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ABSTRACT 1 

This study investigates patterns of current conditions and anticipated future changes in city-level flood 2 

impacts driven by urbanisation and climate change. Global patterns relating urban river flood impacts 3 

to socioeconomic development and changing hydrologic conditions are established, and world cities 4 

are matched to these patterns. Comparisons are provided between 98 individual cities. We use a 5 

novel adaption of the self-organizing map method to establish and present patterns in the nonlinearly-6 

related environmental and social variables. Output maps of prevalent patterns compare baseline and 7 

changing trends of city-specific exposures of population and property to river flooding, revealing 8 

relationships between the cities based on their relative map placements. Cities experiencing high (or 9 

low) baseline flood impacts on population and/or property that are expected to improve (or worsen), 10 

as a result of anticipated climate change and development, are identified and compared. This paper 11 

condenses and conveys large amounts of information through visual communication to accelerate the 12 

understanding of relationships between local urban conditions and global processes, and to 13 

potentially motivate knowledge transfer between decision makers facing similar circumstances. 14 
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1 INTRODUCTION 1 

Through urban development and climate change, humans are progressively generating (and being on the 2 

receiving end of) increased hydrologic impacts, with these anthropogenically induced changes becoming 3 

particularly evident in cities (Revi et al., 2014, Mills 2007, Kreimer et al., 2003; Willems et al., 2012). With high 4 

densities of urban populations, infrastructure, property and industry, cities are both substantial drivers and 5 

receivers of environmental impacts. River flooding, the environmental event affecting more people than any 6 

other natural hazard (Doocy et al., 2013; Desai et al., 2015; Sofia et al., 2016), currently poses a threat to almost 7 

380 million urban residents (UN-Habitat, 2014). Globally, hydrologic regimes leading to urban flooding are 8 

varying with climate change (Desai et al., 2015; UNEP, 2016; Willems et al., 2012), and locally, socioeconomic 9 

factors associated with urban development (variations in population growth, development, land use and urban 10 

density) are uniquely altering each city’s individual response to these changing flood levels and frequencies 11 

(Desai et al., 2015). In the next few decades, cities will need to anticipate and adapt to this combination of shifting 12 

quantities of water and city features (Revi et al. 2014; Doocy et al., 2013). In this study, we aim to develop an 13 

understanding of the prevalent global patterns of human-environmental relationships influencing city-level river 14 

flooding, and discover how a global set of individual cities fits into these patterns. 15 

Climate change and urbanization are combining to force more frequent flooding and higher flood peaks in cities, 16 

though the influence of each factor varies spatially and temporally (Desai et al., 2015). Historically, cities have 17 

formed near rivers and population density is still highest, globally, where the closest water feature is a large river. 18 

As cities grow, the proximity of population and property to these water courses increases (Kummu et al., 2011). 19 

It is estimated that 70% of the world’s population will live in cities by 2050 (UN-Habitat, 2010), up from 54% in 2015 20 

(UN-DESA, 2015). With this rapid urbanization, highly populated areas are experiencing an increase in flood 21 

vulnerability (Kreimer et al., 2003), as unplanned expansion often leads to migration into urban flood plains 22 

(Jongman et al., 2012; Revi et al., 2014). Global urban land cover is increasing at a rate over double that of urban 23 

population growth (Angel et al., 2010a) and is projected to increase three-fold by 2030 (Pachauri et al., 2014). 24 

More impervious areas and encroachment into the surrounding countryside are forcing faster concentrations of 25 

rainfall in urban rivers during storm events, as well as higher flood peaks (Desai et al., 2015; Doocy et al., 2013; 26 

Kreimer et al., 2003).  27 

Hydrology in cities is also affected by increased surface temperatures associated with climate change. Already, 28 

increases in the frequency and intensity of precipitation (Frich, et al. 2002; Desai et al., 2015; UNEP, 2016), changes 29 

in spatial and temporal storm patterns (Wasko & Sharma, 2015) and changing snow melt conditions (Schiermeier, 30 

2011; Barnett et al., 2005; Immerzeel et al., 2010) are leading to variations in the magnitude, frequency and timing 31 

of urban river floods, with higher peak flows and shorter response times (Shiermeier, 2011; Cunderlik, 2009). 32 

These changing patterns of precipitation and runoff are complex and not uniformly spatially distributed (Meehl 33 

et al., 2005; Desai et al., 2015; Wentz et al., 2007; Frich et al., 2002). In the future, cities in particular are predicted 34 

to become even more vulnerable to extreme hydrologic events as a result of climate change (Pachauri et al., 35 

2014; Willems et al., 2012; Revi et al., 2014, Sofia et al., 2016). Increases in rainfall intensity at urban hydrology 36 

scales of up to 60% are anticipated by 2100 (Willems et al., 2012), and the micro-climates of cities are expected to 37 

interact with climate change in a variety of ways, potentially exacerbating flood effects (Revi et al., 2014).  38 

In this paper, a comparison is made amongst a selection of cities based on their current and projected future 39 

urban river flood impacts on population and property, resulting from an anticipated combination of climate 40 

change and development. It should be noted that fluvial flooding is the only type of flooding that is considered 41 

here, and this study does not include an analysis of cities subject to coastal or pluvial flooding. Analysing data 42 

with city-specific projections of changes in hydrology, population and development levels (based on future 43 
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climate scenarios, projected development pathways, and a best assumption of flood protection standards) we 1 

produce an analysis and visualisation of the patterns of baseline conditions and anticipated changes in city-level 2 

river flooding impacts to the year 2030. We establish the prevalent global spatial and temporal patterns of urban 3 

flood impacts, explore these impacts as resulting from both developmental and hydrological drivers, and match 4 

the cities to their most similar pattern. The patterns are established through dimension reduction, clustering and 5 

visualisation of multivariate data with an adaptation of the self-organizing map (SOM) technique. The SOM is an 6 

artificial neural network useful for exploring nonlinearly related variables, and is popular for investigating 7 

potentially difficult-to-define environmental responses to human influences (e.g. Shanmuganathan et al., 2006; 8 

Vaclavik et al., 2013; Clark et al., 2016b) as well as providing comparisons between geographic areas (Kaski & 9 

Kohonen, 1996; Clark et al., 2015; Clark et al., 2016). We begin by presenting analyses of patterns of urban flood 10 

conditions (as measured by the amount of population affected and urban damages costs) for a baseline global 11 

snapshot (2010), then investigate projected temporal changes (up to 2030), and finally combine this information 12 

into a global temporal analysis of the cities. As individual cities are matched to their closest patterns at each 13 

stage, we discover clusters of cities with similar urban flooding characteristics and projected trends.  14 

A growing body of research is investigating the impact of anthropogenic changes on urban flooding at regional 15 

and global scales, however we have found no literature comparing specific cities in terms of changing city-level 16 

flood impacts on populations and property. The Intergovernmental Panel on Climate Change’s 5th Assessment 17 

Report Chapter 8 ‘Urban Areas’ (Revi et al., 2014) discusses the vulnerabilities and resilience of cities to climate 18 

change in general, noting that the analysis is based on economic losses and would differ if a human component 19 

is included. Jongman et al. (2012) investigated global trends of coastal and river flooding based on changing 20 

regional population densities and land use. Increased vulnerability to flooding is attributed to population growth 21 

or increases in wealth, though the modelling does not include changing hydrology due to climate change. 22 

