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1 General comments
The manuscript is very well written and gives sufficient context to understand the rel-
evant developments and issues in hydrological impact analysis. The authors clearly
motivate why a stochastic rainfall-evapotranspiration model is useful in this con-
text. Their proposal is based on vine copulas, a modern statistical tool for modeling
stochastic dependence between multiple variables. This is a laudable effort, but the
way this methodology is applied and its performance is evaluated is problematic in
several ways. I fully acknowledge that HESS is not a statistics journal and statistical
subtleties may not matter in specific applications. But the extent to which they do
in this particular context are unclear and needs to be addressed.

Below I identify three major issues and explain why they are problematic from a
statistical perspective. I urge the authors to thoroughly evaluate the implications for
their hydrological model. Where possible, I try to make suggestions for alternative
methods that may improve their model and its assessment. Since the first two issues
may be equally relevant for other readers, my comments will be more elaborate than
what is common in a closed review.

2 Specific comments

2.1 Major issues

2.1.1 Seasonal effects

A copula models the dependence between two random variablesX1, X2 with marginal
distributions F1 and F2. Its parameters can be estimated from observations of these
variables, Xt = (X1,t, X1,t), t = 1, . . . , T . The usual assumption for the validity of
the estimate is that the dataXt are independent and identically distributed (iid). In
particular, the distribution of Xt should not change with t, which is usually violated
by climatic variables. The authors acknowledge that by fitting multiple models, one
for each month.

I am afraid this may not be enough, because climatic trends also exist within
months. For example: in central Europe, the end of April is — on average —
much warmer than the beginning of April. Suppose that additionally, the average
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precipitation is decreasing during April. Then high temperatures will likely coincide
with low levels of precipitation and vice versa. A copula fitted to this data will
show negative dependence, which merely reflects the two deterministic within-month
trends working in opposite directions, but not the stochastic dependence between
the time series.

Whether or not within-month trends exist can be easily checked visually or by
formal statistical tests (e.g., Harris and Sollis, 2003, Chapter 3). If they do exist,
they should be accounted for on a finer time scale. Splitting the data into weeks or
even days could be a solution, but significantly decreases the number of observations
available for fitting the copula model. A good alternative is to center and scale the
time series by their seasonal mean and standard deviation. More specifically, if Xj,d,y

denotes variable j observed at day d of year y, set

X̃j,d,y = (Xj,d,y − µj,d)/σj,d, (1)

where µj,d and σj,d are the mean and standard deviation of Xj,d,y, y = 1, . . . , 72. If
necessary, trends in the skewness of X̃j,d,y can be removed similarly using a Box-Cox
transformation. This transformation is usually sufficient to account for deterministic
seasonal effects. We can now build a copula for the stochastic dependence in X̃t =
X̃d+365(y−1). Simulated data from this model can be transformed to the original
scale by inverting (1).

2.1.2 Inter-serial dependence

Even when the distribution of X̃t is the same for each t, subsequent observations of
the time series may not be independent. Such data is called stationary which is less
restrictive than iid. Typically, stationarity is sufficient to allow for valid estimation
of the marginal distributions and copula of X̃t. But inference tools (like confidence
intervals and goodness-of-fit tests) derived under the iid assumption are no longer
valid.

Another potential issue is that inter-serial dynamics can play an important role
in applications. If so, these dynamics should be modeled explicitly explicitly. In
the context of hydrological discharges, this is likely the case. Large discharges often
occur when extreme weather conditions have been persistent for several days, and
persistence is a sign of inter-serial dependence. A simple way to check whether such
dependence is present is to look at the autocorrelation of the time-series, i.e., the
correlation between X̃t and X̃t−1 (and their squares). If the correlation is small, one
can test statistically whether it is zero.

