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Abstract

A hydrological impact analysis concerns the study of the consequences of certain scenarios
on one or more variables or fluxes in the hydrological cycle. In such exercise, discharge is often
considered, as especially extreme high discharges often cause damage due to the coinciding
floods. Investigating extreme discharges generally requires long time series of precipitation and
evapotranspiration that are used to force a rainfall-runoff model. However, such kind of data
may not be available and one should resort to stochastically-generated time series, even though
the impact of using such data on the overall discharge, and especially on the extreme discharge
events is not well studied. In this paper, stochastically-generated rainfall and coinciding
evapotranspiration time series are used to force a simple conceptual hydrological model. The
results obtained are comparable to the modelled discharge using observed forcing data. Yet,
uncertainties in the modelled discharge increase with an increasing number of stochastically-
generated time series used. Notwithstanding this finding, it can be concluded that using
a coupled stochastic rainfall-evapotranspiration model has a large potential for hydrological
impact analysis.

1 Introduction

Precipitation is the most important variable in the terrestrial hydrological cycle that determines
soil moisture and discharge from a watershed. As such, it also impacts water management where
generally the occurrences of extreme events, e.g. storms or droughts, which have very low frequen-
cies, are of concern. Very long time series of precipitation are hence needed. Because this kind of
data is not always available, one may consider using a stochastically-generated rainfall time series
(Boughton and Droop, 2003). Stochastic rainfall models can be used to produce very long time
series or to compensate for missing data from finite historical records (Wilks and Wilby, 1999).
Several types of rainfall models have been proposed in literature. Onof et al. (2000) grouped all
continuous rainfall models into four types: (1) meteorological models; (2) stochastic multi-scale
models; (3) statistical models and (4) stochastic process models. Meteorological models are capa-
ble to describe the physical processes of all weather variables, including rainfall, by making use of
very large and complex sets of equations. Numerical Weather Prediction and General Circulation
Models are two common examples of this type of models. Stochastic multi-scale models describe
the spatial evolution of the rainfall process regardless of scale factors. In general, these models
involve an assumption of temporal invariance of rainfall over a range of scales (Bernardara et al.,
2007). Statistical models, which can be used for simulating the precipitation trends, usually treat
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the occurrence and the amount of precipitation separately (Wilks and Wilby, 1999). The rain-
fall occurrence is represented by a sequence of dry and wet periods, usually simulated by Markov
chains or Alternating Renewal Models. The precipitation amounts can be arbitrarily generated by
making use of some popular distributions, e.g. the exponential (Todorovic and Woolhiser, 1975),
the Gamma (Stern and Coe, 1984; Viglione et al., 2012) or the mixed exponential distribution
(Woolhiser and Roldén, 1982; Wilks, 1998; Mason, 2004). Stochastic process models use simple
assumptions of physical processes to simulate the hierarchical structure of the rainfall process.
In this approach, only a limited number of parameters is needed (Verhoest et al., 2010). The
Bartlett-Lewis (BL) (Rodriguez-Iturbe et al., 1987a) and the Neyman-Scott (Kavvas and Delleur,
1981) models are the most commonly used models of this type. In this study, we only focus on
the BL models. These models have been applied successfully in different areas, such as Great
Britain (Onof and Wheater, 1993; Onof et al., 1994; Cameron et al., 2000), Ireland (Khaliq and
Cunnane, 1996), Belgium (Verhoest et al., 1997; Vandenberghe et al., 2010; Vanhaute et al., 2012),
the United States of America (Rodriguez-Iturbe et al., 1987b; Velghe et al., 1994), New Zealand
(Cowpertwait et al., 2007), Australia (Gyasi-Agyei, 1999; Heneker et al., 2001) and South-Africa
(Smithers et al., 2002). The BL models are chosen in this study for three main reasons: (1) they
show a good performance in all recent studies; (2) they are capable of generating time series at a
sufficient fine time scale (less than 1 hour); (3) their calibration is easy given the limited number
of parameters; and (4) they mimic well the stochastical behavior of the historical time series at
Uccle (Verhoest et al., 1997; Vanhaute et al., 2012), which is used in this study.

Besides precipitation, the water balance is also highly influenced by the amount of water that
is lost due to evapotranspiration. An accurate estimation of evapotranspiration is very essential
for hydrological and agricultural designs, irrigation plans and for water distribution management
(Droogers and Allen, 2002). The daily reference evapotranspiration is often modelled based on the
Penman, Priestley—Taylor or Hargraeves equations; however, one major limitation of these models
is that they require extensive input data, such as daily mean temperature, wind speed, relative
humidity and solar radiation, which are not always available. Therefore, one may consider to rely
on another approach based on stochastically-generated time series. More importantly, in order to
obtain a correct evaluation of the water balance of a catchment and its discharge, these stochastic
evapotranspiration data need to be consistent with the accompanying precipitation time series
data (Pham et al., 2016). In this case, we can make use of the copula-based approach introduced
in the work of Pham et al. (2016) in which the statistical dependence between evapotranspiration,
precipitation and temperature is described by three- and four-dimensional vine copulas.

