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ABSTRACT 1 

In this study, information extracted from the first global urban fluvial flood risk data set (Aqueduct) is 2 

investigated and visualised to explore current and projected city-level flood impacts driven by 3 

urbanisation and climate change. We use a novel adaption of the self-organizing map (SOM) method, 4 

an artificial neural network proficient at clustering, pattern extraction and visualisation of large, multi-5 

dimensional data sets. Prevalent patterns of current relationships and anticipated changes over time 6 

in the nonlinearly-related environmental and social variables are presented, relating urban river flood 7 

impacts to socioeconomic development and changing hydrologic conditions. Comparisons are 8 

provided between 98 individual cities. Output visualisations compare baseline and changing trends of 9 

city-specific exposures of population and property to river flooding, revealing relationships between 10 

the cities based on their relative map placements. Cities experiencing high (or low) baseline flood 11 

impacts on population and/or property that are expected to improve (or worsen), as a result of 12 

anticipated climate change and development, are identified and compared. This paper condenses and 13 

conveys large amounts of information through visual communication to accelerate the understanding 14 

of relationships between local urban conditions and global processes. 15 
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1 INTRODUCTION 1 

The hydrologic regimes producing urban floods within many cities are varying due to anthropologic influences 2 

such as climate change and urban development (Revi et al., 2014; Mills, 2007; Desai et al., 2015; UNEP, 2016; 3 

Willems et al., 2012; Desai et al., 2015), as the high densities of population, property, infrastructure and industry 4 

within cities are both substantial drivers and receivers of environmental impacts. River flooding currently 5 

impacts more people than any other environmental event (Doocy et al., 2013; Desai et al., 2015; Sofia et al., 2016) 6 

posing a threat to almost 380 million urban residents globally (UN-Habitat, 2014). However, most existing river 7 

flood assessments are at a local or regional scale (as in Muis et al., 2015), limiting the possibility to compare 8 

between multiple cities, and studies at a global scale have traditionally been limited by a lack of datasets and 9 

methods (Jongman et al., 2012). The first unified global set of urban fluvial flood risk data has recently been 10 

published for a selection of cities as part of the World Resources Institute’s Aqueduct Global Flood Analyzer Tool 11 

(subsequently referred to as Aqueduct) (Winsemius et al., 2013; Ward et al., 2013; website 3), consisting of 12 

current and projected future flood impacts on population and property resulting from climate change and 13 

urbanisation. Whilst this data set has previously been analysed and visualised by its creators at the watershed 14 

scale (Winsemius et al., 2016), the large amount of city-level information is currently presented on an individual 15 

city basis. Here we conduct an analysis, including visualisation and clustering using the self-organizing map 16 

(SOM) technique, of the total collection of data that is available at the city scale, to investigate the inherent 17 

relationships and patterns amongst the city data. A type of artificial neural network, the SOM is useful for 18 

exploring relationships between nonlinearly related variables, and is popular for investigating potentially 19 

difficult-to-define environmental responses to human influences (e.g. Shanmuganathan et al., 2006; Vaclavik et 20 

al., 2013; Clark et al., 2016b) as well as providing comparisons between geographic areas (Kaski & Kohonen, 1996; 21 

Clark et al., 2015; Clark et al., 2016).  We expand the traditional SOM method to allow for a comparison over time 22 

of expected changes in the city-level conditions. The aim of this study is to increase the understanding of 23 

prevalent global patterns of human-environmental relationships influencing city-level river flooding, and 24 

discover how a global set of individual cities fits into these patterns of shifting quantities of water and city 25 

features. 26 

The combined effects of climate change and urbanisation (alterations in urban population growth, development, 27 

land use and density) are leading to variations in the magnitude, frequency and timing of precipitation, snow 28 

melt and river floods within cities, generally producing higher peak river flows with shorter response times (Frich, 29 

et al. 2002; Desai et al., 2015; UNEP, 2016; Wasko & Sharma, 2015; Shiermeier, 2011; Cunderlik, 2009; Barnett et al., 30 

2005; Immerzeel et al., 2010). The changing patterns of precipitation and runoff are complex and not uniformly 31 

spatially distributed (Meehl et al., 2005; Desai et al., 2015; Wentz et al., 2007; Frich et al., 2002). Increases in rainfall 32 

intensity at urban hydrology scales of up to 60% are anticipated by 2100 (Willems et al., 2012), and the micro-33 

climates of cities are expected to interact with climate change in a number of ways that will potentially 34 

exacerbate flood effects (Revi et al., 2014). Highly populated urban areas are experiencing an increase in flood 35 

vulnerability through migration into urban flood plains (Kreimer et al., 2003; Jongman et al., 2012; Revi et al., 36 

2014), causing the global population exposed to river flooding to increase faster than total global population 37 

growth (Jongman et al., 2012). By 2050, it is estimated that 70% of the world’s population will live in cities (UN-38 

Habitat, 2010), up from 54% in 2015 (UN-DESA, 2015), and as cities grow the proximity of population and property 39 

to water courses will continue to increase (Kummu et al., 2011). Urban land cover is increasing globally, with more 40 

impervious areas and higher building densities, at a rate over double that of urban population growth (Angel et 41 

al., 2010a), and is projected to increase three-fold by 2030 (Pachauri et al., 2014). In the future, cities in particular 42 

are predicted to become even more vulnerable to extreme hydrologic events (Pachauri et al., 2014; Willems et 43 

al., 2012; Revi et al., 2014, Sofia et al., 2016), and an understanding of each city’s unique response to these 44 
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hydrologic and developmental changes will be necessary as cities strive to adapt (Revi et al. 2014; Doocy et al., 1 

2013). 2 

In this paper, a visual comparison is produced amongst a selection of cities based on their current and projected 3 

future urban river flood impacts on population and property, resulting from an anticipated combination of 4 

climate change and development. It should be noted that fluvial flooding is the only type of flooding that is 5 

considered here, and this study does not include an analysis of cities subject to coastal or pluvial flooding. 6 

Analysing data with city-specific projections of changes in hydrology, population and development levels (based 7 

on future climate scenarios, projected development pathways, and a best assumption of flood protection 8 

standards) we produce an analysis and visualisation of the patterns of baseline conditions and anticipated 9 

changes in city-level river flooding impacts to the year 2030. We establish the prevalent global spatial and 10 

temporal patterns of urban flood impacts, explore these impacts as resulting from both developmental and 11 

hydrological drivers, and match the cities to their most similar pattern. The patterns are established through 12 

dimension reduction, clustering and visualisation of multivariate data with an adaptation of the self-organizing 13 

map technique. We begin by presenting analyses of patterns of urban flood conditions (as measured by the 14 

amount of population affected and urban damages costs) for a baseline global snapshot (2010), then investigate 15 

projected temporal changes (up to 2030), and finally combine this information into a global temporal analysis of 16 

the cities. As individual cities are matched to their closest patterns at each stage, we discover clusters of cities 17 

with similar urban flooding characteristics and projected trends.  18 

The main analyses to date on this important data set (Winsemius et al., 2013; Ward et al, 2013) have been 19 

conducted by its creators, in which the data has been analysed at the watershed scale. Though this data set has 20 

been published at city scale as well as watershed scale, certain limitations do exist to an analysis at city scale. The 21 

spatial scale of the applied hydrologic and hydraulic models used to create the data, the potentially small 22 

upstream catchment areas of the cities, the unidentified relationships of cities along the same river in which 23 

mitigation efforts upstream may effect downstream cities, and the assumption of city-specific defence measures 24 

