
Editor 

Dear Dr. Massari, 

Thank you for your interests to HESS. We received two expert reviews on this manuscript. Both 

reviewers acknowledge the importance of the topic and consider the manuscript well-written. I 

have read the manuscript myself and concur with reviewers' assessments. I would invite you to 

revise the manuscript with reviewers' comments in mind. I look forward to reading a revised 

version of this manuscript. 

 

Regards 

Lixin Wang 

R: We thank the Editor for his decision. In the following, we provide point-by-point answers (in black) to 

the referees’ comments (in red). We also report the changes made in the manuscript in green indicating 

also their position. 

  



Referee 1 

Summary: This study proposes to use a Triple Collocation (TC) method to asses uncertainties associated 

with rainfall estimates using different products at the daily/1degree scale. The study addresses important 

issues that are relevant to the HESS readership. I recommend this manuscript for publication after minor 

revisions. 

R: We thank the reviewer for appreciating the value of the paper and for her/his valuable comments. 

Page 1: 

1. Title and throughout the text: I think there is some confusion regarding the difference between 

accuracy and precision (uncertainty vs. error, systematic vs. random). Accuracy refers to how close 

a measured value is to a standard value (i.e., the “true” value). Precision describes the statistical 

variability. Accuracy and precision are independent. It seems to me that the TC method provides a 

measure of precision (error variances and correlations), but no information regarding the accuracy, 

which would require a reference/benchmark. I urge the authors to clarify this difference in the text 

and revise the text where needed. 

R: The reviewer makes a very good point here. If TC is to provide a true assessment of accuracy, it requires 

a perfectly-calibrated, bias-free scaling target which, of course, is not generally available in data-scarce 

regions. Instead, we utilize TC to provide an assessment of linear correlation against the “true” rainfall 

accumulation value. We agree that referring to this as “accuracy” is not correct. However, about the term 

“precision” can be still misleading since the term precision is used in describing the agreement of a set of 

results among themselves and is usually expressed in terms of the deviation of a set of results from the 

arithmetic mean of the set (e.g., standard deviation). 

Therefore, to resolve this issue, we will use the word “performance” instead of “accuracy” and clarify early 

in the paper (at the end of the introduction section, pag.3, lines 24-27) that “performance” is defined in 

terms of correlation against “true” rainfall values: 

“Thanks to the ability of TC to provide the correlation against the “unknown” truth (ETC, McColl et al. 

(2014)), in this study the assessment of the products will be carried out in terms of correlation against 

“true” rainfall values. As a result, the word “performance” and “TC results” are here onward referred to 

this index (additional clarifications are provided in section 2.3). “ 

Based on this strategy, the title has been also changed in: 

“An assessment of the performance of global rainfall estimates without ground-based observations” 

Additional changes have been made in the revised manuscript at lines (of the original manuscript) where 

the term resulted not appropriate: 

• Abstract line 14. “Results convey the relatively high accuracy of the satellite rainfall estimates in 

Eastern North and South America, South Africa, Southern and Eastern Asia, Eastern Australia as well as 

Southern Europe and complementary performances….” That has been changed in  



“Results convey the relatively high performance of the satellite rainfall estimates in Eastern North and 

South America, South Africa, Southern and Eastern Asia, Eastern Australia as well as Southern Europe and 

complementary performances…” 

• Pag. 10 line 5 (now pag. 10 line 20) “Assessment of CPC accuracy”. The section has been titled 

“Assessment of the CPC product” 

• Pag. 10 line 29 (now pag. 11 line 15). “… Triplet C leads to an overly-optimistic assessment of their 

accuracy.” has been changed to “Triplet C leads to an overly-optimistic assessment of their performance.” 

• Pag. 10 line 32 (now pag. 11 line 18). “It is often important to understand which is the best available 

rainfall product provides the highest relative accuracy.” is changed to “It is often important to understand 

which is the best rainfall product among those available in a specific location”. 

• Pag. 12 line 7 (now pag 12 line 29) “particular TC configuration approach to assess the accuracy” 

has been changed to “particular TC configuration approach to assess the performance”. 

• Pag. 14 line 10 (now pag. 14 line 33). “Results convey the relatively high accuracy of daily rainfall 

accumulations” has been changed to “Results demonstrate the relatively high performance of daily rainfall 

accumulations…” 

2.  Line 1: remove “value”. 

R: We have removed it. 

3. Line 4: remove “of this variable” 

R: We have changed the sentence in (now pag 1 line 2): 

“Recent studies have suggested the use of Triple Collocation (TC) to characterize uncertainties associated 

with rainfall estimates by using three collocated rainfall products.” 

4. Line 5: replace “among” with “with” 

R: We have substituted it. 

5. Line 18: is it really the best product? It is if precision is the chosen criterion, but it may not be the 

case if accuracy is considered to be more important. 

R: Since we are not talking about the accuracy here the sentence is now adequate. See also the discussion 

to point 1. 

Page 2: 

6. Line 35: replace “provides” with provide” 

R: We have replaced it. 

Page 3: 

7. Lines 3 and 6: add “the” before “TC” 

R: We have removed “method” at line 3 and added “the” at line 6. 



8. Line 9: rephrase as “if each product is affected by mutually-independent errors” 

R: We think the sentence is correct. 

9. Line 20: deleted “analysis” and “the” 

R: We have removed “analysis” term. 

10. Lines 20-25: CMORPH and TMPA 3B42RT are not completely independent. Can the authors explain 

what is the implication with using these two products in the TC analysis? 

R: Cross-correlated error in CMORPH and TMPA 3B42RT have large implications for the application of TC. 

In fact, these implications provide the central motivation for the paper (particularly our proposed use of a 

soil moisture-based rainfall accumulation product).  

This is an important point for us to convey to the reader. To make sure that it is clear, we have added some 

clarifying details at lines 32-34 pag. 3 about the possible consequences of applying TC to a triplet containing 

the two products to facilitate the understanding of this important point. 

“Note that, given the number of common sensors shared by CMORPH and TMPA 3B42RT the application 

of TC to the triplet containing the two products will serve for demonstrating the impossibility to use both 

of them in the same triplet within the TC analysis.” 

In addition, note that we have already highlighted this point in the original manuscript at lines 8-13 page 3. 

“TC can theoretically provide error and correlations of three products (a triplet) without using ground based 
observations – provided that each of the three products is afflicted by mutually-independent errors. 

However, given that state-of-the-art satellite rainfall products use a highly-overlapping set of common 
sensors for the retrieval of rainfall (see section 2.1 for further details), there is an inherent difficulty 
in obtaining triplets with mutually-independent errors.” 
 

11. Line 28: rephrase as “Section 2 presents datasets and methods;” 

R: The sentence has been rephrased. 

12. Line 31: rephrase as “Results and discussion are shown in Section 3 and the final remarks are 

presented in Section 4.” 

R: The sentence has been rephrased. 

Page 4: 

13.  Line 13: delete “a”  

R: “a” has been deleted. 

Page 7 

14.  Lines 2-4: this is a fair model only to model the error for the “hit cases” when both sensor and 

ground truth are larger than zero or for cumulative rain over a long enough period of time. 

Otherwise, the multiplicative error model would assign zero anytime the sensor measure a zero. 



Some explanation is given towards the end of the paragraph, but I believe that this should be 

discussed when multiplicative error models are introduced. The authors can also refer to Tian et 

al. 2013: Modeling errors in daily precipitation measurements: Additive or multiplicative? 

R: In this section (2.2.1), we discuss thoroughly the multiplicative error assumption along with advantages 

and limitations when it is used within TC.  As a results, we think this is a good place for debating the issue 

related to presence of zero values in the rainfall time series and the potential problems they can create 

when the log-transformation is applied.  

We have added the reference of Tian et al. (2013).  

Page 8 

15.   Line 6: shouldn't it be “utilizes”? What’s the subject of that verb?  

R: , it X  refer the correlations of the products, with i=1,2,3 so we used the plural. 

Page 9: 

16.  Line 16: replace “serve to” with “are used to”  

R: We have replaced it. 

Page 10: 

17.  Line 6: please replace “assessing” with “to assess” 

R: We have replaced it. 

18.  Line 32: please rephrase (2 verbs).  

R: We have rephrased it. 

Page 11: 

19. Line 9: drop the comma.  

R: We have dropped it. 

Page 12: 

20.  Lines 1-2: can the authors speculate on why this happens? 

R: Some explanations are given at page 11 lines 30-35. In particular, the use of daily rainfall accumulations 

necessitates the removal of a lot of zero values for applying the log-transformation. This might shorten the 

dataset too much and decrease the robustness of the TC analysis. 

21.  Line 17: rephrase as “this corroborates what shown by….”  

R: We have rephrased as suggested. 

Page 13: 



22.  Line 2: replace “paper” with “study”. 

R: We have replaced it. 

  



Referee 2 

This paper presents a novel approach to estimating surface precipitation using retrieved soil moisture. The 

authors then apply their soil moisture estimates to understanding the uncertainties in satellite rainfall 

estimates, and indicate which potential rainfall products perform better in different regions of the CONUS 

and globally. The applicability to the hydrologic modeling community makes it appropriate for publication 

in HESS. I recommend publication with minor revisions, many of which deal with adding additional 

clarification for the reader. 

 
R: We would like to thank the reviewer for appreciating the value of the paper and for her/his valuable 
comments.  

 

Page 3: 

1. Line 5: certainly not certainty 
R: We have corrected the text. 

 

Page 4: 

2. Section 2.1.2: I think that the flow of the paper would be improved by including the description of 
SM2RAIN with the description of ASCAT (or as a sub- section to it) as opposed to the current 
arrangement of describing the instrument here and the product several sections later. 

 
R: We thank the reviewer for this suggestion. However, we prefer to separate the methodology 
section from the data description. SM2RAIN can, in fact, be applied to any type of satellite soil 
moisture observation, and we would not like to not give the false impression that it can run only with 
ASCAT soil moisture data. 

 

3. Section 2.1.3: Readers familiar with the 3B42 product will recognize that you are using the “Real 
Time” rather than the “Research” version. In the CMORPH description you mention using the raw 
version that lacks gauge information, this justification should be included as to why you use 3B42RT 
as well. 

 
R: We have added the following clarification to the revised paper at page 3 lines 23-24 of the 
Introduction section: 

 
“(note that both 3B42RT and CMORPH (raw version) do not include gauge information in their retrieval 
algorithms)” 
 

Page 5: 

4. line 8: SSM/I instruments are operated by the US Department of Defense, not NOAA. 
R: We have corrected the text. 
 
“It incorporates precipitation estimates derived from the PMW on board of the DMSP 13, 14 & 15 



(SSM/I) and NOAA-15, 16, 17 & 18 (AMSU-B) satellites as well as AMSR-E and TMI aboard NASA's Aqua 
and TRMM spacecraft, respectively.” 
 

5. Line 23: 1
st

 
 

R: We have corrected the text. 
 
6.  Line 11: should the second i in the square root also be subscripted? 

 
R: Yes, it should be subscripted because it is referring to a diagonal element of the covariance matrix. 

 

Page 9: 

7. Line 19: “use” instead of “have utilize” 
 

R: We have corrected the text. 
 