Many modelling approaches exist for simulating catchment discharge. The simplest models are
the conceptual models in which several (non-)linear reservoirs are put in series and/or parallel.
Well-known examples of such conceptual models are: the Hydrologiska Byréns Vattenbalansavdel-
ning model (Bergstrom, 1995), the NedborAfstromnings Model (Nielsen and Hansen, 1973) and
the Probability Distributed Model (PDM) (Moore, 2007). Alternatively, physically-based models
are based on scientific knowledge of different hydrological processes and their interactions. Gener-
ally, these models contain many more parameters than the conceptual ones and require more input
data, such as soil type, vegetation-related information, etc. Well-known examples of such models
are the Soil and Water Assessment Tool (Arnold et al., 1998), the Systéme Hydrologique Européen
(Abbott et al., 1986) and the Common Land Model (Dai et al., 2003). In this study, we do not
intend to seek for the best hydrological model to assess our objective, but we opt for a model that
is used in operational water management. More specifically, we will use PDM, as this model is
used by the Flemish Environmental Agency (Cabus, 2008), and apply it to a catchment in Flan-
ders, Belgium. The objective of this research is to assess whether the BL stochastically-generated
rainfall and consistent evapotranspiration time series can be used for hydrological impact analyses.
More specifically, we will evaluate different ways to apply stochastically modelled time series as
forcing data to simulate the catchment’s discharge. By increasing the number of stochastically-
generated inputs to the model, we will assess the increase of uncertainty in modelled extremes
and what portion of this increase can be attributed to the different stochastic generators. Sec-
tion 3 first briefly introduces the coupled stochastic rainfall-evapotranspiration model and all the
considered situations to simulate discharge from stochastic forcing data. Section 2 describes the
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Figure 1: General model structure of the PDM (adapted from Moore, 2007).

historical records and all models used within this study. The discharge simulations from different
scenarios are then evaluated in Section 4 allowing for assessing the impact of stochastic data on
the simulation of discharge. Finally, conclusions and recommendations are given in Section 5.

2 Data and models

2.1 Historical data

This study uses observed time series measured in the climatological park of the Royal Mete-
orological Institute (RMI) at Uccle, near Brussels, Belgium. The data include time series of
observed precipitation [mm] from 1898-2002, and mean daily temperature T' [°C| and daily refer-
ence evapotranspiration E [mm/day] from 1931-2002. The time series of F is derived using the
Penman-Monteith equation. The precipitation data have been recorded with a time resolution
of 10 min from 01/01/1898 to 31/12/2002 measured by a Hellmann—Fuess pluviograph (Démarée,
2003). This data set is quite unique in hydrology due to its extraordinary length with a sam-
pling frequency of 10 minutes. Its quality is ensured consistently at a high level by using the same
method of processing and measuring at the same location since 1898 (Ntegeka and Willems, 2008).
This time series has been used in several studies (Verhoest et al., 1997; Vaes and Berlamont, 2000;
De Jongh et al., 2006; Ntegeka and Willems, 2008; Vandenberghe et al., 2010; Vanhaute et al.,
2012; Pham et al., 2013; Willems, 2013; Pham et al., 2016) and is used to calibrate the rainfall
model as explained in Section 2.4. This time series has also been reprocessed to daily total pre-
cipitation [mm/day], further referenced to as P, for the period of 1931-2002, which is then used
together with the time series of 7' and E for the construction of different stochastic models.

2.2 Probability Distributed Model (PDM)

PDM is a lumped rainfall-runoff model which basically conceptualizes the absorption capacity of
soil in the catchment as a collection of three different storages (Moore, 2007; Cabus, 2008) (see
Fig. 1): i.e. (1) a probability distributed soil moisture storage (S1) based on a Pareto distribution
of soil moisture capacity to separate direct runoff Q4 and subsurface runoff Qg,; (2) a surface
storage (S2) to transform direct runoff into surface runoff; and (3) a groundwater storage (S3) to
convert subsurface runoff to baseflow. The input for S is the net precipitation (P — E), in which
P and E are the precipitation and evapotranspiration, respectively. Further water loss from S;
may be due to Qg or Qg-. The former is then converted to surface runoff @, through surface
storage Ss, a fast response system involving a sequence of two linear reservoirs with small storage
time constants k; and ko. The direct runoff flow only happens when Sy is completely filled. The
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recharge to the groundwater, controlled by the drainage time constant kg, is transfered into base-
flow Qpy through groundwater storage S3, a slow non-linear response system with a large storage
time constant k. The sum of @, and Quy equals the total discharge Q);; note that a constant
flow which presents any returns or abstractions to or from the catchment, represented by a pa-
rameter eonst, also can be added. For a more detailed theoretical explanation and mathematical
description of the model, we refer to Moore (2007).

