahl and Sodemann, 2014), which 

are not considered in this study. In tropical areas, a major contribution to the seasonal variation in d-excess can be convective 5 

processes, e.g. re-evaporation and rain–vapor interactions (Risi et al., 2008a;Risi et al., 2010a), or the influence of large-scale 

processes, e.g. conditions at the vapor source, convection and recycling of moisture along trajectories (Landais et al., 2010). 

A complete investigation of factors controlling d-excess in precipitation is thus not possible by the presented study design and 

selected predictors. However, some conclusions about the factors controlling the d-excess can be obtained with the presented 

method, see below. 10 

4.4 MLR and relative importance analysis 

The results of the MLR indicate that δ18O signal in precipitation at An Long is best explained by moisture sources of 5-day 

backward trajectories (Fig. 1011). The MLR of these trajectories produces the lowest PRESS and highest R2 values, indicating 

that about 80% of the variability of precipitation δ18O (Fig. 1011) and δ2H (not shown) at An Long can be explained by the 

best MLR model. The explained variance differs only slightly between the different pressure levels used. But still, the best 15 

performance in terms of the lowest PRESS value was obtained by the mean backward trajectories of the 800 hPa and 850h Pa 

levels.  

Contrary to δ18O and δ2H, the MLR fails to explain the variation of d-excess over the whole study period to a large extent, 

with a maximal R2 of 0.3 (Fig. 1011). This indicates that the climatic parameters used in our MLR models have only little 

impact on the annual d-excess variation, which corroborates the findings of the linear correlation analysis in section 4.3.2. 20 

In the next step, the importance of the MLR predictors was analyzed. Figure 12 shows the results applying Johnson’s relative 

weight analysis for the best performing MLR models, i.e. using the mean of the 800 hPa and 850 hPa 5-day backward 

trajectories. In general, the predictive power of the MLR models increases with increasing number of predictors. Both 

importance methods, i.e. relative weight analysis and the relative partial sum of squares, yield very similar results (not shown).  

The results indicate that regional factors are always more important than local factors if the R2 value is above 0.5. The local 25 

factors dominate only in MLR models with low performance, or when no regional factors are used as predictors. This is also 

highlighted by the sum ratio line (black line in Fig. 1112), defined as the fraction of R2 explained by regional factors normalized 

to the overall R2. In the best MLR model (124th model) with the lowest PRESS value and an R2 of 0.80, which is equivalent to 

an explained variance of 80%, the regional factors explain 56% of the absolute δ18O variance (which is equivalent to 70% 

relative to R2 = 0.80), while local factors explain only 24% (30% relative to R2 = 0.80). This result agrees with the two-factor 30 

analysis of Ishizaki et al. (2012) who stated that distillation during transport from source regions is the dominant contributor 

to inter-annual variability of δ18O precipitation in Bangkok, Bombay, and Hong Kong, accounting for 70%, 60% and 70% 
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relative to the overall explained variance, while the amount of local precipitation contributed the remaining 27%, 33%, and 

25% of the explained variance, respectively.  

In all models where precipitation amount along transport pathways from moisture source regions (P_hysplit) is included, this 

factor explains the highest proportion of R2, which is always at least double and up to triple of the explained variance of other 

factors (Fig. 1112). In turn, the absence of P_hysplit as a predictor in the MLR model considerably decreases the R2, indicating 5 

that P_hysplit is the most dominant factor. In the best MLR model (124th model) the most important predictor is P_hysplit, 

explaining 47% of the total δ18O variance (partial R2 = 0.47, Fig. 1112). The second dominant factor is T_AL, accounting for 

21% of the explained the total variance. The remaining factors account for less than 13% of the δ18O variance. This result 

indicates that the regional amount effect is a dominant process in controlling isotopic variation, whereas the local amount 

effect is not important in the VMD. Similar findings are reported for other regions in Asia (e.g. Rozanski et al., 1992;Araguás‐10 

Araguás et al., 1998). The local humidity Htemperature T_AL, however, can be regarded as a modulating factor for the isotopic 

composition on top of P_hysplit.  

