
We would first like to thank both reviewers for their profound comments
and suggestions. In this rebuttal, we list the comments and suggestions
raised by the reviewers and explain how we handled them in the revised
manuscript. Our answers are listed in italic. Changes to the manuscript are
given in boldface.

1 Specific comments of the first reviewer

1.1 Major issues

1.1.1 Seasonal effects

A copula models the dependence between two random variables X1, X2

with marginal distributions F1 and F2. Its parameters can be estimated
from observations of these variables, Xt = (X1,t,X2,t), t = 1, . . . , T . The
usual assumption for the validity of the estimate is that the data Xt are
independent and identically distributed (iid). In particular, the distribu-
tion of X t should not change with t, which is usually violated by climatic
variables. The authors acknowledge that by fitting multiple models, one for
each month. I am afraid this may not be enough, because climatic trends
also exist within months. For example: in central Europe, the end of April
is on average much warmer than the beginning of April. Suppose that ad-
ditionally, the average precipitation is decreasing during April. Then high
temperatures will likely coincide with low levels of precipitation and vice
versa. A copula fitted to this data will show negative dependence, which
merely reflects the two deterministic within-month trends working in oppo-
site directions, but not the stochastic dependence between the time series.
Whether or not within-month trends exist can be easily checked visually or
by formal statistical tests (e.g., Harris and Sollis, 2003, Chapter 3). If they
do exist, they should be accounted for on a finer time scale. Splitting the
data into weeks or even days could be a solution, but significantly decreases
the number of observations available for fitting the copula model. A good
alternative is to center and scale the time series by their seasonal mean and
standard deviation. More specifically, if Xj,d,y denotes variable j observed
at day d of year y, set

X̃j,d,y = (Xj,d,y − µj,d)/σj,d , (1)

where µj,d and σj,d are the mean and standard deviation of Xj,d,y , y =
1, . . . , 72. If necessary, trends in the skewness of X̃j,d,y can be removed
similarly using a Box-Cox transformation. This transformation is usually
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sufficient to account for deterministic seasonal effects. We can now build a
copula for the stochastic dependence in X̃t = X̃d+365(y1) . Simulated data
from this model can be transformed to the original scale by inverting (1).

We checked the data for the existence of a within-month trend, and found
that trends exists for temperature and evapotranspiration data. As advised
by the referee, we standardized the data. We added a paragraph (in Section
2.1) in the revised manuscript w.r.t. standardization of the data.:

“In order to use the above-described data to fit copulas, the
data should be independent and identically distributed (iid), in-
dicating that the distribution of the data should not change with
time. To this end, the time series is split into monthly series to
which a vine copula model can be fitted. Hence, for each month a
different model will be obtained. However, the data distributions
can also change within the monthly series, i.e. a within-month
trend may exist. Therefore, the daily distributions, each contain-
ing 72 observations were compared w.r.t. their equality within
each month by means of an ANOVA test, when distributions were
homoscedastic, a Welch ANOVA test (Welch, 1951) when distri-
butions were heteroscedastic, or a Kruskal Wallis test (Kruskal
and Wallis, 1952) when distributions were not-normal and het-
eroscedastic, at a significance level of 0.001. The results of these
tests indicate that within-month trends exist for temperature and
evapotranspiration, whereas no trend was found for precipitation.
In order to meet the requirements of the data to be iid, tempera-
ture and evapotranspiration data were standardized as follows:

xs,d,y =
(xd,y − µd)

σd
, (2)

with xs,d,y the standardized value of temperature or evapotran-
spiration at day d of year y, xd,y the original measured value of
temperature or evapotranspiration at day d of year y, µd and σd
the mean value and standard deviation of x at day d.”