(which are discussed in the ‘Data’ section) all increase the uncertainty inherent in these hydrologic estimates 25 

more so than if the data were analysed at the basin scale. However, an analysis of the city data is important in 26 

allowing an understanding of conditions that can be expected on a city-level and the identification of cities 27 

potentially facing similar circumstances, since climate change, development, and urban administrations are not 28 

restricted to river basin boundaries. Therefore, we accept these inherent limitations in order to discover what 29 

insights the most cohesive city-level data set to date may reveal.  30 

A growing body of research is investigating the impact of anthropogenic changes on urban flooding at regional 31 

and global scales, however we have found no literature comparing specific cities in terms of changing city-level 32 

flood impacts on populations and property. The Intergovernmental Panel on Climate Change’s 5th Assessment 33 

Report Chapter 8 ‘Urban Areas’ (Revi et al., 2014) discusses the vulnerabilities and resilience of cities to climate 34 

change in general, noting that the analysis is based on economic losses and would differ if a human component 35 

is included. Jongman et al. (2012) investigated global trends of coastal and river flooding based on changing 36 

regional population densities and land use. Increased vulnerability to flooding is attributed to population growth 37 

or increases in wealth, though the modelling does not include changing hydrology due to climate change. 38 

Jongman et al. (2015) estimated regional trends in human and economic river flooding vulnerabilities by income 39 

level, through hazard and exposure calculations. Kunkel et al., (1999) investigated the increasing trend of 40 

economic losses and fatalities in the USA due to increasing vulnerability to floods, however the climate change 41 

contribution to this increase was not possible to quantify due to a lack of data. Winsemius et al. (2016) produced 42 

the first projections of global future flood risk that consider separate impacts of climate change and 43 

socioeconomic development, with results discussed by geographic region (river basin) and economic level. The 44 
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investigation of the connection between coastal flooding and climate change (increasing storms combined with 1 

sea level rise) is more common in the literature than the connection between river flooding and climate change 2 

(Nicholls et al., 2008; Nature, 2016) due to better data availability. Sofia et al (2016) emphasize that analyses of 3 

climate change and socio-economic development as both drivers and receptors of flood risk is needed. Muis et 4 

al. (2015) call for an investigation between the combination of land use change and hydrologic change on future 5 

flood risk. Jongman et al. (2012) highlight that due to population growth and climate change, global methods 6 

incorporating both spatial and temporal dynamics to investigate inland flooding at the city scale are necessary 7 

for global development studies and estimating costs associated with climate change. To date, a global 8 

examination of changing flood conditions at the city level resulting from urban development and climate change, 9 

including a direct comparison between specific cities, has not been made. The analysis we present here 10 

corresponds directly to this gap in the literature.  11 

General patterns as well as specific relationships can be extracted from the output maps in this paper. In the 12 

interest of channelling the ‘potential of visual communication to accelerate social learning and motivate 13 

implementation of changes’ (Sheppard, 2005) the aim of the method used here is to discover and demonstrate 14 

potentially interesting global patterns and relationships that would not otherwise be evident in the data, for 15 

example: clusters of cities which are currently experiencing high flood impacts that are projected to greatly 16 

increase in the future, and to what extent this may be due to climate change (or socioeconomic development) 17 

within each city; which cities not currently experiencing notable effects of flooding may expect to in the future; 18 

which cities are projected to mitigate potentially adverse flood effects from climate change with reductions in 19 

flooding due to socioeconomic factors; which cities are projected to experience an increased flood vulnerability 20 

driven by socioeconomic factors alone; and the relationship between the changes in vulnerability of the 21 

population and urban damages costs for each city. 22 

The comparison of individual cities in this study (rather than river catchments) allows a blending of 23 

environmental and social information which reinforces the co-dependence of humans and their natural 24 

environment, a relationship which is often easily overlooked by urban dwellers. Explicitly visualising the role that 25 

urbanisation may have on the environmental conditions experienced by urban citizens is an essential reminder 26 

of this connection. Cities potentially facing similar circumstances and challenges are identified in this study, 27 

suggesting possibilities for a sharing of strategies. As climate change, development, and urban administrations 28 

transcend river basin boundaries, an investigation of impacts and determination of potential mitigation 29 

strategies at the city level as well as the basin level expands the potential for decision makers to be presented 30 

with all the available, relevant data for consideration. 31 

2 DATA AND METHOD 32 

DATA 33 

The data set used in this study combines city-level estimates of annual expected urban river flood impacts on 34 

population and urban damages costs (2010), projections of future changes in flood impacts attributed to climate 35 

change and/or development (up to 2030), and socioeconomic data for a globally distributed set of cities.  36 

The selection of cities used here is based on a list provided by the Lincoln Institute of Land Policy’s Atlas of Urban 37 

Expansion (Angel et al., 2010, website 1), spanning all continents except Antarctica, encompassing four economic 38 

levels and four population levels. City population data (2010) and future population estimates (2030) are from 39 

the UN Department of Economic and Social Affairs (UN-DESA, 2015), and GDP per country are from the World 40 

Bank’s World Development Indicators database (website 2).  41 
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Annual river flood impact estimates are obtained from Aqueduct, the global dataset of fluvial flood risk. As this 1 

data is solely related to the influence of fluvial flooding on metropolitan areas, it does not include coastal or 2 

pluvial flood risks. In this data set, Aqueduct provides separate estimates of annual impacts on the number of 3 

affected population (people exposed to flood waters) and urban property damages costs (in US dollars), which 4 

will be referred to in this paper as ‘population’ and ‘damages’ impacts.   5 

Global hydrologic and hydraulic models, inundation modelling, and spatial data sets of population, land use and 6 

infrastructure are used within Aqueduct to quantify flood risk in each city. Aqueduct identifies future anticipated 7 

changes in urban flood vulnerabilities as driven by climate change (altered hydrology), socioeconomic 8 

development (population, land use and economic changes), or in most cases a combination of both. Either of 9 

these drivers may increase or decrease the frequency and intensity of flooding, and the resulting flood impacts, 10 

for a given city. Three separate scenarios of climate change and socioeconomic development (optimistic, 11 

business-as-usual, and pessimistic) are given in Aqueduct, and in this study we use data from the business-as-12 

usual case for our future flood impact scenario. Future hydrologic and hydraulic estimates in Aqueduct are based 13 

on global circulation model data from the ISIMIP project (website 4) and changes in population and economic 14 

development are based on Shared Socioeconomic Pathways data with a downscaling procedure that 15 

differentiates between urban and rural growth (website 5; Samir & Lutz, 2014). Recent papers published with 16 

this data include Winsemius et al. (2016), Jongman et al. (2015) and Muis et al. (2015). 17 

Expected flood impacts are provided by Aqueduct for nine possible levels of city-wide flood protection, from 18 

protection against the 2-year average return interval (ARI) flood to the 1000-year ARI flood. This protection level 19 

indicates how well protected the area is against flood damage, based on the standard or capacity of flood 20 

protection measures such as dikes, levees or dams. In this study, we assign an assumed flood protection level to 21 

each city based on the country’s World Bank income level (as in the World Resource Institute’s Aqueduct Global 22 

Flood Risk Country Rankings, website 6) due to a lack of information on each city’s actual protection level. This 23 

method follows recommendations based on the rational that higher standards of protection against flooding 24 

may be expected in higher income countries (Jongman et al., 2012; Nicholls et al., 2008), and findings by Doocy 25 

et al. (2013) that flood impacts are significantly associated with classification of income level by the World Bank. 26 

We assume each city’s flood protection level remains the same during the timeline of this study.  27 

To allow for a comparison between cities of greatly differing sizes and hydrologic conditions, the wide-ranging 28 

data values were log-transformed. The data set was then standardized by transforming these values linearly into 29 

the range 0-1 (with the lowest value becoming 0 and the highest value becoming 1) for each variable (population 30 

affected, urban damages, etc). The data is log transformed, following recommendation by Agarwal & Skupin 31 

(2008) that highly skewed variable distributions may benefit from log transformation before use in the SOM. 32 