In this study, PDM is calibrated for the Grote Nete catchment using the Particle Swarm
Optimization algorithm (PSO) (Kennedy and Eberhart, 1995). This catchment, covering about
385 km? in the North of Belgium, has a maritime, temperate climate with an average precipi-
tation of about 800 mm/year (Vrebos et al., 2014). A time series of more than 6 years (from
13/8/2002-31/12/2008) at hourly time-step (precipitation, evapotranspiration and discharge) for
the catchment is available, in which the observations recorded during the period of 13/8/2002—
31/12/2006 are used for model calibration, while the remaining data (from 1/1/2007-31/12/2008)
are used for model validation.

2.3 Copula-based stochastic simulation of evapotranspiration and tem-
perature

2.3.1 Vine copulas

A copula is a multivariate function that describes the dependence structure between random
variables, independently of their marginal distributions (Sklar, 1959). The theorem of Sklar (Sklar,
1959) states that if Fio(x1,x2) is the joint distribution function of two random variables X; and
X5 with marginal cumulative distributions F; and F5, then there exists a bivariate copula Cis
such that:

F12(3717$2) = Clz(F1(561),F2(3?2)) = Clz(uhuz) (1)

with w3 = Fi(z1) and us = Fy(x3). For more theoretical details, we refer to Sklar (1959)

and Nelsen (2006).

The use of copulas allows to decompose the construction of a joint distribution function in
two independent steps, i.e. the modelling of the dependence structure and the modelling of the
marginal distribution functions (Nelsen, 2006; Salvadori and De Michele, 2007). As such, copulas
allow the use of complex marginal distribution functions (Salvadori et al., 2007). Because of this
advantage, the application of copulas is becoming more and more popular in hydrological and
meteorological studies. However, due to the complication in the construction of the copula model
for more than two variables, most research is limited to the bivariate case (Pham et al., 2016).

A flexible construction method for high-dimensional copulas, known as the vine copula con-
struction, has been introduced in the work of Bedford and Cooke (2001, 2002), in which multivari-
ate copulas are built by decomposing the multivariate density into a product of bivariate copula
densities. Vine copulas constitute two main advantages. First, they are simple and straightfor-
ward to apply. Second, they are very flexible and have the ability to model all types of dependence
because the bivariate copulas can be selected from a wide range of copula families (Kurowicka and
Cooke, 2007; Aas et al., 2009; Czado, 2010).

There is, however, a large number of possible decompositions for the construction of vine
copulas (Aas et al., 2009); for example, there are 24 and 240 different constructions of vine copulas
for the four- and five-dimensional case, respectively (Aas et al., 2009). Examples of two regular
four-dimensional vine copulas are given in Fig. 2(a, b). One usually focuses on two special types
of regular vine copulas: Canonical vine copulas (C-vine copulas) and D-vine copulas (Kurowicka
and Cooke, 2007). If all mutual dependences involve the same variable, the construction yields a
C-vine copula (Fig. 2(c)). If all mutual dependences are considered one after the other, i.e. the
first with the second, the second with the third, the third with the fourth, etc., the construction
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Figure 2: Examples of four-dimensional vine copulas: (a, b) regular vine copulas, (c¢) canonical vine or
C-vine copula, (d) D-vine copula.

yields a D-vine copula (Fig. 2(d)). Sine because C-vine copulas are easier to construct than D-
vine copulas, the former are selected in this study for the constructions of copula-based generators
of temperature and evapotranspiration. More details of the construction and simulation from a
C-vine copula are given in the work of Aas et al. (2009).

2.3.2 Copula-based stochastic simulation of evapotranspiration

In order to generate stochastic time series of evapotranspiration, we make use of the vine-copula-
based approach proposed in the work of Pham et al. (2016) in which C-vine copulas are used to
describe the dependences between evapotranspiration and other variables, such as temperature,
precipitation and dry fraction within a day. The advantage of the method is that the statistical
properties of the evapotranspiration time series and the dependence structures between evapo-
transpiration and other variables are well maintained. Furthermore, the model construction and
simulation are simple to apply. After comparing the results of different vine models, Pham et al.
(2016) found that the best simulations of daily evapotranspiration were provided by the four-
dimensional C-vine copula Vrppg relating daily temperature (T), precipitation (P), dry fraction
(D) and evapotranspiration (E), and the three-dimensional C-vine copula Vypg relating T, P
and F. As there is no major difference in performance between simulations using Vrpppr and
Vrpr (Pham et al., 2016), for simplicity, we consider to use only Vrpg in which the Frank copula
family is selected for modelling the dependences between variables. A shown in (Pham et al.,
2016), the White goodness-of-fit test (Schepsmeier, 2015) indicated that the Frank copula family
allows for describing the dependence structure of the data included in the Vppg. In order to avoid
the seasonal effects, a different C-vine copula model is used for each month. More details on the
comparison of several evapotranspiration copula-based models can be found in Pham et al. (2016).