8. Line 24: You indicate that equation (8) is only valid for liquid precipitation, and in the concluding 

remarks mention that the SM and combined satellite products are less reliable in cases of frozen 
precipitation/snow cover/frozen surfaces. Are you using the entire 2012-2015 time period, or only 
the warm seasons? If you are using the entire period, how are you dealing with the winter months? 

 
R: We thank the reviewer for rising this important point. We used the entire period 2012-2015; 
however, we removed periods of snow cover/frozen soil by masking data where the surface state flag 
(SSF) of the ASCAT product indicates frozen (SSF=2), temporary melting/water on the surface (SSF=3) 
or permanent ice (SSF=4). In particular, given that the analysis was carried out at a 1-degree spatial 
resolution, grid cells were masked if more than 50% of their sub-grid areas consisted of ASCAT 
observations characterized by a SSF equal to 2, 3 or 4. Moreover, data points where we observed solid 
precipitation from ERA-Interim were also excluded. The latter, in addition to the consideration of the 
SSF, helped to reduce the probability of having snowy periods and consider only liquid precipitation. 
Thus, the results of the paper are not affected by snow. 
 
This has been clarified in: 
 

1. section 2.1.2 at lines 24-26: 
 
“Prior to the application of SM2RAIN to ASCAT data, the points characterized by a surface state flag 
(SSF) of the ASCAT product that indicates frozen (SSF=2), temporary melting/water on the surface 
(SSF=3) or permanent ice (SSF=4) were excluded from the analysis.” 
 

2. Page 6 lines 5-6: 
 
“Note that, we considered only liquid precipitation in the analysis. Solid precipitation were excluded 
by masking out periods experiencing snowfall (using the “large-scale snowfall” variable of ERA-
Interim).” 
 

3. And at page 9 lines 22-24: 



 
“Finally, 1°x1°grid cells were masked if more than 50% of their sub-grid areas consisted of ASCAT 
observations characterized by a SSF equal to 2, 3 or 4.” 
 

9. Line 28: Remove the word “values” 
 
R: We have removed it. 
 

Page 10: 

10. Line 19, “are”, not “ae” 
 
R: We have corrected the text. 
 

11. Lines 27-28, and Page 12, Line 3: This may be arguing semantics a bit, but the results don’t indicate 
that not using SM2RAIN yields unreliable results. The results indicate that not adhering to the 
assumptions of the TC method (specifically with respect to having estimates with uncorrelated 
errors) produces unreliable results. Table 1 indicates that triplets D and E do just as well without 
SM2RAIN. 

 
R: The reviewer is right. The sentence is misleading. We have corrected the text as: 

Lines 13-14 page 11 

“This suggests those triplets not containing SM2RAIN (or CPC) provide unreliable results.” 

12. Line 32: Sentence needs revising 

R: We will modify the sentence to read (Line 18 page 11): 
 

“It is often important to understand which is the best rainfall product among those available in a specific 
location.” 
 

Page 11: 

 
13. Lines 15-21: It would be nice to have some context as to why the statistics for the multiplicative 

error are different from the additive. This comes up a bit later (line 32), but could be more up 
front. 

 
R: This has been clarified via new text added at lines 5-8 page 12: 

 
“Here, SC values are generally lower than those obtained by TC (based on an assumed additive error 
model) likely due to necessity of removing zero rain days which modifies the original precipitation time 
series and reduces the sample size of TC calculations.” 

 

14. As a general comment, it might be interesting to look at the CMORPH and 3B42 with gauge-
adjustment in the global comparison. Presumably, this would improve their results in data-rich 



areas and result in no change in data sparse regions. Comparing triplets using the same product 
both with and without gauge adjustment might also provide some indication of how much 
improvement the gauge adjustment provides. 

 

R: While we agree that this would be an interesting extension, it would require a substantial 
modification of the existing paper and would entail a substantial departure from the specific goal of 
this analysis (i.e., to demonstrate that the availability of independent SM2RAIN-based rainfall estimates 
enables rainfall validation without ground-based observations). However, we fully agree that this 
suggestion would be a valuable topic for future research
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Abstract. Satellite-based rainfall estimates over land have great potential value for a wide range of applications, but their 

validation is challenging due to the scarcity of ground-based observations of rainfall in many areas of the planet. Recent 

studies have suggested the use of Triple Collocation (TC) to characterize uncertainties associated with rainfall estimates by 

using three collocated rainfall products of this variable.. However, TC requires the simultaneous availability of three products 

with mutually-uncorrelated 

5   uncorrelated errors, a requirement thatwhich is difficult to satisfy amongwith current global precipitation datasets. 

In this study, a recently-developed method for rainfall estimation from soil moisture observations, SM2RAIN, is demon- 

strated to facilitate the accurate application of TC within triplets containing two state-of-the art satellite rainfall estimates and 

a reanalysis product. The validity of different TC assumptions are indirectly tested via a high quality ground rainfall product 

over the Contiguous United States (CONUS), showing that SM2RAIN can provide a truly independent source of rainfall accu- 

10   mulation information which uniquely satisfies the assumptions underlying TC. On this basis, TC is applied with SM2RAIN on 

a global scale in an optimal configuration to calculate, for the first time, reliable global correlations (versus an unknown truth) 

of the aforementioned products without using a ground benchmark dataset. 

The analysis is carried out during the period 2007-2012-2015 using daily rainfall accumulation products obtained at 1◦x1◦ 
spatial 

resolution. Results convey the relatively high accuracyperformance of the satellite rainfall estimates in Eastern North and South 
America,Amer- 

15 ica, South Africa, Southern and Eastern Asia, Eastern Australia as well as Southern Europe and complementary performances 

between the reanalysis product and SM2RAIN, with the first performing reasonably well in the northern hemisphere and the 

second providing very good performance in the southern hemisphere. 

The methodology presented in this study can be used to identify the best rainfall product for hydrologic models with sparsely- 

gauged areas and provide the basis for an optimal integration among different rainfall products. 

 

20    1   Introduction 
 

Thanks to the combined use of microwave and infrared sensors, the quality of available satellite rainfall estimates over land has 

signif- icantlysignificantly increased in the few last decades. This strategy – also known as multi-sensor approach – has produced 

a number of different satellite rainfall products that either map infrared (IR) radiances to more direct passive microwave (PMW) 



2  

retrievals (generally termed "blended" algorithms) or morph PMW rainfall using IR measurements (generally termed 

"morphing" algo- 
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rithms). The new Global Precipitation Measurement Mission (GPM, Hou et al., 2014) has successfully expanded the concept of 

multi-sensor integration. Trough the Integrated Multi-satelliE Retrievals for GPM (IMERG) algorithm, rainfall estimates from 

the various precipitation-relevant satellite PMW and IR missions are intercalibrated, merged and interpolated with the GPM 

Combined Core Instrument product to produce rainfall accumulation estimates with an unprecedented accuracy. Despite these 

5 technical advancements, the precipitation community still struggles to show a clear picture of the actual increased accuracy of 

satellite rainfall estimates in many areas of the world because validation studies rely upon the availability of high-quality (and 

sufficiently dense) ground-based rainfall instrumentation (e.g. rain gage and radars). 

Many studies (e.g., Ebert et al., 2007; Sapiano and Arkin, 2009; Tian et al., 2007; Stampoulis and Anagnostou, 2012) have 

investigated the error associated with remotely-sensed precipitation products by comparing their estimates with those 

collected 

10  collected by ground-based observations assuming they represent the zero-error rainfall. However, the physical characteristics of 

precipitationprecip- itation, particularly at finer spatial and temporal resolutions, necessitate frequent, systematic and 

sufficiently dense validation measurements – requirements that are often not met within data-scarce regions of Africa, Asia 

and South America. Indeed, despite their relative accuracy, the distribution of available gauges significantly varies around 

the world. Much of the land massessurface (representing 25 – 30 % of the Earth’s surface) have measurement networks, 

although those networks with good gauge 

15   gauge densities are limited (Kidd et al., 2017). 

The current networks of surface observations are therefore often not sufficientinsufficient for the quantitative assessment of the 

er- ror associatederror asso- ciated with satellite rainfall estimates. Moreover, despite the relatively higher accuracy of rainfall 

estimates that can be obtained by rain gauges, they are not error-free. (Peterson et al., 1998; Villarini et al., 2008). Therefore, 

evaluating the performance of different satellite rainfall products with ground based observations is challenging due to the 

scarcity of such observations and 

20   observations and of the inherent error contained in their estimates. 

Based on the work of Adler et al. (2009), Tian and Peters-Lidard (2010) estimated the uncertainties of satellite rainfall 

estimates by using the measurement spread of coincidental and collocated estimates from an ensemble of six different satellite- 

based datasets, thus providing a globally consistent methodology that does not require ground-based based validation data. The 

analysis yielded a lower bound estimate of the uncertainties, and a consistent global view of the error characteristics and their 

25 regional and seasonal variations. However, the authors showed that the analysis is able to provide only a relative estimation of 

the measurement uncertainties because these data sets are not entirely independent measurements. 

An alternative approach for assessing the quality of satellite rainfall products was proposed by Roebeling et al. (2012) and 

Alemohammad et al. (2015) based on the Triple Collocation (TC) method (Stoffelen, 1998). The first applications of TC 

concerned geophysical variables such as ocean wind speed and wave height (Stoffelen, 1998). More recently, it has been used 

30  extensively to estimate errors in soil moisture (SM) products (Crow and Van Den Berg, 2010; Miralles et al., 2010; Dorigo 

et al., 2010; Draper et al., 2013; Su et al., 2014; Gruber et al., 2016). Given three estimates of the same variable, the main 

assumptions of the method are the: i) stationarity of the statistics, ii) linearity between the three estimates (versus the same 

target) across all time scales and iii) existence of uncorrelated error between the three estimates. 
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In the work of Roebeling et al. (2012), the authors determined the spatial and temporal error characteristics of three 
precipitapre- 

35   tioncipitation datasets over Europe (a visible/near infrared, a weather radar and gridded rain gauge products) showing that it 
can provides 
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provide realistic error estimates. The authors ensured a Gaussian distribution of the error by averaging the dataset over a 

sufficientlysuffi- ciently long period (10 days) and re-gridding to a sufficiently low spatial resolutionsresolution (0.25x0.25◦). 
Alemohammad et al. (2015) applied TC method to 14 days cumulated rainfall estimates derived from satellite, gauge, 
radargauges, radars and models in order to retrieve the error and the correlation of each dataset in United States. They also 
proposed the use of a logarithmic (i.e., multiplicative) error 

5  model which almost certaintycertainly provides a more realistic description of rainfall accumulation errors at fine 

scalespace/time scales. In addition, they calculated the theoretical correlation of each product with the unknown truth by using 

the Extended TC (ETC) (McColl et al., 2014) by analysing the covariance matrix of the three datasets. 

TC can theoretically provide error and correlations of three products (a triplet) without usinguse of ground based 

observations – provided that each of the three products is afflicted by mutually-independent errors. However, given that state-of-

the-art satellite 

10 rainfall products use a highly-overlapping set of common sensors for the retrieval of rainfall (see section 2.1 for further details), 

there is an inherent difficulty in obtaining triplets with mutually-independent errors. Therefore, additional - highly independent 

- sources of rainfall accumulation estimates are needed. 

