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Abstract9

A hydrological impact analysis concerns the study of the consequences of certain scenarios10

on one or more variables or fluxes in the hydrological cycle. In such exercise, discharge is11

often considered, as floods originating from extremely high discharges often cause12

damage. Investigating the impact of extreme discharges generally requires long time series13

of precipitation and evapotranspiration to be used to force a rainfall-runoff model. However,14

such kind of data may not be available and one should resort to stochastically generated time15

series, even though the impact of using such data on the overall discharge, and especially on16

the extreme discharge events, is not well studied. In this paper, stochastically generated17

rainfall and corresponding evapotranspiration time series, generated by means18

of vine copulas, are used to force a simple conceptual hydrological model. The19

results obtained are comparable to the modelled discharge using observed forcing data. Yet,20

uncertainties in the modelled discharge increase with an increasing number of stochastically21

generated time series used. Notwithstanding this finding, it can be concluded that using22

a coupled stochastic rainfall-evapotranspiration model has a large potential for hydrological23

impact analysis.24

1 Introduction25

Precipitation is the most important variable in the terrestrial hydrological cycle that determines26

soil moisture and discharge from a watershed. As such, it also impacts water management where27

generally the occurrences of extreme events, e.g. storms or droughts, which have very low frequen-28

cies, are of concern. Very long time series of precipitation are hence needed. Because this kind of29

data is not always available, one may consider using a stochastically generated rainfall time series30

(Boughton and Droop, 2003). Stochastic rainfall models can be used to produce very long time31

series or to compensate for missing data from finite historical records (Wilks and Wilby, 1999).32

Several types of rainfall models have been proposed in literature. Onof et al. (2000) grouped all33

continuous rainfall models into four types: (1) meteorological models; (2) stochastic multi-scale34

models; (3) statistical models and (4) stochastic process models. Meteorological models are capa-35

ble to describe the physical processes of all weather variables, including rainfall, by making use of36

very large and complex sets of equations. Numerical Weather Prediction and General Circulation37

Models are two common examples of this type of models. Stochastic multi-scale models describe38

the spatial evolution of the rainfall process regardless of scale factors. In general, these models39

involve an assumption of temporal invariance of rainfall over a range of scales (Bernardara et al.,40

2007). Statistical models, which can be used for simulating the precipitation trends, usually treat41
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the occurrence and the amount of precipitation separately (Wilks and Wilby, 1999). The rain-42

fall occurrence is represented by a sequence of dry and wet periods, usually simulated by Markov43

chains or Alternating Renewal Models. The precipitation amounts can be arbitrarily generated by44

making use of some popular distributions, e.g. the exponential (Todorovic and Woolhiser, 1975),45

the Gamma (Stern and Coe, 1984; Viglione et al., 2012) or the mixed exponential distribution46

(Woolhiser and Roldán, 1982; Wilks, 1998; Mason, 2004). Stochastic process models use simple47

assumptions of physical processes to simulate the hierarchical structure of the rainfall process.48

In this approach, only a limited number of parameters is needed (Verhoest et al., 2010). The49

Bartlett-Lewis (BL) (Rodriguez-Iturbe et al., 1987a) and the Neyman-Scott (Kavvas and Delleur,50

1981) models are the most commonly used models of this type. In this study, we only focus on51

the BL models. These models have been applied successfully in different areas, such as Great52

Britain (Onof and Wheater, 1993; Onof et al., 1994; Cameron et al., 2000), Ireland (Khaliq and53

Cunnane, 1996), Belgium (Verhoest et al., 1997; Vandenberghe et al., 2010; Vanhaute et al., 2012),54

the United States of America (Rodriguez-Iturbe et al., 1987b; Velghe et al., 1994), New Zealand55

(Cowpertwait et al., 2007), Australia (Gyasi-Agyei, 1999; Heneker et al., 2001) and South-Africa56

(Smithers et al., 2002). The BL models are chosen in this study for three main reasons: (1) they57

show a good performance in all recent studies; (2) they are capable of generating time series at a58

sufficient fine time scale (less than 1 hour); (3) their calibration is easy given the limited number of59

parameters; and (4) they mimic well the stochastical behavior of the historical time series at Uccle60

(Verhoest et al., 1997; Vanhaute et al., 2012), which is used in this study. The BL model will61

be employed on a monthly basis such that temporal changes in precipitation charac-62

teristics due to the annual cycle can be underpinned. Long-term changes, e.g. due to63

climate change, however, cannot be accounted for in this model set-up.64

65

Besides precipitation, the water balance is also highly influenced by the amount of water that66

is lost due to evapotranspiration. An accurate estimation of evapotranspiration is very essential67

for hydrological and agricultural designs, irrigation plans and for water distribution management68

(Droogers and Allen, 2002). The daily reference evapotranspiration is often modelled based on the69

Penman, Priestley–Taylor or Hargraeves equations; however, one major limitation of these models70

is that they require extensive input data, such as daily mean temperature, wind speed, relative71

humidity and solar radiation, which are not always available. Therefore, one may consider to rely72

on another approach based on stochastically generated time series. More importantly, in order to73

obtain a correct evaluation of the water balance of a catchment and its discharge, these stochastic74

evapotranspiration data need to be consistent with the accompanying precipitation time series75

data (Pham et al., 2016). In this case, we can make use of the copula-based approach introduced76

in the work of Pham et al. (2016) in which the statistical dependence between evapotranspiration,77

precipitation and temperature is described by three- and four-dimensional vine copulas.78

79

Many modelling approaches exist for simulating catchment discharge. The simplest models are80

the conceptual models in which several (non-)linear reservoirs are put in series and/or parallel.81

Well-known examples of such conceptual models are: the Hydrologiska Byräns Vattenbalansavdel-82

ning model (Bergström, 1995), the NedborAfstromnings Model (Nielsen and Hansen, 1973) and83

the Probability Distributed Model (PDM) (Moore, 2007). Alternatively, physically-based models84

are based on scientific knowledge of different hydrological processes and their interactions. Gen-85

erally, these models contain many more parameters than the conceptual ones and require more86

input data, such as soil type, vegetation-related information, etc. Well-known examples of such87

models are the Soil and Water Assessment Tool (Arnold et al., 1998), the Système Hydrologique88