Cities with no flood impacts in both 2010 and 2030 were removed (22 cities), though cities with no flood impacts 33 

in 2010 but with flood impacts in 2030 have been kept in the study. The final list of cities is presented in Table 1. 34 

TABLE 1: CITY LIST - alphabetically by region. 35 

Eastern Asia & the Pacific 

Anqing  China 
Ansan  Rep. of Korea 
Beijing  China 
Changzhi  China 
Chinju  Rep. of Korea 
Fukuoka  Japan 
Guangzhou China 
Leshan  China 
Pusan  Rep. of Korea 

Seoul  Rep. of Korea 
Shanghai  China 
Sydney  Australia 
Tokyo  Japan 
Ulan Bator Mongolia 
Yiyang  China 
Yulin  China 
Zhengzhou China 
 
Southeast Asia 

Bandung  Indonesia 
Bangkok  Thailand 
Ho Chi Minh City Vietnam 
Kuala Lumpur Malaysia 
Manila  Philippines 
Palembang Indonesia 
Songkhla  Thailand 
 
South Asia 

Dhaka  Bangladesh 
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Hyderabad India 
Jalna  India 
Kanpur  India 
Kolkata  India 
Mumbai  India 
Puna  India 
Rajshahi  Bangladesh 
Vijayawada India 
 
Western & Central Asia 

Ahvaz  Iran 
Astrakhan  Russian Fed. 
Baku  Azerbaijan 
Gorgan  Iran 
Istanbul  Turkey 
Kuwait City Kuwait 
Malatya  Turkey 
Moscow  Russian Fed. 
Oktyabrsky Russian Fed. 
Sanaa  Yemen 
Shimkent  Kazakhstan 
Teheran  Iran 
Tel Aviv  Israel 
Yerevan  Armenia 
Zugdidi  Georgia 
 
North Africa  

Alexandria Egypt 
Algiers  Algeria 

Aswan  Egypt 
Cairo  Egypt 
Casablanca Morocco 
Marrakech Morocco 
Port Sudan Sudan 
Tebessa  Algeria 
 
Sub-Saharan Africa  

Accra  Ghana 
Bamako  Mali 
Harare  Zimbabwe 
Ibadan  Nigeria 
Johannesburg South Africa 
Kampala  Uganda 
Kigali  Rwanda 
Ouagadougou Burkina Faso 
 
 
 
Latin America & the Caribbean 

Buenos Aires Argentina 
Caracas  Venezuela 
Guadalajara Mexico 
Ilheus  Brazil 
Jequie  Brazil 
Mexico City Mexico 
Montevideo Uruguay 
Ribeirao Preto Brazil 
Santiago  Chile 

Sao Paulo  Brazil 
Tijuana  Mexico 
Valledupar Colombia 
 
North America 

Chicago  United States 
Cincinnati  United States 
Houston  United States 
Los Angeles United States 
Minneapolis United States 
Modesto  United States 
Philadelphia United States 
Pittsburgh  United States 
Springfield United States 
St. Catharine’s Canada 
Tacoma  United States 
 
Europe 

Budapest  Hungary 
Castellon  Spain 
Le Mans  France 
Leipzig  Germany 
London  UK 
Madrid  Spain 
Paris  France 
Sheffield  UK 
Thessaloniki Greece 
Warsaw  Poland 
Wien  Austria 

 1 

METHOD  2 

We use an extension to the self-organizing map method to determine patterns and similarities in the impacts, 3 

changes and drivers of urban flooding amongst the cities. The self-organizing map (SOM, Kohonen, 2001) is an 4 

unsupervised learning algorithm from the family of artificial neural networks that discovers patterns in 5 

multivariate data sets with nonlinear inter-variable relationships.  6 

The SOM reduces the dimensionality of the data set by creating a (in this case) two-dimensional map grid which, 7 

through an iterative process, is essentially bent and stretched over the data set until it best characterizes the 8 

shape of the data cloud. The numerous data items become represented by a (usually) much smaller number of 9 

map nodes, known as prototypes. The map nodes, or prototypes, move iteratively into position amongst the 10 

data whilst maintaining their grid formation, establishing a higher density of prototypes in areas of higher data 11 

density. Once in position, the prototypes represent the most prevalent patterns in the data. Each data item is 12 

then matched to its closest prototype, creating clusters of similar data items.  13 

The SOM algorithm consists of a two-step iterative process of comparing the map and the data, and then 14 

updating the map to better represent the data. The method begins with a calculation of distances in data space 15 

(in this case we use Euclidean distance) between each data item, 𝑥𝑖  (where 𝑖 = 1:𝑁), and each map node, 𝑚𝑗  16 

(where 𝑗 = 1:𝑀). Data and map nodes vectors are all of the same dimension, 𝑑. The goal of the comparison 17 

stage is to find the nearest map node to each data item (commonly referred to as the best matching unit, BMU), 18 

which is then given the index 𝑐, using the following calculation: 19 

‖xi −mc‖ = minj{‖xi −mj‖} . 20 

This partitions the data into subsets of items sharing the same nearest node, mc. Next, the locations of the 21 

map nodes are adjusted to become closer to their nearby data items. Application of a smoothing 22 
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‘neighbourhood’ kernel during this stage produces a smoother map by updating neighbouring nodes to a 1 

similar extent based on the nearby data. That is, the location of each map unit, 𝑚𝑗 , becomes updated based 2 

on a weighted average of the data items matching itself as well as its neighbouring nodes, where the 3 

weighting is given by the neighbourhood kernel. The size of the kernel decreases with each iteration to include 4 

fewer nodes. We use a Gaussian shaped neighbourhood kernel, where ℎ𝑖𝑗  (the neighbourhood kernel 5 

element indicating the influence of each data item, 𝑥𝑖, on the updating of node 𝑚𝑗) is defined at iteration 𝑡 as: 6 

hij(t) = exp⁡(
−(𝑚𝑐 −𝑚𝑗)

2

2σ²(t)
) 7 

where σ is the kernel radius. At each iteration (t), the updated node locations are found as in (Kohonen, 2013): 8 

mj(t + 1) =
∑ hij(t)⁡xi
𝑁
i=1

∑ hij(t)
N
i=1

. 9 

After map training is complete, the map node vectors each represent a unique combination of variables in the 10 

data, according the final location of the map nodes in data space. Each of these unique combinations of 11 

variables represent a characteristic pattern in the data.  The data items are once again matched to their closest 12 

map node, forming clusters of data that best match each pattern. 13 

In this study, the ‘patterns’ are the key characteristics represented by each map node vector (such as specific 14 

baseline and/or projected flood conditions, and the drivers of change). The ‘cluster’ members are the cities that 15 

match the pattern represented by their nearest map node better than they match the patterns of any other 16 

nodes. 17 

As the SOM is an unsupervised learning algorithm, there is no subjectivity in the resulting cluster memberships. 18 

The iterative training process discovers the principal curves of the data set (the nonlinear directions of maximum 19 

variance) and aligns the map coordinate system with these, so that the two axes of the map generally follow the 20 

first two principal curves of the data. When the map is presented in its two-dimensional form, with data items 21 

located at their nearest map node, similar data ends up in close proximity on the map and dissimilar data is far 22 

apart. Through the SOM creation process the prevalent data patterns are identified by the nodes, data items 23 

become grouped into clusters around these patterns, and the clusters are ordered by similarity on the map. For 24 

a more detailed summary of the SOM method, refer to e.g. Clark et al. (2015).  25 

Error measures, such as quantization error (QE), topographic error (TE) and dimension range representation 26 

measure (DRR) are used to compare the data set and maps. 27 

The QE (Kohonen, 2001) measures how well the map nodes represent the data items using the sum of squared 28 

Euclidean distances between each data item, 𝑥𝑖 , and the node closest to it, 𝑚𝑐, averaged over all data points: 29 