In a next step, the predictor importance analysis is performed for different seasons, in order to analyze if seasonal differences 

in the dominating factors for the isotopic composition exist, as the correlation analysis of local factors and isotopic composition 

suggests (section 4.3.1). The samples were split into dry season and rainy season subsets, for which the MLR was applied 15 

individually. The definition of the seasons follows the analysis in section 2, i.e. the dry season lasts from December to May. 

However, due to the low number of samples during this period, the dry season samples were taken from mid-November to 

mid-June in order to increase the sample number, thus enabling a more robust MLR fitting. This selection can be justified: 

Because the delineation of the dry and wet season above is based on monthly data, the “sharp” distinction between the rainy 

and dry season is forced by the temporal resolution inof the data used. In reality, the transition between rainy and dry season 20 

is rather gradual, thus the delineation between the rainy and dry season should rather be regarded as fuzzy. Using data from 

the last two weeks of November and the first two weeks of June can be seen as one way to consider this. 

Furthermore, the rainy season was subdivided according to the different moisture source regions shown in section 4.1: the 

Indian Ocean, dominating during the initial and high stage of the Indian monsoon from June to September/mid-October, and 

the South China Sea – Philippine Sea and the North-West Pacific Ocean from October to May during the late rainy and dry 25 

seasons, with some contribution from continental Asia (Fig. 5). In order to test if the factors have different importance caused 

by different source regions during the rainy season, the MLR models and relative importance analysis were applied for these 

two time periods in addition to the dry season. The number of samples for the different subsets was 42, 18 and 14 for the early 

rainy season, late rainy season and dry season, respectively. 

Figure 13 shows the results of the MLR and importance analysis for the three seasonal subsets for δ18O. The sorting of the 30 

models is the same as in Fig. 1112. On a first glance, the results for the rainy season subsets (Fig. 123a and Fig. 123b) are quite 

similar to each other and to the overall data set. The best performing model in terms of the lowest PRESS value is in all cases 

the model 124. However, in terms of R2, the performance of the early rainy season is somewhat lower compared to the overall 
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data set, while for the late rainy season it is significantly better, with R2 = 0.96. This increase in explained variance is caused 

by an increased contribution of the regional factors. In the late rainy season, the regional factors alone contribute 76% to the 

overall R2 of 0.96 of the best PRESS model, which equals 79% of the explained variance (Table 4).  

This is a much larger contribution compared to the partial R2 values of 56% and 51% for the whole data set and the early rainy 

season, respectively. The increase stems from a larger importance of the other regional factors H_hysplit and/or T_hysplit. 5 

While their contribution to the whole data set and the early rainy period is rather low and P_hysplit dominates the contribution 

of the regional factors, it is raised to about 30% in the late rainy season, either individually or in combination. For the best 

PRESS model marked with the cyan dot in Fig. 123b, T_hysplit contributes 27% to the overall R2 of 0.96.  It indicates that 

temperature and humidity play a larger role in the isotopic fractionation along the trajectories of water stemming from the 

North-West Pacific/South China Sea and continental Asia compared to water stemming from the Indian Ocean during the 10 

boreal summer months. The large regional and thus climatic heterogeneity of water sources during the late rainy season offers 

a plausible explanation for this result. The source regions during this period are located in oceans and continental regions in 

higher latitudes outside the tropics, where large climatic differences may occur during the transport along the trajectories. 

Therefore, fractionation processes caused not only by the rainfall amount, but also by evaporation and condensation are likely 

to have a larger effect on the final isotopic composition of rainfall reaching An Long during this period, as compared to the 15 

low climatic variability of the tropical Indian Ocean region, where the rainfall during the early rainy seasons originates. 