Jongman et al. (2015) estimated regional trends in human and economic river flooding vulnerabilities by income 23 

level, through hazard and exposure calculations. Kunkel et al., (1999) investigated the increasing trend of 24 

economic losses and fatalities in the USA due to increasing vulnerability to floods, however the climate change 25 

contribution to this increase was not possible to quantify due to a lack of data. Winsemius et al. (2016) produced 26 

the first projections of global future flood risk that consider separate impacts of climate change and 27 

socioeconomic development, with results discussed by geographic region (river basin) and economic level. The 28 

investigation of the connection between coastal flooding and climate change (increasing storms combined with 29 

sea level rise) is more common in the literature than the connection between river flooding and climate change 30 

(Nicholls et al., 2008; Nature, 2016) due to better data availability. Most existing river flood assessments are at a 31 

local or regional scale (as in Muis et al., 2015), limiting the possibility to compare between multiple cities, as 32 

studies at a global scale have traditionally been limited by a lack of datasets and methods. Sofia et al (2016) 33 

emphasize that analyses of climate change and socio-economic development as both drivers and receptors of 34 

flood risk is needed. Muis et al. (2015) call for an investigation between the combination of land use change and 35 

hydrologic change on future flood risk. (Jongman et al., 2012) highlight that due to population growth and 36 

climate change, global methods incorporating both spatial and temporal dynamics to investigate inland flooding 37 

at the city scale are necessary for global development studies and estimating costs associated with climate 38 

change. To date, a global examination of changing flood conditions at the city level resulting from urban 39 

development and climate change, including a direct comparison between specific cities, has not been made. The 40 

analysis we present here corresponds directly to this gap in the literature.  41 

General patterns as well as specific relationships can be extracted from the output maps in this paper. In the 42 

interest of channelling the ‘potential of visual communication to accelerate social learning and motivate 43 

implementation of changes’ (Sheppard, 2005) the aim of the method used here is to discover and demonstrate 44 
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potentially interesting global patterns and relationships that would not otherwise be evident in the data, for 1 

example: clusters of cities which are currently experiencing high flood impacts that are projected to greatly 2 

increase in the future, and to what extent this may be due to climate change (or socioeconomic development) 3 

within each city; which cities not currently experiencing notable effects of flooding may expect to in the future; 4 

which cities are projected to mitigate potentially adverse flood effects from climate change with reductions in 5 

flooding due to socioeconomic factors; which cities are projected to experience an increased flood vulnerability 6 

driven by socioeconomic factors alone; and the relationship between the changes in vulnerability of the 7 

population and urban damages costs for each city. 8 

The comparison of individual cities in this study (rather than river catchments) allows a blending of 9 

environmental and social information which reinforces the co-dependence of humans and their natural 10 

environment, a relationship which is often easily overlooked by urban dwellers. Explicitly visualising the role that 11 

urbanisation may have on the environmental conditions experienced by urban citizens is an essential reminder 12 

of this connection. Cities potentially facing similar circumstances and challenges are identified in this study, 13 

suggesting possibilities for a sharing of strategies. As climate change, development, and urban administrations 14 

transcend river basin boundaries, an investigation of impacts and determination of potential mitigation 15 

strategies at the city level as well as the basin level expands the potential for decision makers to be presented 16 

with all the available, relevant data for consideration. 17 

2 DATA AND METHOD 18 

DATA 19 

The data set used in this study combines city-level estimates of annual expected urban river flood impacts on 20 

population and urban damages costs (2010), projections of future changes in flood impacts attributed to climate 21 

change and/or development (up to 2030), and socioeconomic data for a globally distributed set of cities.  22 

The selection of cities used here is based on a list provided by the Lincoln Institute of Land Policy’s Atlas of Urban 23 

Expansion (Angel et al., 2010, website 1), spanning all continents except Antarctica, encompassing four economic 24 

levels and four population levels. City population data (2010) and future population estimates (2030) are from 25 

the UN Department of Economic and Social Affairs (UN-DESA, 2015), and GDP per country are from the World 26 

Bank’s World Development Indicators database (website 2).  27 

Annual river flood impact estimates are obtained from the global dataset of fluvial flood risk published in the 28 

World Resources Institute’s Aqueduct Global Flood Analyzer Tool (herein referred to as Aqueduct) (Winsemius 29 

et al., 2013; Ward et al., 2013; website 3). Released in 2015, this data set comprises the first unified global set of 30 

fluvial flood risk data at the city level. As this data is solely related to the influence of fluvial flooding on 31 

metropolitan areas, it does not include coastal or pluvial flood risks. In this data set, Aqueduct provides separate 32 

estimates of annual impacts on the number of affected population (people exposed to flood waters) and urban 33 

property damages costs (in US dollars), which will be referred to in this paper as ‘population’ and ‘damages’ 34 

impacts.   35 

Global hydrologic and hydraulic models, inundation modelling, and spatial data sets of population, land use and 36 

infrastructure are used within Aqueduct to quantify flood risk in each city. Aqueduct identifies future anticipated 37 

changes in urban flood vulnerabilities as driven by climate change (altered hydrology), socioeconomic 38 

development (population, land use and economic changes), or in most cases a combination of both. Either of 39 

these drivers may increase or decrease the frequency and intensity of flooding, and the resulting flood impacts, 40 

for a given city. Three separate scenarios of climate change and socioeconomic development (optimistic, 41 
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business-as-usual, and pessimistic) are given in Aqueduct, and in this study we use data from the business-as-1 

usual case for our future flood impact scenario. Future hydrologic and hydraulic estimates in Aqueduct are based 2 

on global circulation model data from the ISIMIP project (website 4) and changes in population and economic 3 

development are based on Shared Socioeconomic Pathways data with a downscaling procedure that 4 

differentiates between urban and rural growth (website 5; Samir & Lutz, 2014). Recent papers published with 5 

this data include Winsemius et al. (2016), Jongman et al. (2015) and Muis et al. (2015). 6 

Expected flood impacts are provided by Aqueduct for nine possible levels of city-wide flood protection, from 7 

protection against the 2-year average return interval (ARI) flood to the 1000-year ARI flood. This protection level 8 

indicates how well protected the area is against flood damage, based on the standard or capacity of flood 9 

protection measures such as dikes, levees or dams. In this study, we assign an assumed flood protection level to 10 

each city based on the country’s World Bank income level (as in the World Resource Institute’s Aqueduct Global 11 

Flood Risk Country Rankings, website 6) due to a lack of information on each city’s actual protection level. This 12 

method follows recommendations based on the rational that higher standards of protection against flooding 13 

may be expected in higher income countries (Jongman et al., 2012; Nicholls et al., 2008), and findings by Doocy 14 

et al. (2013) that flood impacts are significantly associated with classification of income level by the World Bank. 15 

We assume each city’s flood protection level remains the same during the timeline of this study.  16 

To allow for a comparison between cities of greatly differing sizes and hydrologic conditions, the wide-ranging 17 

data values were log-transformed. The data set was then standardized by transforming these values linearly into 18 

the range 0-1 (with the lowest value becoming 0 and the highest value becoming 1) for each variable (population 19 

affected, urban damages, etc). The data is log transformed, following recommendation by Agarwal & Skupin 20 

(2008) that highly skewed variable distributions may benefit from log transformation before use in the SOM. 21 

Cities with no flood impacts in both 2010 and 2030 were removed (22 cities), though cities with no flood impacts 22 

in 2010 but with flood impacts in 2030 have been kept in the study. The final list of cities is presented in Table 1. 23 

TABLE 1: CITY LIST - alphabetically by region. 24 

Eastern Asia & the Pacific 

Anqing  China 
Ansan  Rep. of Korea 
Beijing  China 
Changzhi  China 
Chinju  Rep. of Korea 
Fukuoka  Japan 
Guangzhou China 
Leshan  China 
Pusan  Rep. of Korea 
Seoul  Rep. of Korea 
Shanghai  China 
Sydney  Australia 
Tokyo  Japan 
Ulan Bator Mongolia 
Yiyang  China 
Yulin  China 
Zhengzhou China 
 