𝑄𝐸 =
1

𝑁
∑ ‖mc − xi‖
⁡
𝑖  = 

1

𝑁
∑ √(𝑚𝑐

2 + 𝑥𝑖
2 − 2𝑚𝑐𝑥𝑖)

⁡⁡
𝑖 . 30 

The TE (Kiviluoto, 1996) indicates how well the topography of the data set is preserved on the map, giving higher 31 

error values for maps that are unnecessarily bent or twisted. The BMU and second BMU for each data point are 32 

checked to determine if they are adjacent (𝑢𝑥𝑖 = 1  if the first and second BMUs of 𝑥𝑖  are neighbours, 0 33 

otherwise), and TE is calculated as: 34 
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𝑇𝐸 =
1

𝑁
∑𝑢𝑥𝑖

𝑁

𝑖=1

 1 

The DRR (Clark et al., 2015) measures how well the map represents each variable of the data set to ensure even 2 

coverage of the dimensions. The maximum intra-cluster spread of data items in each dimension, 𝑑, that become 3 

represented by a single map node, 𝑥𝑖  (as a proportion of the overall data range in that dimension) is determined. 4 

The DRR is calculated as follows, where⁡ 𝑥𝑖(𝑑)⁡ are data values in dimension 𝑑, and⁡ 𝑥𝑖𝑗(𝑑)⁡ are the data values in 5 

dimension 𝑑 that are assigned to map unit 𝑗: 6 

𝐷𝑅𝑅(𝑑) = max
𝑗

max
𝑖𝑗

(𝑥𝑖𝑗(𝑑)) − min
𝑖𝑗

(𝑥𝑖𝑗(𝑑))

max
𝑖
(𝑥𝑖(𝑑)) − min

𝑖
(𝑥𝑖(𝑑))

 7 

In this study, the data set is split into two subsets (‘baseline’ data and ‘projected future changes’) for each city, 8 

allowing a progressive investigation of spatial and temporal patterns of urban flooding. A series of three 9 

separate SOMs (also referred to as maps) are created with prevalent global patterns and city similarities 10 

established separately on each map through colouring and labels, as follows: 11 

• SOM1 explores the spatial properties of the baseline data set, enabling a comparison of the state of 12 

urban river flood impacts in each city at a snapshot in time (2010).  13 

• SOM2 explores patterns of projected temporal changes in impacts of urban flooding on population and 14 

property (to 2030), incorporating the drivers of climate change and urban development, and 15 

• SOM3 portrays the temporal relationships between the cities in a type of longitudinal exploratory data 16 

analysis, clustering cities that are similar in the baseline situation and are also projected to trend similarly 17 

in response to each driver in the future.  18 

SOM1, the baseline map, depicts prevalent global spatial patterns and identifies urban flooding conditions in 19 

each city based on two variables: 1) the total population affected annually by river flooding, and 2) annual urban 20 

property damages costs incurred by river flooding. The map is created based on these two variables, though by 21 

projecting new variables onto the trained map it is also used to show: 3) the percentage of each city’s population 22 

affected, and 4) the percentage of the country’s GDP affected. Usually used with higher-dimensional input data, 23 

the SOM method is useful here for creating a map with two variables as the nonlinear projection establishes the 24 

relationships between cities in alignment with the directions of maximum variance (ie. the directions of most 25 

importance) in the data. It also allows for the results to be used as input into SOM3 later. 26 

SOM2, the future projected changes map, describes the anticipated alterations in urban river flooding in each 27 

city by 2030. This map is based on four variables of projected changes and their associated drivers: 1) the 28 

projected change in population affected annually, 2) the projected change in annual urban damages costs, 3) the 29 

proportion of change in population affected that is anticipated to be attributable to climate change, and 4) the 30 

proportion of change in urban damages costs that is anticipated to be attributable to climate change. The 31 

remainder of the increase or decrease in impacts is attributed to socioeconomic causes (such as population 32 

change, urban density change, increased city footprint, and changes in urban land cover).  33 

SOM3, the temporal map, uses the location of each city along the axes of the two-dimensional baseline and 34 

future projected changes maps (which essentially delineate the first two principle curves in each higher 35 

dimensional data subset) as input data. In creating SOM1 and SOM2, the baseline and future data subsets have 36 

already been reduced to their two most prominent dimensions respectively (which have become the axes of 37 

these maps), and each of these four dimensions is considered equally when placing the cities on the temporal 38 
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map. This method is based on the method used in Clark et al. (2015) to investigate individual data items 1 

transitioning through a self-organizing-time-map, and has been modified for the comparison of patterns on two-2 

dimensional maps of differing sizes and shapes that have been created separately based on different variables.  3 

Distinct patterns that have emerged through the process of training the three maps are represented by the 4 

nodes of SOM3. These patterns are the most relevant combinations of dynamic city flood impacts, 5 

socioeconomic, and climate change characteristics in the overall data set. SOM3 is clustered, coloured and 6 

labelled to indicate the relationships between the cities in terms of similar or differing baseline situations and 7 

projected changes. Cities with relatively close locations on both the baseline and future projected changes maps 8 

are considered to have parallel temporal paths, and will be found close together on the temporal map. Those 9 

with converging trends (dissimilar baseline conditions, but similar future projected changes) and diverging 10 

trends (close baseline conditions, but dissimilar future projected changes) are also identifiable on this map.  11 

In the creation of each map, grid size and shape have been determined using QE, TE, and DRR, with comparisons 12 

between the data set and each potential map. For the baseline map, a 10*7 grid is found to be the optimum 13 

shape to represent the data based on the error measures. An 8*8 map is fitted to the future projected changes 14 

data set. After finding these optimum side ratios, the maps are increased in size preserving their side ratios (to 15 

20*14 and 18*18) to allow the data items to spread out until most cities are placed individually, allowing the 16 

relationships between all cities to become evident (as in Skupin & Hagelman, 2005). The temporal map is sized 17 

at 25*17 nodes. Whilst the input data for the baseline and future projected changes maps were standardized into 18 

the range 0-1 before training, the input data for the temporal map is not standardised in order to preserve the 19 

ratios between the lengths of the first two principal curves in each of the first two data subsets.  20 

Prevalent cluster characteristics are determined using a ‘second level’ clustering of the nodes of the SOM (as in 21 

Vesanto & Alhoniemi, 2000; Skupin & Hagelman, 2005), performed using Ward’s clustering method (Ward, 1963) 22 

with the number of clusters determined using the Davies-Bouldin index (Davies & Bouldin, 1979). The Davies-23 

Bouldin index reports the ratio of within cluster scatter (𝑆𝑗 ⁡for⁡cluster⁡𝑗) to inter-cluster distances, looking at 24 

each cluster and its most similar one, (𝑀𝑗𝑘), with a lower ratio (𝑆 𝑀⁄ ) indicating a better estimate of the number 25 

of clusters of interest present in the data. Ward’s minimum variance method is a hierarchical clustering algorithm 26 

based on minimizing the total within-cluster variance. With this second-level clustering, each data item of the 27 

original data set becomes a member of the same final cluster as its closest node (Vesanto & Alhoniemi, 2000). 28 

The final clustering is visually verified with a SOM ‘U-matrix’ (Ultsch, 2003). The U-matrix visualises distances in 29 

data space between immediately neighbouring nodes, indicating these distances by colour on a grid of the same 30 

size as the SOM. By computing how close adjacent map nodes are in data space, the U-matrix is able to provide 31 

an indication of cluster boundaries based on large dissimilarities between neighbouring nodes. A greater change 32 

in relative distance between the locations of the nodes in data space than in map space is displayed in a lighter 33 

colour on the grid, and lesser distances in darker shades. The darker regions of the grid then indicate the cluster 34 

centres, separated by lighter coloured boundary areas. 35 

By reducing the information from this multivariate data set into the two most prominent dimensions and finding 36 

relationships between the data items at each of these three stages, spatial and temporal information about 37 

global patterns of urban flooding is abstracted, and similarities and differences between the cities are clearly 38 

portrayed. This method extracts two levels of information:  39 

(1) the most characteristic socio-environmental patterns in the data are found, and 40 