Européen (Abbott et al., 1986) and the Common Land Model (Dai et al., 2003). In this study,89

we do not intend to seek for the best hydrological model to assess our objective, but we opt for a90

model that is used in operational water management. More specifically, we will use PDM, as this91

model is used by the Flemish Environmental Agency (Cabus, 2008), and apply it to a catchment92

in Flanders, Belgium. The objective of this research is to assess whether the BL stochastically93

generated rainfall and consistent evapotranspiration time series can be used for hydrological im-94

pact analyses. In particular, we will evaluate different ways to apply stochastically modelled95

time series as forcing data to simulate the catchment’s discharge. By regarding the actual ob-96

served time series as one realisation of the meteorological process, the corresponding97
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discharge can also be regarded as one realisation. Actually, due to chaos occurring in98

the climatological system, a different time series could have been observed resulting99

in a discharge time series different from the actual observed one. The latter will100

hence provide other design values than those corresponding to the actual observed101

time series. In order to account for this kind of uncertainty, different cases, in which102

the number of stochastically generated input variables to the model is increased, are103

investigated. For these cases, the increase of uncertainty in modelled extremes and104

what portion of this increase can be attributed to the different stochastic generators,105

is assessed.106

107

Section 2 describes the historical records and all models used within this study. Section 3108

briefly introduces the coupled stochastic rainfall-evapotranspiration model and all the considered109

situations to simulate discharge from stochastic forcing data. The discharge simulations from dif-110

ferent scenarios are then evaluated in Section 4 allowing for assessing the impact of stochastic data111

on the simulation of discharge. Finally, conclusions and recommendations are given in Section 5.112

2 Data and models113

2.1 Historical data114

This study uses observed time series measured in the climatological park of the Royal Mete-115

orological Institute (RMI) at Uccle, near Brussels, Belgium. The data include time series of116

observed precipitation [mm] from 1898–2002, and mean daily temperature T [◦C] and daily refer-117

ence evapotranspiration E [mm/day] from 1931–2002. The time series of E is derived using the118

Penman-Monteith equation. The precipitation data have been recorded with a time resolution119

of 10 min from 01/01/1898 to 31/12/2002 measured by a Hellmann–Fuess pluviograph (Démarée,120

2003). This data set is quite unique in hydrology due to its extraordinary length with a sampling121

frequency of 10 minutes. Its high quality is ensured by using the same method of processing and122

measuring at the same location since 1898 (Ntegeka and Willems, 2008). This time series has123

been used in several studies (Verhoest et al., 1997; Vaes and Berlamont, 2000; De Jongh et al.,124

2006; Ntegeka and Willems, 2008; Vandenberghe et al., 2010; Vanhaute et al., 2012; Pham et al.,125

2013; Willems, 2013; Pham et al., 2016) and is used to calibrate the rainfall model as explained126

in Section 2.4. This time series has also been reprocessed to daily total precipitation [mm/day],127

further referenced to as P , for the period of 1931–2002, which is then used together with the time128

series of T and E for the construction of different stochastic models.129

130

In order to use the above-described data to fit copulas, the data should be inde-131

pendent and identically distributed (iid), indicating that the distribution of the data132

should not change with time. To this end, the time series is split into monthly series to133

which a vine copula model can be fitted. Hence, for each month a different model will134

be obtained. However, the data distributions can also change within the monthly se-135

ries, i.e. a within-month trend may exist. Therefore, the daily distributions, each con-136

taining 72 observations, were compared within each month by means of an ANOVA137

test when distributions were homoscedastic, a Welch ANOVA test (Welch, 1951)138

when distributions were heteroscedastic, or a Kruskal Wallis test (Kruskal and Wal-139

lis, 1952) when distributions were not-normal and heteroscedastic, at a significance140

level of 0.001. The results of these tests indicate that within-month trends exist for141

temperature and evapotranspiration, whereas no trend was found for precipitation.142

In order to meet the requirements of the data to be iid, temperature and evapotran-143

spiration data were standardized as follows:144

xs,d,y =
(xd,y − µd)

σd
, (1)

with xs,d,y the standardized value of temperature or evapotranspiration at day d of145

year y, xd,y the original measured value of temperature or evapotranspiration at day146

d of year y, µd and σd the mean value and standard deviation of x at day d.147
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Figure 1: General model structure of the PDM (adapted from Moore, 2007).

2.2 Probability Distributed Model (PDM)148

PDM is a lumped rainfall-runoff model which basically conceptualizes the absorption capacity of149

soil in the catchment as a collection of three different storages (Moore, 2007; Cabus, 2008) (see150

Fig. 1): i.e. (1) a probability distributed soil moisture storage (S1) based on a Pareto distribution151

of soil moisture capacity to separate direct runoff Qdr and subsurface runoff Qgr; (2) a surface152

storage (S2) to transform direct runoff into surface runoff; and (3) a groundwater storage (S3) to153

convert subsurface runoff to baseflow. The input for S1 is the net precipitation (P −E), in which154

P and E are the precipitation and evapotranspiration, respectively. Further water loss from S1155

may be due to Qdr or Qgr. The former is then converted to surface runoff Qro through surface156

storage S2, a fast response system involving a sequence of two linear reservoirs with small storage157

time constants k1 and k2. The direct runoff flow only happens for those parts of S1 that are158

completely filled. The recharge to the groundwater, controlled by the drainage time constant kg,159

is transfered into baseflow Qbf through groundwater storage S3, a slow non-linear response system160

with a large storage time constant kb. The sum of Qro and Qbf equals the total discharge Qt;161

note that a constant flow which presents any returns or abstractions to or from the catchment,162

represented by a parameter qconst, also can be added. For a more detailed theoretical explanation163

and mathematical description of the model, we refer to Moore (2007).164

165

In this study, PDM is calibrated for the Grote Nete catchment using the Particle Swarm Op-166

timization algorithm (PSO) (Kennedy and Eberhart, 1995). This catchment, covering about 385167

km2 in the North of Belgium, has a maritime, temperate climate with an average precipitation168

of about 800 mm/year (Vrebos et al., 2014). Given the relatively small distance between169