1.1.2 Inter-serial dependence

Even when the distribution of X̃t is the same for each t, subsequent ob-
servations of the time series may not be independent. Such data is called
stationary which is less restrictive than iid. Typically, stationarity is suffi-
cient to allow for valid estimation of the marginal distributions and copula of

2



X̃t. But inference tools (like confidence intervals and goodness-of-fit tests)
derived under the iid assumption are no longer valid. Another potential
issue is that inter-serial dynamics can play an important role in applica-
tions. If so, these dynamics should be modeled explicitly. In the context
of hydrological discharges, this is likely the case. Large discharges often oc-
cur when extreme weather conditions have been persistent for several days,
and persistence is a sign of inter-serial dependence. A simple way to check
whether such dependence is present is to look at the autocorrelation of the
time-series, i.e., the correlation between X̃t and X̃t1 (and their squares). If
the correlation is small, one can test statistically whether it is zero. If there
is dependence, there are two popular ways to capture it:

1. Copula models: This route is taken by the authors in 2.3.3, but only
for the temperature variable. Similar models for the inter-serial de-
pendence in evapotranspiration and precipitation should be employed
in addition. If Fj,t,t1 is the joint distribution of X̃j,t and X̃j,t1, the
between-variables dependence can be modeled by a copula for the vari-
ables

U1,t = F1,t|t1(X̃1,t|X̃1,t1) , U2,t = F2,t|t1(X̃2,t|X̃2,t1) , (3)

where Fj,t|t1 is the conditional distribution of X̃j,t given X̃j,t1.

2. Classical time series models: Classical time series models (see,
e.g., Shumway et al., 2000, Chapter 3) assume that the variable X̃j,t

is a linear combination of the preceding values (t′ < t) and iid noise.
For example, the autoregressive model of order p is

X̃j,t =

p
∑

k=1

φj,kX̃j,tk + ǫj,t , (4)

where φj,k are model parameters and ǫj,t is iid noise with mean zero.
The sequence ǫj,t is commonly called innovation or residual series.
The stochastic between-variable dependence can then be captured by
a copula model for (ǫ1,t, ǫ2,t) More complex models are required when
X̃j,t is autocorrelated (Harris and Sollis, 2003, Chapter 8).

We found an autocorrelation for temperature and evapotranspiration on
the basis of a Ljung-Box Q-test. We took the autocorrelation into account
by extending the vine VTPE with Et−1, i.e. including the evatranspiration of
the previous time step (see Section 2.3.2 of the revised manuscript):
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“In order to avoid monthly effects, the temperature and evap-
otranspiration data were first standardized and a different C-vine
copula model is used for each month. However, subsequent ob-
servations of the time series may not be independent, meaning
that values within the time series may be autocorrelated. This is
accounted for by extending the vine copula VTPE as used in Pham
et al. (2016) with the evapotranspiration of the previous day (Ep).
In this way a four-dimensional C-vine copula VTPEpE is constructed
for each month. ”

1.1.3 Assessing the quality of the vine copula model

There are multiple issues with how the quality of the model is evaluated:

1. To check the models validity, the authors merely look at the den-
sity/cdf of the observed and simulated values of a single time series.
This is only weakly related to the vine copula model and not a good
indicator for its fit. Under this measure, just simulating from the
distribution FE (thereby assuming that E is independent of T and
P ) would lead to results that are at least as good as the ones from
the vine copula. To adequately assess the quality of the dependence
model, pair-wise comparisons should be made. For example, one can
look at the scatterplots of observed and simulated pairs (X1,t,X2,t).
Another alternative are contour plots of the estimated joint density of
observed vs. simulated pairs. Such comparisons should be made for all
variable combinations. Similarly, multivariate return periods should
be considered instead of single-variable return periods (see, Salvadori
et al., 2011).

We examined the values of Kendall’s tau to check whether or not the
dependence between the generated variables is maintained. By exam-
ining scatter plots between observed and simulated pairs, as the referee
suggests, one would rather investigate whether the simulated values ap-
proximate the observed values, as in a prediction model. In this study,
however, it is not the aim to match the observed values for each time
step t as closely as possible, but rather mimic the behaviour of the ob-
served time series w.r.t. statistics and extremes. We therefore did not
include scatterplots in the revised manuscript.