(2) cities are compared to each other with respect to their relative flooding conditions.  41 
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The simulations are run in MATLAB with use of the SOM Toolbox (website 7) with variables and map sizes as 1 

described above.   2 

3 RESULTS 3 

Three SOMs are presented sequentially to reveal three unique sets of patterns in the data, where the term 4 

‘patterns’ refers to combinations of variables that characterise a specific set of conditions. The cities are 5 

clustered into groups with conditions matching these patterns, based only on the given data. The maps each 6 

have different sizes, shapes and colours as they represent different subsets of input data. The interpretation of 7 

the maps is discussed in this section. 8 

SOM1: BASELINE URBAN FLOOD IMPACTS 9 

Patterns of urban flood conditions in 2010 are shown on the baseline map, SOM1, in Figure 1. The placement of 10 

city labels indicates the relationship of each city to each other in terms of river flood impacts on population and 11 

urban damages costs. The map is created by organizing the cities with respect to each other based on both of 12 

these factors. Cities close together are more similar in the amount of population affected and urban damages 13 

costs, and cities located far apart are less similar.  14 

The relative placement of the cities on the map is the main map characteristic providing insight into the features 15 

of the data, indicating differences in a combination of the variables which can be discerned from the colouring 16 

of Figure 1(a). Each map node has a four-component vector (representing the value of each of the four variables 17 

at the location of the node in data space). The four images in Figure 1(a) show SOM1’s city labels over grids 18 

coloured separately by the values of each of the four variables (white is low, purple is high). For each city, the 19 

relative value of each of the variables can be seen. For example, Cincinnati (top right) incurs high material 20 

damages costs, and medium population affected, whereas Ulan Bator (mid left) has similar population affected 21 

to Cincinnati, but much lower material damages costs.   22 

The nonlinearity of the relationships between the variables is evident from the colouring of the grids, indicating 23 

that high (or low) values are located on different regions of the map for each variable. The smooth transition of 24 

the values of each variable is also apparent by the smooth transition of colours along the grids. General 25 

information about the prevalent baseline global patterns and the relative flood conditions in the specific cities 26 

can be gained from inspection of these map labels and coloured grids.  27 

Each area of the grid represents a general pattern, or combination of variables in the data, some of which are 28 

indicated by annotations on Figure 1(b).  In general, higher amounts of population affected and urban damages 29 

costs resulting from river flooding are represented by areas towards the top of the map, and these variables 30 

decrease in value down the map. Values of affected population are lowest just in from the lower left corner and 31 

undulate along the bottom of the map, sweeping upwards to a maximum at the upper left corner. Urban damage 32 

values are lowest in the lower left corner and increase in concentric arcs up to the upper right corner. Generally, 33 

the left of the map contains patterns involving higher impacts on populations than on property, and the right of 34 

the map higher impacts on property than on populations. 35 

  36 
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b) 

 1 

FIGURE 1: SOM1 - BASELINE (2010) URBAN FLOOD CONDITIONS. Cities are placed relative to each 2 

other based on annual river flooding impacts on population and urban damages costs. a) The same 3 

map is repeated for each of four variables, with colouring indicating low (white) and high (purple) 4 

values. b) The city labels are coloured by region (see Table 1), and characteristic patterns of 5 

general areas of the map are annotated. The reader may refer to the online version to zoom 6 

in on text if required. 7 

From Figure 1(b), relationships can be discerned between regions, as well as between cities in the same region. 8 

For instance, cities in North Africa, Sub-Saharan Africa and West & Central Asia are predominantly located in the 9 

lower portion of the map, corresponding to a prevalent pattern of low flood impacts on both population and 10 

property. Cities in Southeast and South Asia generally correspond to the patterns of high impacts on population 11 

and property found in the upper left of the map. Cities in Europe stretch from the top to the bottom of the map, 12 

ranging from high overall flood effects (Paris) to no flood effects at all (Thessaloniki). North American cities are 13 

matched to patterns that represent more significant impacts on property than on population (down the right 14 

side of the map), and are split between those with high property damages (Philadelphia, LA, etc. – in the top 15 

right) and those with low damages (St. Catherine’s – in the bottom right).  16 

Impacts on GDP and the proportion of the cities’ populations affected are shown in the two lower maps of Figure 17 

1(a), though these variables were not used to position the cities on the map. Cities in which river-related urban 18 

flooding is estimated to highly affect the country’s GDP are coloured on the lower left map. Kigali, in particular, 19 

which incurs medium-high flood impacts, sees a large impact on Rwanda’s GDP, perhaps because Kigali is the 20 

main city in this relatively small country (Kreimer et al., 2003).  GDP is most affected by flooding in: Kigali, 21 

Bangkok, Yerevan, Dhaka, Bamako and Cairo. Cities in which the flood-affected population forms a significant 22 

proportion of the city’s population are coloured on the lower right map, predominantly in a horizontal strip 23 
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across the centre. The highest proportions are in: Jequie (15%), Kigali (7%), Chinju (6%), Le Mans (5%) and Tacoma 1 

(3%). 2 

SOM2: PROJECTED CHANGES IN URBAN FLOOD IMPACTS (TO 2030) 3 

SOM2 identifies the projected patterns of evolving river flood conditions in the cities (between 2010 and 2030), 4 

based on city-specific projections of increasing or decreasing flood impacts on population and damages costs, 5 

and whether these changes are anticipated to be driven more by climate change or development (Figure 2). 6 

In Figure 2(a), regions of the map representing projected increases in flood impacts on either populations or 7 

damages costs are coloured blue and reductions in flood impacts are coloured brown (in the top row), with 8 

white indicating no projected change. Projected changes primarily driven by socioeconomic development are 9 

coloured purple (in the lower row), and green indicates that the primary driver is climate change. White 10 

represents a mid-point in which both climate change and development are predicted impact future flood 11 

conditions relatively equally. Areas of the map representing patterns of increased flood impacts predominantly 12 

due to climate change or development can be located on Figure 2(b).  13 

Investigating SOM2, we see that climate change is projected to be predominantly responsible for increases in 14 

population vulnerability in all cities besides those in the top left corner (around Ho Chi Minh City). Climate change 15 

is anticipated to decrease flood damages costs in cities located at the bottom of the map (around Madrid), and 16 

decrease impacts on populations in cities in the mid-left (around Minneapolis) and mid-lower (again around 17 

Madrid) portions of the map. Socioeconomic development is projected to be the main driver increasing flood 18 

damages costs in cities on the upper-left triangle of the map (roughly from Mumbai down to Tebessa). Only in 19 

Ho Chi Minh City is development anticipated to be almost completely responsible for all increases in river flood 20 

impacts, all other cities in this study are at least partially affected by climate change. Development is not 21 

projected to play any part in a decrease in flood damages costs in any cities in this study (Caracas and Tebessa 22 

have no change in damages costs on the upper map, though it is attributed to development on the lower map). 23 

Geographic regions are shown on Figure 2(b) with coloured text backgrounds. Cities in Southeast Asia are mostly 24 

found at the top of the map indicating high projected increases in overall flood impacts. South Asian cities are 25 

mostly located in the two areas of the map with patterns of very high increases in flood impacts, split between 26 

those projected to be most affected by development (around Mumbai, top middle) and by climate change 27 

(around Puna, mid right). Many North African cities are located in the lower left, indicating anticipated reductions 28 

in flooding due to socioeconomic development. North American cities are spread across the middle of the map 29 

indicating a wide range of projected changes. 30 

 31 

  32 



14 
 

a) 1 

Change in population affected by river floods   Change in urban damages costs from river floods 