A completely different picture reveals the MLR fitting and importance analysis for the dry seasons shown in Fig. 123c. While 

the overall performance in terms of R2 is comparable to the early rainy season, the importance of the local and regional factors 

is very different from the other seasons. For the dry season, the local factors dominate. In the best performing MLR model 

with the lowest PRESS value (cyan dot in Fig. 123c), T_AL contributes 78% of the explained variance. Similar results are 20 

obtained for almost all of the MLR models. For the models with R2 > 0.5, T_AL is the most important factor, followed by 

P_AL and H_AL with similar importance. The regional factors generally do not contribute more than 22% of the explained 

variance, if R2 > 0.6. This finding corroborates the assumed higher importance of secondary fractionation processes during the 

dry season in the VMD, as already hypothesized in section 4.3.1. However, in combination with other predictors, T_AL seems 

to be a better predictor of the secondary fractionation processes compared to H_AL, which was used in 4.3.1. As T_AL and 25 

H_AL are closely correlated (Table 2), the findings of section 4.3.1 and the MLR of the dry season presented in this section 

agree well.  

The results for The MLR modeling of δ2H shows very similar results to δ18O leading to the same conclusions (Fig. S1 and Fig. 

S2 -in the supplement). The seasonalMLR modeling of seasonal d-excess also shows an improved the MLR fit for the late 

rainy and dry seasons (Fig. S3 and Fig. S4 -in the supplement), while for the early rainy season the results are not as satisfying 30 

as for the whole dataset. In contrast to δ18O and δ2H, regional factors explain the bulk of the d-excess variance also for the dry 

season. Among the regional factors, P_hysplit has the lowest importance for d-excess, while the others factors T_hysplit, 

H_hysplit, and D_hysplit explain about 65% of the best R2 of 0.66. This is also a distinctively different result compared to 
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δ18O and δ2H, where P_hysplit always dominated the regional factor contribution. The remaining explained variance isstems 

mainly explained byfrom the local precipitation P_AL, with some contribution of T_AL. This finding is in line with the 

rationale outlined in section 4.3.1, that evaporation along the transport pathway decreases the d-excess (Stewart, 1975). This 

effect is much more variable during the late rainy and dry season due to the transport pathways from higher latitudes, as 

compared to the rather uniform climatic conditions along the transport pathways during the rainy season, as already argued in 5 

the previous paragraph for the late rainy season results of δ18O. This means in summary that the MLR and relative importance 

analysis of d-excess for the late rainy and dry season corroborate the hypothesis that secondary fractionation processes caused 

by evaporation are relevant during the dry season, respectively for rainfall stemming from the Pacific region and continental 

Asia. However, for δ18O and δ18H local factors describing evaporation are more important, while for d-excess regional factors 

and thus evaporation processes along the transport pathways dominate. 10 

Overall, applying all possible subset regression MLR models can much better explain the isotopic variation in rainfall 

compared to approaches considering only one predictor, i.e. a simple correlation analysis. Moreover, the associated relative 

importance analysis enables the identification of the dominant factors, thus offering interpretation aids for the identification of 

the processes responsible for the isotopic signature of the local rainfall. The presented analysis illustrates, that investigatingthe 

investigation of dominant factors controlling isotopic composition in precipitation with simple correlation analyses may lead 15 

to wrong conclusions, particularly when predictors are cross-correlated. Additionally, MLR is able to consider the combination 

of different local and regional factors, thus enabling a better identification and interpretation of the manifold processes 

controlling the isotopic composition of rainfall. 

5 Conclusions 

This study analyzes the influence of local and regional meteorological factors on the isotopic composition of rainfall, expressed 20 

as δ18O, δ2H, and d-excess, in the Vietnamese Mekong Delta (VMD). For this purpose rainfall samples were taken on a weekly 

to a bi-weekly basis for a period of 1.5 years at An Long in the North-Eastern part of the VMD and analyzed in the 

laboratory.for stable water isotopes. The regional factors potentially influencing factorsisotopic composition were derived by 

back-tracing of water particles up to 10 days from the target location using the HYSPLIT model, while the local factors were 

derived from local climate records. The influence of the different factors on the isotopic condition was quantified by multiple 25 

linear regressions (MLR) of all factor combinations and relative importance analysis.  