Recently, Brocca et al. (2014) developed a method for estimating rainfall accumulation amounts directly from satellite SM 

observations based on the principle that the soil can be treated as a "natural raingauge". In contrast with classical satellite rainfall 

15 products, this new bottom-up approach attempts to measure rainfall by calculating the difference between two successive SM 

measurements derived from a satellite SM product. In this respect, SM2RAIN offers a unique opportunity for applying the TC 

analysis because, being wholly independent from any other rainfall estimate, it can be used in place of a ground-based product. 

This opportunity has not yet been explored and could provide an appropriate basis for applying TC on a global scale without 

requiring the availability of ground-based rainfall accumulation data. 

20  In this study, TC analysis is applied to the rainfall accumulation estimates derived from: 1) ERA-Interim (Dee et al., 
2011), 
 2) SM2RAIN (Brocca et al., 2014) via inversion of Advanced SCATterometer (ASCAT, (Wagner et al.,(Wagner et al., 1999)1999) 

SM data, 3) the NOAA Climate Prediction Center morphing (CMORPH, raw version) (Joyce et al., 2004) and 4) the TRMM 

Multi-satellite Precipitation Analysis TMPA 3B42RT (Huffman et al., 2007) product over the CONtiguous United States 

(CONUS). An assessment of the reliability of subsequent TC results, is conducted by direct comparison with the analogous 

evaluation results obtained via directCONUS (note that both 3B42RT and CMORPH do not include gauge information in their 

retrieval algorithms). Thanks to the ability of TC to provide the correlation against the 

25 “unknown” truth (ETC, McColl et al. (2014)), the assessment of the products will be carried out in terms of correlation against 

“true” rainfall values. As a result, the word “performance” and “TC results” will be hereinafter referred to this correlation 

(additional clarification is provided in section 2.3). 

An assessment of the reliability of subsequent TC results is conducted by direct comparison with the analogous evaluation 

results obtained via direct comparisons with the Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Global 

30 Daily Precipitation (hereafter as CPC) product. These assessments will be carried out with and without the use of SM2RAIN 

rainfall accumulation products to isolate the value of SM-based rainfall estimates for the evaluation of global rainfall products. 

Note that, given the number of common sensors shared by CMORPH and TMPA 3B42RT the application of TC to the triplet 
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containing both products will serve will serve to demonstrate the difficulties with using both of them in the same triplet within 

the TC analysis and evaluate the potential benefits of utilizing SM2RAIN-based accumulation products in a TC analysis. 
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The paper is organized as follows. Section 2 contains data and method descriptionsmethods; in particular, the products used 

for the analysis are described in section 2.1; the theoretical background for TC is in sections 2.2 and 2.2.1; the description 

of the 

30 performance scores used for the evaluation of the results is discussed in section 2.3, and sections 2.4 and 2.5 describe 

SM2AINSM2RAIN and the experiment setup. Results are presented and discussed in Section 3 contains the results and 

discussion, and final remarks are containedpresented in sectionSection 4. 



8  

 
2 5    2   Data and Methods 

 
2.1 Rainfall and soil moisture products 

 
2.1.1 CPC 

 
The 0.5◦x0.5◦ gauge-based CPC product is used to evaluate the satellite-based rainfall estimates over CONUS and verify 
5 evaluations provided by TC. Given the high raingauge density associated with this product across CONUS (Figure 1),1), 
along 

10 with the common practice of using ground-based rainfall data to validate satellite-based rainfall retrievals (Huffman et al., 

1997), CPC is expected to provide a reasonable proxy of true rainfall accumulation over CONUS. ThisNevertheless, this 

assumption will be verified below. Figure 11 illustrates that the spatial density of CPC gauge coverage (calculated as average 

number of rain gauge observations per day) during 2007-2012 is high in Eastern CONUS and along the western coast of 

CONUS but relatively 

10  relatively lower in many parts of the Central CONUS. CPC rainfall observations are aggregated to a 1◦x1◦ spatial 
resolution by simple 

15   by simple averaging. 
 

2.1.2 ASCAT data 
 

a ASCAT (Bartalis et al., 2007) is a real-aperture radar instrument on boardonboard the MetOp satellites thatwhich measures 

radar backscatter at C-band (5.255 GHz) and VV polarization. It has a spatial resolution of 25 km (resampled at 12.5 km),) 

and it is available since 

15 2007. The surface SM product (equivalent to a depth of 2-–3 cm of the soil) is calculated from the backscatter measurements 

20 through the time-series-based change detection approach described in Wagner et al.Wagner et al. (1999).(1999). The SM is 

measured in relative terms (degree of saturation) with respect to historical minimum and maximum values. Here, we used 

the ASCAT dataset produced using the Soil Water Retrieval Package (WARP) (Naeimi et al., 2009) (v5.5) from Vienna 

University of Technology (TU-Wien), providedand distributed as SM product H109 by the "EUMETSAT Satellite Application 

Facility on Support to Operational Hydrology and Water Management (H-SAF)". Prior to the application of SM2RAIN to 

ASCAT data, the points characterized 

20 Hydrology and Water Management (H-SAF)". ASCAT data are used solely for rainfall estimation with SM2RAIN. For further 

details25 by a surface state flag (SSF) of the ASCAT product that indicates frozen (SSF=2), temporary melting/water on the 

surface (SSF=3) or permanent ice (SSF=4) were excluded from the analysis. For further details about the application of 

SM2RAIN to ASCAT, the reader is referred to section 2.4. 
 

2.1.3 TMPA 3B42RT 
 

TMPA 3B42RT, version 7 (http://trmm.gsfc.nasa.gov), combines rainfall estimates from various satellite sensors. The mul- 
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30   tisatellite platform uses the TRMM Microwave Imager (TMI) on board of TRMM satellite, the Special Sensor Microwave 
25 
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Imager (SSM/I) on board the Defense Meteorological Satellite Program (DMSP) satellites, the Advanced Microwave Scan- 

ning Radiometer for Earth observing system (AMSRE) on board the National Aeronautic and Space Administration (NASA) 

AQUA satellite, the Advanced Microwave Sounding Unit-B (AMSU-B) on board the National Oceanic and Atmospheric Ad- 

ministration (NOAA) satellite series and GEO IR rainfall estimates . The TMPA 3B42RT estimates are produced in three steps: 

1) 5  1) the PMW estimates are calibrated with sensor-specific versions of the Goddard Profiling Algorithm (GPROF; 
Kummerow 

30 et al., 1996) and combined, 2) IR rainfall estimates are created using the PMW estimates for calibration, and 3) PMW and 

IR estimates are then combined. The 3B42RT product is provided by NASA with a temporal resolution of 3 h and a spatial 
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resolution of 0.25◦. The cumulated daily rainfall, available from March 2000, is obtained by simply summing the eight 3-h  

time windows for each day. The global coverage of the product is +50◦/-50◦ latitude. To match the CPC spatial resolution, 

10   collocated TMPA 3B42RT estimates are aggregated to 1 ◦ spatial resolution by simple averaging. 
 

2.1.4 CMORPH 
 

5 CMORPH uses a Lagrangian approach to construct high-resolution global precipitation maps from the satellite IR and PMW 

observations (Joyce et al., 2004). This technique uses precipitation estimates that have been derived from PMW observations 

exclusively, and whose features are transported via spatial propagation information which is obtained entirely from IR data. It 

incorporates precipitation estimates derived from the PMW on board the NOAA satellites (SSM/I, the NOAA satellite 

series and AMSU-B) as well as AMSR-E and TMI aboard NASA’s Aqua and TRMM spacecraft, respectively. PrecipitationIt 

1015 incorporates precipitation estimates derived from the PMW on board of the DMSP 13,14 & 15 (SSM/I) and NOAA-15, 16, 17 & 

18 (AMSU-B) satellites as well as AMSR-E and TMI aboard NASA’s Aqua and TRMM spacecraft, respectively. Precipitation 

estimates are obtained as follows. First, advection vectors of cloud and precipitation systems are computed using consecutive 

geostationary IR images in 30 min intervals. These advection vectors are then applied to propagate the precipitating cloud 

systems observed by the PMW measurements along the advection vectors in both forward and backward directions toward the 

20  target time of the precipitation analysis. The final precipitation analysis value at a grid box is defined as the weighted mean 

of the estimates from the forward and backward propagations with the weights inversely proportional to the time separation 

15 between the target analysis time and the PMW observations. In this study, we used the daily (derived from 3-hourly aggregation)  

estimates of precipitation at 0.25 ◦ latitude/longitude resolution, distributed over the globe (+60◦/-60◦ of latitude) by the NOAA  

Center for Weather and Climate Prediction. Note that the CMORPH version used in this study is the raw version which does 

25 not uses gauge information. To match the CPC spatial resolution, collocated CMORPH estimates are aggregated to 1 ◦ spatial 
resolution. 

 
2.1.5 20    2.1.5   ERA-Interim 

 
The European Centre for Median-range Weather Forecasts (ECMWF) produces the ERA-Interim atmospheric, ocean and land 

reanalysis . ERA-Interim provides medium-range global forecasts for some environmental variables that includeincluding soil 

temperature, evaporationevap- 

30   oration, SM and rainfall. Products are available from 1th January 1979 to now. The forecast model incor- poratedincorporated 
in the ERA- 
Interim reanalysis is based on the ECMWF Integrated Forecast System (Cy31r2) forecast model (Dee et al., 

25 et al., 2011), with a spectralspec- tral horizontal resolution of about 80 km and 60 vertical levels. The ERA-Interim forecast 

precipita- tionprecipitation is the sum of two componentscom- ponents which are computed separately in the model: large-

scale stratiform precipitation (Tomp- kins et al., 2007) and smaller (Tompkins et al., 2007) and smaller 
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scale precipitation which originates solely from the parameterization of convection (Bechtold et al., et al., 2004). Further information 

can be found at the ECMWF website (http://www.ecmwf.int). In this study, daily precip- itationprecipitation values are 

obtained from the temporal aggregation of ERA-Interim 12-hourly precipitation accumulation estimates 

30   (http://apps.ecmwf.int/datasets/) while co-location with CPC observations is determined by the nearest-neighbour method. 

Note that, we considered only liquid precip- 

http://apps.ecmwf.int/datasets/)
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5 itation in the analysis. Solid precipitation were excluded by masking out periods experiencing snowfall (using the “large-scale 

snowfall” variable of ERA-Interim). 
 