 

 
Decrease projected by 2030                                                           Increase projected by 2030 

 
Proportion of change in affected population  
driven by climate change and development   

Proportion of change in damages costs  
driven by climate change and development 

 

 
More influence by climate change                                 More influenced by development 

  2 



15 
 

 
b) 

 

FIGURE 2: SOM2 - PROJECTED CHANGES IN RIVER FLOOD IMPACTS WITH ASSOCIATED DRIVERS. 1 

River flooding in individual cities will be affected separately by climate change and development 2 

between 2010 and 2030. Cities that are anticipated to experience similar pressures and responses in 3 

terms of river flooding impacts are located nearby on the map. a) City labels are placed over coloured 4 

copies of the map showing the relative values of each variable. b) City labels are coloured by region, 5 

and characteristic patterns of general areas of the map are annotated.  The reader may refer to the 6 

online version to zoom in on text if required. 7 

Climate change and development may lead to opposing changes in a city’s flood impacts on population and 8 

property. A number of cities in this data set are predicted to have affected populations decreasing due to climate 9 

change, whilst damages costs increase due to socioeconomic factors (around Springfield and Port Sudan, in the 10 

mid-left). A decrease in flood effects on urban damages due to climate change, but an increase in affected 11 

population largely due to development is, out of the cities in this study, only projected for Algiers (in the lower 12 

left portion of the map). 13 

In some cities, both drivers may generate changes in the same direction. For instance, in Marrakech, Yulin, 14 

Yerevan and Gorgan, climate change is projected to be responsible for a decrease in damages costs whilst 15 

socioeconomic development is anticipated to play a major role in the decrease in affected population, suggesting 16 

that the reduction of population vulnerability due to development is complementing the direction of change 17 

instigated by climate change. In certain cities near the upper left of the map (Santiago, Zugdidi and Yiyang), an 18 

overall increase in flood impacts is expected, with increases in affected population almost completely attributed 19 

to climate change and increases in damages costs almost completely attributed to development. 20 

  21 
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SOM3: TEMPORAL PATTERNS 1 

Relationships between the baseline characteristics and projected future changes of urban flooding in the 2 

individual cities are shown in Figures 1 and 2 respectively, however potentially similar temporal patterns between 3 

the cities are not evident from these maps. To link the information abstracted from the first two maps, we create 4 

a temporal map, SOM3, shown in Figure 3. SOM3 identifies which cities experience similar baseline flooding, are 5 

expected to incur comparable future hydrologic pressures from climate change and/or development, and are 6 

projected to respond in similar ways (or which cities may diverge in the future from similar baseline conditions).  7 

The nodes of SOM3 are coloured based on the results of a second-level clustering, giving a visual separation to 8 

clusters of more similar data. Clusters are numbered from 1 to 16 for reference. As the cities have been located 9 

on SOM3 based on their locations on the ‘baseline’ and ‘future projected changes’ SOMs (in which the values of 10 

the variables vary smoothly though not monotonically along the axes), again the characteristics of the cities will 11 

flow smoothly along the map though multiple peaks and troughs of each variable are possible. The gradients of 12 

the cluster characteristics are indicated along the axes in Figure 3(a), which are nonlinear in data space. 13 

Broad overviews of the patterns represented by certain regions of the map are identified on Figure 3 with arrows. 14 

The largest increases in flood effects are generally represented by nodes in the lower half of the map, whilst the 15 

largest decreases in flood effects are represented by nodes in the top left. Climate change is predicted to be the 16 

main driver of changes in population vulnerability along the top and down the left and right sides of the map, 17 

and in urban damages on the top and right of the map; therefore, climate change is the leading driver of changes 18 

in flood impacts on both population and damages costs at the top of the map. Development is the main driver 19 

of changes in flood impacts on populations in the lower and upper left side of the map, and on urban damages 20 

in the lower left area of the map; therefore, development is the leading driver of changes in flood impacts on 21 

both population and damages costs in cities on the lower left side of the map.  22 

On Figure 3(b) the city labels are coloured by geographic region allowing for a regional visual comparison. We 23 

see the cities of each geographical region are more spread out on SOM3 than on SOM1 where each region was 24 

generally contained in one or two broad areas of the map. For example, on SOM3 Cairo and Aswan are noticeably 25 

separated from other North African cities which are located close together. Although the cities of this region 26 

have differing baseline flood levels (as shown on SOM1), most are projected to incur some reduction in future 27 

flood impacts (as shown on SOM2), with the exception of Cairo and Aswan. These cities both have forecasts of 28 

increased flood impacts - for Aswan increased impacts on the population due to climate change and impacts on 29 

property due to development, and for Cairo future impacts are projected to increase due to a relatively even 30 

mixture of both drivers. Another example can be seen in the cities of the USA shown on the map. They have 31 

similar starting conditions, yet are in two well-separated clusters on SOM3 - those around Houston and those 32 

around Los Angeles. The cities clustered around Houston are characterised by low impacts on population but 33 

high damages costs projected to elevate due to development, implying the possibility for local improvements 34 

through planning or mitigation strategies. The cities clustered around Los Angeles, however, are characterised 35 

by high overall impacts projected to increase predominantly due to climate change. In Sub-Saharan Africa we 36 

see Kigali and Bamako (which have similar medium-high baseline flooding conditions) are both expected to see 37 

increased impacts, but the cities are separated by SOM3 as these flood increases are attributed to development 38 

in Kigali and climate change in Bamako. 39 

  40 
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b) 1 

 2 

 3 

FIGURE 3: SOM3 - TEMPORAL PATTERNS – Cities are clustered close together that share similar 4 

baseline (2010) flood vulnerabilities as well as similar anticipated changes driven by climate change 5 

and development on population and urban damages costs by 2030. a) Locations of the cities are based 6 

on their individual relationships to the principal curves in the baseline and future projected changes 7 

data subsets - therefore, the axes represent the most important nonlinear gradients of flood 8 

vulnerabilities in the data set. Coloured bars along the axes indicate the average levels of each variable 9 

around the edges of the map. Cities are grouped into coloured clusters based on similarities. b) City 10 

labels are coloured by region, and characteristic patterns of general areas of the map are annotated. 11 

The reader may refer to the online version to zoom in on text if required. 12 

To further analyse the characteristics of each cluster and the patterns found on SOM3, the properties of each 13 

city in the 16 clusters are shown in a radial plot in Figure 4. Baseline values of population affected (blue, units = 14 

number of people) and damages (orange, units = $US) are shown on a symmetrical logarithmic scale ranging 15 

from -8 (ie. signifying a value of -100,000,000) to 11 (100,000,000,000) with the region between -1 and 1 on the 16 

plot set as linear to avoid logarithmic discontinuities in the vicinity of zero. Zero is indicated by a dashed 17 

circumference, and each progressive ring is an exponentially higher (or lower) value. Changes in population 18 

affected and damages costs are shown on the same scale, in grey and yellow respectively. Values inside the 19 

dashed (zero) circle represent decreases in flood impacts, and values outside represent increases, with the size 20 

of the increase or decrease indicated by the distance from the dashed circle. The influence of climate change is 21 

shown (light green for population and dark green for damages) on a linear scale from the same zero 22 

circumference, in units of ‘percentage of projected change attributable to climate change’ (each progressive 23 

ring is 10%). Green lines closer to the outer ring than the centre therefore indicate that the flood impacts on the 24 

city are anticipated to be more influenced by climate change than by development. If the green lines are both in 25 

the middle of the segment, this indicates a relatively equal influence of both drivers on both population and 26 
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property. Diverging green lines indicate that either population or damages costs are more influenced by climate 1 

change, and the other by development. 2 

From Figure 4, we can see the differences between neighbouring clusters, such as 10 and 16 located in the top 3 

right of the map. Both clusters are characterized by low baseline impacts of flooding on the population, with 4 

small increases in population impacts projected primarily due to climate change. However, cities in cluster 16 5 

incur no flood damages costs at all in the baseline or future cases, yet in cluster 10 damages costs are projected 6 

to increase due to climate change and development. Therefore, development has little or no impact on cities in 7 

cluster 16 but does play a role in the increase in damages in cluster 10. In the top left of SOM3, we can now also 8 

discern the difference between clusters 9 and 15. In both clusters, development is projected to have no impact 9 

on the reduction of flood damages costs in most cities. Development does however play a strong role in the 10 

reduction of flood impacts on populations in cluster 15 (except for Moscow and Casablanca) but none on 11 

populations in cluster 9. 12 

 13 

FIGURE 4: RADIAL PLOT OF CLUSTERS OF FIGURE 3 – The city members of the 16 clusters of 14 