Southeast Asia 

Bandung  Indonesia 
Bangkok  Thailand 
Ho Chi Minh City Vietnam 
Kuala Lumpur Malaysia 
Manila  Philippines 
Palembang Indonesia 
Songkhla  Thailand 

 
South Asia 

Dhaka  Bangladesh 
Hyderabad India 
Jalna  India 
Kanpur  India 
Kolkata  India 
Mumbai  India 
Puna  India 
Rajshahi  Bangladesh 
Vijayawada India 
 
Western & Central Asia 

Ahvaz  Iran 
Astrakhan  Russian Fed. 
Baku  Azerbaijan 
Gorgan  Iran 
Istanbul  Turkey 
Kuwait City Kuwait 
Malatya  Turkey 
Moscow  Russian Fed. 
Oktyabrsky Russian Fed. 
Sanaa  Yemen 
Shimkent  Kazakhstan 
Teheran  Iran 
Tel Aviv  Israel 
Yerevan  Armenia 

Zugdidi  Georgia 
 
North Africa  

Alexandria Egypt 
Algiers  Algeria 
Aswan  Egypt 
Cairo  Egypt 
Casablanca Morocco 
Marrakech Morocco 
Port Sudan Sudan 
Tebessa  Algeria 
 
Sub-Saharan Africa  

Accra  Ghana 
Bamako  Mali 
Harare  Zimbabwe 
Ibadan  Nigeria 
Johannesburg South Africa 
Kampala  Uganda 
Kigali  Rwanda 
Ouagadougou Burkina Faso 
 
 
 
Latin America & the Caribbean 

Buenos Aires Argentina 
Caracas  Venezuela 
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Guadalajara Mexico 
Ilheus  Brazil 
Jequie  Brazil 
Mexico City Mexico 
Montevideo Uruguay 
Ribeirao Preto Brazil 
Santiago  Chile 
Sao Paulo  Brazil 
Tijuana  Mexico 
Valledupar Colombia 
 
North America 

Chicago  United States 

Cincinnati  United States 
Houston  United States 
Los Angeles United States 
Minneapolis United States 
Modesto  United States 
Philadelphia United States 
Pittsburgh  United States 
Springfield United States 
St. Catharine’s Canada 
Tacoma  United States 
 
Europe 

Budapest  Hungary 

Castellon  Spain 
Le Mans  France 
Leipzig  Germany 
London  UK 
Madrid  Spain 
Paris  France 
Sheffield  UK 
Thessaloniki Greece 
Warsaw  Poland 
Wien  Austria 

 1 

METHOD  2 

We use an extension to the self-organizing map method to determine patterns and similarities in the impacts, 3 

changes and drivers of urban flooding amongst the cities. The self-organizing map (SOM, Kohonen, 2001) is an 4 

unsupervised learning algorithm from the family of artificial neural networks that discovers patterns in 5 

multivariate data sets with nonlinear inter-variable relationships.  6 

The SOM reduces the dimensionality of the data set by creating a (in this case) two-dimensional map grid which, 7 

through an iterative process, is essentially bent and stretched over the data set until it best characterizes the 8 

shape of the data cloud. The numerous data items become represented by a (usually) much smaller number of 9 

map nodes, known as prototypes. The map nodes, or prototypes, move iteratively into position amongst the 10 

data whilst maintaining their grid formation, establishing a higher density of prototypes in areas of higher data 11 

density. Once in position, the prototypes represent the most prevalent patterns in the data. Each data item is 12 

then matched to its closest prototype, creating clusters of similar data items.  13 

The SOM algorithm consists of a two-step iterative process of comparing the map and the data, and then 14 

updating the map to better represent the data. The method begins with a calculation of distances in data space 15 

(in this case we use Euclidean distance) between each data item, 𝑥𝑖  (where 𝑖 = 1:𝑁), and each map node, 𝑚𝑗  16 

(where 𝑗 = 1:𝑀). Data and map nodes vectors are all of the same dimension, 𝑑. The goal of the comparison 17 

stage is to find the nearest map node to each data item (commonly referred to as the best matching unit, BMU), 18 

which is then given the index 𝑐, using the following calculation: 19 

‖xi −mc‖ = minj{‖xi −mj‖} . 20 

This partitions the data into subsets of items sharing the same nearest node, mc. Next, the locations of the 21 

map nodes are adjusted to become closer to their nearby data items. Application of a smoothing 22 

‘neighbourhood’ kernel during this stage produces a smoother map by updating neighbouring nodes to a 23 

similar extent based on the nearby data. That is, the location of each map unit, 𝑚𝑗 , becomes updated based 24 

on a weighted average of the data items matching itself as well as its neighbouring nodes, where the 25 

weighting is given by the neighbourhood kernel. The size of the kernel decreases with each iteration to include 26 

fewer nodes. We use a Gaussian shaped neighbourhood kernel, where ℎ𝑖𝑗  (the neighbourhood kernel 27 

element indicating the influence of each data item, 𝑥𝑖, on the updating of node 𝑚𝑗) is defined at iteration 𝑡 as: 28 

hij(t) = exp(
−(𝑚𝑐 −𝑚𝑗)

2

2σ²(t)
) 29 

where σ is the kernel radius. At each iteration (t), the updated node locations are found as in (Kohonen, 2013): 30 
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mj(t + 1) =
∑ hij(t)xi
𝑁
i=1

∑ hij(t)
N
i=1

. 1 

After map training is complete, the map node vectors each represent a unique combination of variables in the 2 

data, according the final location of the map nodes in data space. Each of these unique combinations of 3 

variables represent a characteristic pattern in the data.  The data items are once again matched to their closest 4 

map node, forming clusters of data that best match each pattern. 5 

In this study, the ‘patterns’ are the key characteristics represented by each map node vector (such as specific 6 

baseline and/or projected flood conditions, and the drivers of change). The ‘cluster’ members are the cities that 7 

match the pattern represented by their nearest map node better than they match the patterns of any other 8 

nodes. 9 

As the SOM is an unsupervised learning algorithm, there is no subjectivity in the resulting cluster memberships. 10 

The iterative training process discovers the principal curves of the data set (the nonlinear directions of maximum 11 

variance) and aligns the map coordinate system with these, so that the two axes of the map generally follow the 12 

first two principal curves of the data. When the map is presented in its two-dimensional form, with data items 13 

located at their nearest map node, similar data ends up in close proximity on the map and dissimilar data is far 14 

apart. Through the SOM creation process the prevalent data patterns are identified by the nodes, data items 15 

become grouped into clusters around these patterns, and the clusters are ordered by similarity on the map. For 16 

a more detailed summary of the SOM method, refer to e.g. Clark et al. (2015).  17 

In this study, the data set is split into two subsets (‘baseline’ data and ‘projected future changes’) for each city, 18 

allowing a progressive investigation of spatial and temporal patterns of urban flooding. A series of three 19 

separate SOMs (also referred to as maps) are created with prevalent global patterns and city similarities 20 

established separately on each map through colouring and labels, as follows: 21 

• SOM1 explores the spatial properties of the baseline data set, enabling a comparison of the state of 22 

urban river flood impacts in each city at a snapshot in time (2010).  23 

• SOM2 explores patterns of projected temporal changes in impacts of urban flooding on population and 24 

property (to 2030), incorporating the drivers of climate change and urban development, and 25 