2.2   Triple Collocation analysis: general concepts 
 

Here we apply the method of (McColl et al., 2014) to robustly estimate the correlation of a particular rainfall measurement 

system with the truth. Suppose we have three systems Xi, measuring the true variable t and afflicted by additive random error 

Xi = Xl + εi = αi + βit + εi (1) 
 

10 where Xi (i =1, 2, 3) are collocated measurement systems linearly related to the true underlying value t with additive 
random 

5 errors εi, and αi and βi are the ordinary least squares intercepts and slopes. Assuming that the errors from each system have 
zero mean (E(εi)=0) and), are mutually uncorrelated (Cov(εi, εj ) =0, with i /= j) and orthogonal with respect to t (Cov(εi, 

t)=0), the covariance between Xi is: 

 
2
 

 βiβjσt , for i /= 
j 
Qij = Cov(Xi, Xj ) = 

 

 
(2) 

 β2   2 2 
i σt + σεi , for i = j 

By defining the new variable θi = βiσt, known as the sensitivity of the variable Xi, Eq. (2) becomes: 
 

 θiθj, i /= j 
Qij = 

 θ2
 

i 

 
15   which is a system of six equations in six unknowns from which we derive (McColl et al., 2014): 

 
 
 
 
 

(3) 

 /
Q11 − Q12 Q13  


 

σε = 
 /

Q  
 / 

33  

Q12 Q23   


 −   Q13 


  

(4) 

/
Q33 

− Q12 

Q23   


 
−  Q12 

 

(4) 

 

10 From Eq. (2), using the definition of the correlation and covariance we can write: 
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θi = ρt,Xi 

j
Qii (5) 
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where ρt,Xi  is the correlation coefficient between t and Xi. Since 
for θi using Eq. (4), ρt,Xi (McColl et al., 2014): 

   
Qii is already estimated from the data, and we can solve 
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which provides the temporal correlation of each product with the unknown truth. Hereinafter, when talking about ρt,Xi or its 
2 

squared value ρt,Xi , we will refer to the correlation of the product Xi with the unknown truth. ρ will be also used to refer to 

155   this variable but in more general terms. 
2.2.1   Some considerations about the application of the Triple Collocation to rainfall estimates 

 
 

2.2.1   Rainfall error model 
 

It is generally accepted that a multiplicative model is more appropriate for describing errors in rainfall estimates (Hossain and 

Anagnostou, 2006).; Tian et al., 2013). Based on this assumption, (Alemohammad et al.,. 2015)(2015) proposed the application 

of TC to the rainfall by introducing a multiplicative error model: 
 

5 10   Ri = aiTβi eεi (7) 
 

in which R is the rainfall intensity estimate from product i, T is the true rainfall intensity and ai is thea multiplicative 
error. By transforming Eq. (7) in the log-space we obtain an equation equivalent to Eq. (1) where X = log(R), t = log(T 

) and αi = log(ai). In this way, the development of TC expressed in Eqs. 2–6, can be applied to the - potentially more 
relevant - 
case of multiplicative rainfall accumulation errors. The resulting log-RMSE can then be back-transformed into linear rainfall 

10  15 accumulation errors by exploiting a Taylor series expansion of the logarithm operator(see Alemohammad et al., 2015 for further 

details).  

The main difficulty of this approach is its inability to consider the presence of zero values in the rainfall time series. To reduce 

their presence, Alemohammad et al. (2015) considered biweekly rainfall estimates and simply removed remaining zeros in this 

time series. This has two implications. First, the biweekly rainfall error may differ from the error of a shorter accumulation 

20 period (e.g. daily) because the daily signal has a substantially different character with respect to the biweekly one due to the 

15   higher presence of zero values. Second, the method may not be appropriate in very dry climates where even biweekly values 

of rainfall can contain a significant number of zero accumulation values. 

For the reasons mentioned above, we apply TC in two different ways: i) to the rainfall time series using an additive error 

model, and ii) to log-transformed rainfall estimates using the multiplicative error model (by first removing rainfall accumulation 

√ 

) 12 

√ 
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25 values equal to zero). Comparisons of these two different approaches will provide insights regarding the appropriateness of 

various error model assumptions for rainfall estimates at a daily accumulation time scale. 

20   various error model assumptions for rainfall estimates at a daily accumulation time scale. 
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ε 
ε 

2.3 Performance scores 
 

In section 2.2, it has been demonstrated that TC can provide both error variances and correlation against an unknown truth 

for three collocated estimates of the same variable. When dealing with error variances, the products have to be rescaled to 

a common reference data space. However, such a rescaling imposes spatial patterns within the derived error metric which 

255 reflects the climatology of the chosen reference (Gruber et al., 2016). To this end, McColl et al. (2014) noted that correlation 

coefficients can provide important new information about the performance of the measurement systems with respect to the 

absolute error variances obtained via Eq. (4) with the added advantage of not requiring the arbitrary definition of one system as 

 a scaling reference. Indeed, ρ2 represents the unbiased signal to noise ratio, scaled between 0 and 1, which provides a measure 
 of the relative similarity between two signals, independently from their phase differences. This was also underlined by Gruber 

30 10   et al. (2016), who showed that ρ2  is the complement of the f RMSE = σ2/σ2  introduced by (Draper et al., 2013) (ρ2 

=  

1 −f RMSE) which was used previously to remove the dependency of the error variance pattern on the spatial climatology of  

the chosen reference. Gruber et al. (2016) also pointed out that the absolute error variance provides only limited information 
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 about the true dataset quality because a certain amount of noise can be either acceptable or unacceptable depending on the 

strength of the underlying signal (i.e., its variance). Therefore, we focus here only on ρ2, or analogously, on its root square ρ, 
15    i.e., Eq. (6). 

As discussed above, a key goal is determining the relative accuracy of TC correlations obtained with and without the use 

5 of SM2RAIN-based rainfall accumulation products. Assuming that RXi (or simply R) is the Pearson correlation 

coefficient between the product Xi and CPC, the main question is: how accurately can (TC-based) ρt,Xi , which utilize no 

ground obser- vations, reproduce spatial patterns ofin (CPC-based) RXi ? We should expect a bias between the two (i.e., RXi 

≤ ρt,Xi ) because 
20 – while relatively accurate – CPC estimates still containscontain representativeness errors (due to limitations in raingauge 

density) and mea- surementmeasurement errors due to wind and instrument inaccuracies, in. In contrast, Eq.(6) provides the 

correlations with an error-free truth. 

10 Nevertheless, if the TC hypothesis holds, the relative rank between the products predicted by TC should accurately reflect that 

obtained via direct comparisons with ground observations. 

In order to evaluate the similarity between correlation-based maps of ρt,Xi   and RXi   a spatial correlation index SC was 
25 calculated as the spatial Pearson correlation coefficient between maps of RXi and ρt,Xi . The closer SC is to one, the 

more spatially similar the two maps are and the more satisfied the assumptions of TC. In addition, based on the values of ρt,Xi  

and RXi , we 

15 are able to sort the products according to their relative performance for each pixel in the analysis. That is, considering three 
products Xi, the rank value RKi to be assigned to each product i will be 1 if ρt,Xi is the highest, 3 if it is the lowest and 2 if it 
is comprised between the minimum and the maximum value.neither. If the same is done with RXi , the consistency of the 
resulting rank maps for each product provide feedback 
maps for each product will provide feedback30 regarding the validity of assumptions underlying the application of TC. For 
the 
 quantification of the discrete maps, we also calculate the number of pixel providing equalequivalent relative sorting of the 
products obtained 

20   based on RXi  andversus ρt,Xi . 
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2.4 SM2RAIN and its application to ASCAT data 
 

SM2RAIN (Brocca et al., 2014) is a method of rainfall estimation which uses two successive SM retrievals (i.e., at the current 

and at a past time step) to estimate the rainfall accumulated within the time interval between the two retrievals. It exploits the 

soil water balance equation with appropriate simplifications valid only for liquid precipitation (Tian et al.,(Tian et al., 2014): 

Z∗ds(τ )/dτ = p(τ ) − r(τ ) − e(τ ) − g(τ ) (8) 
25 

5   where Z∗ is the soil water capacity (soil depth times soil porosity); s(τ ) is the relative saturation of the soil or relative SM; τ 

is the time and p(τ ), r(τ ), e(τ ) and g(τ ) are the rainfall, surface runoff, evapotranspiration and drainage rates, respectively. 
Under unsaturated soil conditions, and assuming negligible evapotranspiration rate during rainfall and Dunnian runoff, solving  

Eq. (8) for rainfall yields: 
 

p(τ ) = Z∗ds(τ )/dτ + as(τ )b (9) 

Note that in Eq. (9) the drainage rate has been expressed with a power law function of the type g = asb (Famiglietti and 
3010 Wood, 1994), where a and b two model parameters. When the soil is fully saturated, no rainfall can be estimated from SM; 

however, at the scale of satellite pixel, the soil is rarely saturated (except in some exceptional places like tropical forests). 
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The SM2RAIN parameters a, b and Z∗ can be estimated either by using a rainfall dataset as a reference or assigned based  

on soil properties. In this study, in order to maximize the independence of SM2RAIN predictions, SM2RAIN parameters were 

not calibrated and were instead assumed constant in space as in Koster et al. (2016). In particular, the drainage rate (the second 

15   term in Eq. (9)) was assumed linearly related with SM (b = 1) and a = 3.7 mm/day and Z∗ = 62 mm based on results obtained 
5 in previous studies (Brocca et al., 2014). Note that, Z∗ does not have a significant influence on the results because we 
are using a correlation based metric. In addition, it should be noted that, while maximizing the independence of SM2RAIN 

rainfall accumulation estimates, the use of this default calibration approach results in sub-optimal SM2RAIN performance. 
Superior SM2RAIN can easily be obtainable via calibration against existing satellite rainfall accumulation products. 

20       Daily rainfall estimates from SM2RAIN were obtained by using linearly-interpolated (at at 00:00 UTC) ASCAT 
data with 

10 a maximum allowable data gap of 5 days. The obtained 0.25 ◦x0.25 ◦ rainfall estimates were then aggregated to the 1 ◦x1◦ 

spatial resolution bythrough simple averaging of the collocated pixels with CPC. Finally, 1 ◦x1◦ grid cells were masked if more 
than 50% of their sub-grid areas consisted of ASCAT observations characterized by a SSF equal to 2, 3 or 4. Hereinafter, the 
thus obtained product is referred to as SM2RAIN for simplicity. 

thus obtained product is referred to as SM2RAIN for simplicity. 
 

 
2.5 25    2.5   Experimental setup 

 
A TC analysis was carried out using five different daily rainfall accumulation triplets: 1) ERA-Interim-SM2RAIN-3B42RT 
15 (Triplet A in the following) 2) ERA-Interim-SM2RAIN-CMORPH (Triplet B) 3) ERA-Interim-3B42RT-CMORPH 

(Triplet C), 4) ERA-Interim-3B42RT-CPC (Triplet D) and 5) ERA-Interim-CMORPH-CPC (Triplet E). Triplets A and B 

serveare used to assess the ability of SM2RAIN to provide meaningful TC results. Triplet C provides an alternative to triplets 

A and B which  
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contains two rainfall satellite products (with potentially cross-correlated errors). Triplets D and E serve only to evaluate the general 

performance of the CPC product (within CONUS) and to provide alternative triplets to A and B which do have utilize 

20use SM2RAIN. As a result, they will only be used for initial considerations about TC robustness and to evaluate the relative 

quality of the CPC product. Triplets A, B and C will be then used in the reminder of the paper to demonstrate the potential utility 

of SM2RAIN. 