Uccle and the Grote Nete catchment, and the fact that the meteorological conditions170

are nearly the same, one can assume that the statistics of the modelled discharge171

obtained with the forcing data observed near the catchment and those observed at172

Uccle are negligible. Furthermore, the rainfall-runoff model will not be used to make173

predictions, but rather to demonstrate the impact of different alternative realisations174

of precipitation (P ), temperature (T ) and evapotranspiration (E) on discharge values.175

Therefore, although PDM will be applied to observations from Uccle in this study,176

it is calibrated on the basis of a time series of more than 6 years (from 13/8/2002–177

31/12/2008) at an hourly time-step (precipitation, evapotranspiration and discharge)178

that is available for the catchment. Observations recorded during the period of 13/8/2002–179

31/12/2006 are used for model calibration, while the remaining data (from 1/1/2007–31/12/2008)180

are used for model validation.181

182
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Figure 2: Examples of four-dimensional vine copulas: (a, b) regular vine copulas, (c) canonical vine or
C-vine copula, (d) D-vine copula.

2.3 Copula-based stochastic simulation of evapotranspiration and tem-183

perature184

2.3.1 Vine copulas185

A copula is a multivariate function that describes the dependence structure between random186

variables, independently of their marginal distributions (Sklar, 1959). The theorem of Sklar (Sklar,187

1959) states that if F12(x1, x2) is the joint distribution function of two random variables X1 and188

X2 with marginal cumulative distributions F1 and F2, then there exists a bivariate copula C12189

such that:190

F12(x1, x2) = C12(F1(x1), F2(x2)) = C12(u1, u2) , (2)

with u1 = F1(x1) and u2 = F2(x2). For more theoretical details, we refer to Sklar (1959); Nelsen191

(2006) and Joe (1997).192

193

The use of copulas allows to decompose the construction of a joint distribution function in194

two independent steps, i.e. the modelling of the dependence structure and the modelling of the195

marginal distribution functions (Nelsen, 2006; Salvadori and De Michele, 2007). As such, copulas196

allow the use of complex marginal distribution functions (Salvadori et al., 2007). Because of this197

advantage, the application of copulas is becoming more and more popular in hydrological and198

meteorological studies. However, due to the complication in the construction of the copula model199

for more than two variables, most research is limited to the bivariate case (Pham et al., 2016).200

201

A flexible construction method for high-dimensional copulas, known as the vine copula con-202

struction, has been introduced in the work of Bedford and Cooke (2001, 2002), in which mul-203

tivariate copulas, and hence the multivariate densities, are constructed as a product204

of bivariate copula densities. Vine copulas constitute two main advantages. First, they are205
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Figure 3: Construction of C-vine copula VTPEpE (a) and simulation of E from VTPEpE (b)

simple and straightforward to apply. Second, they are very flexible and have the ability to model206

a wide range of dependence structures because the bivariate copulas can be selected from a207

large number of copula families (Kurowicka and Cooke, 2007; Aas et al., 2009; Czado, 2010).208

However, one has to be aware that the flexibility offered by vine copulas demands the209

estimation of a large number of parameters for which the data set should encompass210

sufficient information.211

212

There is, however, a large number of possibilities for the construction of vine copulas (Aas213

et al., 2009); for example, there are 24 and 240 different constructions of vine copulas for the214

four- and five-dimensional case, respectively (Aas et al., 2009). Examples of two regular four-215

dimensional vine copulas are given in Fig. 2(a, b). One usually focuses on two special types of216

regular vine copulas: Canonical vine copulas (C-vine copulas) and D-vine copulas (Kurowicka and217

Cooke, 2007). If all mutual dependences involve the same variable, the construction yields a C-218

vine copula (Fig. 2(c)). If all mutual dependences are considered one after the other, i.e. the first219

with the second, the second with the third, the third with the fourth, etc., the construction yields220

a D-vine copula (Fig. 2(d)). In this study, C-vine copulas are used for the constructions of221

copula-based generators of temperature and evapotranspiration. More details on the construction222

of and simulation from a C-vine copula are given in the work of Aas et al. (2009).223

2.3.2 Copula-based stochastic simulation of evapotranspiration224

In order to generate stochastic time series of evapotranspiration, we make use of the vine-copula-225

based approach proposed in the work of Pham et al. (2016) in which C-vine copulas are used to226

describe the dependences between evapotranspiration and other variables, such as temperature,227

precipitation and dry fraction within a day. The advantage of the method is that the statistical228

properties of the evapotranspiration time series and the dependence structures between evapo-229
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Table 1: Bivariate copula families selected by AIC for VTPEpE , where F stands for Frank, Ga for Gaussian,
G for Gumbel, C for Clayton, J for Joe and t for t-copula family.

Month VTPEpE

CTP CTEp
CTE CPEp|T CPE|T CEpE|TP

Jan F F F F F t
Feb F F F Ga Ga t
Mar C t t Ga F t
Apr Ga G G F F G
May F G G F F t
Jun F G Ga F F t
Jul F G Ga F F G
Aug F G Ga t F G
Sep Ga Ga G F F t
Oct C G G F F t
Nov C t t Ga Ga t
Dec F F F F Ga t

transpiration and other variables are well maintained. Furthermore, the model construction and230

simulation are simple to apply. After comparing the results of different vine models, Pham et al.231

(2016) found that the best simulations of daily evapotranspiration were provided by the four-232

dimensional C-vine copula VTPDE relating daily temperature (T ), precipitation (P ), dry fraction233

(D) and evapotranspiration (E), and the three-dimensional C-vine copula VTPE relating T , P234

and E. As there is no major difference in performance between simulations using VTPDE and235