The MLR showed that up to 80% of the total variation of δ18O can be explained by linear combinations of the selected factors. 

Similar results are obtained for δ2H. Contrary to this, only about 30% of the total variation of the d-excess can be explained 

by the selected factors, if the whole data series is used. General considerations regarding the controls of d-excess in tropical 

areas suggest that additional factors, like sea surface temperatures of the source region, need to be taken into account for an 30 

improved modeling of d-excess variation by MLR over alloverall seasons and source regions. 



21 
 
 

The study showed that local climatic factors, specifically local rainfall amount and temperature, play a minor role in controlling 

the isotopic composition of the rainfall at An Long. However, there is evidence that sub-cloud evaporation has a small effect 

during the dry season. Regional factors, on the contrary, dominate the isotopic composition of rainfall at An Long. 70% of the 

explained variance, i.e. a partial R2 of up to 0.56, can be attributed to regional factors, among which precipitation amount along 

the transport pathway can explainsexplain most of the observed variance best. The remaining 30% of the explained variance 5 

is attributed to local factors, among which the temperature plays the most important role. These findings indicate that local 

secondary fractionation processes like sub-cloud evaporation modulate the isotopic composition, which is otherwise dominated 

by the rainout along the transport pathway of the precipitation.  

Furthermore, the analysis of different transport durations implies that the moisture-producing precipitation atreaching An Long 

travels about 4-6 days from its source, as the best regression results are obtained for these durations. For longer travel durations 10 

the explained variability of the regression decreases, suggesting that the moisture is recycled, i.e. precipitated and evaporated 

again, when the travel time exceeds 6 days. 

If the data set is divided into seasonal subsets based ondefined by precipitation amount and water source regions, the MLR 

and importance analysis enables a better identification of factors and thus processes controlling the isotopic composition forin 

the different seasons. For the late rainy and dry seasons (i.e. October to May)), the importance of otherregional (late rainy 15 

season) and local (dry season) factors than P_hysplit increases and addscompared to P_hysplit, raising the explained variance, 

particularly for the late rainy season. The source regions and the associated transport pathways as well as local processes are 

more important for these periods, indicating that secondary fractionation processes by evaporation, either along the pathway 

(for d-excess) or locally (for δ18O and δ2H), are more important than the amount effect, which is dominant during the Indian 

monsoon period. This is reasonable, because moisture transported to the Mekong Delta from the Pacific region and continental 20 

Asia passes through different climatic regimes, compared to the more uniform climatic conditions along the pathway from the 

Indian Ocean during the Indian summer monsoon.  

In summary, it can be concluded that the proposed approach, consisting of simultaneous testing of all possible factors by MLR 

combined with relative importance analysis, is able to detect the relevant factors controlling the isotopic composition of rainfall 

as well as their individual contributions. If applied to seasonal data subsets, the predictions can be improved and the seasonal 25 

differences in controlling factors and processes can be identified. The validity of the approach is confirmed by similar, but 

mainly qualitative results obtained in other studies. The comparable results provide a strong indication that the method is able 

to identify the dominant factors responsible for the isotopic composition of rainfall without a priori knowledge or assumptions. 

In contrast to previous studies, the presented approach and results provide, however, a quantitative assessment of the impact 

of different factors, and thus information about the dominant processes of isotopic fractionation. It can support the 30 

interpretation of processes responsible for observed patterns of isotopic composition. The rather simple approach can, of 

course, not provide detailed information about atmospheric dynamics, but it provides a relatively simple and easy to apply 

approach supplementing or preceding more complex studies of isotopic composition with circulation models. Due to the 
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simplicity, any scientist can easily apply this method in order to investigate factors controlling isotopic composition in 

precipitation at any given study area around the world without the requirement of setting up and in-depth knowledge about 

running a complex numerical atmospheric circulation model. Furthermore, the approach is easily reproducible and contains a 

rigorous quantitative analysis of the interplay of different driving factors.  Moreover, the analysis can easily be extended to 

other factors and processes of importance in order to capture particularly the d-excess better, e.g. the sea surface temperatures 5 

at the source regions. 