• SOM3 portrays the temporal relationships between the cities in a type of longitudinal exploratory data 26 

analysis, clustering cities that are similar in the baseline situation and are also projected to trend similarly 27 

in response to each driver in the future.  28 

SOM1, the baseline map, depicts prevalent global spatial patterns and identifies urban flooding conditions in 29 

each city based on two variables: 1) the total population affected annually by river flooding, and 2) annual urban 30 

property damages costs incurred by river flooding. The map is created based on these two variables, though by 31 

projecting new variables onto the trained map it is also used to show: 3) the percentage of each city’s population 32 

affected, and 4) the percentage of the country’s GDP affected. Usually used with higher-dimensional input data, 33 

the SOM method is useful here for creating a map with two variables as the nonlinear projection establishes the 34 

relationships between cities in alignment with the directions of maximum variance (ie. the directions of most 35 

importance) in the data. It also allows for the results to be used as input into SOM3 later. 36 

SOM2, the future projected changes map, describes the anticipated alterations in urban river flooding in each 37 

city by 2030. This map is based on four variables of projected changes and their associated drivers: 1) the 38 

projected change in population affected annually, 2) the projected change in annual urban damages costs, 3) the 39 

proportion of change in population affected that is anticipated to be attributable to climate change, and 4) the 40 
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proportion of change in urban damages costs that is anticipated to be attributable to climate change. The 1 

remainder of the increase or decrease in impacts is attributed to socioeconomic causes (such as population 2 

change, urban density change, increased city footprint, and changes in urban land cover).  3 

SOM3, the temporal map, uses the location of each city along the axes of the two-dimensional baseline and 4 

future projected changes maps (which essentially delineate the first two principle curves in each higher 5 

dimensional data subset) as input data. In creating SOM1 and SOM2, the baseline and future data subsets have 6 

already been reduced to their two most prominent dimensions respectively (which have become the axes of 7 

these maps), and each of these four dimensions is considered equally when placing the cities on the temporal 8 

map. This method is based on the method used in Clark et al. (2015) to investigate individual data items 9 

transitioning through a self-organizing-time-map, and has been modified for the comparison of patterns on two-10 

dimensional maps of differing sizes and shapes that have been created separately based on different variables.  11 

Distinct patterns that have emerged through the process of training the three maps are represented by the 12 

nodes of SOM3. These patterns are the most relevant combinations of dynamic city flood impacts, 13 

socioeconomic, and climate change characteristics in the overall data set. SOM3 is clustered, coloured and 14 

labelled to indicate the relationships between the cities in terms of similar or differing baseline situations and 15 

projected changes. Cities with relatively close locations on both the baseline and future projected changes maps 16 

are considered to have parallel temporal paths, and will be found close together on the temporal map. Those 17 

with converging trends (dissimilar baseline conditions, but similar future projected changes) and diverging 18 

trends (close baseline conditions, but dissimilar future projected changes) are also identifiable on this map.  19 

In the creation of each map, grid size and shape have been determined using quantization, topographic and 20 

dimension range representation error measures (QE, TE, and DRR) with comparisons between the data set and 21 

the map.  22 

The QE (Kohonen, 2001) measures how well the map nodes represent the data items using the sum of squared 23 

Euclidean distances between each data item, 𝑥𝑖 , and the node closest to it, 𝑚𝑐, averaged over all data points: 24 

𝑄𝐸 =
1

𝑁
∑ ‖mc − xi‖

𝑖  = 

1

𝑁
∑ √(𝑚𝑐

2 + 𝑥𝑖
2 − 2𝑚𝑐𝑥𝑖)


𝑖 . 25 

The TE (Kiviluoto, 1996) indicates how well the topography of the data set is preserved on the map, giving higher 26 

error values for maps that are unnecessarily bent or twisted. The BMU and second BMU for each data point are 27 

checked to determine if they are adjacent (𝑢𝑥𝑖 = 1  if the first and second BMUs of 𝑥𝑖  are neighbours, 0 28 

otherwise), and TE is calculated as: 29 

𝑇𝐸 =
1

𝑁
∑𝑢𝑥𝑖

𝑁

𝑖=1

 30 

The DRR (Clark et al., 2015) measures how well the map represents each variable of the data set to ensure even 31 

coverage of the dimensions. The maximum intra-cluster spread of data items in each dimension, 𝑑, that become 32 

represented by a single map node, 𝑥𝑖  (as a proportion of the overall data range in that dimension) is determined. 33 

The DRR is calculated as follows, where 𝑥𝑖(𝑑) are data values in dimension 𝑑, and 𝑥𝑖𝑗(𝑑) are the data values in 34 

dimension 𝑑 that are assigned to map unit 𝑗: 35 

𝐷𝑅𝑅(𝑑) = max
𝑗

max
𝑖𝑗

(𝑥𝑖𝑗(𝑑)) − min
𝑖𝑗

(𝑥𝑖𝑗(𝑑))

max
𝑖
(𝑥𝑖(𝑑)) − min

𝑖
(𝑥𝑖(𝑑))

 36 



9 
 

For the baseline map, a 10*7 grid is found to be the optimum shape to represent the data based on the error 1 

measures. An 8*8 map is fitted to the future projected changes data set. After finding these optimum side ratios, 2 

the maps are increased in size preserving their side ratios (to 20*14 and 18*18) to allow the data items to spread 3 

out until most cities are placed individually, allowing the relationships between all cities to become evident (as 4 

in Skupin & Hagelman, 2005). The temporal map is sized at 25*17 nodes. Whilst the input data for the baseline 5 

and future projected changes maps were standardized into the range 0-1 before training, the input data for the 6 

temporal map is not standardised in order to preserve the ratios between the lengths of the first two principal 7 

curves in each of the first two data subsets.  8 

Prevalent cluster characteristics are determined using a ‘second level’ clustering of the nodes of the SOM (as in 9 

Vesanto & Alhoniemi, 2000; Skupin & Hagelman, 2005), performed using Ward’s clustering method (Ward, 1963) 10 

with the number of clusters determined using the Davies-Bouldin index (Davies & Bouldin, 1979). The Davies-11 

Bouldin index reports the ratio of within cluster scatter (𝑆𝑗 forcluster𝑗) to inter-cluster distances, looking at 12 

each cluster and its most similar one, (𝑀𝑗𝑘), with a lower ratio (𝑆 𝑀⁄ ) indicating a better estimate of the number 13 

of clusters of interest present in the data. Ward’s minimum variance method is a hierarchical clustering algorithm 14 

based on minimizing the total within-cluster variance. With this second-level clustering, each data item of the 15 

original data set becomes a member of the same final cluster as its closest node (Vesanto & Alhoniemi, 2000). 16 

The final clustering is visually verified with a SOM ‘U-matrix’ (Ultsch, 2003). The U-matrix visualises distances in 17 

data space between immediately neighbouring nodes, indicating these distances by colour on a grid of the same 18 

size as the SOM. By computing how close adjacent map nodes are in data space, the U-matrix is able to provide 19 

an indication of cluster boundaries based on large dissimilarities between neighbouring nodes. A greater change 20 

in relative distance between the locations of the nodes in data space than in map space is displayed in a lighter 21 

colour on the grid, and lesser distances in darker shades. The darker regions of the grid then indicate the cluster 22 

centres, separated by lighter coloured boundary areas. 23 

By reducing the information from this multivariate data set into the two most prominent dimensions and finding 24 

relationships between the data items at each of these three stages, spatial and temporal information about 25 

global patterns of urban flooding is abstracted, and similarities and differences between the cities are clearly 26 

portrayed. This method extracts two levels of information:  27 

(1) the most characteristic socio-environmental patterns in the data are found, and 28 

(2) cities are compared to each other with respect to their relative flooding conditions.  29 

The simulations are run in Matlab with use of the SOM Toolbox (website 7) with variables and map sizes as 30 

described above.   31 

3 RESULTS 32 

Three SOMs are presented sequentially to reveal three unique sets of patterns in the data, where the term 33 