VTPE (Pham et al., 2016), for simplicity, we choose to use only temperature, precipitation236

and evapotranspiration data in the vine copula model for evapotranspiration. In or-237

der to avoid monthly effects, the temperature and evapotranspiration data were first238

standardized and a different C-vine copula model is used for each month. However,239

subsequent observations of the time series may not be independent, meaning that val-240

ues within the time series may be autocorrelated. This is accounted for by extending241

the vine copula VTPE as used in Pham et al. (2016) with the evapotranspiration of242

the previous day (Ep). In this way a four-dimensional C-vine copula VTPEpE is con-243

structed for each month. The best bivariate copula families for the C-vine copulas244

are chosen using Akaike’s information criterion (AIC) (Akaike, 1973) from five one-245

parameter copula families, i.e. the Gaussian, the Gumbel, the Frank, the Joe and the246

Clayton family and one two-parameter family, the t-copula family. Table 1 lists the247

selected copula families. The empirical cumulative distribution functions are used as248

marginal distributions, and the final copula parameters of the one-parameter families249

are determined on the basis of the relationship between the copula parameter and250

Kendall’s tau, whereas the parameters of the t-copula family are estimated through251

maximum likelihood estimation.252

253

Further, the White goodness-of-fit test (Schepsmeier, 2015) is applied to check254

whether the dependence present in the data is captured by the C-vine copulas. For255

this test, p-values larger than the significance level indicate that the dependence256

structure of the data can be described by the selected copulas. In this study, all257

but one p-value were larger than the used significance level of 0.05. The dependence258

structure of the data can thus be described by the selected copula families.259

The construction of VTPEpE is given as follows (see Fig. 3(a)). First, values260

(uT,j , uP,j , uEp,j , uE,j) of UT , UP , UEp
and UE are derived from the marginal distribu-261

tions of respectively T , P , Ep and E (j = 1, ..., n and n is the number of data points),262

and are used to select and fit the bivariate copulas CTP , CTEp
and CTE. These bivari-263

ate copulas are conditioned on UT through partial differentiation as given in Eq. (3),264
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resulting in the conditional cumulative distribution functions FP |T , FEp|T and FE|T .265

FP |T (uP |uT ) =
∂

∂uT
CTP (uT , uP ) ,

FEp|T (uEp
|uT ) =

∂

∂uT
CTEp

(uT , uEp
) ,

FE|T (uE |uT ) =
∂

∂uT
CTE(uT , uE) .

(3)

Using these three conditional distributions, the conditional probabilities are calcu-266

lated for all data points (uT,j , uP,j , uEp,j , uE,j). To these conditional probabilities, which267

are also uniformly distributed on [0,1], two bivariate copulas CPEp|T (FP |T , FEp|T ) and268

CPE|T (FP |T , FE|T ) are fitted, of which the partial derivatives to FP |T can be computed269

to obtain FEp|TP and FE|TP . Again, using these two conditional distributions, a bi-270

variate copula CEpE|TP (FEp|TP , FE|TP ) is fitted, which can also be conditioned by cal-271

culating the partial derivative. For more detailed information about the construction272

of vine copulas, we refer to (Aas et al., 2009). Once the C-vine copula model is fitted, a273

corresponding time series of evapotranspiration values can be generated, for a given time series of274

rainfall and temperature data, by sampling the copula (Fig. 3(b)). To that end, values of UE are275

calculated as:276

uE = F−1E|T (F−1E|TP (FE|TPEp
(r|uT , uP , uEp

)) , (4)

where r is a random value drawn from a uniform distribution on [0,1]. Then the corresponding277

evapotranspiration value e can be calculated using the inverse marginal distribution function:278

e = F−1E (uE) . (5)

It is clear that the values of UE are affected by the random value r, therefore, several simulations279

will show some variability. To account for these stochastic effects, the simulation was repeated 50280

times. Figure 4 displays the comparisons between probability density functions of observed281

and simulated evapotranspiration obtained by VTPEpE for the different months. From these plots,282

it can be seen that the probability density functions of the stochastic evapotranspiration are283

very similar to those of the reference evapotranspiration in Uccle (red line). In order to assess284

whether the dependence structures between simulated evapotranspiration and other variables are285

maintained, for each of the 50 simulations, the mutual dependences between E and the other286

variables, T or P , were assessed via Kendall’s tau for each month. Figure 5 shows box plots of the287

obtained values of Kendall’s tau for E vs. T and E vs. P dependences for 50 simulations. These288

figures show that, in general, the observed dependences between both E vs. T and E vs. P are289

preserved with the stochastic simulated evapotranspiration.290

2.3.3 Copula-based stochastic simulation of temperature291

Temperature data are required for the stochastic modelling of evapotranspiration. However, in292

situations where no long-term time series of temperature is available, it is necessary to use a293

stochastically generated temperature time series. We use a similar approach as Pham et al.294

(2016) to develop a stochastic temperature model based on copulas. This model makes use of the295

dependence between the temperature and the precipitation of the same day (i.e. at day j) and the296

temperature of the previous day (i.e. at day j− 1). Similarly as for the stochastic evapotranspira-297

tion model, a C-vine copula is employed in which Tj−1 is chosen as the core variable. The model298

is referred to as VTpPT , where Tp refers to the temperature of the previous day.299

300

The construction procedure of VTpPT is similar to the one of VTPEpE with that difference301

that only 4 instead of 6 bivariate copulas need to be fitted (see Section 2.3.2). The302

simulation process of the temperature model is different from that of the evapotranspiration model,303

in the sense that it requires a modelled input from the previous time step (i.e. Tp) in order to304

generate a new value for T . The simulation algorithm of T can be performed as follows:305
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Table 2: Bivariate copula families selected by AIC for VTpPT , where F stands for Frank, Ga for Gaussian,
G for Gumbel, C for Clayton, J for Joe and t for t-copula.