The construction of Vppp is given as follows (see Fig. 3(a)). First, values (urp j,up;,ug ;) of
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(a) (b)

Figure 3: Construction of C-vine copula Vrpg (a) and simulation of E from Vrpg (b)

Ur, Up and Ug are derived from the marginal distributions of respectively ', P and F (j = 1, ...,n
and n is the number of data points), and are used to select and fit the bivariate copulas Crp and
Crg, respectively. These bivariate copulas are conditioned on Ur through partial differentiation,
resulting in the conditional cumulative distribution functions Fpjpr and Fgp. Using these two
conditional distributions, the conditional probabilities are calculated for all data points. To these
probabilities, which are also uniformly distributed on [0,1], a bivariate copula Cpgr is fitted, of
which the partial derivative to Fpjp can be computed to obtain Fgjpp. Once the C-vine copula
model is fitted, a corresponding time series of evapotranspiration values can be generated, for a
given time series of rainfall and temperature data, by sampling the copula (Fig. 3(b)). To that
end, values of Uy are calculated as:

up = Fip(Fgipp(rlur, up)) @)

where r is a random value drawn from a uniform distribution on [0,1]. Then the corresponding
evapotranspiration value e can be calculated using the inverse marginal distribution function:

e = Fpl(ug) 3)

It is clear that the values of Ug are affected by the random value r, therefore, several simulations
will show some variability. To account for these stochastic effects, the simulation was repeated
100 times. Figure 4 displays the comparisons between frequency distributions of observed and
simulated evapotranspiration obtained by Vppp for the different months. From these plots, it
can be seen that the frequency distributions of the stochastic evapotranspiration are very similar
to those of the reference evapotranspiration in Uccle (red line). In order to assess whether the
dependence structures between simulated evapotranspiration and other variables are maintained,
for each of the 100 simulations, the mutual dependences between E and the other variables, T°
or P, were assessed via Kendall’s tau for each month. Figure 5 shows box plots of the obtained
values of Kendall’s tau for £ vs. T and E vs. P dependences for 100 simulations. These figures
show that, in general, the observed dependences between both E vs. T and E vs. P are preserved
with the stochastic simulated evapotranspiration.

2.3.3 Copula-based stochastic simulation of temperature

Temperature data are required for the stochastic modelling of evapotranspiration. However, in
situations where no long-term time series of temperature is available, it is necessary to use a
stochastically-generated temperature time series. We use a similar approach as Pham et al.
(2016) to develop a stochastic temperature model based on copulas. This model makes use of
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Figure 4: Comparison between the frequency distributions of evapotranspiration of observed and simulated
values: Uccle (red), the ensemble of 100 time series simulated using the C-vine copula Vrpg (grey).
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Figure 5: Comparison between Kendall’s tau for the relations of E vs. T (left) and E vs. P (right) of
observed and simulated values: Uccle (green line), 100 simulated time series (box plot)

22 the dependence between the temperature and the precipitation of the same day (i.e. at day j) and
213 the temperature of the previous day (i.e. at day j — 1). Firstly, the correlation between the tem-
2 perature at day j (7j) and the temperature at the previous day (7;_1) is assessed by the Pearson
25 correlation coefficient. Given the high correlation, i.e. 0.94, we thus can conclude that there is a
2 strong dependence between T); and T;_;. Similarly as for the stochastic evapotranspiration model,
27 a C-vine copula is employed in which Tj_; is chosen as the core variable. The model is referred
2% to as Vp, pr, where T}, refers to the temperature of the previous day.

240 The construction procedure of Vz, pr is similar to the one of Vrpg (see Section 2.3.2). The
21 simulation process of the temperature model is different from that of the evapotranspiration model,
22 in the sense that it requires a modelled input from the previous time step (i.e. T},) in order to
23 generate a new value for 7. The simulation algorithm of 7" can be performed as follows:
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Table 1: Bivariate copulas selected by AIC for Vr,pr, where F stands for Frank, Ga for Gaussian, G for
Gumbel, C for Clayton and J for Joe

Month VTppT
Cr,pP ST CpPT|TY
Jan F Ga F
Feb F Ga Ga
Mar F Ga F
Apr F Ga F
May F Ga F
Jun F Ga F
Jul F Ga F
Aug F Ga F
Sep F Ga Ga
Oct C Ga Ga
Nov C Ga F
Dec F Ga F
ur = F;&p (F;l}pp(ﬂun,ulv)) (4)
t = Fr'(ur) (5)

In order to maintain the dependence structures between variables, but still keep the model
simple and easy to construct, the best bivariate copulas for the C-vine copula are chosen using
the Akaike’s information criterion (AIC) (Akaike, 1973) from five one-parameter copula families,
i.e. the Gaussian, the Clayton, the Gumbel, the Frank and the Joe family. Table 1 illustrates
which copulas were selected. This table shows that the Frank copula family is often selected for
Cr,p and Cpr|1,, while the Gaussian copula is often chosen for Cr, 7. To keep the copula-based
simulation procedure simple, we restrict the model to use only a combination of Frank-Gaussian-
Frank for the C-vine copula V7, pr. Further, the White goodness-of-fit test (Schepsmeier, 2015) is
applied to check whether the dependence present in the data is captured by the Frank-Gaussian-
Frank C-vine copulas. With p-values larger than 0.05 for all months, we find that the dependence
structure of the data can be described by the selected copulas. These copulas are then used for
generating temperature given the time series of precipitation.