5   The analysis was carried out first across CONUS and then on a global scale using only ERA-Interim, 3B42RT, CMORPH and 

SM2RAIN during the period 2007-2012-2015. Over CONUS it was confirmed that the available sample size to apply TC was 

sufficient (about 

25 within500) over the entire study domain (Gruber et al., 2016) while for the global analysis, grid cells with inadequate 

sample size were individually masked out of the analysis. The Extended TC analysis was applied for both additive and 

multiplicative error model assumptions. For the latter, we first removed zeros (they aredays with zero rainfall constituting about 

80% of the rainfalldaily values that means aboutand leaving 

10 approximately 450 non-zero daily values of non null rainfall) values from the signalin the 2007-2012 time series and then 

applied a log-transformation to the remaining daily rainfall estimates. This reduction in sample size may affect TC results 

by making the analysis with log-precipitation estimates statistically less robust. 

 

30    3   Results and discussion 
 

In this section, we present the results obtained from the application of TC (for both additive and multiplicative error models) 
15 by following the subsequent methodological steps: 1) calculating TC based correlations (ρt,Xi ) for Triplets A, B, C, D 

and 
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 E over CONUS and providing an assessment of the CPC product (section 3.1); 2) understanding the adequacy of TC results 
based on the spatial similarity between (TC-based) ρt,Xi and (CPC-based) RXi (along with their relative rank) over CONUS 

in order to identify the optimal configuration for applying TC, and, 3) applying the optimal-configured TC on a global scale to 

 calculate ρt,Xi globally for the selected rainfall products (section 3.3). 
 

520    3.1   Assessment of the CPC accuracyproduct 
 

As described above, our first goal is assessingto assess the relative performance of the CPC product. Table 11 shows mean ρt,Xi 

(obtained via the spatial average of 0.25-degree CONUS grid-cells). Regardless of the triplet or error model applied, the TC 
analysis summarized in Table 11 indicates that CPC is the most accurate product (mean TC-based correlation close to 0.9 for 
the additive 

error model and close to 0.8 for the multiplicative one) which strengthens our assumption that within CONUS, CPC can be 

1025 used as a benchmark to evaluate the optimal TC configuration for rainfall product evaluation. In addition, its correlation spatial 

pattern (not shown) provides very good performance almost everywhere except in the Central US where the spatial density 

of available rain gauges shown in Figure 11 is relatively lower. Based on this, in the next section we will consider the CPC 

product as an appropriate benchmark for the selection of an optimal TC configuration which does not utilize a gauge-based 

precipitation product (and is therefore potentially applicable at a global scale). 
 
15   3.2   
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3.2 Optimal Triple Collocation configuration 
 

Figures 22 (a, b, c and d) plot CPC-based Pearson correlation coefficients (i.e., RXi ) for ERA-Interim, 3B42RT, CMORPH and 

SM2RAIN obtained with the assumption of additive error model (for multiplicative error model results the reader is referred 
to Figure A1A1 of the supplementary material). A comparison of these results with TC-based correlations (i.e., ρt,Xi ) shows 

that 
5  ρt,Xi aeare biased high with respect to RXi . This is expected given that CPC is not free of errors whereas TC should theoretically 

20   providesprovide the correlation with respect to thean error-free truth. 

The spatial agreement between ρt,Xi and RXi is examined in Table 22 and Figure 2.2. In particular, Figure 22 shows that 

Triplets A (e, f, g in the figure) and B (h, i, l) accurately reproduce CPC-based results plotted in Figure 22 (a, b, c and d), 
although they are characterized by higher values as underlined above (see section 2.3 for further details). This similarity is 
higher in Eastern 

10 and Western US and lower in the Central US especially for ERA-Interim and SM2RAIN. This lower agreement in the 

Central 
25  US is likely due to the lower rain gauge density of CPC here (see Figure 1)1) which degrades the quality of the CPC product 

as benchmark. However, in contrast, TC-results based on Triplet C predicts a substantial different behaviour with correlation 

patterns which differ substantially relative to CPC-based benchmark results in Figure 22 (a, b, c and d). This suggests those 

triplets not containing SM2RAIN (or CPC) provide unreliable results. In particular, the simultaneous use of two satellite-based 

rainfall products in Triplet C leads to an overly-optimistic assessment of their accuracy. This is likely due to cross-correlated 

errors 

3015 rainfall products in Triplet C leads to an overly-optimistic assessment of their performance. This is likely due to cross-correlated 

errors in 3B42RT and CMORPH rainfall accumulation products which causes TC to misinterpret their mutually-consistency 

as an indication of high-accuracy (Yilmaz and Crow,(Yilmaz and Crow, 2014). 

It is often important to understand which is the best available rainfall product provides the highest relative accuracyamong 

those available in a specific location. As described in section 2.3, we ranked the products based upon how well they compare 

relative to each other using both R and ρ, respectively. 
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ρ, respectively.20 Figure 33 shows the distribution – three products at time (d, e, f; k, l, m; r, s, t) – of the relative rank based on 
comparisons with the (CPC-based) RXi of each triplet, while subplots (a, b, c; g, h, i; n, o, p) of the same figure, provide 

similar information except that the relative rank is based on TC (i.e., ρ). The latter shows a very similar pattern with respect 
to CPC-based rank 

to CPC-based rank for Triplets A and B; however, Triplet C yields again a distinct pattern with ERA-Interim being the worst 
5 product and 3B42RT and CMORPH providing complementary performances. As in the comparisons discussed in Figure 2,2, 

this implies that triplets 

25 containing SM2RAIN (i.e., Triplets A and B) provide more robust evaluation information than triplets utilizing both 3B42RT 

and CMORPH together. 

The same analysis carried out with the assumption of multiplicative error model (see Figure A2A2 in the 

supplementary material),) shows similar findings but larger differences between the spatial distribution of the rank obtained 

with CPC and the 

10 one with TC, especially for Triplet B. To quantity this agreement, we have calculated the percentage of pixels which are 

ranked 

30 the same in both TC- band CPC-results. (% of rank identified in Table 2).2). The table confirms the patterns observed in Figure 

33 and Figure A2A2 of the supplementary material with Triplets A and B yielding the highest percentage of pixels with a 

common 

 rank – ranging from 65 to 81 % for the additive error model, and 48 to 71 % for the multiplicative error model. As discussed 

above, worstinferior results are obtained in both cases for Triplet C (percentage of correct ranking between 5% and 60%). 
15 
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A quantification of the agreement between the spatial variations of the correlations both for additive and multiplicative error 

models was also derived by the use of the spatial correlation SC in Table 2.2. The table shows that for Triplets A and B, when 

TC is used with the assumption of additive error model, SC is relatively high with values ranging from 0.61 to 0.84 while for 

Triplet C provides substantially lower SC for 3B42RT and CMORPH. A slightly different situation can be observed for the 

multiplicative error model. Here, SC values are generally lower than those obtained by TC with the assumption of additive 

20   error model.5 multiplicative error model. Here, SC values are generally lower than those obtained by TC (based on an assumed 
additive error model) likely due to necessity of removing zero rain days which modifies the original precipitation time series and 
reduces the sample size of TC calculations. In particular, ERA-Interim provides the worst score. This is not clearly evident in the 
spatial distribution of R and 
 ρ (see Figure A1A1 in the supplementary material for further details) which show some similarities at least for Triplets A and B. 

In summary, the application of TC to the different triplets shows that: 

10 In summary, the application of TC to the different triplets shows that: 
 

1. CPC product performs relatively well over CONUS with a TC-derived correlation versus truth of 0.9 (assuming an 

additive error model) demonstrating its relatively high quality here and supporting its application as a benchmark data 

set within CONUS. 

25 set within CONUS. 
 

2. TC-based correlations are similar among the triplets except for Triplet C (i.e, ERA-Interim, 3B42RT and CMORPH).  

2. 15 This is likely due to existence of non-negligible cross-correlated errors between 3B42RT and CMORPH. 
 

3. A comparison between ρt,Xi and RXi shows that ρt,Xi are biased with higher valueshigh with respect to RXi . In 
addition, the pattern of ρt,Xi and RXi is similar for all triplets except for Triplet C, which shows inconsistencies relative 
to the CPC 

3. 30  benchmark for both the additive and multiplicative error model assumptions. The agreement, measured in term of 
spatial correlation  

(Table 2),2), provides higher scores for thean additive error model assumptions with respectassumption relative to thea 
multiplicative one. This is likely due  

20 to a reduction of sampling power associated with the removal of daily rainfall accumulations equal to zero which are not 

acceptable in the log-transformation process. Therefore, it is possible that the observed differences in TC performance 

may shrink for larger sample sizes. 
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4. Retrieved spatial patterns of ρt,Xi  for the triplets containing SM2RAIN (Figure 2)2) showsshow a higher degree of 
similarity with (CPC-based) RXi  when we assume an additive (versus multiplicative) error model for daily rainfall 
accumulations. 

25  On this basis, we can conclude that: i) TC results are unreliable unless SM2RAIN is used in the triplets and ii) the assumption 

of multiplicative error model in the application of TC at a daily time scale does not appear necessary. 
 

3.3 5   3.3   Application of optimized TC approach 
 

Based on the superior performance for Triplets A and B under the assumption of additive error model, we will apply this 

particular TC configuration approach to assess the accuracyperformance (in terms of ρ) of daily rainfall accumulation estimates 

derived 

30   from 3B42RT, CMORPH, SM2RAIN and ERA-Interim first over CONUS (section 3.3.1 and Figure 2)2) and then on a 

global scale (section 3.3.2 and Figure 4). 
 

10    3.3.1   
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3.3.1 CONUS 
 

Over CONUS, ERA-Interim shows relatively better performance in Western and Eastern United States (US) with respect to 

the Central US where SM2RAIN is slightly superior. 3B42RT and CMORPH perform reasonably well in Eastern and along 

the coastWest Coast of Westernthe US while showdemonstrating worse performance in the Central US both in the south and 

in the north.. On the contrary, SM2RAIN performs 

5 worse in Northern US probably due to the lower accuracy of the ASCAT data at high latitudes. The spatial 

15 pattern of these correlations is similar to the onethose found in Gottschalck et al. (2005) and Ebert et al. (2007) who showed a 

general lower level of correlation of satellite-only rainfall products in the Central US due to effectthe effects of snow cover and 

frozen surface conditions. They are also similar to the This corroborates results obtained bypresented in Alemohammad et al. 

(2015) using TC, who found a similar pattern of correlation of 3B42RT in a box covering a large part of southeastern US 

(however, the authors here assumed a multiplicative error model and biweekly rainfall accumulation estimates). 
 

20    3.3.2   10   biweekly rainfall accumulation estimates). 
 

3.3.2 Global 
 

On a global scale, 3B42RT (Figure 4a)4a) shows relatively good performances in Eastern and Central South America, Southern 

and Central Africa, Southern and Eastern Asia, Eastern Australia, and Southern Europe while it performs relatively worse in 

Central Asia, Western Australia and in the southern part of the Sahel. The performance of CMORPH (Figure 4b)4b) is similar 

15 to 3B42RT with slightly lower correlations in Australia, in the Horn of Africa and in Southern Asia. SM2RAIN (Figure 

4c) 

254c) performs reasonably well in Africa (except in the tropical forest), Australia, Mexico, Eastern South America and India and 

generally in the southern hemisphere while worse results are obtained in the northern hemisphere, in the tropical forests and at 

high latitudes. On the contrary, ERA-Interim (Figure 4d)4d) provides much better results in the northern hemisphere with respect 

to the south of the planet (e.g., South America and South Africa) and performs relatively poor in Central and Northern Africa 

as well as in the tropical forests. 