2. Figures 6 and 9 use empirical cumulative distribution functions (ECDF)
instead of densities for no obvious reason. I advise against using
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ECDFs because they suggest a misleading sense of closeness between
distributions. Since ECDFs are necessarily monotone functions with
boundary values 0 and 1, their shape is quite restricted. For example,
the left panels of Figure 9(d) show that the distributions are different,
but the ECDFS still look somewhat similar. But the corresponding
densities would show almost no overlap and more clearly communicate
the dissimilarity.

We changed the figures and used densities instead of the ECDFs.

3. In Section 4, the uncertainty in the simulation model is assessed for
various degrees of data availability. From the spread of estimated den-
sities in Figures 11-15, the authors conclude that uncertainty increases
when a variable is not observed and needs to be simulated. This is
likely true, but can not be inferred from these figures. The density
plots for cases 1-3 are based on a different number of observations.
The spread seen on 125000 simulations will naturally be larger than
the spread on 50 observations even when the actual distribution is
the same. Hence, the spreads should only be compared when they are
based on the same number of simulations.

In the revised manuscript, we kept our original approach in cases 1-3,
as in this way we also take the stochasticity of the MBL and the tem-
perature model into account. However, we also compared the extremes
obtained for the different cases when one would use the same num-
ber of simulations, i.e. for each simulated time series of temperature,
only one corresponding time series of evapotranspiration is generated
in case 2, and for each simulated time series of precipitation, only one
corresponding time series of temperature and one of evapotranspiration
are generated. The spread obtained for this approach has been added
to Figure 15 in the revised manuscript, and some explanatory text has
been included in the manuscript:

“ However, it should also be noted that the results for cases
2 and 3 are obtained on the basis of a wider ensemble of time
series as compared to case 1 (2500 for case 2, and 125000 for
case 3). In order to also compare the variations obtained on
the basis of an equal number of time series within the en-
semble (i.e. 50 time series), for each time series of observed
(case 2) or simulated (case 3) precipitation, one correspond-
ing time series of temperature and one corresponding time
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series of evapotranspiration are generated. The bottom panel
of Fig.15 illustrates the extremes obtained on the basis of this
ensemble of 50 time series of discharge. These results also
show that most of the variation obtained in case 3 is due to
the stochastic generation of precipitation.”

1.2 Minor issues

1. Since vine copulas are the essential ingredient in your model, I suggest
to indicate this in the abstract.

This has been indicated in the abstract:

“In this paper, stochastically generated rainfall and coincid-
ing evapotranspiration time series, generated by means of
vine copulas, are used to force a simple conceptual hydrolog-
ical model.”

2. p. 4, p. 165: If unconditional bivariate copulas are used (as is com-
mon), a vine copula is not a decomposition, but a construction. A
decomposition is called non-simplified vine copula and involves con-
ditional bivariate copulas (see, e.g., Stöber et al., 2013). I suggest to
rephrase this sentence.

We rephrased this sentence:

A flexible construction method for high-dimensional copulas,
known as the vine copula construction, has been introduced
in the work of Bedford and Cooke (2001, 2002), in which
multivariate copulas, and hence the multivariate densities,
are constructed as a product of bivariate copula densities.

3. p. 4, l. 167: I suggest to change all types of dependence to a wide
range of dependence structures. All types can only be modeled by a
non-simplified vine copula.

This has been changed in the manuscript.

4. p. 5, l. 179: What do you mean by C-vine copulas are easier to
construct than D-vine copulas? In fact, any three-dimensional vine is
both a C- and D-vine, which can be easily verified by re-arranging the
vertices of the vine graph

This sentence has been removed from the manuscript.
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5. p. 6, l. 203 ff.: I am afraid a reader without prior knowledge of
vine copulas will not understand your paragraph on how the model is
estimated. Instead of your explanation, it should suffice to refer the
reader to Aas et al. (2009).

We believe that the reader should get some insight in how the vine
is constructed and therefore, we revised this paragraph and added a
reference to Aas et al. (2009):

“The construction of VTPEpE is given as follows. First, values
(uT,j, uP,j, uEp,j, uE,j) of UT , UP , UEp

and UE are derived from
the marginal distributions of respectively T , P , Ep and E
(j = 1, ..., n and n is the number of data points), and are used
to select and fit the bivariate copulas CTP , CTEp

and CTE.
These bivariate copulas are conditioned on UT through partial
differentiation as given in Eq. (5), resulting in the conditional
cumulative distribution functions FP |T , FEp|T and FE|T .