Month VTpPT

CTpP CTpT CPT |Tp

Jan F t F
Feb F t F
Mar F t F
Apr F Ga F
May F t F
Jun F Ga F
Jul F Ga F
Aug F Ga F
Sep Ga t t
Oct C t C
Nov C t F
Dec F t F

uT = F−1T |Tp
(F−1T |TpP

(r|uTp
, uP )) , (6)

t = F−1T (uT ) . (7)

Similarly as for the evapotranspiration model, the best bivariate copula families306

for the C-vine copulas are chosen using the AIC. Table 2 illustrates which copula families307

were selected. This table shows that the Frank copula family is often selected for CTpP and CPT |Tp
,308

while the Gaussian and the t-copula are often chosen for CTpT . Further, the White goodness-of-fit309

test (Schepsmeier, 2015) is also applied to check whether the dependence present in the data is310

captured by the C-vine copulas. All p-values were larger than the used significance level311

of 0.05, indicating that the dependence structure of the data can be described by the312

selected copula families. The final copula parameters of the one-parameter families313

are determined on the basis of the relationship between the copula parameter and314

Kendall’s tau, whereas the parameters of the t-copula family are estimated through315

maximum likelihood estimation. These copulas are then used for generating temper-316

ature given the time series of precipitation.317

318

To assess the performance of the model, the statistics of 50 stochastic time series of temperature319

using the observed daily precipitation from 1931 to 2002 are compared to those of the observations.320

The empirical probabiltiy density functions of the monthly mean temperature for each of the321

simulated 72-year time series are shown in Fig. 6. The statistics of the simulations seem to be322

relatively similar to the observations. Figure 7 shows the monthly maximum temperature of the323

ensemble and of the observed temperature series corresponding to their empirical return periods.324

This figure shows that the extremes are well modelled for all months.325
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Figure 4: Comparison between the probability density functions of evapotranspiration of observed and
simulated values: Uccle (red), the ensemble of 50 time series simulated using the C-vine copula VTPEpE

(grey).
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Figure 5: Comparison between Kendall’s tau for the relations of E vs. T (left) and E vs. P (right) of
observed and simulated values: Uccle (green line), 50 simulated time series (box plot).
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Figure 6: Comparison between the probability density functions of the monthly mean T of the
observed and simulated values: Uccle (red), the ensemble of 50 time series simulated using the C-vine
copula VTpPT (grey).
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Figure 7: Comparison between the return periods of monthly extremes of the observed and simulated
temperature values: Uccle (red), the ensemble of 50 time series simulated using the C-vine copula VTpPT

(grey).
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Table 3: Optimal parameter set for the (monthly) MBL model.

Parameter λ κ φ µx α ν

January 0.021 0.009 0.002 11.037 12.042 0.833
February 0.014 0.008 0.001 15.000 4.041 0.143
March 0.018 0.009 0.001 15.000 5.393 0.219
April 0.017 0.151 0.032 0.823 20.000 19.029
May 0.023 1.130 1.000 0.371 4.000 14.420
June 0.016 0.089 0.059 1.190 10.064 20.000
July 0.012 0.012 0.004 7.676 20.000 5.715
August 0.010 0.003 0.001 15.000 19.963 2.729
September 0.014 0.199 0.100 0.417 4.000 14.039
October 0.013 8.949 0.096 0.095 4.000 2.488
November 0.023 0.121 0.026 1.061 4.000 2.486
December 0.014 0.005 0.001 14.998 20.000 1.792

Figure 8: Comparison between observed and simulated precipitation data for the mean, variance, auto-
covariance and zero-depth probability (ZDP): Uccle (blue triangle), the ensemble of 50 simulated time
series by the MBL model (box plot).

2.4 Simulated precipitation by the MBL model326

In situations where no long time series of precipitation is available, one can use a stochastic rain-327

fall model. In this study, the modified Bartlett–Lewis (MBL) model (Rodriguez-Iturbe et al.,328

1988) is selected to generate the precipitation time series based on the results from Pham et al.329

(2013) in which the MBL model is considered to be the best version of the different BL models330

tested on the Uccle data set. The MBL model is calibrated using the Generalised Method331

of Moments, i.e. the difference between the model statistics obtained by means of332

analytical expressions and the empirical statistics obtained from the observed time333

series is to be minimized. The calibration of the MBL model in this study is based334

on the mean, variance, lag-1 autocovariance and zero-depth probability (ZDP) at the335

aggregation levels of 24 h, 48 h and 72 h instead of 10 min, 1 h and 24 h that were336

used in Pham et al. (2013). As in Pham et al. (2013), the Shuffled Complex Evolution337

algorithm (Duan et al., 1994) was employed to search for the optimal parameters.338

The reason for only selecting aggregation levels of at least one day is to consider situations where339

only daily precipitation data would be available. The values of the calibrated parameters are given340

in Table 3. Details of the MBL model and the model calibration are provided by Pham et al.341

(2013) and Vanhaute et al. (2012). The stochastic rainfall time series is simulated at the same342

10-minute time resolution as the observations. In order to assess the performance of the model,343

the abilities of the model to reproduce some general historical statistics, such as mean, variance,344

the lag-1 autocovariance and ZDP, at aggregation levels of 10 min, 1 h, 12 h, 24 h and 48 h are345

investigated based on an ensemble of 50 time series.346

347

In Fig. 8, some general statistics at different aggregation levels are compared for 50 time series348

obtained by the MBL model and the observed time series in Uccle. In order to further unveil the349
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Figure 9: Comparisons between the probability density functions of mean, variance, autocovariance
and ZDP calculated for the observed and simulated precipitation data for different aggregation levels for
each year: Uccle (red), 50 simulated time series by the MBL model (grey). ECDFs are shown for the (a)
mean, (b) variance, (c) lag-1 autocovariance and (d) the zero-depth probability (ZDP).

behaviour of the model, the general statistics are calculated at different aggregation levels for each350

year and presented in the form of a frequency distribution (Fig. 9). From both figures, it351

can be seen that the mean is generally reproduced well by the model at all levels of aggregation.352

At the sub-hourly level, the variance and autocovariance are slightly overestimated. For higher353

aggregation levels, an increasing variation is found for both statistical properties. At higher levels354

of aggregation, the ZDP is relatively similar to that found for the observed time series, whereas355

for hourly and sub-hourly levels, a slight deviation in ZDP-values are found with respect to the356

observations.357

358

Figure 10 shows the empirical univariate return periods of the annual maximum rainfall depths359

of the observed and simulated series, considering five different aggregation levels. Compared to the360

observations, it seems that the MBL model is able to preserve the maxima at all aggregation levels.361