30 20    as well as in the tropical forests. 

The results for 3B42RT and SM2RAIN are similar to those obtained in Brocca et al. (2014) who calculated the Pearson 

cor- relationcorrelation coefficient with the Global Precipitation Climatology Center (GPCC, (Schamm et al., 2014)) dataset. 

Similar findingsSimilar find- ings are also presented in Yong et al. (2015) (Table 2 of their study) who compared different 

versions of the 3B42RT product against global CPC observations in the US, East Asia, Europe and Australia. In their study, 

the best results were obtained in 
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are also present in Yong et al. (2015) (Table 2 of their paper) who compared different versions of the 3B42RT product against 

global CPC observations in US, East Asia, Europe and Australia. In their paper, the best results were obtained in25  Australia 

and in East Asia (Europe showed slightly lower performance) while lower performances were obtained in US like in our 

analysis. Further comparisons can be also considered with the recent work of Beck et al. (2017) who, in attempting to create 

a high- 

5 quality rainfall product specifically tailored for hydrological modelling, compared different satellite and modelledmod- elled 

products globally with the Global Historical Climatology Network-Daily (GHCN-D, Menne et al., 2012) database. Their results 

(in terms of spatial pattern of correlation) are consistent with the onesthose obtained in our study over the US, East Asia and 

30 Middle East for CMORPH and 3B42RT, while less agreement is observed in Australia. For ERA-Interim, the results agree 

with our study in US, Europe and generally are better in the northern hemisphere, whereas they show some differences with 

SM2RAIN 

10   results in Australia, Africa and in South America, although in these areas a low number of available rain gauges cannot provide 

a clear picture of the real performance of the analysed products. Substantial differences between our study and  
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the studies of  Beck et al. (2017) and Yong et al.Yong et al. (2015)(2015) can likely be attributed to the quality of the benchmark 

dataset used for the evalua- tionsevaluations. This is the main limitation of rainfall validation studies relying upon ground based 

observations for assessment. With theour proposed TC-based approach, this issue can be overcome because ground observations 

are no longer required. 

15 An interesting feature of the global evaluation of the products (Figures 4a4a and 4b,4b, 4c4c and 4d),4d), but also over 
CONUS between 

5 3B42RT (or CMORPH) and SM2RAIN (Figure 22 triplets A and B), is the complementary nature of the performance among 

the products. Especially for Figures 4c4c and 4d,4d, it can be seen that ERA-Interim performs very well in the northern 

hemisphere and worse in the southern hemisphere whereas SM2RAIN is relatively good in the south and worse in the northern 

hemisphere. Similar findings can be seen between the two state-of-the art satellite rainfall products (i.e., 3B42RT and 

CMORPH) and 

20 SM2RAIN over CONUS with the first performing better in Eastern US and the second in the Central and Western US. This 

opens up new possibilities 

10 for the integration of themultiple products for obtainingto obtain a higher-quality merged rainfall estimate – as also 

underlinedoutlined in Ciabatta et al. (2015) and in Beck et al. (2017). 

 

4   Summary and conclusions 
 

The assessment of the performance of satellite rainfall products on a global scale is challenging due to significant limitations 
25 in the spatial coverage of high-quality, ground-based rain gauge observations. Provided that its underlying assumption 

are 

15 respected (see section 2.2), TC provides an alternative approach for evaluating global rainfall products without reliance on 

ground-based observations. Here, we describe how a new method for rainfall estimation based on SM observations (i.e., 

SM2RAIN) provides a rainfall product that is uniquely suited to satisfy the error independent assumptions at the heart of the 

TC approach. 

30  The extended version of TC introduced by McColl et al. (2014) is ablewas applied to provide the correlation with the 
(unknown 

20 error-free) truth for each of the products applied within a particular triplet. To assess the robustness of correlated-based results 

obtained with TC, we used an area characterized by a high quality rainfall product (CPC dataset over CONUS, see Figure 

1)  

with the assumption that it represents a good proxy of the true rainfall field. Therefore, if TC assumptions hold, Pearson correlation 

coefficients 
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1)  computed against CPC should match those of TC – at least in terms of their relative values. Since we have two different 

error model options (i.e., additive and multiplicative) for the application of TC to rainfall data, we explored both. 

25    both. 
Results demonstrate that daily rainfall accumulations provided by the CPC product are indeed relatively high quality com- 

pared to competing products (Table 1),1), thus supporting the assumption that it provides an acceptable proxy of the true 

rainfall 

5   field. Once it is established as a credible benchmark, CPC is used to evaluate 1) what type of triplets can be considered 

for a robust application of TC?, and 2) which model error assumption can be considered more appropriate? Triplets containing 

30 SM2RAIN and assuming an additive error model (Table 2)2) appear to provide the most robust TC results. Based on this, an opti- 

mal TC configuration was applied (for the first time) to globally evaluate daily rainfall accumulation derived from the 3B42RT 

and CMORPH, ERA-Interim and SM2RAIN products (Figures 4a4a and 4b,4b, 4c4c and 4d)4d) without the use of any ground-

based data. Results demonstrate the relatively high performance of daily rainfall accumulations derived from the satellite rainfall 

products 

10 data. Results convey the relatively high accuracy of daily rainfall accumulations derived from the satellite rainfall 

products 
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(i.e., 3B42RT and CMORPH) in Eastern North and South America, South Africa, Southern and Eastern Asia, Eastern Australia 

as well as Southern Europe and complementary performances between ERA-Interim and SM2RAIN, with the first performing 

reasonably well in the northern hemisphere and the second providing very good performance in the southern hemisphere. 

Based on the results obtained, we can therefore conclude that: 
 

155     1. Despite the abundance of satellite rainfall estimates, their relative dependency impedes their use within the same triplet 

for the TC analysis, thus alternative independent products must be used for obtaining meaningful TC results. In particular, 

the use of two remotely-sensed rainfall products in a single triplet entails significant risk of a biased TC analysis. 

2. Wholly independent daily rainfall accumulation products obtained from SM2RAIN are uniquely valuable for obtaining 

robust global evaluation statistics in absence of ground-based gauge observations. This is not only important for simple 

2010 validation purposes but also for hydrological studies and applications within developing countries where ground-based 

rain gauge networks are often limited or even totally absent and an alternative product has to be chosen. 

3. At the time/space scales examined here, the assumption of additive error model provides reasonable and robust results 

and no advantage is observed for a log-transformation of the time series (which allows for the consideration of a multi- 

plicative error model). However, this result is likely to be scale-dependent and implies at the time/scale resolution of this 

2515 analysis is sufficiently coarse such that averaging produces approximate additive/gaussian distributions (via the central 

limit theorem). Therefore, different results may be obtained at finer time/scales. 

4. Both state-of-the art satellite rainfall estimates (i.e., 3B42RT and CMORPH) and SM-based rainfall estimates (i.e., 

SM2RAIN) performances are affected by the presence of snow cover and frozen soil conditions – thus these rainfall 

estimates may be unreliable at high latitudes and in mountainous regions. In these areas, a reanalysis product (i.e., 

3020 ERA30 Interim) provides higher-quality rainfall estimates and should be considered in place of satellite-based estimates. 

SM-based rainfall estimates also work reasonably well in semi-arid climates (e.g., Sahel, Central Australia and Mexico) 

where the state-of-the-art satellite products report problems due to sub-cloud evaporation of hydrometeors (Ebert et al., 

2007). Conversely, in wet climates (e.g, tropical forests) 3B42RT and CMORPH seem to be the only reliable option 

given that neither SM2RAIN nor ERA-Interim provide reasonable results. 
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5. 25 5. Given the existence of complementary performances among the products, TC can potentially be a valuable tool 

for the characterization of their relative performances so as to be used for data fusion and assimilation experiments for 

obtaining more accurate rainfall estimates. 

The question whether this analysis is valid for different spatio-temporal scales remain to be addressed and will be addressed 

5 in future studies. Also, removing zeros for obtaining log-transformed rainfall may not be ideal for testing the validity of 

the 

30   model error assumptions becausesince it shortens the sample size, thus providing less robust TC results. Other strategies 

should be considered. 

 
 



33  

Acknowledgements. This Research was supported by the Short Term Mobility Program of the National Research Council of Italy and by the 

United States Department of Agriculture (USDA) and the NASA Terrestrial Hydrology Program award 13-THP13-0022 entitled "Integrating 

10 Satellite-based Surface Soil Moisture and Rainfall Accumulation Products for Improved Hydrologic Modeling". The first author wants to 

be grateful to Dr. Thomas Holmes and Dr. Concha Arroyo for their support and kindness during his period at the USDA-ARS Hydrology 

and 

5   Remote Sensing Laboratory (HRSL) in Beltsville (MD). We also would like to thank Dr. Luca Ciabbatta for processing part of the data used 

in the manuscript. 



34  

References 
 

Adler, R. F., Wang, J.-j., Gu, G., and Huffman, G. J.: A Ten-Year Tropical Rainfall Climatology Based on a Composite of TRMM Products, 

Journal of the Meteorological Society of Japan. Ser. II, 87, 281–293, doi:http://doi.org/10.2151/jmsj.87A.281, 2009. 

Alemohammad, S. H., McColl, K. A., Konings, A. G., Entekhabi, D., and Stoffelen, A.: Characterization of precipitation product errors 

5 across the United States using multiplicative triple collocation, Hydrology and Earth System Sciences, 19, 3489–3503, doi:10.5194/hess-  19-

3489-2015, http://www.hydrol-earth-syst-sci.net/19/3489/2015/, 2015. 

Bartalis, Z., Wagner, W., Naeimi, V., Hasenauer, S., Scipal, K., Bonekamp, H., Figa, J., and Anderson, C.: Initial soil moisture retrievals 

from the METOP-A Advanced Scatterometer (ASCAT), Geophysical Research Letters, 34, L20 401, doi:10.1029/2007GL031088, http: 

//doi.wiley.com/10.1029/2007GL031088,    2007. 

10 Bechtold, P., Chaboureau, J.-P., Beljaars, A., Betts, A., Köhler, M., Miller, M., and Redelsperger, J.-L.: The simulation of the diurnal cy- cle 

of convective precipitation over land in a global model, Quarterly Journal of the Royal Meteorological Society, 130, 3119–3137, 

doi:10.1256/qj.03.103, http://doi.wiley.com/10.1256/qj.03.103, 2004. 

Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and de Roo, A.: MSWEP: 3-hourly 0.25 ◦ global 

gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data, Hydrology and Earth System Sciences Discussions, 

15 21, 589–615, doi:10.5194/hess-2016-236, http://www.hydrol-earth-syst-sci-discuss.net/hess-2016-236/, 2017. 

Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., Kidd, R., Dorigo, W., Wagner, W., and Levizzani, 

V.: Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data, Journal of Geophysical Research: At- 

mospheres, 119, 5128–5141, doi:10.1002/2014JD021489, http://dx.doi.org/10.1002/2014JD021489http://onlinelibrary.wiley.com/doi/10. 