FP |T (uP |uT ) =
∂

∂uT
CTP (uT , uP )

FEp|T (uEp
|uT ) =

∂

∂uT
CTEp

(uT , uEp
)

FE|T (uE |uT ) =
∂

∂uT
CTE(uT , uE) .

(5)

Using these three conditional distributions, the conditional
probabilities are calculated for all data points (uT,j, uP,j, uEp,j, uE,j).
To these conditional probabilities, which are also uniformly
distributed on [0,1], two bivariate copulas CPEp|T (FP |T , FEp|T )
and CPE|T (FP |T , FE|T ) are fitted, of which the partial deriva-
tives to FP |T can be computed to obtain FEp|TP and FE|TP .
Again, using these two conditional distributions, a bivari-
ate copula CEpE|TP (FEp|TP , FE|TP ) is fitted, which can also be
conditioned by calculating the partial derivative. For more
detailed information about the construction of vine copulas,
we refer to (Aas et al., 2009).”

6. How are marginal distributions modeled/estimated?

We added in the manuscript that empirical distributions are employed
as marginal distributions.

7. Figures 4, 12–17 should use a larger smoothing parameter to decrease
variability of the density estimates. A large proportion of the observed
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variability is due to the density estimation technique. This is not the
kind of variability you want to assess.

We changed the smoothing parameter to reduce this variability.

8. Figure 22: What is i?

i is the cumulative relative frequency at which the RMSD between the
simulated and the reference discharge is calculated. See also the expla-
nation of Eq. (6):

RMSD(i) =

√

√

√

√

1

n

n
∑

s=1

(

Qm,s(i)−Qo(i)
)2

, (6)

where Qm(i) and Qo(i) are respectively the modelled and reference dis-
charge value at a cumulative relative frequency i ∈ [0, 1], and n is the
number of the members in the ensemble considered.

2 Comments of the second reviewer

This is a nice study that uses copula-based approaches to stochastically gen-
erate mutually dependent rainfall and evapotranspiration forcing for rainfall
runoff models. This could be used for design purposes where observation
is sparse or missing. However, this approach does not seem to be work-
ing properly for the extreme events (which are needed for design purposes).
Acknowledging this fact, the study is valuable for the areas with no ob-
servation. Overall, paper is well written and well structured. I have some
comments (most of them major) that could potentially improve the quality
of this paper.

1. Line 46: Authors use stochastic process models to generate precipita-
tion series. My question is:
How do stochastic process models handle changing characteristics of
precipitation? Several studies have shown, for parts of the world, that
rainfall events are shrinking in time and expanding in amplitude. Also
there is a temporal shift in rainfall events in some parts of the world,
let alone the changes in the distribution of rainfall/snow. Addressing
these issues could be helpful.

We addressed this in the introduction:
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“The BL model will be employed on a monthly basis such
that temporal changes in precipitation characteristics due to
the annual cycle can be underpinned. Long-term changes,
e.g. due to climate change, however, cannot be accounted for
in this model set-up.”

2. Lines 91-94: I don’t understand how the number of stochastically gen-
erated forcing data could influence the uncertainty of the rainfall-runoff
model’s response. Uncertainty is a characteristic of the forcing data
(let’s neglect the modeling uncertainties for now), not the number of
generated time series. So if you find a time series that fit your runoff
extremes well, this is just a random phenomenon. This cannot be the
basis for prediction, as we can’t determine the best forcing for future,
and need to rely on the ensemble of forcing data.

We added some text in the introduction to describe the source of un-
certainty we are dealing with:

“By regarding the actual observed time series as one reali-
sation of the meteorological process, the corresponding dis-
charge can also be regarded as one realisation. Actually, due
to chaos occurring in the climatological system, a different
time series could have been observed resulting in a discharge
time series different from the actual observed one. The latter
will hence provide other design values than those correspond-
ing to the actual observed time series. In order to account for
this kind of uncertainty, different cases, in which the num-
ber of stochastically generated input variables to the model
is increased, are investigated. For these cases, the increase
of uncertainty in modelled extremes and what portion of this
increase can be attributed to the different stochastic genera-
tors, is assessed.”