To assess the performance of the model, the statistics of 100 stochastic time series of tem-
perature using the observed daily precipitation from 1931 to 2002 are compared to those of the
observations. The empirical cumulative distribution functions (ECDF) of the monthly mean tem-
perature for each of the simulated 72-year time series are shown in Fig. 6. The statistics of
the simulations seem to be relatively similar to the observations. Figure 7 shows the monthly
maximum temperature of the ensemble and of the observed temperature series corresponding to
empirical return periods. This figure shows that the extremes are well modelled for all months.
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Figure 6: Comparison between the empirical cumulative distribution function (ECDF) of the monthly
mean T of the observed and simulated values: Uccle (red), the ensemble of 100 time series simulated using
the C-vine copula Vr,pr (grey).
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Table 2: Optimal parameter set for the (monthly) MBL model.
Parameter A K ) Lo « v
January 0.021 0.009 0.002 11.037 12.042 0.833
February 0.014 0.008 0.001 15.000 4.041 0.143
March 0.018 0.009 0.001 15.000 5.393 0.219
April 0.017 0.151 0.032 0.823  20.000 19.029
May 0.023 1.130 1.000 0.371 4.000 14.420
June 0.016 0.089 0.059 1.190 10.064 20.000
July 0.012 0.012 0.004 7.676 20.000 5.715
August 0.010 0.003 0.001 15.000 19.963  2.729
September 0.014 0.199 0.100 0.417 4.000  14.039
October 0.013 8.949 0.096  0.095 4.000 2.488
November  0.023 0.121 0.026  1.061 4.000 2.486
December  0.014 0.005 0.001 14.998 20.000 1.792
Mean (mm) - Variance (mm?) Autocovariance (mm?) ZDP (=)
45 & i % 8 i 0o} * -
3: 0 % t E.' 08
s : y 1.
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Figure 8: Comparison between observed and simulated precipitation data for the mean, variance, auto-
covariance and zero-depth probability (ZDP): Uccle (blue triangle), the ensemble of 100 simulated time
series by the MBL model (box plot).

2.4 Simulated precipitation by the MBL model

In situations where no long time series of precipitation is available, one can use a stochastic rainfall
model. In this study, the modified Bartlett—Lewis (MBL) model (Rodriguez-Iturbe et al., 1988) is
selected to generate the precipitation time series based on the results from Pham et al. (2013) in
which the MBL model is considered to be the best version of the different BL models tested on the
Uccle data set. The MBL model is calibrated based on the mean, variance, lag-1 autocovariance
and zero-depth probability (ZDP) at the aggregation levels of 24 h, 48 h and 72 h instead of 10
min, 1 h and 24 h that were used in Pham et al. (2013). The reason for only selecting aggregation
levels of at least one day is to consider situations where only daily precipitation data would be
available. The values of the calibrated parameters are given in Table 2. Details of the MBL model
and the model calibration are provided by Pham et al. (2013). The stochastic rainfall time series
is simulated at the same 10-minute time resolution as the observations. In order to assess the per-
formance of the model, the abilities of the model to reproduce some general historical statistics,
such as mean, variance, the lag-1 autocovariance and ZDP, at aggregation levels of 10 min, 1 h,
12 h, 24 h and 48 h are investigated based on an ensemble of 100 time series.

In Fig. 8, some general statistics at different aggregation levels are compared for 100 time series
obtained by the MBL model and the observed time series in Uccle. In order to further unveil the
behaviour of the model, the general statistics are calculated at different aggregation levels for each
year and presented in the form of an ECDF (Fig. 9). From both figures, it can be seen that the
mean is generally reproduced well by the model at all levels of aggregation. At the sub-hourly
level, the variance and autocovariance are slightly overestimated. For higher aggregation levels,
an increasing variation is found for both statistical properties. At higher levels of aggregation,
the ZDP is similar to that found for the observed time series, whereas for hourly and sub-hourly
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Figure 10: Comparisons between the return periods of extremes of the observed and simulated precipi-
tation data at different aggregation levels: Uccle (red), the ensemble of 100 simulated time series by the
MBL model (grey). Calculation of the extremes for a given return period on a time series that is based
on concatenating the 100 simulated time series, results in the blue line

28 levels, a slight deviation in ZDP-values are found with respect to the observations.

200 Figure 10 shows the empirical univariate return periods of the annual maximum rainfall depths
201 of the observed and simulated series, considering five different aggregation levels. Compared to the
22 observations, it seems that the MBL model is able to preserve the maxima at all aggregation levels.
203 It can be seen in this study that the MBL model does not suffer from the problem of underestima-
200 tion of extreme values at sub-hourly aggregation levels that were reported in the work of Verhoest
25 et al. (1997) and Cameron et al. (2000). From the analysis, it seems that the MBL model is
206 capable of preserving the sub-daily statistics even though the calibration procedure only included
27 daily and multi-day statistics. Yet, further research is needed for exploring this improved behavior.