It can be seen in this study that the MBL model does not suffer from the problem of underestima-362

tion of extreme values at sub-hourly aggregation levels that were reported in the work of Verhoest363

et al. (1997) and Cameron et al. (2000). From the analysis, it seems that the MBL model is364

capable of preserving the sub-daily statistics even though the calibration procedure only included365

daily and multi-day statistics. Yet, further research is needed for exploring this improved behavior.366

367

Figure 10 also shows that a large variation in extreme values is found for larger return periods.368

The MBL model allows for generating rainfall time series mimicking the statistics of the observed369

series. Due to its structure, the modeled precipitation values are not restricted to the range of370

rainfall values in the observations, making this model able to generate rainfall events having a371

return period larger than the observed time series. Yet, it can thus be expected that within372

the modeled time series of 72 years, events may occur having a true return period that is larger373

than the length of the modeled time series. If longer time series would be simulated, a better374

estimation of the rainfall corresponding to return periods that are smaller than the observed time375

series should be obtained. To demonstrate this, all 50 series generated are concatenated, resulting376

in one time series of 50× 72 = 3600 years, for which the return periods are calculated empirically377

and plotted (only for return periods less then 100 years) as a blue line in Fig. 10. As can be seen378

for return periods smaller than 100 years, a good fit with the observations are obtained, showing379

that MBL is capable of reproducing extremes. Yet, the user should use much longer time series380
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Figure 10: Comparisons between the return periods of extremes of the observed and simulated precipi-
tation data at different aggregation levels: Uccle (red), the ensemble of 50 simulated time series by the
MBL model (grey). Calculation of the extremes for a given return period on a time series that is based
on concatenating the 50 simulated time series, results in the blue line

than the maximum return period aimed for.381

3 Discharge simulation scenarios382

The catchment discharge is calculated by the PDM that uses precipitation and evapotranspiration383

data as inputs. In order to assess the impact of each stochastic variable on the modelling of dis-384

charge, three cases have been developed that can be compared to a reference situation (cfr. Fig. 11).385

The reference situation is obtained by running the PDM with the observed time series of precipi-386

tation and evapotranspiration. In case 1, it is supposed that insufficient evapotranspiration data387

would be available (e.g. a shorter time series than the observed precipitation), the stochastic388

evapotranspiration can then be generated using the three-dimensional C-vine copula, i.e. VTPEpE ,389

given observed rainfall and temperature. The simulation is repeated 50 times in order to account390

for stochastic effects. In case 2, where only a sufficient long time series of precipitation is available,391

the process starts with temperature simulations, then evapotranspiration can be modelled using392

the observed precipitation and stochastically generated temperature using the VTPEpE copula.393

As presented before, temperature values will be generated by the three-dimensional C-vine cop-394

ula VTpPT that relates temperature T to daily precipitation P and the daily temperature of the395

previous day Tp. To account for stochastic effect, 50 time series of temperature are generated.396

Next, each of 50 time series of temperature, together with the observed precipitation data, are397

used to simulate 50 corresponding time series of evapotranspiration. Therefore, in total 2500 time398

series of evapotranspiration are generated. Case 3 accounts for a situation in which data would399

insufficiently be available for all input variables. In this case, an ensemble of 50 time series of400

precipitation could be generated using the MBL model. For each of these time series, 50 time401

series of temperature and 2500 time series of evapotranspiration can be obtained using the same402

approach in case 2. In total, 125000 time series of evapotranspiration are generated in case 3. In403

order to construct copula models and evaluate discharge simulations in all cases, this study uses404

the same time series of precipitation, evapotranspiration and temperature at Uccle. In all cases,405

discharge is simulated using the PDM that was calibrated for the Grote Nete catchment in Bel-406

gium (see Section 2.2). By this approach, the uncertainty due to the PDM can be partly excluded407

from the study, i.e. we study the change in performance with respect to the reference situation. It408

makes sense because the three cases use exactly the same PDM, a similar uncertainty due to the409
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Figure 11: Different cases for discharge simulation. Por, Eor and Tor refer to the observed time series.
Ps, Es1, Es2, Es3, Ts2 and Ts3 refer to the simulated time series (red block). Red arrows indicate the
simulation processes related to stochastically generated time series.

model is assumed for all cases as for the reference situation. Therefore, the change in performance410

for all cases with respect to the reference situation can be attributed to the differences in inputs411

to the model. The discharge simulations in the three cases are denoted as Qs1, Qs2 and Qs3,412

respectively, while the reference discharge is denoted by Qrf .413

4 Results and discussions414

4.1 Case 1415

The catchment discharge can be simulated by means of the PDM that uses precipitation and416

evapotranspiration data. In case 1 (cfr. Fig. 11), where only daily observed precipitation and417

temperature data are available, 50 stochastically generated evapotranspiration time series are418

generated using the three-dimensional C-vine copula VTPEpE . The results shown in Section 2.3.2419

and the work of Pham et al. (2016) reflect that the C-vine copula VTPEpE performs well and its420

simulations lie very close to the values of the observed evapotranspiration. The left panel of421

Fig. 12 displays the comparison between the probability density functions of Qrf and422

Qs1 for January, April, July and October. It can be seen that the distributions of423

Qs1 are quite similar to those of the reference discharge for these months. Similar424

results are obtained for the other months. For a further analysis of mean discharges and425

annual extremes of Qs1, we refer to Section 4.3.426

4.2 Case 2427

In case 2 (cfr. Fig. 11), only a time series of precipitation of sufficient length is available and the428

temperature values are simulated using the C-vine copula VTpPT . The observed precipitation and429

stochastically generated temperature values are then used for reproducing the evapotranspiration430

by means of the C-vine copula VTPEpE . Through comparing the results of this case with that of431

case 1, we can assess the impact of introducing a stochastic temperature model on the modelled432