The similarity of isotopic signatures and LMWLs of stations all over Southeast Asia, as well as similar general climatic 

conditions, allows the conclusion, that the findings are representative of a larger area. Particularly the similarity of the LMWLs, 

the variability of the monthly isotopic composition of rainfall, and climatic conditions of the VMD and Bangkok suggests that 

the results are representative for the whole Mekong Delta, and possibly for large areas of the southern tip of the continental 10 

Indochinese Peninsula.  

The results have direct implications for the interpretation of paleo-recordspaleorecords of stable water isotopes in terms of past 

climate conditions for the Asian monsoon regionSoutheast Asia. Because this study shows that the factors controlling the 

isotopic signature of precipitation are changing between and even within seasons and that regional factors have large impacts 

on the local isotopic composition of rainfall. This needs to be considered in the reconstruction of past climates based on isotopic 15 

records: δ18O and δ2H values are likely to be representative for the rainfall during the dry season. However, as regional factors 

dominate during most of the rainy season (receiving the bulk of the total annual rainfall), reconstructions of the past climate 

have to be carefully interpreted. Moreover, the analysis can easily be extended to other factors and processes of importance in 

order to capture the d-excess better, e.g. the sea surface temperatures at the source regions. The proposed approach could easily 

include additional factors, and could thusmight open a pathway for a betteran improved reconstruction of paleo 20 

climatepaleoclimates based on isotopic records. It may e.g. be used for identifying suitable variables to improve the 

performance of proxy data assimilation in paleoclimate reconstruction. 
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Table 1. Isotopic composition of precipitation at An Long and six selected GNIP stations throughout the Indochinese Peninsula. 

Station 
Name Location Country AL P  

(mm) 
T  

(oC) Period 
δ18O δ2H d-

excess 
LMWL 
(OLSR) 

LMWL 
(RMA) 

LMWL 
(PWLSR) 

WM M WM M WM S Int. S Int. S Int. 

An Long 105.24o E 
- 10.72o N Vietnam 2 985*   

(1550) 
27.4*     
(27.2) 