‘patterns’ refers to combinations of variables that characterise a specific set of conditions. The cities are 34 

clustered into groups with conditions matching these patterns, based only on the given data. The maps each 35 

have different sizes, shapes and colours as they represent different subsets of input data. 36 

SOM1: BASELINE URBAN FLOOD IMPACTS 37 

Patterns of urban flood conditions in 2010 are shown on the baseline map, SOM1, in Figure 1. The placement of 38 

city labels indicates the relationship of each city to each other in terms of river flood impacts on population and 39 
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urban damages costs. The map is created by organizing the cities with respect to each other based on both of 1 

these factors. Cities close together are more similar in the amount of population affected and urban damages 2 

costs, and cities located far apart are less similar.  3 

The relative placement of the cities on the map is the main map characteristic providing insight into the features 4 

of the data, indicating differences in a combination of the variables which can be discerned from the colouring 5 

of Figure 1(a). Each map node has a four-component vector (representing the value of each of the four variables 6 

at the location of the node in data space). The four images in Figure 1(a) show SOM1’s city labels over grids 7 

coloured separately by the values of each of the four variables (white is low, purple is high). For each city, the 8 

relative value of each of the variables can be seen. For example, Cincinnati (top right) incurs high material 9 

damages costs, and medium population affected, whereas Ulan Bator (mid left) has similar population affected 10 

to Cincinnati, but much lower material damages costs.   11 

The nonlinearity of the relationships between the variables is evident, as is the smooth transition of the values 12 

of each variable along the map. General information about the prevalent baseline global patterns and the relative 13 

flood conditions in the specific cities can be gained from inspection of these map labels and coloured grids.  14 

Each area of the grid represents a general pattern, or combination of variables in the data, some of which are 15 

indicated by annotations on Figure 1(b).  In general, higher amounts of population affected and urban damages 16 

costs resulting from river flooding are represented by areas towards the top of the map, and these variables 17 

decrease in value down the map. Values of affected population are lowest just in from the lower left corner and 18 

undulate along the bottom of the map, sweeping upwards to a maximum at the upper left corner. Urban damage 19 

values are lowest in the lower left corner and increase in concentric arcs up to the upper right corner. Generally, 20 

the left of the map contains patterns involving higher impacts on populations than on property, and the right of 21 

the map higher impacts on property than on populations. 22 

From Figure 1(b), relationships can be discerned between regions, as well as between cities in the same region. 23 

For instance, cities in North Africa, Sub-Saharan Africa and West & Central Asia are predominantly located in the 24 

lower portion of the map, corresponding to a prevalent pattern of low flood impacts on both population and 25 

property. Cities in Southeast and South Asia generally correspond to the patterns of high impacts on population 26 

and property found in the upper left of the map. Cities in Europe stretch from the top to the bottom of the map, 27 

ranging from high overall flood effects (Paris) to no flood effects at all (Thessaloniki). North American cities are 28 

matched to patterns that represent more significant impacts on property than on population (down the right 29 

side of the map), and are split between those with high property damages (Philadelphia, LA, etc. – in the top 30 

right) and those with low damages (St. Catherine’s – in the bottom right).  31 

Impacts on GDP and the proportion of the cities’ populations affected are shown in the two lower maps of Figure 32 

1(a), though these variables were not used to position the cities on the map. Cities in which river-related urban 33 

flooding is estimated to highly affect the country’s GDP are coloured on the lower left map. Kigali, in particular, 34 

which incurs medium-high flood impacts, sees a large impact on Rwanda’s GDP, perhaps because Kigali is the 35 

main city in this relatively small country (Kreimer et al., 2003).  GDP is most affected by flooding in: Kigali, 36 

Bangkok, Yerevan, Dhaka, Bamako and Cairo. Cities in which the flood-affected population forms a significant 37 

proportion of the city’s population are coloured on the lower right map, predominantly in a horizontal strip 38 

across the centre. The highest proportions are in: Jequie (15%), Kigali (7%), Chinju (6%), Le Mans (5%) and Tacoma 39 

(3%).  40 
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 1 

FIGURE 1: SOM1 - BASELINE (2010) URBAN FLOOD CONDITIONS. Cities are placed relative to each 2 

other based on annual river flooding impacts on population and urban damages costs. a) The same 3 

map is repeated for each of four variables, with colouring indicating low (white) and high (purple) 4 

values. b) The city labels are coloured by region (see Table 1), and characteristic patterns of 5 

general areas of the map are annotated. The reader may refer to the online version to zoom 6 

in on text if required. 7 

SOM2: PROJECTED CHANGES IN URBAN FLOOD IMPACTS (TO 2030) 8 

SOM2 identifies the projected patterns of evolving river flood conditions in the cities (between 2010 and 2030), 9 

based on city-specific projections of increasing or decreasing flood impacts on population and damages costs, 10 

and whether these changes are anticipated to be driven more by climate change or development (Figure 2). 11 

In Figure 2(a), regions of the map representing projected increases in flood impacts on either populations or 12 

damages costs are coloured blue and reductions in flood impacts are coloured brown (in the top row), with 13 

white indicating no projected change. Projected changes primarily driven by socioeconomic development are 14 

coloured purple (in the lower row), and green indicates that the primary driver is climate change. White 15 

represents a mid-point in which both climate change and development are predicted impact future flood 16 

conditions relatively equally. Areas of the map representing patterns of increased flood impacts predominantly 17 

due to climate change or development can be located on Figure 2(b).  18 

Investigating SOM2, we see that climate change is projected to be predominantly responsible for increases in 19 

population vulnerability in all cities besides those in the top left corner (around Ho Chi Minh City). Climate change 20 

is anticipated to decrease flood damages costs in cities located at the bottom of the map (around Madrid), and 21 

decrease impacts on populations in cities in the mid-left (around Minneapolis) and mid-lower (again around 22 

Madrid) portions of the map. Socioeconomic development is projected to be the main driver increasing flood 23 
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damages costs in cities on the upper-left triangle of the map (roughly from Mumbai down to Tebessa). Only in 1 

Ho Chi Minh City is development anticipated to be almost completely responsible for all increases in river flood 2 

impacts, all other cities in this study are at least partially affected by climate change. Development is not 3 

projected to play any part in a decrease in flood damages costs in any cities in this study (Caracas and Tebessa 4 

have no change in damages costs on the upper map, though it is attributed to development on the lower map). 5 

a) 6 

Change in population affected by river floods   Change in urban damages costs from river floods 

 

 
Decrease projected by 2030                                                           Increase projected by 2030 

 
Proportion of change in affected population  
driven by climate change and development   

Proportion of change in damages costs  
driven by climate change and development 

 

 
More influence by climate change                                 More influenced by development 
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b) 

 

FIGURE 2: SOM2 - PROJECTED CHANGES IN RIVER FLOOD IMPACTS WITH ASSOCIATED DRIVERS. 1 

River flooding in individual cities will be affected separately by climate change and development 2 

between 2010 and 2030. Cities that are anticipated to experience similar pressures and responses in 3 

terms of river flooding impacts are located nearby on the map. a) City labels are placed over coloured 4 

copies of the map showing the relative values of each variable. b) City labels are coloured by region, 5 

and characteristic patterns of general areas of the map are annotated.  The reader may refer to the 6 

online version to zoom in on text if required. 7 

Geographic regions are shown on Figure 2(b) with coloured text backgrounds. Cities in Southeast Asia are almost 8 

all found at the top of the map indicating high projected increases in overall flood impacts. South Asian cities are 9 

mostly located in the two areas of the map with patterns of very high increases in flood impacts, split between 10 

those most affected by development (around Mumbai, top middle) and those most affected by climate change 11 