16



Figure 12: Comparison between the probability density functions of the reference discharge
Qrf (red) and the ensemble of time series of simulated discharge values (grey) using observed
precipitation, observed temperature and simulated evapotranspiration values in case 1 (left
panel), using observed precipitation and simulated temperature and evapotranspiration in
case 2 (middle panel) and using simulated precipitation, temperature and evapotranspiration
in case 3 (right panel).

evapotranspiration time series and the modelled discharge.433

434

As shown in Section 2.3.3 and Fig. 13 (left panel), the stochastically generated temperature435

data generated by the C-vine copula VTpPT model are reliable and can be used together with436

the recorded precipitation to simulate 2500 time series of evapotranspiration in the next step (i.e.437

for each temperature series, 50 evapotranspiration series are generated). The probability den-438

sity functions of the 2500 time series of the simulated evapotranspiration are shown in Fig. 14439

(middle panel). It can be seen from the figures that these distributions are similar to those of440

the observations in Uccle and those of the modelled evapotranspiration in case 1 (cfr. Fig. 14441

(left panel) for January, April, July and October.) Similar results are obtained for442

the other months. Figure 12 (middle panel) displays a comparison between the probabil-443

ity density functions of the simulated discharge (Qs2) and the reference discharge (Qrf ). In444

general, the grey areas representing 2500 simulated time series are slightly wider than those in445

case 1 (Fig. 12 (left panel)). We conclude that the introduction of stochastically generated446

temperature does not cause considerable deviations in the simulation of evapotranspiration and447

discharge.448

4.3 Case 3449

This case accounts for a situation in which no time series (of sufficient length) are available as450

shown in Fig. 11. The first step consists of generating 50 time series of precipitation by means of451

the MBL model (see Section 2.4) and aggregating these to the daily level. Then, each of those time452

series is used for modelling 50 time series of temperature, each used for generating 50 evapotranspi-453
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Figure 13: Comparison between the probability density functions of observed temperature
time series (red) and the ensemble of simulated time series of temperature values (grey)
using the C-vine copula VTpPT on the basis of observed precipitation in case 2 (left panel)
and on the basis of simulated precipitation in case 3 (right panel).

ration series. Therefore, in total 125000 time series of evapotranspiration are generated. Finally,454

125000 time series of the catchment discharge are simulated using the stochastically generated455

time series of precipitation and corresponding evapotranspiration values. This case will allow for456

assessing the uncertainty introduced by using the MBL model for generating precipitation values457

as input to a rainfall-runoff model.458

459

First, the simulated time series of precipitation are used as inputs to the C-vine copula VTpPT460

to generate time series of temperature. The modelled copula-based temperature values are com-461

pared with the observed temperature in Uccle in terms of the probability density functions462

in Fig. 13 (right panel). From these figures, it can again be seen that the distributions of the463

simulations follow those of the observations. With respect to the probability density func-464

tions, the simulated evapotranspiration (Fig. 14 (right panel)) in this case is similar to the465

observed evapotranspiration, but more deviations can be observed in this case than in the pre-466

vious cases. The modelled time series of precipitation and evapotranspiration are then used for467

modelling the discharge. The probability density functions of the simulated discharge values468

for some months are displayed in Fig. 12 (right panel). Similar results are obtained for469

the other months. From the different plots, it can be concluded that the simulations still follow470

the distribution of the reference discharge (red line).471

472

Compared to the simulated discharge of cases 1 and 2, more higher extreme values are generated473

and the grey areas representing the ensemble of 125000 time series are generally wider, indicating474

that mainly the stochastic generation of precipitation has introduced considerable variations into475

the discharge simulations. The top panel of Fig. 15 illustrates this by comparing the476

annual extremes of the observed and the simulated discharge series for all cases.477

However, it should also be noted that the results for cases 2 and 3 are obtained on478

the basis of a wider ensemble of time series as compared to case 1 (2500 for case 2,479

and 125000 for case 3). In order to also compare the variations obtained on the basis480
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Figure 14: Comparison between the probability density functions of observed evapotranspira-
tion time series (red) and the ensemble of simulated time series of evapotranspiration (grey)
using the C-vine copula VTPEpE on the basis of observed precipitation, observed temperature
in case 1 (left panel), on the basis of observed precipitation and simulated temperature in
case 2 (middle panel) and on the basis of simulated precipitation and temperature in case
3 (right panel).
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of an equal number of time series within the ensemble (i.e. 50 time series), for each481

time series of observed (case 2) or simulated (case 3) precipitation, one corresponding482

time series of temperature and one corresponding time series of evapotranspiration483

are generated. The bottom panel of Fig. 15 illustrates the extremes obtained on the484

basis of this ensemble of 50 time series of discharge. These results also show that most485

of the variation obtained in case 3 is due to the stochastic generation of precipitation.486

This increase in uncertainty should however be treated with care. As stated before, the generated487

rainfall series may include extremes that are larger than the ones in the observed time series. Such488

large precipitation values will inevitably result in a large surface runoff production causing extreme489

discharges. The large variability in extreme rainfall as observed in Fig. 10 will consequently lead490

to large variabilities in modeled extreme discharges (cfr. Fig. 15). If, however, the discharge491

extremes from a longer time series are studied, the variation in extremes is strongly reduced.492