06.2014 
- 

12.2015 

-6.4  
±1.5 

-5.8 
±2.5 

-40.9 
±11.5 

-36.2 
±18.7 

10.4 
±1.8 

7.56 
±0.11 

7.26 
±0.67 

7.61 
±0.11 

7.58 
±0.67 

7.61 
±0.11 

7.87 
±0.73 

Hanoi ** 105.84o E 
- 21.02o N Vietnam 10 1659 

±257 
24.8 
±0.5 

2004-
2007 

-8.8  
±0.7 

-5.9 
±0.5 

-56.9 
±4.2 

-33.8 
±3.6 

13.5 
±1.5 

7.91 
±0.10 

12.45 
±1.25 

7.99 
±0.18 

12.90 
±1.22 

7.77 
±0.21 

10.92 
±1.91 

Bangkok 
** 

100.50o E 
- 13.73o N Thailand 2 1558 

±314 
28.5 
±0.6 

1968-
2015 

-6.5 
±1.0 

-5.2 
±1.0 

-42.6 
±7.6 

-33.2 
±7.2 

9.4 
±1.6 

7.35  
±0.04 

5.36  
±0.47 

7.53 
±0.08 

6.29 
±0.47 

7.68 
±0.07 

7.25 
±0.49 

Ko Samui 
** 

100.03o E 
- 09.28o N Thailand 7 1265 

±611 
27.9 
±0.2 

1979-
1983 

-5.8  
±1.4 

-4.8 
±0.9 

-28.8 
±7.1 

-24.1 
±4.4 

10.8 
±0.0 

7.18 
±0.10 

6.89 
±1.20 

7.30 
±0.25 

7.41 
±1.16 

7.45 
±0.25 

7.89 
±1.26 

Ko 
Sichang 

** 

100.80o E 
- 13.17o N Thailand 26 877 

±320 
27.9 
±0.6 

1983-
1995 

-6.2  
±0.6 

-6.2 
±1.1 

-39.3 
±5.1 

-39.7 
±8.8 

10.2 
±0.6 

7.62 
±0.06 

7.61 
±1.15 

7.72 
±0.18 

8.16 
±1.12 

7.77 
±0.23 

8.65 
±1.44 

Luang 
Prabang 

** 

102.13o E 
- 19.88o N Lao PDR 305 1228 

±178 
25.7 
±0.7 

1961-
1967 

-7.8  
±1.2 

-6.7 
±0.3 

-54.2 
±7.6 

-45.9 
±0.9 

8.4   
±1.9 

7.90 
±0.13 

7.97 
±2.00 

8.01 
±0.27 

8.70 
±1.93 

7.80 
±0.28 

7.52 
±2.29 

Kuala 
Lumpur 

** 

101.68o E 
- 03.13o N Malaysia 26 1801 

±787 - 1993-
2012 

-7.3  
±0.8 

-7.0 
±0.7 

-46.6 
±7.7 

-45.1 
±6.8 

11.8 
±4.1 

7.63 
±0.07 

8.10 
±1.93 

8.26 
±0.26 

12.53 
±1.92 

7.73 
±0.29 

8.95 
±2.24 

 

Note:  

* Measured at An Long in 2015; numbers in parentheses show mean values of long-term measurements at Cao Lanh. 

** Data is from https://nucleus.iaea.org/wiser/gnip.php (IAEA/WMO, 2016)  

P: annual precipitation (mm/year); T: average temperature (oC); AL: altitude (meter above sea level); WM: weighted mean value; M: mean value; 

S: slope; Int.: intercept 
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Table 2. Pairwise correlation coefficients between regional factors (P_hysplit, T_hysplit, H_hysplit, D_hysplit) and local factors 
(P_AL, T_AL, H_AL) and stable isotopic values (δ18O, δ2H, and d-excess). Bold and italic numbers denote significance at the 0.01 
and 0.05 level (2-tailed), respectively. The meteorological data are aggregated to weekly values corresponding to the precipitation 
sampling at An Long. 

(a) P_hysplit H_hysplit T_hysplit D_hysplit P_AL H_AL T_AL 
Isotopic values 

vs. Regional 
and Local 

factors 

δ 18O -0.74 -0.45 -0.38 0.24 -0.34 -0.53 0.45 

δ 2H -0.76 -0.47 -0.39 0.20 -0.32 -0.53 0.45 

d-excess 0.18 0.04 0.07 -0.36 0.27 0.20 -0.15 

(b) P_hysplit H_hysplit T_hysplit D_hysplit 

Regional factors vs. Local factors 
P_AL 0.13 0.23 0.04 0.03 

H_AL 0.38 0.17 0.21 0.10 

T_AL -0.21 0.05 0.17 -0.33 

(c) P_hysplit H_hysplit T_hysplit D_hysplit 

Regional factors vs. Regional factors 

P_hysplit 1    

H_hysplit 0.77 1   

T_hysplit 0.59 0.67 1  

D_hysplit -0.10 -0.17 -0.49 1 

(d) P_AL H_AL T_AL 

Local factors vs. Local factors 
P_AL 1   

H_AL 0.20 1  

T_AL -0.14 -0.78 1 
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Table 3. Results of the linear regression analysis between local relative humidity (H_AL) and isotopic values at An Long. Regressions 
that are statistically significant at the 0.05 level are marked in bold.  