(around Puna, mid right). Many North African cities are located in the lower left, indicating anticipated reductions 12 

in flooding due to socioeconomic development. North American cities are spread across the middle of the map 13 

indicating a wide range of projected changes. 14 

Climate change and development may lead to opposing changes in a city’s flood impacts on population and 15 

property. A number of cities are predicted to have affected populations decreasing due to climate change, whilst 16 

damages costs increase due to socioeconomic factors (around Springfield and Port Sudan, in the mid-left). A 17 

decrease in flood effects on urban damages due to climate change, but an increase in affected population largely 18 

due to development is, out of the cities in this study, only projected for Algiers (in the lower left portion of the 19 

map). 20 

In some cities, both drivers may generate changes in the same direction. For instance, in Marrakech, Yulin, 21 

Yerevan and Gorgan, climate change is projected to be responsible for a decrease in damages costs whilst 22 

socioeconomic development is anticipated to play a major role in the decrease in population affected, suggesting 23 
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that the reduction of population vulnerability due to development is complementing the direction of change 1 

instigated by climate change. In certain cities near the upper left of the map (Santiago, Zugdidi and Yiyang), an 2 

overall increase in flood impacts is expected, with increases in affected population almost completely attributed 3 

to climate change and increases in damages costs almost completely attributed to development. 4 

SOM3: TEMPORAL PATTERNS 5 

Relationships between the baseline characteristics and projected future changes of urban flooding in the 6 

individual cities are shown in Figures 1 and 2 respectively, however potentially similar temporal patterns between 7 

the cities are not evident from these maps. To link the information abstracted from the first two maps, we create 8 

a temporal map, SOM3, shown in Figure 3. SOM3 identifies which cities experience similar baseline flooding, are 9 

expected to incur comparable future hydrologic pressures from climate change and/or development, and are 10 

projected to respond in similar ways (or which cities may diverge in the future from similar baseline conditions).  11 

Following the creation of SOM3 and the positioning of cities with respect to each other, we perform a second 12 

level clustering to colour the nodes, giving a visual separation to groups of more similar data. Clusters are 13 

numbered from 1 to 16 for reference. As the cities are placed on the temporal SOM based on their locations on 14 

the baseline and future projected changes SOMs (in which the values of the variables vary smoothly though not 15 

monotonically along the axes), again the characteristics of the cities will flow smoothly along the map though 16 

multiple peaks and troughs of each variable are possible. The gradients of the cluster characteristics are indicated 17 

along the axes in Figure 3(a), which are nonlinear in data space. 18 

Broad overviews of the patterns represented by certain regions of the map are identified on Figure 3 with arrows. 19 

The largest increases in flood effects are generally represented by nodes in the lower half of the map, whilst the 20 

largest decreases in flood effects are represented by nodes in the top left. Climate change is predicted to be the 21 

main driver of changes in population vulnerability along the top and down the left and right sides of the map, 22 

and in urban damages on the top and right of the map; therefore, climate change is the leading driver of changes 23 

in flood impacts on both population and damages costs at the top of the map. Development is the main driver 24 

of changes in flood impacts on populations in the lower and upper left side of the map, and on urban damages 25 

in the lower left area of the map; therefore, development is the leading driver of changes in flood impacts on 26 

both population and damages costs in cities on the lower left side of the map.  27 

On Figure 3(b) the city labels are coloured by geographic region. We see the cities of each geographical region 28 

are more spread out on SOM3 than on SOM1 where each region was generally contained in one or two broad 29 

areas of the map. For example, on SOM3 Cairo and Aswan are noticeably separated from other North African 30 

cities which are located close together. Although the cities of this region have differing baseline flood levels (as 31 

shown on SOM1), most are projected to incur some reduction in future flood impacts (as shown on SOM2), with 32 

the exception of Cairo and Aswan. These cities both have forecasts of increased flood impacts - for Aswan 33 

increased impacts on the population due to climate change and impacts on property due to development, and 34 

for Cairo future impacts are projected to increase due to a relatively even mixture of both drivers. For another 35 

example, cities in the USA (all of which have similar starting conditions) are in two well-separated clusters on 36 

SOM3 - those around Houston and those around Los Angeles. The cities clustered around Houston are 37 

characterised by low impacts on population but high damages costs projected to elevate due to development, 38 

implying the possibility for local redemption due to better planning or mitigation strategies. The cities clustered 39 

around Los Angeles, however, are characterised by high overall impacts projected to get higher predominantly 40 

due to climate change. Further, in Sub-Saharan Africa we see Kigali and Bamako (which have similar medium-41 

high baseline flooding conditions) are both expected to see increased impacts, but the cities are separated by 42 

SOM3 as these flood increases are attributed to development in Kigali and climate change in Bamako. 43 
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FIGURE 3: SOM3 - TEMPORAL PATTERNS – Cities are clustered close together that share similar 4 

baseline (2010) flood vulnerabilities as well as similar anticipated changes driven by climate change 5 

and development on population and urban damages costs by 2030. a) Locations of the cities are based 6 

on their individual relationships to the principal curves in the baseline and future projected changes 7 

data subsets - therefore, the axes represent the most important nonlinear gradients of flood 8 

vulnerabilities in the data set. Coloured bars along the axes indicate the average levels of each variable 9 

around the edges of the map. Cities are grouped into coloured clusters based on similarities. b) City 10 

labels are coloured by region, and characteristic patterns of general areas of the map are annotated. 11 

The reader may refer to the online version to zoom in on text if required. 12 

To further analyse the characteristics of each cluster and the patterns found on SOM3, the properties of each 13 

city in the 16 clusters are shown in a radial plot in Figure 4. Baseline values of population affected (blue, units = 14 

number of people) and damages (orange, units = $US) are shown on a symmetrical logarithmic scale ranging 15 

from -8 (ie. signifying a value of -100,000,000) to 11 (100,000,000,000) with the region between -1 and 1 on the 16 

plot set as linear to avoid logarithmic discontinuities in the vicinity of zero. Zero is indicated by a dashed 17 

circumference, and each progressive ring is an exponentially higher (or lower) value. Changes in population 18 

affected and damages costs are shown on the same scale, in grey and yellow respectively. Values inside the 19 

dashed (zero) circle represent decreases in flood impacts, and values outside represent increases, with the size 20 

of the increase or decrease indicated by the distance from the dashed circle. The influence of climate change is 21 

shown (light green for population and dark green for damages) on a linear scale from the same zero 22 

circumference, in units of ‘percentage of projected change attributable to climate change’ (each progressive 23 

ring is 10%). Green lines closer to the outer ring than the centre therefore indicate that the flood impacts on the 24 

city are anticipated to be more influenced by climate change than by development. If the green lines are both in 25 

the middle of the segment, this indicates a relatively equal influence of both drivers on both population and 26 
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property. Diverging green lines indicate that either population or damages costs are more influenced by climate 1 

change, and the other by development. 2 

From Figure 4, we can see the differences between neighbouring clusters, such as 10 and 16 located in the top 3 

right of the map. Both clusters are characterized by low baseline impacts of flooding on the population, with 4 

small increases in population impacts projected primarily due to climate change. However, cities in cluster 16 5 

incur no flood damages costs at all in the baseline or future cases, yet in cluster 10 damages costs are projected 6 

to increase due to climate change and development. Therefore, development has little or no impact on cities in 7 

cluster 16 but does play a role in the increase in damages in cluster 10. In the top left of SOM3, we can now also 8 

discern the difference between clusters 9 and 15. In both clusters, development is projected to have no impact 9 

on the reduction of flood damages costs in most cities. Development does however play a strong role in the 10 

reduction of flood impacts on populations in cluster 15 (except for Moscow and Casablanca) but none on 11 

populations in cluster 9. 12 

The relationship between the two drivers, climate change and development, can discerned from Figures 3 and 13 