209 Figure 10 also shows that a large variation in extreme values is found for larger return periods.
w0 The MBL model allows for generating rainfall time series mimicking the statistics of the observed
s series. Due to its structure, the modeled precipitation values are not restricted to the range of
32 rainfall values in the observations, making this model able to generate rainfall events having a
33 return period larger than the observed time series. Yet, it can thus be expected that within
s the modeled time series of 72 years, events may occur having a true return period that is larger
s than the length of the modeled time series. If longer time series would be simulated, a better
s estimation of the rainfall corresponding to return periods that are smaller than the observed time
sz series should be obtained. To demonstrate this, all 50 series generated are concatenated, resulting
s in one time series of 50 x 72 = 3600 years, for which the return periods are calculated empirically
s and plotted (only for return periods less then 100 years) as a blue line in Figure 10. As can be seen
a0 for return periods smaller than 100 years, a good fit with the observations are obtained, showing
sn that MBL is capable of reproducing extremes. Yet, the user should use much longer time series
;12 than the maximum return period aimed for.

w3 Discharge simulation scenarios
as The catchment discharge is calculated by the PDM that uses precipitation and evapotranspiration

a5 data as inputs. In order to assess the impact of each stochastic variable on the modelling of dis-
a6 charge, three cases have been developed that can be compared to a reference situation (cfr. Fig. 11).
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a7 The reference situation is obtained by running the PDM with the observed time series of precipi-
as  tation and evapotranspiration. In case 1, it is supposed that insufficient evapotranspiration data
a0 would be available (e.g. a shorter time series than the observed precipitation), the stochastic evap-
20 otranspiration can then be generated using the three-dimensional C-vine copula, i.e. Vrpg, given
a1 observed rainfall and temperature. The simulation is repeated 50 times in order to account for
32 stochastic effects. In case 2, where only a sufficient long time series of precipitation is available, the
33 process starts with temperature simulations, then evapotranspiration can be modelled using the
34 observed precipitation and stochastically-generated temperature using the Vrpg copula. As pre-
»s  sented before, temperature values will be generated by the three-dimensional C-vine copula Vr, pr
s that relates temperature T to daily precipitation P and the daily temperature of the previous day
sz Tp,. To account for stochastic effect, 50 time series of temperature are generated. Next, each of
s 50 time series of temperature, together with the observed precipitation data, are used to simulate
9 50 corresponding time series of evapotranspiration. Therefore, in total 2500 time series of evapo-
30 transpiration are generated. Case 3 accounts for a situation in which data would insufficiently be
s available for all input variables. In this case, an ensemble of 50 time series of precipitation could
sz be generated using the MBL model. For each of these time series, 50 time series of temperature
a3 and 2500 time series of evapotranspiration can be obtained using the same approach in case 2.
s In total, 125000 time series of evapotranspiration are generated in case 3. In order to construct
35 copula models and evaluate discharge simulations in all cases, this study uses the same time series
16 of precipitation, evapotranspiration and temperature at Uccle. In all cases, discharge is simulated
s using the PDM that was calibrated for the Grote Nete catchment in Belgium (see Section 2.2).
s By this approach, the uncertainty due to the PDM can be partly excluded from the study, i.e. we
39 study the change in performance with respect to the reference situation. It makes sense because
uo  the three cases use exactly the same PDM, a similar uncertainty due to the model is assumed for
s all cases as for the reference situation. Therefore, the change in performance for all cases with
a2 respect to the reference situation can be attributed to the differences in inputs to the model. The
w3 discharge simulations in the three cases are denoted as Qs1, @s2 and Qgs, respectively, while the
as reference discharge is denoted by Q..
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Figure 12: Comparison between the frequency distributions of the reference discharge Q,s (red) and

the ensemble of 50 time series of discharge values simulated using observed precipitation and simulated
evapotranspiration values in case 1 (grey).

4 Results and discussions

4.1 Casel

The catchment discharge can be simulated by means of the PDM that uses precipitation and
evapotranspiration data. In case 1 (cfr. Fig. 11), where only daily observed precipitation and
temperature data are available, 50 stochastically-generated evapotranspiration time series are
generated using the three-dimensional C-vine copula Vrpg. The results shown in Section 2.3.2
and the work of Pham et al. (2016) reflect that the C-vine copula Vrpg performs well and its
simulations lie very close to the values of the observed evapotranspiration. Figure 12 displays the
comparison between the frequency distributions of @,y and Q; for the different months. It can
be seen that the distributions of Qg; are quite similar to those of the reference discharge for all
months. For a further analysis of mean discharges and annual extremes of Qg;, we refer to Section
4.3.