Figure 3 are shown with their individual variable values. The scale is logarithmic for baseline 15 
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and changes in population and damages, and linear for the percent of change attributed to 1 

climate change, with the dashed circle representing zero. 2 

The relationship between the two drivers, climate change and development, can be discerned from Figures 3 3 

and 4. Climate change is projected to impact populations more than urban damages costs in clusters stretched 4 

across the centre of the map (clusters 8, 11, 5, 6, 12, 14, 1, 10, 1, 2, and 4 - in cities in these clusters, the proportion 5 

of change in the population affected attributed to climate change is higher than the proportion of change in 6 

damages costs attributed to climate change). In cluster 15, the population is projected to be more influenced by 7 

development than damages costs will be (a higher proportion of the change in damages costs is attributed to 8 

climate change than for population). In the remaining clusters, climate change (and development) are projected 9 

to affect the population and damages costs relatively similarly (clusters 7, 13, 9, 16 and 3). Some examples of 10 

diverging impacts on population and damages costs stand out on the radial plot in Figure 4. For instance, in Port 11 

Sudan, Sheffield and Bandung, significant reductions in affected population are projected to be 100% due to 12 

climate change, however large projected increases (~300 to 400%) in damages are due mostly to development. 13 

In Leshan, development is projected to slightly lower the amount of affected population and also to increase 14 

damages costs more than three-fold. 15 

4 DISCUSSION 16 

In this study, the ‘patterns’ and ‘clusters’ in the data have been identified. The patterns, depicting unique, key 17 

combinations of variables that are characteristic of the data set, have been extracted at three separate levels on 18 

SOM1, SOM2 and SOM3 (for example, each pattern of SOM3 is a separate combination of levels of baseline and 19 

projected future flood conditions as well as projected influences of climate change and development). The 20 

clusters consist of groups of cities whose conditions are anticipated to be similar to these patterns, based on the 21 

given data. In the previous section, the interpretation of each SOM (1-3) has been discussed. In this section, a 22 

discussion of a selection of the patterns and clusters is provided. The information that can be gleaned from the 23 

SOMs is related to information in current literature through the use of specific examples. 24 

The lower left region of SOM3 highlights the fact that a number of cities already experiencing large flood effects 25 

are anticipated to incur great flood increases influenced predominantly by socioeconomic factors. In these cities, 26 

climate change is playing a large role, and yet it is overshadowed by the magnitude of regional economic growth 27 

(UNEP, 2016; website 8) leading to migration, changing land use and unplanned development in flood zones. 28 

Many of these cities are in Asia, where the climate is experiencing warming trends, increasing temperature and 29 

precipitation extremes, and rapid glacial melting resulting from climate change (Pachauri et al., (2014) chapter 30 

24: ‘Asia’). However, it can be seen that socioeconomic growth in this area is projected to have even more of an 31 

impact on urban floods than climate change.  32 

Pachauri et al.  (2014, chapter 24: ‘Asia’) assert that human and material losses due to flooding are already heavily 33 

concentrated in India, Bangladesh and China and Jongman (2012) estimates the largest current and future 34 

economic exposure to river floods to be in Asia. As an example, we take a closer look at Dhaka which, with a GDP 35 

per capita of $1212 in 2015, already has one of the highest levels of population affected annually by flooding (over 36 

130,000) and this number is projected to increase almost five-fold (to over 630,000) by 2030. The greatest 37 

change predicted for Dhaka, though, is an almost 22-fold increase in annual damage costs (from $8 million to 38 

$175 million). Dhaka is subjected to regular flooding from surrounding rivers, with peak flows in the Brahmaputra 39 

and Ganges Rivers coinciding to exacerbate flood impacts. In the past, most low-lying areas of western Dhaka 40 

were infilled for residential and commercial use, causing a reduction in areas for flood water storage. 41 

Uncontrolled urban expansion is spreading rapidly across the floodplains in the east of the city placing more 42 
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people in flood hazard zones (Kreimer et al., 2003). These hasty developmental changes are having more of an 1 

impact on the urban hydrology of Dhaka than climate change is. Examples of cities in similar situations include: 2 

Kolkata (with the highest baseline affected population in this study), Mumbai (with a seven-fold increase in both 3 

population affected and damages due 40% and 60%, respectively, to development), Bangkok (with large 4 

increases, 50-75% of which are attributed to development) and Ho Chi Minh City (with a 50% increase in affected 5 

population and an over five-fold increase in damages costs, almost entirely attributed to development).  6 

On SOM3 we can identify that developmental changes in some cities appear to be effectively reducing impacts 7 

from river flooding, for example in Marrakech (cluster 15). The affected population level is projected to decrease 8 

mostly due to socioeconomic factors (website 3; Ward et al., 2013; Winsemius et al., 2013). Through an 9 

‘Integrated Disaster Risk Management and Resilience Program for Morocco’ (World Bank, April 2016-Dec 2021), 10 

Morocco is becoming more resilient to climate change and less vulnerable to natural hazards, and is ensuring a 11 

rapid transition to a low-carbon economy. Through Morocco’s National Strategy for Sustainable Development, 12 

a commitment has been made to reduce national greenhouse gas emissions by 32% by 2030. This will be done 13 

through an increase in renewable energy sources to 50%, a reduction in energy consumption by 15%, as well as 14 

various agricultural, water, waste, forest, industry and housing initiatives (website 9). These housing initiatives 15 

in Marrakech include a slum clearance and relocation project, which has become part of urban policy (Ibrahim, 16 

2016), reducing the amount of people inhabiting flood hazard zones. Alert systems in the valleys of the Atlas 17 

region above Marrakech have been improved, and the proportion of the population living in slums has decreased 18 

from over 8% in 2004 to less than 4% in 2010 (UN-Habitat website). The urbanization rate in Morocco is also 19 

projected to slow down towards 2030 (UN-Habitat website). This risk-prevention approach combining early 20 

warning systems, relocation of inhabitants out of the flood zone, and less urban expansion is expected to 21 

combine to reduce the impact of floods on the population of Marrakesh.  22 

Current high flood impact conditions projected to get much greater primarily due to climate change are 23 

anticipated for cities in the lower right of SOM3, with high magnitude changes expected for impacts on both 24 

population and property. One of these cities, Sao Paulo, is expected to experience an almost seven-fold increase 25 

in both the number of population affected (to over 140,000 annually) and urban damages costs (to over 26 

$500,000,000 annually) by 2030. 15% of the change in population and 35% of the change in damages is attributed 27 

to development, but the majority of the change is projected to come from climate change. Sao Paulo, the largest 28 

city in Brazil, has a city footprint projected to increase over 38% by 2030, by which time 22% of the urban area may 29 

be located in flood zones (Young, 2013). The IPCC (Pachauri et al., (2014) chapter 14 ‘Latin America’) predicts the 30 

increase in temperature in central and south Brazil to be the largest projected increase in Latin America, which 31 

will be combined with a 10-15% increase in autumnal precipitation, greatly affecting the hydrologic cycle in the 32 

region. The substantial change in development is therefore expected to be eclipsed by the even greater 33 

projected change in climate in Sao Paulo, and other cities in this region of SOM3. 34 