3. Lines 95-96: Section 2 should precede section 3!

This has been corrected.

4. I am confused about how sections 2.1 and 2.2 are connected. Histori-
cal record of climate forcing are obtained for Brussels, and RR model
is calibrated for the Grote Nete catchment. How do you use a model
calibrated against one watershed, to predict runoff at another water-
shed? Moreover, 1 year of data for evaluation is not enough. You will
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need a couple of years to ensure calibrated model can capture different
aspects of a catchment.

We added some text in Section 2.2. to better explain this.:

“Given the relatively small distance between Uccle and the
Grote Nete catchment, and the fact that the meteorologi-
cal conditions are nearly the same, one can assume that the
statistics of the modelled discharge obtained with the forc-
ing data observed near the catchment and those observed at
Uccle are negligible. Furthermore, the rainfall-runoff model
will not be used to make predictions, but rather to demon-
strate the impact of different alternative realisations of pre-
cipitation (P ), temperature (T ) and evapotranspiration (E)
on discharge values. Therefore, although PDM will be ap-
plied to observations from Uccle in this study, it is calibrated
on the basis of a time series of more than 6 years (from
13/8/2002–31/12/2008) at an hourly time-step (precipita-
tion, evapotranspiration and discharge) that is available for
the catchment.”

5. Section 2.3: Copulas characterize dependence structure of different
variables. This means there should be a dependence structure. Did
you quantify the correlation between evaporation, temperature, and
precip? If so, is it significant? At what temporal scale? My under-
standing is that you perform your analysis at daily scale, and I fear
the correlation might not be significant at the daily scale.

We do not fully grasp the fear of the reviewer, but the correlation
between the variables has been checked. Yet, the dependence structures,
as present in the input time series, are used to build the copula models.

6. Line 150: bivariate → It could be multivariate

True, Eq. (1) can be written with more than two dimensions. However,
as Eq. (1) only concerns 2 variables, we maintain the used terminology
(i.e. bivariate copula).

7. Line 152: I would reference to Joe 1997 too. Joe and Nelsen both
played an important role in introducing copula to the scientific com-
munity.

We added a reference to Joe (1997).
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8. Lines 171-173: I agree that vine copulas are very flexible, but it comes
at a price! A model with 4 degrees of freedom is more flexible than a
competitor with 2! However, usually there is not enough information
to constrain all parameters. The copula literature usually does not
address the parameter uncertainties, and so they neglect the identifia-
bility of parameters. I would address this predicament here. For more
info, refer to Figure 6 of: Sadegh, M., E. Ragno, and A. AghaKouchak
(2017), Multivariate Copula Analysis Toolbox (MvCAT): Describing
dependence and underlying uncertainty using a Bayesian framework,
Water Resour. Res., 53, doi:10.1002/2016WR020242.
Link: http://onlinelibrary.wiley.com/doi/10.1002/2016WR020242/full

We added a sentence to make the reader aware of this:

“ However, one has to be aware that the flexibility offered
by vine copulas demands the estimation of a large number of
parameters for which the data set should encompass sufficient
information.”

9. Line 191: As a minor issue, when someone talks about a 3-dimensional
model, I expect the model to have three parameters. When someone
talk about trivariate model, I expect a multivariate model that asso-
ciates three variables.

We prefer not to change the terminology as, in literature, the term
‘n-dimensional copula’ is commonly used for a copula that involves
n variables. One wouldn′t call the Frank copula a one-dimensional
copula as it only has one parameter.

10. Line 203: How did you construct the marginal distribution? Empiri-
cal? Fitted distribution?

We used the empirical distributions to construct the marginal distri-
butions. We added this information in the manuscript.

11. Eq. 3: how did you calculate inverse of the vine copula? Analytical
or numerical?

The inversions, necessary for sampling a value out of the vine copula,
were performed analytically whenever possible, numerically otherwise.