4.2 Case 2

In case 2 (cfr. Fig. 11), only a time series of precipitation of sufficient length is available and the
temperature values are simulated using the C-vine copula Vr, pr. The observed precipitation and
stochastically-generated temperature values are then used for reproducing the evapotranspiration
by means of the C-vine copula Vrpg. Through comparing the results of this case with that of
case 1, we can assess the impact of introducing a stochastic temperature model on the modelled
evapotranspiration time series and the modelled discharge.

As shown in Section 2.3.3 and Fig. 13, the stochastically-generated temperature data gener-

ated by the C-vine copula Vrppr model are reliable and can be used together with the recorded
precipitation to simulate 2500 time series of evapotranspiration in the next step (i.e. for each tem-
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transpiration in case 2 (grey).

s perature series, 50 evapotranspiration series are generated). The frequency distributions of the
9 2500 time series of the simulated evapotranspiration are shown in Fig. 14. It can be seen from the
s figures that these distributions are similar to those of the observations in Uccle and those of the
sn  modelled evapotranspiration in case 1 for all months. Figure 15 displays a comparison between
sz the frequency distributions of the simulated discharge (Qs2) and the reference discharge (Qyf).
s In general, the grey areas representing 2500 simulated time series are slightly wider than those in
s case 1. We conclude that the introduction of stochastically-generated temperature does not cause

a5 considerable deviations in the simulation of evapotranspiration and discharge.

w 4.3 Case 3

sw - This case accounts for a situation in which no time series (of sufficient length) are available as
s shown in Fig. 11. The first step consists of generating 50 time series of precipitation by means of
we  the MBL model (see Section 2.4) and aggregating these to the daily level. Then, each of those time
s series is used for modelling 50 time series of temperature, each used for generating 50 evapotranspi-
s ration series. Therefore, in total 125000 time series of evapotranspiration are generated. Finally,
s 125000 time series of the catchment discharge are simulated using the stochastically-generated
;3 time series of precipitation and corresponding evapotranspiration values. This case will allow for
s assessing the uncertainty introduced by using the MBL model for generating precipitation values

s as input to a rainfall-runoff model.

387 First, the simulated time series of precipitation are used as inputs to the C-vine copula Vr, pr
1 to generate time series of temperature. The modelled copula-based temperature values are com-
s pared with the observed temperature in Uccle in terms of the frequency distributions in Fig. 16.
0 From these figures, it can again be seen that the distributions of the simulations follow those of
s the observations. With respect to the frequency distributions, the simulated evapotranspiration
s (Fig. 17) in this case is similar to the observed evapotranspiration, but more deviations can be

16



Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-161, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 May 2017

(© Author(s) 2017. CC-BY 3.0 License.

observed in this case than in the previous cases. The modelled time series of precipitation and
evapotranspiration are then used for modelling the discharge. The frequency distributions of the
simulated discharge values for the different months are displayed in Fig. 18. From the differ-
ent plots, it can be concluded that the simulations still follow the distribution of the reference
discharge (red line).

Compared to the simulated discharge of cases 1 and 2, more higher extreme values are generated
and the grey areas representing the ensemble of 125000 time series are generally wider, indicating
that mainly the stochastic generation of precipitation has introduced considerable variations into
the discharge simulations. This increase in uncertainty should however be treated with care.
As stated before, the generated rainfall series may include extremes that are larger than the
ones in the observed time series. Such large precipitation values will inevitably result in a large
surface runoff production causing extreme discharges. The large variability in extreme rainfall as
observed in Figure 10 will consequently lead to large variabilities in modeled extreme discharges
(cfr. Figure 19). If, however, the discharge extremes from a longer time series are studied, the
variation in extremes is strongly reduced. To demonstrate this, 50 rainfall time series of 3600 year
and corresponding evapotranspiration time series (remark that only one series is generated per
rainfall time series) are used as input to the rainfall-runoff model, and the extremes, having return
periods smaller than 500 years, are plotted for each of these 50 time series (Figure 20). As can
be seen, the large uncertainties in extremes, encountered when using 72 year time series as input,
are highly reduced, showing a slight overestimation for larger return periods, if compared to those
modeled using the observed time series of rainfall and evapotranspiration. Yet, it is impossible to
state whether true overestimations are obtained, or that, due to the stochastic nature or rainfall
(and evapotranspiration), the observations used never resulted in extreme discharge events that
actually exceed a (true) 40-year return period event (i.e., the maximum discharge based on the
observed time series of precipitation and evapotranspiration corresponds to a return period of
about 40 years based on the simulations using the modelled very long time series of precipiation
and evaporation). Similarly as discussed for Figure 10, this result makes a plea for using modeled
discharge time series of a length that is a multiple of the maximum return period of discharge
aimed at, where longer time series reduce the variation in discharge values at high return periods
at the expense of run-time. Further research will be needed to seek for the trade-off between
length of the time series and the remaining uncertainty.
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Figure 18: Comparison between the frequency distributions of reference discharge Qs (red) and the
ensemble of 125000 time series of discharge values simulated using the simulated precipitation and evap-

otranspiration in case 3 (grey).
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Figure 20: Comparison between the empirical return periods of annual extremes of the observed and
simulated discharge for case 3 based on 50 time series of 3600 years of rainfall and corresponding evapo-
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Figure 22: Root mean square difference (RMSD) for simulated discharge in different cases: case 1 (red),
case 2 (blue) and case 3 (green).