To demonstrate this, 50 rainfall time series of 3600 year and corresponding evapotranspiration493

time series (remark that only one series is generated per rainfall time series) are used as input494

to the rainfall-runoff model, and the extremes, having return periods smaller than 1000 years,495

are plotted for each of these 50 time series (Fig. 16). As can be seen, the large uncertainties in496

extremes, encountered when using 72 year time series as input, are highly reduced, showing a497

slight overestimation for larger return periods, if compared to those modeled using the observed498

time series of rainfall and evapotranspiration. Yet, it is impossible to state whether true499

overestimations are obtained, or that, due to the stochastic nature of rainfall (and500

evapotranspiration), no discharge events corresponding to a 72-year return period501

occurred in the observed time series and therefore the maximum discharge value502

was wrongly assigned a too high return period (i.e. the maximum discharge based on the503

observed time series of precipitation and evapotranspiration corresponds to a return period of504

about 25 years based on the simulations using the modelled very long time series of precipiation505

and evaporation). Similarly as discussed for Fig. 10, this result makes a plea for using modeled506

discharge time series of a length that is a multiple of the maximum return period of discharge507

aimed at, where longer time series reduce the variation in discharge values at high return periods508

at the expense of run-time. Further research will be needed to seek for the trade-off between509

length of the time series and the remaining uncertainty.510
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Figure 15: Comparison between the empirical return periods of annual extremes of the observed and
simulated discharge for all cases: reference discharge Qrf (red), the ensemble of time series of simulated
discharge (grey).The top panel shows extremes obtained on the basis of unequal ensemble
widths of 50 (case 1), 2500 (case 2) or 125000 (case 3) time series. The bottom panel shows
extremes obtained on the basis of equal ensemble widths of 50 time series.

Figure 16: Comparison between the empirical return periods of annual extremes of the observed and
simulated discharge for case 3 based on 50 time series of 3600 years of rainfall and corresponding evapo-
transpiration.
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Figure 17: Comparison between the probability density functions of the mean of discharge of
the observed and simulated values in three cases: reference discharge Qrf (red), the time series of
simulated discharge (grey).
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Figure 18: Root mean square difference (RMSD) for simulated discharge in different cases: case 1 (red),
case 2 (blue) and case 3 (green).

In order to further investigate the quality of the simulated discharge for all cases, Fig. 17511

presents the comparison between the probability density functions of the daily averages of512

the modelled and reference discharge for January, April, July and October. For all cases, the513

daily mean seems to be preserved by the modelled discharge. However through investigating the514

width of the grey areas of the simulated time series for each case, as expected, we can conclude515

that the most certain results are observed in case 1, followed by case 2 and case 3. This also holds516

for the other months. Similar situations are witnessed for the univariate return period of annual517

extreme discharge (Fig. 15) in which the least and largest variations between the reference and518

simulated discharge are noticed for Qs1 and Qs3, respectively. Especially, a remarkable expansion519

of grey areas is witnessed in case 3. It is clear that each stochastic component, i.e. modelled pre-520

cipitation, temperature or evapotranspiration, has contributed an additional amount of variation521

to the modelled discharge. The differences between the simulated discharge from different cases522

are less evident in terms of probability density functions but more pronounced for the mean523

and extreme discharge.524

525

To account for the variations between the modelled and reference discharge, the simulated526

discharge values are further evaluated using the root mean square deviation (RMSD):527

RMSD(i) =

√√√√ 1

n

n∑
s=1

(
Qm,s(i)−Qo(i)

)2
, (8)

where Qm(i) and Qo(i) are respectively the modelled and reference discharge value at a cumula-528

tive relative frequency i ∈ [0, 1] and n is the number of the members in the ensemble considered.529

530

Figure 18 displays the RMSD calculated for simulated discharge in different cases. It can531

be seen from the figure that for all cases, larger RMSD values are found for the higher values of532

discharge. In other words, simulations of the higher values of discharge are generally less accurate.533

There are insignificant differences between the RMSD for case 1 and 2 for all months. The use of534

stochastically generated temperature time series seemed to contribute minor uncertainty to the535

discharge simulations in this study. The largest errors often are obtained in case 3 where the536

discharge is simulated from stochastically generated precipitation and evapotranspiration values.537

23



5 Conclusions538

In water management, discharge is a very important variable which can be simulated via a rainfall-539

runoff model using recorded precipitation and evapotranspiration data. However, in situations that540

suffer from data deficiency, one may consider using stochastically generated time series. In this541

study, the impact of using the stochastically generated precipitation and evapotranspiration on542

the simulation of the catchment discharge is investigated. In order to assess the influence of each543

stochastic variable on the discharge simulations, three different cases have been considered. In544

the first case, it is assumed that insufficient evapotranspiration data would be available, requir-545

ing stochastically generated evapotranspiration based on observed precipitation and temperature546

data by means of a copula. In the second case, where only precipitation data would be sufficiently547

available, the temperature and evapotranspiration are each reproduced by vine copulas. The third548

case addresses the situation where too short time series of observations are available. In this case,549

the precipitation time series could be generated using a Modified Bartlett-Lewis (MBL) model550

calibrated to the limited precipitation data available and then the time series of temperature and551

evapotranspiration could be obtained using the copula-based models. In all cases, C-vine copulas552

VTPEpE and VTpPT are used for the simulations of evapotranspiration and temperature, respec-553

tively. From the comparison between the simulations with the observations, the C-vine copulas554

seem to reproduce the time series of evapotranspiration and temperature well. It is clear that555

each stochastic component has a certain impact on the discharge simulations, and each additional556

stochastic variable will contribute an additional variation, and thus uncertainty. As expected,557

the simulations of the discharge obtained for case 1 show the smallest variability, while those in558

case 3 results in the largest variability. In general, no major differences are observed between the559

simulations and observations in cases 1 and 2, the characteristics of the discharge series seem to560

be preserved through the process for these cases. Noticeable variations are witnessed in case 3,561

where the discharge is simulated using modeled time series of precipitation and evapotranspiration.562

563

With respect to extreme discharge, it was shown that the uncertainties encoun-564

tered in case 3 are partly caused by the limited length of the time series used. The565

uncertainties on the predictions are highly reduced when input time series are used566

that are much longer than the maximum return period aimed at. As in this particular567

case, all forcing data are generated, the modeller is not restricted to the length of an observed568

time series, and can hence generate time series of whatever length as input to the hydrological569

model, taking into account that the longer the time series used, the more the uncertainty reduces570

at the expense of increasing run-time.571

572

From this study, we may conclude that in situations that suffer from a lack of observations, one573

can rely on the stochastically generated series of precipitation, temperature and evapotranspiration574

to reproduce time series of discharge for water resources management. However, care should be575

taken as the modelled extreme discharges may experience the largest errors.576
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