4. Climate change is projected to impact populations more than urban damages costs in clusters stretched across 14 

the centre of the map (clusters 8, 11, 5, 6, 12, 14, 1, 10, 1, 2, and 4 - in cities in these clusters, the proportion of 15 

change in the population affected attributed to climate change is higher than the proportion of change in 16 

damages costs attributed to climate change). In cluster 15, the population is projected to be more influenced by 17 

development than damages costs will be (a higher proportion of the change in damages costs is attributed to 18 

climate change than for population). In the remaining clusters, climate change (and development) are projected 19 

to affect the population and damages costs relatively similarly (clusters 7, 13, 9, 16 and 3). Some examples of 20 

diverging impacts on population and damages costs stand out on the radial plot in Figure 4. For instance, in Port 21 

Sudan, Sheffield and Bandung, significant reductions in affected population are projected to be 100% due to 22 

climate change, however large projected increases (~300 to 400%) in damages are due mostly to development. 23 

In Leshan, development is projected to slightly lower the amount of affected population and also to increase 24 

damages costs more than three-fold. 25 



19 
 

 1 

FIGURE 4: RADIAL PLOT OF CLUSTERS OF FIGURE 3 – The city members of the 16 clusters of 2 

Figure 3 are shown with their individual variable values. The scale is logarithmic for baseline 3 

and changes in population and damages, and linear for the percent of change attributed to 4 

climate change, with the dashed circle representing zero. 5 

4 DISCUSSION 6 

In this study, the ‘patterns’ and ‘clusters’ in the data have been identified. The patterns, depicting key 7 

combinations of variables that are characteristic of the data set, have been extracted at three separate levels on 8 

SOM1, SOM2 and SOM3. For example, each pattern of SOM3 is a separate combination of levels of baseline and 9 

projected future flood conditions as well as projected influences of climate change and development. The 10 

clusters consist of groups of cities whose conditions are anticipated to be similar to these patterns, based on the 11 

given data. A discussion of a selection of these patterns and clusters is provided here. 12 

Some cities already experiencing large flood effects are anticipated to incur great flood increases influenced 13 

predominantly by socioeconomic factors (migration, changing land use and unplanned development in flood 14 

zones). In the lower left region of SOM3, we see examples of cities in which climate change is playing a large 15 

role, and yet it is overshadowed by the magnitude of regional economic growth (UNEP, 2016; website 8). Many 16 

of these cities are in Asia, where the climate is experiencing warming trends, increasing temperature and 17 

precipitation extremes, and rapid glacial melting resulting from climate change (Pachauri et al., (2014) chapter 18 
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24: ‘Asia’). However, socioeconomic growth in this area is projected to have even more of an impact on urban 1 

floods than climate change is. Flood risk and human and material losses are already heavily concentrated in India, 2 

Bangladesh and China (Pachauri et al., (2014), chapter 24: ‘Asia’), and Jongman (2012) estimates the largest 3 

current and future economic exposure to river floods to be in Asia. As an example, we take a closer look at Dhaka 4 

which, with a GDP per capita of $1212 in 2015, already has one of the highest levels of population affected annually 5 

by flooding (over 130,000) and this number is projected to increase almost five-fold to over 630,000 by 2030. 6 

The greatest change predicted for Dhaka, though, is an almost 22-fold increase in annual damage costs (from $8 7 

million to $175 million). Dhaka is subjected to regular flooding from surrounding rivers, with peak flows in the 8 

Brahmaputra and Ganges Rivers coinciding to exacerbate flood impacts. In the past, most low-lying areas of 9 

western Dhaka were infilled for residential and commercial use, causing a reduction in areas for flood water 10 

storage. Furthermore, uncontrolled and unplanned urban expansion is spreading rapidly across the floodplains 11 

in the east of the city placing more people in flood hazard zones (Kreimer et al., 2003). These hasty 12 

developmental changes are having more of an impact on the urban hydrology of Dhaka than the climate change 13 

is. Other examples of cities in similar situations include Kolkata (with the highest baseline affected population in 14 

this study), Mumbai (with a seven-fold increase in both population affected and damages due 40% and 60%, 15 

respectively, to development), Bangkok (with large increases 50-75% of which are attributed to development) 16 

and Ho Chi Minh City (with a 50% increase in affected population and an over five-fold increase in damages costs, 17 

almost entirely attributed to development).  18 

Globally, migration trends are seeing more people moving into informal settlements in urban flood zones – the 19 

population exposed to river flooding increased by 2.6% more than total global population growth between 1970 20 

and 2010 (Jongman et al., 2012). Most global population growth in the near future is projected to occur in cities 21 

of lower income countries, organically and through migration (Kreimer et al., 2003), with urban populations in 22 

these countries growing at a rate five times faster than in higher income countries (UN-DESA, 2015) and predicted 23 

to double in the next 30 years (Angel et al., 2010). The same regions experiencing such high urban population 24 

growth are also projected to triple their urban footprint in the same timeframe (Angel et al., 2010). These 25 

developmental changes are leading to, and will continue to produce, substantial effects on urban hydrology if 26 

not countered.  27 

Developmental changes in some cities, however, appear to be effectively reducing impacts from river flooding. 28 

Marrakech, in cluster 15, is an example of this. The affected population level is projected to decrease mostly due 29 

to socioeconomic factors (website 3; Ward et al., 2013; Winsemius et al., 2013). Morocco is taking responsibility 30 

to make efforts countering global climate change, and through an ‘Integrated Disaster Risk Management and 31 

Resilience Program for Morocco’ (World Bank, April 2016-Dec 2021), is making its population more resilient to 32 

climate change, less vulnerable to natural hazards and ensuring a rapid transition to a low-carbon economy. 33 

Through Morocco’s National Strategy for Sustainable Development, a commitment has been made to reduce 34 

national greenhouse gas emissions by 32% by 2030, through an increase in renewable energy sources to 50% by 35 

2025, a reduction in energy consumption by 15% by 2030, as well as various agricultural, water, waste, forest, 36 

industry and housing initiatives (website 9). These housing initiatives in Marrakech include a slum clearance and 37 

relocation project, which has become part of urban policy (Ibrahim, 2016), reducing the amount of people 38 

inhabiting flood hazard zones. Alert systems in the valleys of the Atlas region above Marrakech have been 39 

improved, and the proportion of the population living in slums has decreased from over 8% in 2004 to less than 40 

4% in 2010 (UN-Habitat website). The urbanization rate in Morocco is also projected to slow down towards 2030 41 

(UN-Habitat website). This risk-prevention approach combining early warning systems, relocation of inhabitants 42 

out of the flood zone, and less urban expansion is expected to combine to reduce the impact of floods on the 43 

population of Marrakesh.  44 
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The analysis in this paper is based solely on the data provided in Aqueduct, regardless of the extent to which on-1 

the-ground flood management measures are incorporated into the socioeconomic models which produced this 2 

data. A discussion characterizing individual cities is included here as a point of interest to relate the data to 3 

current national conditions, providing possible reasons why these cities may fit into the map where they do. 4 

Current high flood impact conditions projected to get much greater primarily due to climate change are 5 

anticipated for cities in the lower right of SOM3, with high magnitude changes expected for impacts on both 6 

population and property. One of these cities, Sao Paulo, for instance, is expected to experience an almost seven-7 

fold increase in both the number of population affected (to over 140,000 annually) and urban damages costs (to 8 

over $500,000,000 annually) by 2030. 15% of the change in population and 35% of the change in damages is 9 

attributed to development, but the majority of the change is projected to be caused by climate change. Sao 10 