In order to further investigate the quality of the simulated discharge for all cases, Fig. 21
presents the comparison between the ECDF of the daily averages of the modelled and reference
discharge for April, May and June. For all cases, the daily mean seems to be preserved by the
modelled discharge. However through investigating the width of the grey areas of the simulated
time series for each case, as expected, we can conclude that the most certain results are observed
in case 1, followed by case 2 and case 3. This also holds for the other months. Similar situations
are witnessed for the univariate return period of annual extreme discharge (Fig. 19) in which the
least and largest variations between the reference and simulated discharge are noticed for Q5; and
Qs3, respectively. Especially, a remarkable expansion of grey areas is witnessed in case 3. It is
clear that each stochastic component, i.e. modelled precipitation, temperature or evapotranspira-
tion, has contributed an additional amount of variation to the modelled discharge. The differences
between the simulated discharge from different cases are less evident in terms of frequency distri-
butions but more pronounced for the mean and extreme discharge.

To account for the variations between the modelled and reference discharge, the simulated
discharge values are further evaluated using the root mean square deviation (RMSD):

LS (@) — Qo) (©)

s=1

RMSD(i) = |

where @, (7) and Q, () are respectively the modelled and reference discharge value that have the
same value of cumulative frequency i € [0,1], ¢ = 0.005, ..., 1 with a step of 0.005; and n is the
number of the members in the ensemble considered.

Figure 22 displays the RMSD calculated for simulated discharge in different cases. It can
be seen from the figure that for all cases, larger RMSD values are found for the higher values of
discharge. In other words, simulations of the higher values of discharge are generally less accurate.
There are insignificant differences between the RMSD for case 1 and 2 for all months. The use of
stochastically-generated temperature time series seemed to contribute minor uncertainty to the
discharge simulations in this study. The largest errors often are obtained in case 3 where the
discharge is simulated from stochastically-generated precipitation and evapotranspiration values.
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s 9 Conclusions

2 In water management, discharge is a very important variable which can be simulated via a rainfall-
»s3 - runoff model using recorded precipitation and evapotranspiration data. However, in situations that
s suffer from data deficiency, one may consider using stochastically-generated time series. In this
ss  study, the impact of using the stochastically-generated precipitation and evapotranspiration on
w6 the simulation of the catchment discharge is investigated. In order to assess the influence of each
s7  stochastic variable on the discharge simulations, three different cases have been considered. In
s the first case, it is assumed that insufficient evapotranspiration data would be available, requir-
w9 ing stochastically-generated evapotranspiration based on observed precipitation and temperature
w0 data by means of a copula. In the second case, where only precipitation data would be sufficiently
w1 available, the temperature and evapotranspiration are each reproduced by vine copulas. The third
w2 case addresses the situation where too short time series of observations are available. In this case,
w3 the precipitation time series could be generated using a Modified Bartlett-Lewis (MBL) model
w calibrated to the limited precipitation data available and then the time series of temperature and
s evapotranspiration could be obtained using the copula-based models. In all cases, the C-vine
ws copulas Vrpp and Vr, pr are used for the simulations of evapotranspiration and temperature,
w7 respectively. From the comparison between the simulations with the observations, the C-vine cop-
s ulas seem to reproduce the time series of evapotranspiration and temperature well. It is clear that
w9 each stochastic component has a certain impact on the discharge simulations, and each additional
a0 stochastic variable will contribute an additional variation, and thus uncertainty. As expected,
an the simulations of the discharge obtained for case 1 show the smallest variability, while those in
a2 case 3 results in the largest variability. In general, no major differences are observed between the
a3 simulations and observations in cases 1 and 2, the characteristics of the discharge series seem to be
an preserved through the process for these cases. Noticeable variations are witnessed in case 3, where
as the discharge is simulated using modeled time series of precipitation and evapotranspiration.

476 With respect to extreme discharge, it was shown that the uncertainties encountered in case 3
a7 are highly reduced when using much longer time series as input than the maximum return period
o aimed at. However, given that all forcing data are generated, the modeller is not restricted to
a9 the length of an observed time series, but can generate time series of whatever length as input
a0 to the hydrological model, taking into account that the longer the time series used, the more the
a1 uncertainty reduces at the expense of increasing run-time.

8 From this study, we may thus conclude that in situations that suffer from a lack of observations,
w3 one can rely on the stochastically-generated series of precipitation, temperature and evapotran-
s spiration to reproduce time series of discharge for water resources management. However, care
w5 should be taken as the modelled extreme discharges may experience the largest errors.
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