1002/2014JD021489/full, 2014. 

20 Ciabatta, L., Brocca, L., Massari, C., Moramarco, T., Puca, S., Rinollo, A., Gabellani, S., and Wagner, W.: Integration of Satellite Soil 

Moisture and Rainfall Observations over the Italian Territory, Journal of Hydrometeorology, 16, 1341–1355, doi:10.1175/JHM-D-14-  

0108.1, http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-14-0108.1, 2015. 

Crow, W. T. and Van Den Berg, M. J.: An improved approach for estimating observation and model error parameters in soil moisture data 

assimilation, Water Resources Research, 46, 1–12, doi:10.1029/2010WR009402, 2010. 

25   Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, 

P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haim- 

berger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, 

B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: 

configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137, 553–597, 

30 doi:10.1002/qj.828, http://dx.doi.org/10.1002/qj.828, 2011. 

Dorigo, W. a., Scipal, K., Parinussa, R. M., Liu, Y. Y., Wagner, W., de Jeu, R. a. M., and Naeimi, V.: Error characterisation of global active 

and passive microwave soil moisture datasets, Hydrology and Earth System Sciences, 14, 2605–2616, doi:10.5194/hess-14-2605-2010,  

http://www.hydrol-earth-syst-sci.net/14/2605/2010/,    2010. 

Draper, C., Reichle, R., de Jeu, R., Naeimi, V., Parinussa, R., and Wagner, W.: Estimating root mean square errors in remotely sensed soil 

35 moisture over continental scale domains, Remote Sensing of Environment, 137, 288–298, doi:10.1016/j.rse.2013.06.013, http://dx.doi. 

org/10.1016/j.rse.2013.06.013, 2013. 

http://doi.org/10.2151/jmsj.87A.281
http://dx.doi.org/10.5194/hess-19-3489-2015
http://dx.doi.org/10.5194/hess-19-3489-2015
http://dx.doi.org/10.5194/hess-19-3489-2015
http://www.hydrol-earth-syst-sci.net/19/3489/2015/
http://dx.doi.org/10.1029/2007GL031088
http://doi.wiley.com/10.1029/2007GL031088
http://doi.wiley.com/10.1029/2007GL031088
http://dx.doi.org/10.1256/qj.03.103
http://doi.wiley.com/10.1256/qj.03.103
http://dx.doi.org/10.5194/hess-2016-236
http://www.hydrol-earth-syst-sci-discuss.net/hess-2016-236/
http://dx.doi.org/10.1002/2014JD021489
http://onlinelibrary.wiley.com/doi/10
http://dx.doi.org/10.1175/JHM-D-14-0108.1
http://dx.doi.org/10.1175/JHM-D-14-0108.1
http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-14-0108.1
http://dx.doi.org/10.1029/2010WR009402
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.5194/hess-14-2605-2010
http://www.hydrol-earth-syst-sci.net/14/2605/2010/
http://dx.doi.org/10.1016/j.rse.2013.06.013
http://dx.doi.org/10.1016/j.rse.2013.06.013
http://dx.doi.org/10.1016/j.rse.2013.06.013


35  

Ebert, E. E., Janowiak, J. E., and Kidd, C.: Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical 

Models, Bulletin of the American Meteorological Society, 88, 47–64, doi:10.1175/BAMS-88-1-47, http://journals.ametsoc.org/doi/abs/10.   

1175/BAMS-88-1-47, 2007. 

Famiglietti, J. S. and Wood, E. F.: Multiscale modeling of spatially variable water and energy balance processes, Water Resources Research, 

5 30, 3061–3078, doi:10.1029/94WR01498, http://doi.wiley.com/10.1029/94WR01498, 1994. 

Gottschalck, J., Meng, J., Rodell, M., and Houser, P.: Analysis of Multiple Precipitation Products and Preliminary Assessment of Their Impact 

on Global Land Data Assimilation System Land Surface States, Journal of Hydrometeorology, 6, 573–598, doi:10.1175/JHM437.1, 2005. 

Gruber, A., Su, C.-H., Zwieback, S., Crow, W., Dorigo, W., and Wagner, W.: Recent advances in (soil moisture) triple collocation analysis, 

International Journal of Applied Earth Observation and Geoinformation, 45, 200–211, doi:10.1016/j.jag.2015.09.002, http://linkinghub. 

10 elsevier.com/retrieve/pii/S0303243415300258,    2016. 

Hossain, F. and Anagnostou, E. N.: A two-dimensional satellite rainfall error model, IEEE Transactions on Geoscience and Remote Sensing, 

44, 1511–1522, doi:10.1109/TGRS.2005.863866, 2006. 

Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The global 

precipitation measurement mission, Bulletin of the American Meteorological Society, 95, 701–722, doi:10.1175/BAMS-D-13-00164.1, 

15 2014. 

Huffman, G. J., Adler, R. F., Arkin, P., Chang, A., Ferraro, R., Gruber, A., Janowiak, J., McNab, A., Rudolf, B., Schneider, U., Huffman,  

G. J., Adler, R. F., Arkin, P., Chang, A., Ferraro, R., Gruber, A., Janowiak, J., McNab, A., Rudolf, B., and Schnei- derSchneider, U.: 

The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset, Bulletin of the American Meteo- 

rologicalMeteorological Society, 78, 5–20, doi:10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2, 

http://journals.ametsoc.org/doi/abs/10.1175/    1997. 

20 1520-0477{%}281997{%}29078{%}3C0005{%}3ATGPCPG{%}3E2.0.CO{%}3B2,       1997. 
20 Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM 

Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales, Journal 

of Hydrometeorology, 8, 38–55, doi:10.1175/JHM560.1, http://journals.ametsoc.org/doi/abs/10.1175/JHM560.1, 2007. 

Joyce, R. J., Janowiak, J. E., Arkin, P. a., and Xie, P.: CMORPH: A Method that Produces Global Precipitation Estimates from Passive 
25  Microwave and Infrared Data at High Spatial and Temporal Resolution, Journal of Hydrometeorology, 5, 487–503, doi:10.1175/1525-  

25 7541(2004)005<0487:CAMTPG>2.0.CO;2,    2004. 

Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., Kirschbaum, D. B., Kidd, C., Becker, A., Huffman, 

G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., and Kirschbaum, D. B.: So, How Much of the Earth’s Surface <i>Is</i> Covered by 

Rain Gauges?, Bulletin of the American Meteorological Society, 98, 69–78, doi:10.1175/BAMS-D-14-00283.1, http://journals.ametsoc. 

30   org/doi/10.1175/BAMS-D-14-00283.1,    2017. 

30 Koster, R. D., Brocca, L., Crow, W. T., Burgin, M. S., and De Lannoy, G. J. M.: Precipitation estimation using L-band and C-band soil mois- 

ture retrievals, Water Resources Research, 52, 7213–7225, doi:10.1002/2016WR019024, http://doi.wiley.com/10.1002/2016WR019024, 

2016. 

Kummerow, C., Oison, W. S., and Giglio, L.: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive 
35  microwave sensors, IEEE Transactions on Geoscience and Remote Sensing, 34, 1213–1232, doi:10.1109/36.536538, 1996. 

35 McColl, K. A., Vogelzang, J., Konings, A. G., Entekhabi, D., Piles, M., and Stoffelen, A.: Extended triple collocation: Estimating errors and 

correlation coefficients with respect to an unknown target, Geophysical Research Letters, 41, 6229–6236, doi:10.1002/2014GL061322, 

http://dx.doi.org/10.1002/2014GL061322, 2014GL061322, 2014. 

http://dx.doi.org/10.1175/BAMS-88-1-47
http://journals.ametsoc.org/doi/abs/10.1175/BAMS-88-1-47
http://journals.ametsoc.org/doi/abs/10.1175/BAMS-88-1-47
http://dx.doi.org/10.1029/94WR01498
http://doi.wiley.com/10.1029/94WR01498
http://dx.doi.org/10.1175/JHM437.1
http://dx.doi.org/10.1016/j.jag.2015.09.002
http://linkinghub.elsevier.com/retrieve/pii/S0303243415300258
http://linkinghub.elsevier.com/retrieve/pii/S0303243415300258
http://dx.doi.org/10.1109/TGRS.2005.863866
http://dx.doi.org/10.1175/BAMS-D-13-00164.1
http://dx.doi.org/10.1175/JHM560.1
http://journals.ametsoc.org/doi/abs/10.1175/JHM560.1
http://dx.doi.org/10.1175/BAMS-D-14-00283.1
http://journals.ametsoc.org/doi/10.1175/BAMS-D-14-00283.1
http://journals.ametsoc.org/doi/10.1175/BAMS-D-14-00283.1
http://dx.doi.org/10.1002/2016WR019024
http://doi.wiley.com/10.1002/2016WR019024
http://dx.doi.org/10.1109/36.536538
http://dx.doi.org/10.1002/2014GL061322
http://dx.doi.org/10.1002/2014GL061322


36  

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An Overview of the Global Historical Climatology Network-Daily 

Database, Journal of Atmospheric and Oceanic Technology, 29, 897–910, doi:10.1175/JTECH-D-11-00103.1, http://dx.doi.org/10.1175/  

JTECH-D-11-00103.1, 2012. 

Miralles, D. G., Crow, W. T., and Cosh, M. H.: Estimating Spatial Sampling Errors in Coarse-Scale Soil Moisture Estimates Derived 

5 from Point-Scale Observations, Journal of Hydrometeorology, 11, 1423–1429, doi:10.1175/2010JHM1285.1, http://dx.doi.org/10.1175/  

2010JHM1285.1, 2010. 

Naeimi, V., Scipal, K., Bartalis, Z., Hasenauer, S., and Wagner, W.: An improved soil moisture retrieval algorithm for ERS and METOP 

scatterometer observations, IEEE Transactions on Geoscience and Remote Sensing, 47, 1999–2013, doi:10.1109/TGRS.2008.2011617, 

2009. 

10 Peterson, T. C., Easterling, D. R., Karl, T. R., Groisman, P., Nicholls, N., Plummer, N., Torok, S., Auer, I., Boehm, R., Gullett, D., Vin- 

centVincent, L., Heino, R., Tuomenvirta, H., Mestre, O., Szentimrey, T., Salinger, J., Førland, E. J., Hanssen-Bauer, I., Alexandersson, H., 

Jones, P., and Parker, D.: Homogeneity adjustments of in situ atmospheric climate data: a review, International Journal of Climatol- 

ogyClimatology, 18, 1493–1517, doi:10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T, 

http://dx.doi.org/10.1002/(SICI) 1097-0088(19981115)18:13{%}3C1493::AID-JOC329{%}3E3.0.CO;2-T,      1998. 

15 Roebeling, R. a., Wolters, E. L. a., Meirink, J. F., and Leijnse, H.: Triple Collocation of Summer Precipitation Retrievals from SEVIRI 
over 

15 Europe with Gridded Rain Gauge and Weather Radar Data, Journal of Hydrometeorology, 13, 1552–1566, doi:10.1175/JHM-D-11-089.1, 2012. 