Paulo is the largest city in Brazil, and the city footprint is projected to increase over 38% by 2030, by which time 11 

22% of the urban area may be located in flood zones (Young, 2013). The IPCC (Pachauri et al., (2014) chapter 14 12 

‘Latin America’) predicts the increase in temperature in central and south Brazil to be the largest projected 13 

increase in Latin America, which will be combined with a +10 to +15% increase in autumn precipitation, greatly 14 

affecting the hydrologic cycle in the region. The substantial change in development is therefore expected to be 15 

eclipsed by the even greater projected change in climate in Sao Paulo. 16 

The anticipated reduction in flood damage costs caused by climate change (evident in Cluster 15) may be a result 17 

of changing snow melt conditions upstream of these cities. It has been shown that some global regions will 18 

experience a decreasing trend in the magnitude and frequency of snow melt floods as the climate warms, as 19 

well as a shift in the timing of these floods (Schiermeier, 2011; Barnett et al., 2005; Immerzeel et al., 2010). 20 

Although changing climate in some areas is projected to lessen regional flooding, development within urban 21 

flood zones may be severe enough to offset any reductions in flood impacts. This can be seen most prominently 22 

in a strip on the left of SOM3 stretching from Port Sudan down to Santiago. 23 

Many high-income cities with already high current flood vulnerabilities have projections for large elevations in 24 

damage costs, but not increased levels of affected population. This can be seen in cities on SOM3 centred around 25 

London, Tokyo, LA and Vienna (cluster 3), and Sydney and Castellon (cluster 13). Through high levels of planning, 26 

preparedness and infrastructure, prosperous regions generally have systems in place to minimize flood impacts 27 

on the population, even though they may incur large economic losses (Desai et al., 2015; Kreimer et al., 2003). 28 

Almost half of the projected increases in these clusters are attributed to development, suggesting that these 29 

cities may have the capacity for lessening potentially elevated flood damage costs by concentrating on planning 30 

and mitigation policies.  31 

Though this study does not consider coastal flooding, it may be noted that due to their locations near river 32 

mouths, many of the cities in the lower left of the map that are projected to experience high increases in impacts 33 

from river flooding are also at risk of increased coastal flooding from intensified storms and sea level rise due to 34 

climate change. Mumbai, Guangzhou, Shanghai, Ho Chi Minh City, Kolkata, Bangkok, and Dhaka are 7 of the top 35 

14 cities (out of 136) ranked by current population exposure to coastal flooding. These same cities also comprise 36 

the top 7 cities (in this order: Kolkata, Dhaka, Mumbai, Guangzhou, Ho Chi Minh City, Shanghai, Bangkok) ranked 37 

by future (2070) estimated population exposed to coastal flooding (UNEP, 2016; Nicholls et al., 2008). 38 

Almost all projected changes in flooding in this data set are of a relatively similar order of magnitude to the 39 

original effects, as can be observed on Figure 4. That is, most cities that are only marginally affected by flooding 40 

in 2010 are projected to experience only small increases by 2030, whereas cities with larger flood effects can 41 

expect greater changes. A significant correlation exists between the magnitudes of the cities’ baseline flooding 42 
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effects and the changes projected by 2030 (log-transformed absolute values for both variables) – an 88% 1 

correlation exists in the number of population affected and a 94% correlation for property damage costs. This 2 

supports the findings of Milly et al. (2002) who observed that the frequency of large flood events in large basins 3 

had increased substantially in the 20th century, but smaller floods had not.   4 

5 CONCLUSION 5 

Global patterns of urban flood responses to global and local changes in hydrology driven by climate change and 6 

development have been identified and visually communicated. Cities have been matched to these global 7 

patterns, and relationships between the individual cities have been discerned with respect to baseline flooding 8 

conditions and expected future changes. Information has been extracted from a large, recently released, global 9 

data set of city-level flood impacts relating hydrology and urban development, and combined with city-specific 10 

demographic information. The analysis and visual interpretation in this study has revealed interesting city-level 11 

patterns that are otherwise unobservable in the complex data set, and provides a comparison and distinction 12 

between individual cities that is not apparent in regional- or economic-level projections. 13 

We have performed dimension reduction and clustering with a series of self-organizing maps to identify 14 

changing global patterns of city-level flood risks. The maps provide an indication of the predominant 15 

characteristics which determine the differences in urban river flood impacts between cities, and the cities occupy 16 

positions on the maps signifying their relative conditions. The method used here incorporates adaptions to the 17 

self-organising map technique for map shape selection and temporal pattern extraction, allowing two levels of 18 

information to emerge: the characteristic patterns of dynamic global urban flood vulnerabilities, and a 19 

comparison between the cities with respect to flood characteristics and trends.  20 

A shortcoming of the method used here is the assignment of flood protection level based on an assumption of 21 

proportionality with national income level. As standardised, current information on the real flood protection 22 

levels of all the cities in the data set is not readily available, this assumption has been necessary and has been 23 

made in line with current practice. This limitation has been recently acknowledged in the literature, with 24 

Winsemius et al. (2016) noting that ‘currently installed flood protection is an important missing link in the 25 

assessment of global flood risk’. Future studies may aim to include specific flood protection levels for each city. 26 

Whilst the timeline of this study is short, it is restricted by the data that is available. Studies at a global scale have 27 

been traditionally limited due to lack of cohesive data sets, and therefore the data set provided by Aqueduct is 28 

valuable for the fact that it spans a global set of cities and provides a rare opportunity for comparison. As the 29 

data is only provided for 2010 and 2030, there was no prospect for a longer analysis. Whilst this analysis may not 30 

provide a long-term outlook, at the very least an important insight into the current and near-future conditions 31 

can be gained. 32 

Cities have major implications for climate change mitigation and adaptation (Revi et al., 2014). Unplanned 33 

development and urban migration are increasing vulnerabilities to natural hazards (UNEP, 2016) and land cover 34 

change and greenhouse gas emissions are intensifying urban hydrology. Understanding the relationship 35 

between flood impacts and social vulnerability is a necessary step for prioritizing flood mitigation and prevention 36 

strategies (Doocy et al., 2013). Whether the main driver of increased urban flood impacts is development or 37 

climate change, cities will benefit from development restrictions and planning standards for urban expansion, 38 

sustainable land development, management of population distribution and migration, and early warning 39 

systems and preparedness (Revi et al., 2014; UN-DESA, 2014; Doocy et al., 2013).  40 
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This study adds to the understanding of natural hazards in a global context, which is an important aspect of 1 

regional disaster risk management due to the dependency of local situations on global processes (Desai et al., 2 

2015). The complex nonlinear socio-environmental relationships make it difficult to foresee local responses to 3 

global changes (Desai et al., 2015), and therefore this study focuses on risk communication (the process between 4 

risk perception and adaptation planning (Cardona et al., 2012)) to provide a visual analysis of the global patterns 5 

of evolving flood impacts, socioeconomic development and climate change, and the local city-level 6 

consequences of these changes.  7 

Future work may include the addition of greenhouse gas emissions data, geographic location, city sizes and 8 

densities to this study, to discern the relationships of these factors with urban flood changes. Greenhouse gas 9 

emissions are the largest contributor to global warming, leading to alterations in the intensity of the hydrologic 10 

cycle (Pachauri et al., 2014, Barnett et al., 2005; Wentz et al., 2007; Schiermeier, 2011), and cities are the major 11 

contributors of greenhouse gases, with a large proportion of global emissions produced by a small global land 12 

area (Mills, 2007; Angel et al., 2010; Revi et al., 2014). The addition of these elements could highlight the essential 13 

role cities could play in climate change mitigation and the reduction of urban flood impacts.   14 
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