The anticipated reduction in flood damage costs caused by climate change evident in Cluster 15 may be a result 35 

of changing snow melt conditions upstream of these cities. It has been shown that some global regions will 36 

experience a decreasing trend in the magnitude and frequency of snow melt floods as the climate warms, as 37 

well as a shift in the timing of these floods (Schiermeier, 2011; Barnett et al., 2005; Immerzeel et al., 2010).  38 

Many high-income cities with already high current flood vulnerabilities have projections for large elevations in 39 

damage costs, but not increased levels of affected population. This can be seen in cities on SOM3 centred around 40 

London, Tokyo, LA and Vienna (cluster 3), and Sydney and Castellon (cluster 13). Through high levels of planning, 41 

preparedness and infrastructure, prosperous regions generally have systems in place to minimize flood impacts 42 

on the population, even though they may incur large economic losses (Desai et al., 2015; Kreimer et al., 2003). 43 
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Almost half of the projected increases in these clusters are attributed to development, suggesting that these 1 

cities may have the capacity for lessening potentially elevated flood damage costs by concentrating on planning 2 

and mitigation policies.  3 

Although changing climate in some areas is projected to lessen regional flooding, development within urban 4 

flood zones may be severe enough to offset any reductions in flood impacts. This can be seen most prominently 5 

in a strip on the left of SOM3 stretching from Port Sudan down to Santiago. 6 

Though this study does not consider coastal flooding, it may be noted that due to their locations near river 7 

mouths, many of the cities in the lower left of the map that are projected to experience high increases in impacts 8 

from river flooding are also at risk of increased coastal flooding from intensified storms and sea level rise due to 9 

climate change. Mumbai, Guangzhou, Shanghai, Ho Chi Minh City, Kolkata, Bangkok, and Dhaka are 7 of the top 10 

14 cities (out of 136) ranked by current population exposure to coastal flooding. These same cities also comprise 11 

the top 7 cities (in this order: Kolkata, Dhaka, Mumbai, Guangzhou, Ho Chi Minh City, Shanghai, Bangkok) ranked 12 

by future (2070) estimated population exposed to coastal flooding (UNEP, 2016; Nicholls et al., 2008). 13 

Almost all projected changes in flooding in this data set are of a relatively similar order of magnitude to the 14 

original effects, as can be observed on Figure 4. That is, most cities that are only marginally affected by flooding 15 

in 2010 are projected to experience only small increases by 2030, whereas cities with larger flood effects can 16 

expect greater changes indicated by the significant correlation between the magnitudes of the cities’ baseline 17 

flooding effects and the changes projected by 2030 (log-transformed absolute values for both variables) – an 18 

88% correlation exists in the number of population affected and a 94% correlation for property damage costs. 19 

This supports the findings of Milly et al. (2002) who observed that the frequency of large flood events in large 20 

basins had increased substantially in the 20th century, but smaller floods had not.   21 

The analysis in this paper is based solely on the data provided in Aqueduct, regardless of the extent to which on-22 

the-ground flood management measures are incorporated into the socioeconomic models which produced this 23 

data. A discussion characterizing individual cities is included here as a point of interest to relate the data to 24 

current national conditions, providing possible reasons why these cities may fit into the map where they do. 25 

5 CONCLUSION 26 

This study adds to the understanding of natural hazards in a global context, an important aspect of regional 27 

disaster risk management due to the dependency of local situations on global processes (Desai et al., 2015). 28 

Complex, nonlinear social-environmental relationships make it difficult to anticipate local responses to global 29 

changes (Desai et al., 2015), and this study contributes to risk communication (the process between risk 30 

perception and adaptation planning (Cardona et al., 2012)) providing a visual analysis of global patterns of 31 

evolving flood impacts, socioeconomic development and climate change, and the local city-level consequences 32 

of these changes.  33 

Global patterns of urban flood responses to global and local changes in hydrology driven by climate change and 34 

development have been identified and visually communicated through a series of related self-organizing maps. 35 

Cities have been matched to these global patterns, and relationships between the individual cities have been 36 

discerned with respect to baseline flooding conditions and expected future changes. The visual analysis in this 37 

study has revealed interesting city-level patterns that are otherwise unobservable in the complex data set, and 38 

provides a comparison and distinction between individual cities that is not apparent in regional- or economic-39 

level projections. 40 
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We have performed dimension reduction and clustering with a series of self-organizing maps to identify 1 

changing global patterns of city-level flood risks. The maps provide an indication of the predominant 2 

characteristics which determine the differences in urban river flood impacts between cities, and the cities occupy 3 

positions on the maps signifying their relative conditions. The method used here incorporates adaptions to the 4 

self-organising map technique for map shape selection and temporal pattern extraction, allowing two levels of 5 

information to emerge: the characteristic patterns of dynamic global urban flood vulnerabilities, and a 6 

comparison between the cities with respect to flood characteristics and trends. This SOM method could be 7 

adopted for visualising and clustering any large data set in which the underlying intervariable relationships are 8 

difficult to explicitly define, such as is common with human-environmental interactions, and which change over 9 

time. The resulting visualisations produce an overall impression of the temporal structure and clusters in the 10 

data, allowing for a readily understood overview of the relationships between the variables, and amongst 11 

individual data items.  12 

A shortcoming of the method used in this study is the assignment of flood protection level based on an 13 

assumption of proportionality with national income level. As standardised, current information on the real flood 14 

protection levels of all the cities in the data set is not readily available, this assumption has been necessary and 15 

has been made in line with current practice. This limitation has been recently acknowledged in the literature, 16 

with Winsemius et al. (2016) noting that ‘currently installed flood protection is an important missing link in the 17 

assessment of global flood risk’. Future studies may aim to include specific flood protection levels for each city. 18 

Whilst the timeline of this study is short, it is restricted by the data that is available. Studies at a global scale have 19 

been traditionally limited due to lack of cohesive data sets, and therefore the data set provided by Aqueduct is 20 

valuable for the fact that it spans a global set of cities and provides a rare opportunity for comparison. As the 21 

data is only provided for 2010 and 2030, there was no prospect for a longer analysis. Whilst this analysis may not 22 

provide a long-term outlook, at the very least an important insight into current and near-future conditions can 23 

be gained. 24 

Cities have major implications for climate change mitigation and adaptation (Revi et al., 2014). Unplanned 25 

development and urban migration are increasing vulnerabilities to natural hazards (UNEP, 2016) and land cover 26 

change and greenhouse gas emissions are intensifying urban hydrology. Understanding the relationship 27 

between flood impacts and social vulnerability is a necessary step for prioritizing flood mitigation and prevention 28 

strategies (Doocy et al., 2013). Whether the main driver of increased urban flood impacts is development or 29 

climate change, cities will benefit from development restrictions and planning standards for urban expansion, 30 

sustainable land development, management of population distribution and migration, and early warning 31 

systems and preparedness (Revi et al., 2014; UN-DESA, 2014; Doocy et al., 2013).  32 

Future work may include the addition of greenhouse gas emissions data, geographic location, city sizes and 33 

densities to this study, to discern the relationships of these factors with urban flood changes. Greenhouse gas 34 

emissions are the largest contributor to global warming, leading to alterations in the intensity of the hydrologic 35 

cycle (Pachauri et al., 2014, Barnett et al., 2005; Wentz et al., 2007; Schiermeier, 2011), and cities are the major 36 

contributors of greenhouse gases, with a large proportion of global emissions produced by a small global land 37 

area (Mills, 2007; Angel et al., 2010; Revi et al., 2014). The addition of these elements could highlight the essential 38 

role cities could play in climate change mitigation and the reduction of urban flood impacts.   39 
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