Sapiano, M. R. P. and Arkin, P. A.: An Intercomparison and Validation of High-Resolution Satellite Precipitation Estimates with 3- 

Hourly Gauge Data, Journal of Hydrometeorology, 10, 149–166, doi:10.1175/2008JHM1052.1, http://journals.ametsoc.org/doi/abs/10. 

20   1175/2008JHM1052.1, 2009. 

20 Schamm, K., Ziese, M., Becker, A., Finger, P., Meyer-Christoffer, A., Schneider, U., Schröder, M., and Stender, P.: Global gridded precipita- 

tion over land: A description of the new GPCC First Guess Daily product, Earth System Science Data, 6, 49–60, doi:10.5194/essd-6-49-  

2014, 2014. 

Stampoulis, D. and Anagnostou, E. N.: Evaluation of Global Satellite Rainfall Products over Continental Europe, Journal of Hydrometeorol- 
25  ogy, 13, 588–603, doi:10.1175/JHM-D-11-086.1, http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-11-086.1, 2012. 

25 Stoffelen, A.: Toward the true near-surface wind speed: Error modeling and calibration using triple collocation, Journal of Geophysical 

Research, 103, 7755, doi:10.1029/97JC03180, 1998. 

Su, C.-h., Ryu, D., Crow, W. T., and Western, A. W.: Beyond triple collocation: Applications to soil moisture monitoring, Journal of Geo- 

physical Research: Atmospheres, 119, 6419–6439, doi:doi:10.1002/2013JD021043, 2014. 

30 Tian, Y. and Peters-Lidard, C. D.: A global map of uncertainties in satellite-based precipitation measurements, Geophysical Research 
Letters,  

30 37, L24 407, doi:10.1029/2010GL046008, http://doi.wiley.com/10.1029/2010GL046008, 2010. 

Tian, Y., Peters-Lidard, C. D., Choudhury, B. J., and Garcia, M.: Multitemporal Analysis of TRMM-Based Satellite Precipitation Products 

for Land Data Assimilation Applications, Journal of Hydrometeorology, 8, 1165–1183, doi:10.1175/2007JHM859.1, 2007. 

Tian, Y., Huffman, G. J., Adler, R. F., Tang, L., Sapiano, M., Maggioni, V., and Wu, H.: Modeling errors in daily precipitation measurements: 

Additive or multiplicative?, Geophysical Research Letters, 40, 2060–2065, doi:10.1002/grl.50320, 2013. 

35 Tian, Y., Liu, Y., Arsenault, K. R., and Behrangi, A.: A new approach to satellite-based estimation of precipitation over snow cover, 
Inter- 

35 national Journal of Remote Sensing, 35, 4940–4951, doi:10.1080/01431161.2014.930208, http://www.tandfonline.com/doi/abs/10.1080/  

01431161.2014.930208, 2014. 

http://dx.doi.org/10.1175/JTECH-D-11-00103.1
http://dx.doi.org/10.1175/JTECH-D-11-00103.1
http://dx.doi.org/10.1175/JTECH-D-11-00103.1
http://dx.doi.org/10.1175/2010JHM1285.1
http://dx.doi.org/10.1175/2010JHM1285.1
http://dx.doi.org/10.1175/2010JHM1285.1
http://dx.doi.org/10.1109/TGRS.2008.2011617
http://dx.doi.org/10.1175/JHM-D-11-089.1
http://dx.doi.org/10.1175/2008JHM1052.1
http://journals.ametsoc.org/doi/abs/10.1175/2008JHM1052.1
http://journals.ametsoc.org/doi/abs/10.1175/2008JHM1052.1
http://dx.doi.org/10.5194/essd-6-49-2014
http://dx.doi.org/10.5194/essd-6-49-2014
http://dx.doi.org/10.1175/JHM-D-11-086.1
http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-11-086.1
http://dx.doi.org/10.1029/97JC03180
http://dx.doi.org/10.1029/2010GL046008
http://doi.wiley.com/10.1029/2010GL046008
http://dx.doi.org/10.1175/2007JHM859.1
http://dx.doi.org/10.1002/grl.50320
http://dx.doi.org/10.1080/01431161.2014.930208
http://www.tandfonline.com/doi/abs/10.1080/01431161.2014.930208
http://www.tandfonline.com/doi/abs/10.1080/01431161.2014.930208


37  

Tompkins, A. M., Gierens, K., and Rädel, G.: Ice supersaturation in the ECMWF integrated forecast system, Quarterly Journal of the Royal 

Meteorological Society, 133, 53–63, doi:10.1002/qj.14, http://doi.wiley.com/10.1002/qj.14, 2007. 

http://dx.doi.org/10.1002/qj.14
http://doi.wiley.com/10.1002/qj.14


38  

Villarini, G., Mandapaka, P. V., Krajewski, W. F., and Moore, R. J.: Rainfall and sampling uncertainties: A rain gauge perspective, Journal of 

Geophysical Research, 113, D11 102, doi:10.1029/2007JD009214, http://doi.wiley.com/10.1029/2007JD009214, 2008. 

5   Wagner, W., Lemoine, G., and Rott, H.: A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data, Remote Sensing of 

Environment, 4257, 1999. 

5   Yilmaz, M. T. and Crow, W. T.: Evaluation of Assumptions in Soil Moisture Triple Collocation Analysis, Journal of Hydrometeorology, 

15, 1293–1302, doi:10.1175/JHM-D-13-0158.1, http://dx.doi.org/10.1175/JHM-D-13-0158.1, 2014. 

Yong, B., Liu, D., Gourley, J. J., Tian, Y., Huffman, G. J., Ren, L., and Hong, Y.: Global view of real-time TRMM multisatellite precipitation  

10 analysis: Implications for its successor global precipitation measurement mission, Bulletin of the American Meteorological Society, 96, 

283–296, doi:10.1175/BAMS-D-14-00017.1, 2015. 

http://dx.doi.org/10.1029/2007JD009214
http://doi.wiley.com/10.1029/2007JD009214
http://dx.doi.org/10.1175/JHM-D-13-0158.1
http://dx.doi.org/10.1175/JHM-D-13-0158.1
http://dx.doi.org/10.1175/BAMS-D-14-00017.1


39  

 

 
 

Figure 1. CPC gauge coverage during 2007-2012 expressed as average number of working raingauge per day within each 0.25-degree spatial 

grid cell. 
 

 
 

Figure 2. CPC-based (a, b ,c and d) and TC-based (e-o) correlation coefficient obtained for the triplets: i) ERA-Interim-SM2RAIN-3B42RT 

(Triplet A: e, f, g), ii) ERA-Interim-SM2RAIN-CMORPH (Triplet B: h, i, l) and iii) ERA-Interim-3B42RT-CMORPH (Triplet C: m, n, o) 

during the period 2007-2012-2015 using an additive error model. 
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Figure 3. Rank based on CPC-based correlation (CPC-based rank in the figure) and TC-based correlation (TC-based rank in the figure) 

of the triplets: i) ERA-Interim-SM2RAIN-3B42RT (Triplet A: a, b, c for TC-based rank and d, e, f, g), for CPC-based rank) , ii) ERA-

Interim- SM2RAIN-CMORPH (Triplet B: g, h, i for TC-based rank and k, l, m for CPC-based rank) and iii) ERA-Interim-3B42RT- CMORPH 

(m,Triplet C: n, o, p for TC-based rank and r, s, t for CPC-based rank) during the period 2007-2012-2015 using an additive error model. 



 

 
 
 
 
 
 

 
 

(a) 3B42RT (b) CMORPH 
 

 
 

(c) SM2RAIN (d) ERA-Interim 
 

Figure 4. Global correlation of the 3B42RT (a), CMORPH (b), SM2RAIN (c) and ERA-Interim (d) products obtained by Triple Collocation using Triplet A 

(ERA-Interim-SM2RAIN-3B42RT) for 3B42RT, ERA-Interim and SM2RAIN and Triplet B (ERA-Interim-SM2RAIN-CMORPH) for CMORPH. 
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ADDITIVE ERROR 
 

  Era-Interim SM2RAIN 3B42RT CMORPH CPC 

 Correlation with CPC 0.68 0.57 0.52 0.57 - 

Triplet Products Triple Collocation 
A 

B 

C 

D 

E 

ERA - SM2RAIN - 3B42RT 

ERA - SM2RAIN - CMORPH 

ERA - 3B42RT - CMORPH 

ERA - 3B42RT - CPC 

ERA - CMORPH - CPC 

0.79 

0.73 

0.43 

0.79 

0.76 

0.57 

0.63 

- 

- 

- 

0.57 

- 

0.68 

0.57 

- 

- 

0.58 

0.76 

- 

0.60 

- 

- 

- 

0.87 

0.91 
 

 

MULTIPLICATIVE ERROR 
 

  Era-Interim SM2RAIN 3B42RT CMORPH CPC 

 Correlation with CPC 0.53 0.43 0.38 0.50 - 

Triplet Products Triple Collocation 
A 

B 

C 

D 

E 

ERA - SM2RAIN - 3B42RT 

ERA - SM2RAIN - CMORPH 

ERA - 3B42RT - CMORPH 

ERA - 3B42RT - CPC 

ERA - CMORPH - CPC 

0.63 

0.68 

0.43 

0.65 

0.66 

0.53 

0.55 

- 

- 

- 

0.43 

- 

0.68 

0.42 

- 

0.62 

0.76 

- 

0.57 

- 

- 

- 

0.84 

0.79 
Table 1. Mean CPC-based correaltion, R (correlation with CPC in the table(R) and TC-based correlationscorrelation (ρ) between differentfor 
various triplets for theassuming additive and multiplicative error models. 
additive and for the multiplicative error models. The "Triplet" column refers to the naming convention applied in the text. 
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 SPATIAL CORRELATION 

Triplet Products Era-Interim 3B42RT CMORPH SM2RAIN 

  Additive error model  
A 

B 

C 

ERA - 3B42RT - SM2RAIN 

ERA - CMORPH - SM2RAIN 

ERA - 3B42RT - CMORPH 

0.79 

0.86 

0.96 

0.74 

- 

0.28 

- 

0.61 

0.07 

0.84 

0.84 

- 

  Multiplicative error model 

A 

B 

C 

ERA - 3B42RT - SM2RAIN 

ERA - CMORPH - SM2RAIN 

ERA - 3B42RT - CMORPH 

0.380 

0.265 

0.508 

0.751 

- 

0.508 

- 

0.798 

0.706 

0.648 

0.570 

- 

 % RANK IDENTIFIED 
  Additive error model 

A 

B 

C 

ERA - 3B42RT - SM2RAIN 

ERA - CMORPH - SM2RAIN 

ERA - 3B42RT - CMORPH 

80% 

65% 

6% 

81% 

- 

10% 

- 

74% 

41% 

72% 

65% 

- 

  Multiplicative error model 

A 

B 

C 

ERA - 3B42RT - SM2RAIN 

ERA - CMORPH - SM2RAIN 

ERA - 3B42RT - CMORPH 

65% 

48% 

11% 

71% 

- 

15% 

- 

51% 

50% 

60% 

67% 

- 
Table 2. Spatial correlation SC between ρt,Xi  and RXi  and percentage of rank correctly identified obtained with the differentfor various 
triplets considered in the study. The "Triplet" column refers to the naming convention applied in the text. 
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