  Linear regression line r R2 p-value n Period 

δ18O - δ2H 

δ2H = 7.56*δ18O+7.26 0.99 0.99 0.000 74 full year 

δ2H = 7.62*δ18O+7.74 0.99 0.99 0.000 67 rainy season (Jun-Nov) 

δ2H = 7.58*δ18O+7.21 0.99 0.98 0.000 42 early monsoon (Jun-Sep) 

δ2H = 7.68*δ18O+8.6 0.99 0.99 0.000 25 late monsoon (Oct-Nov) 

δ2H = 6.9*δ18O+3.98 0.98 0.96 0.000 7 dry season (Dec-May) 

δ18O - 
Humidity 

δ18O = -0.51*H_AL+36.05 -0.53 0.28 0.000 74 full year 

δ18O = -0.46*H_AL+32.09 -0.47 0.22 0.000 67 rainy season (Jun-Nov) 

δ18O = -0.33*H_AL+21.84 -0.42 0.17 0.006 42 early monsoon (Jun-Sep) 

δ18O = -0.83*H_AL+63.12 -0.61 0.37 0.001 25 late monsoon (Oct-Nov) 

δ18O = -0.56*H_AL+41.34 -0.88 0.77 0.010 7 dry season (Dec-May) 

d-excess - 
Humidity 

d-excess = 0.2*H_AL-6.36 0.20 0.04 0.090 74 full year 

d-excess = 0.13*H_AL-0.46 0.13 0.02 0.301 67 rainy season (Jun-Nov) 

d-excess = 0.18*H_AL-5.35 0.21 0.04 0.211 42 early monsoon (Jun-Sep) 

d-excess = -0.08*H_AL+17.44 -0.07 0.01 0.734 25 late monsoon (Oct-Nov) 

d-excess = 0.34*H_AL-19.42 0.31 0.10 0.455 7 dry season (Dec-May) 

 

 

Table 4. Explained variance (partial R2) of regional and local factors of the best MLR model according to the PRESS value. The 
first value indicates the absolute partial R2, the second value the relative contribution to the overall explained variance.  

 Whole period Early rainy season Late rainy season Dry season 

Regional factors 0.56 | 70% 0.51 | 68% 0.76 | 79% 0.14 | 22% 

Local factors 0.24 | 30% 0.24 | 32% 0.20 | 21% 0.51 | 78% 

Total 0.80 | 100% 0.75 | 100% 0.96 | 100% 0.65 | 100% 
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 Figure 1: Sampling and monitoring sites in the study area 
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Figure 2: Monthly precipitation (mm) and a monthly number of days with precipitation for Cao Lanh station. Light blue background 
indicates rainy season. 

 
Figure 3: Climate data from the Cao Lanh meteorological station for the study period. Daily temperature (T) is given together with 
monthly and daily precipitation (P) and daily relative humidity (H). Weekly and bi-weekly δ18O (‰ VSMOW) values of rainwater 
are presented as red circles. 
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Figure 4: Methodology used in the study. Local precipitation (P_AL), air temperature (T_AL), and relative humidity (H_AL) at An 
Long. Precipitation amount (P_hysplit), mean temperature (T_hysplit) and relative humidity (H_hysplit) along the transport 
pathways, and moving distance from moisture sources (D_hysplit). 

3.4 Development of a 
Local Meteoric Water 
Line 

- Ordinary least squares 
regression (OLSR) 
- Reduced major axis 
(RMA) regression  
- Precipitation amount 
weighted least squares 
regression (PWLSR)  
 

3.1 Climatic data 
collection 
- At Chau Doc and Cao 
Lanh (Figure 1) 
- Precipitation (P)  
- Air temperature (T) 
- Relative humidity (H) 
 

3.2 Precipitation 
sampling 
- At An Long 
- Weekly sampling 
- Jun. 2014 – Dec. 2015  
3.3 Laboratory analysis 
- δ2H and δ18O (‰) 
- d-excess = δ2H - 8*δ18O  
 