If there is dependence, there are two popular ways to capture it:

1. Copula models: This route is taken by the authors in 2.3.3, but only for
the temperature variable. Similar models for the inter-serial dependence in
evapotranspiration and precipitation should be employed in addition. If Fj,t,t−1
is the joint distribution of X̃j,t and X̃j,t−1, the between-variables dependence
can be modeled by a copula for the variables

U1,t = F1,t|t−1(X̃1,t | X̃1,t−1), U2,t = F2,t|t−1(X̃2,t | X̃2,t−1),

where Fj,t|t−1 is the conditional distribution of X̃j,t given X̃j,t−1.
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2. Classical time series models: Classical time series models (see, e.g., Shumway
et al., 2000, Chapter 3) assume that the variable X̃j,t is a linear combination
of the preceding values (t′ < t) and iid noise. For example, the autoregressive
model of order p is

X̃j,t =

p∑
k=1

φj,kX̃j,t−k + εj,t,

where φj,k are model parameters and εj,t is iid noise with mean zero. The
sequence εj,t is commonly called innovation or residual series. The stochas-
tic between-variable dependence can then be captured by a copula model for
(ε1,t, ε2,t). More complex models are required when X̃2

j,t is autocorrelated (Har-
ris and Sollis, 2003, Chatper 8).

2.1.3 Assessing the quality of the vine copula model

There are multiple issues with how the quality of the model is evaluated:

1. To check the model’s validity, the authors merely look at the density/cdf of
the observed and simulated values of a single time series. This is only weakly
related to the vine copula model and not a good indicator for its fit. Under
this measure, just simulating from the distribution FE (thereby assuming that
E is independent of T and P ) would lead to results that are at least as good
as the ones from the vine copula.

To adequately assess the quality of the dependence model, pair-wise compar-
isons should be made. For example, one can look at the scatter plots of ob-
served and simulated pairs (X1,t, X2,t). Another alternative are contour plots
of the estimated joint density of observed vs. simulated pairs. Such compar-
isons should be made for all variable combinations. Similarly, multivariate
return periods should be considered instead of single-variable return periods
(see, Salvadori et al., 2011).

2. Figures 6 and 9 use empirical cumulative distribution functions (ECDF) in-
stead of densities for no obvious reason. I advise against using ECDF’s be-
cause they suggest a misleading sense of closeness between distributions. Since
ECDFs are necessarily monotone functions with boundary values 0 and 1, their
shape is quite restricted. For example, the left panels of Figure 9(d) show that
the distributions are different, but the ECDFS still look somewhat similar. But
the corresponding densities would show almost no overlap and more clearly
communicate the dissimilarity.

3. In Section 4, the uncertainty in the simulation model is assessed for various
degrees of data availability. From the spread of estimated densities in Figures
11-15, the authors conclude that uncertainty increases when a variable is not
observed and needs to be simulated. This is likely true, but can not be inferred
from these figures. The density plots for cases 1-3 are based on a different
number of observations. The spread seen on 125000 simulations will naturally
be larger than the the spread on 50 observations — even when the actual
distribution is the same. Hence, the spreads should only be compared when
they are based on the same number of simulations.
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2.2 Minor issues

1. Since vine copulas are the essential ingredient in your model, I suggest to
indicate this in the abstract.

2. p. 4, p. 165: If unconditional bivariate copulas are used (as is common), a vine
copula is not a decomposition, but a construction. A decomposition is called
non-simplified vine copula and involves conditional bivariate copulas (see, e.g.,
Stöber et al., 2013). I suggest to rephrase this sentence.

3. p. 4, l. 167: I suggest to change “all types of dependence” to “a wide range of
dependence structures”. “All types” can only be modeled by a non-simplified
vine copula.

4. p. 5, l. 179: What do you mean by “C-vine copulas are easier to construct than
D-vine copulas”? In fact, any three-dimensional vine is both a C- and D-vine,
which can be easily verified by re-arranging the vertices of the vine graph.

5. p. 6, l. 203 ff.: I am afraid a reader without prior knowledge of vine copulas
will not understand your paragraph on how the model is estimated. Instead
of your explanation, it should suffice to refer the reader to Aas et al. (2009).

6. How are marginal distributions modeled/estimated?

7. Figures 4, 12–17 should use a larger smoothing parameter to decrease vari-
ability of the density estimates. A large proportion of the observed variability
is due to the density estimation technique. This is not the kind of variability
you want to assess.

8. Figure 22: What is i?

3 Technical corrections
1. p. 5, l. 179: "Sine because C-vine . . . " should be "Because C-vine . . . ".
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