12. Line 253: pvalue larger than 0.05 or smaller?!

The obtained p-values were larger than 0.05. More details about the
theory and the p-values of the White test are given in Shepsmeier,
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2015. We added some more information about the hypothesis of the
White test in the paper:

“Further, the White goodness-of-fit test (Schepsmeier, 2015)
is applied to check whether the dependence present in the
data is captured by the C-vine copulas. For this test, p-values
larger than the significance level indicate that the dependence
structure of the data can be described by the selected copu-
las.”

13. Section 2.4: How did you calibrate the modified BartlettLewis (MBL)
model, given the stochastic nature of precipitation prediction models?
With stochastic models, usually summary statistics of data and simu-
lation are compared, rather than original time series. For this purpose,
approximate Bayesian computation is a great framework.

We briefly mentioned in the paper how the model was calibrated:

“The MBL model is calibrated using the Generalised Method
of Moments, i.e. the difference between the model statistics
obtained by means of analytical expressions and the empir-
ical statistics obtained from the observed time series is to
be minimized. The calibration of the MBL model in this
study is based on the mean, variance, lag-1 autocovariance
and zero-depth probability (ZDP) at the aggregation levels
of 24 h, 48 h and 72 h instead of 10 min, 1 h and 24 h that
were used in Pham et al. (2013). As in Pham et al. (2013),
the Shuffled Complex Evolution algorithm Duan et al. (1994)
was employed to search for the optimal parameters.

14. Lines 338-344: I cannot disagree more! Forcing and model uncertain-
ties are intertwined, and interact in a nonlinear manner. It is not as
simple as you explained. You cannot simply use a RR model calibrated
for one watershed to simulate runoff at another watershed! Tens (Hun-
dreds) of papers are available on the regionalization topic, not many of
them really provided a sound ground for transferring model parame-
ters from one watershed to another! Worse is that authors assume this
modeling uncertainty does not interact with the forcing uncertainty.

The comment of the reviewer is based on the misconception that the RR
model is calibrated for one catchment and applied to another one. As
stated before, Uccle is a city (not a catchment) where the headquarter of
the Royal Meteorological Office of Belgium is located. At this place, the
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meteorological data are obtained. These data, which are statistically
similar to those observed in the catchment of the Grote Nete (situated
less then 100 km from Uccle), are then used in the model of the Grote
Nete catchment to model its discharge. The advantage of the data at
Uccle is their length (72 years). Such long time series near the Grote
Nete are not available. Furthermore, the simulations are made for one
single catchment (i.e. that of the Grote Nete), making use of a model
calibrated for it. In this sense, the exercise done in the paper allows
for partly reducing the uncertainty due to the use of PDM.

15. Figure 22: 22 figures? Is that many figures really necessary when most
of them don’t provide any new info?

We reduced the number of figures. Figures 12–18 of the original manuscript
have now been summarized in three figures.

16. Lines 476-478: I have a hard time accepting this claim. If you generate
a much longer synthetic (stochastic) forcing, then lets say predictions
at a 100 years return period level improves. I accept this. But I cannot
accept the general comment that longer fording data reduces overall
uncertainties. What if I had to estimate a 500 years return period
flow?

The uncertainties that are reduced are the result of working with time
series of a given length. We rephrased this sentence in the conclusion:

“With respect to extreme discharge, it was shown that the
uncertainties encountered in case 3 are partly caused by the
limited length of the time series used. The uncertainties on
the predictions highly reduce when input time series are used
that are much longer than the maximum return period aimed
at. As in this particular case, all forcing data are generated,
the modeller is not restricted to the length of an observed
time series, and can hence generate time series of whatever
length as input to the hydrological model, taking into account
that the longer the time series used, the more the uncertainty
reduces at the expense of increasing run-time.”

To answer to the question as what to do when a 500-year return pe-
riod of discharge would be needed, then the advice should be to model
discharge with forcing time series that are a multitude of the return
period one aims for. In this case, one should model series of 5000
years or more.
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