3.5 Back trajectory modeling  
- HYSPLIT model (PC version) 
- 10-day backward trajectories 
- 6-hour interval 
- 01/06/2014 and 31/12/2015 
- Target location (10.72o N, 105.24o E) 
- Barometric surfaces (900, 850, 800 hPa) 

3.6 Analysis of factors controlling isotopic variation in 
precipitation 
- All possible subset regressions  
- Best MLR model defined by Predicted Residual Error Sum of 
Squares (PRESS) and adjusted R2 

3.7 Relative importance analysis 
- Important weights by Johnson’s method 
- Relative partial sum of squares (RPSS) method 
            Dominant factor (Local or regional) 

Response 
variables (y) 

δ
18

O, δ
2
H, d-excess 

Multiple linear regression (MLR) model  

y = β0 + β1 x1 + β2 x2 +.... + βn xn + ε 

Predictors (x1, x2, x3, x4) 
P_hysplit, T_hysplit, H_hysplit, 
D_hysplit  
(Regional factors) 

Predictors (x5, x6, x7) 
P_AL, T_AL, H_AL 
(Local factors) 
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Figure 5: Back-trajectories indicating potential moisture sources of precipitation (plotted only for days with precipitation) at An 
Long station for the barometric surfaces at 850 hPa between June 2014 and December 2015. Left panels show the results for 2014, 
right panels for 2015; top row (a, d) early rainy season (June – September), middle row (b, e) late rainy season (October – November), 
bottom row (c, f) dry season (December – May). In January, February and March 2015 no rainfall was recorded. 
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Figure 6: Spatial distribution of vapor trajectories (cluster means) for precipitation days at An Long for 3 barometric surfaces (800, 
850, 900 hPa) between June 2014 and December 2015, and change in total spatial variance (TVS) for different cluster numbers. The 
TSV was used to identify the optimum number of clusters. Red texts indicate the cluster number (1-5) and the percent of all 
trajectories assigned to each of the five clusters. Brown texts indicate the mean δ18O values for each cluster plus/minus the standard 
deviation of each cluster.  
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Figure 7: The LMWL of An Long in comparison to the GMWL. 
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Figure 8: Annual: Seasonal variation of the average monthly precipitation for An Long and Cao Lanh and δ18O values of 
precipitation δ18O for An Long (for the period of observation (red)) and Bangkok. (both for the period of observation (blue) and 
the long-term mean (black)). 
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Figure 9: Seasonal monthly mean δ18O values for An Long and GNIP data from the Indochinese Peninsula. The data is grouped 
according to similar variability tested with the Levene test. The p-values given in (b) to (d) are the test statistics. High values indicate 
similar variance. The time series of Bangkok is plotted for short-term (2014-2015) and long-term (1968-2015) periods.  
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Figure 10: Arithmetic mean and amount-weighted mean monthly δ18O (left) and d-excess (right) at An Long for the sampling period 
June 2014 to December 2015. 

 

Figure 11: Evaluation of multiple linear regression (MLR) models applied for δ18O and d-excess as response variables for different 
pressure levels used for three HYSPLIT backward trajectories and their combinations (mean values of the different levels). The best 
MLR model is highlighted with red text. 
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Figure 12. MLR with response variable δ18O and relative importance analysis applied for all possible subsets. The 127 MLR models 
are sorted according to their R2 values in ascendant order. Colors represent the relative contribution (in %) of the predictors. The 
sum ratio line separates the contribution of local (in red and orange) and regional (in blue) factors. PRESS and adjusted R2 values 
indicate the quality of the MLR model. The best MLR model depicted by the lowest PRESS (model 124, highlighted by the cyan dot) 
explains 80% of the δ18O variation (R2 = 0.8). 
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Figure 13. MLR with response variable δ18O and relative importance analysis applied for all possible subsets (127 MLR models) for 
different seasons: a) early monsoon from June to September, b) late monsoon from October to mid-November, and c) the dry season 
from mid-November to mid-June.  
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