
1 General comments of the first reviewer

The manuscript is very well written and gives sufficient context to under-
stand the relevant developments and issues in hydrological impact analysis.
The authors clearly motivate why a stochastic rainfall-evapotranspiration
model is useful in this context. Their proposal is based on vine copulas, a
modern statistical tool for modeling stochastic dependence between multiple
variables. This is a laudable effort, but the way this methodology is applied
and its performance is evaluated is problematic in several ways. I fully ac-
knowledge that HESS is not a statistics journal and statistical subtleties may
not matter in specific applications. But the extent to which they do in this
particular context are unclear and needs to be addressed. Below I identify
three major issues and explain why they are problematic from a statistical
perspective. I urge the authors to thoroughly evaluate the implications for
their hydrological model. Where possible, I try to make suggestions for al-
ternative methods that may improve their model and its assessment. Since
the first two issues may be equally relevant for other readers, my comments
will be more elaborate than what is common in a closed review.

We would like to thank the referee for his valuable comments and exten-
sive explanation of the statistical background. We hereby list the comments
of the referee and formulate our answers in italics.

2 Specific comments of the first reviewer

2.1 Major issues

2.1.1 Seasonal effects

A copula models the dependence between two random variables X1, X2

with marginal distributions F1 and F2. Its parameters can be estimated
from observations of these variables, Xt = (X1,t,X2,t), t = 1, . . . , T . The
usual assumption for the validity of the estimate is that the data Xt are
independent and identically distributed (iid). In particular, the distribu-
tion of X t should not change with t, which is usually violated by climatic
variables. The authors acknowledge that by fitting multiple models, one for
each month. I am afraid this may not be enough, because climatic trends
also exist within months. For example: in central Europe, the end of April
is on average much warmer than the beginning of April. Suppose that ad-
ditionally, the average precipitation is decreasing during April. Then high

1



temperatures will likely coincide with low levels of precipitation and vice
versa. A copula fitted to this data will show negative dependence, which
merely reflects the two deterministic within-month trends working in oppo-
site directions, but not the stochastic dependence between the time series.
Whether or not within-month trends exist can be easily checked visually or
by formal statistical tests (e.g., Harris and Sollis, 2003, Chapter 3). If they
do exist, they should be accounted for on a finer time scale. Splitting the
data into weeks or even days could be a solution, but significantly decreases
the number of observations available for fitting the copula model. A good
alternative is to center and scale the time series by their seasonal mean and
standard deviation. More specifically, if Xj,d,y denotes variable j observed
at day d of year y, set

X̃j,d,y = (Xj,d,y − µj,d)/σj,d , (1)

where µj,d and σj,d are the mean and standard deviation of Xj,d,y , y =
1, . . . , 72. If necessary, trends in the skewness of X̃j,d,y can be removed
similarly using a Box-Cox transformation. This transformation is usually
sufficient to account for deterministic seasonal effects. We can now build a
copula for the stochastic dependence in X̃t = X̃d+365(y1) . Simulated data
from this model can be transformed to the original scale by inverting (1).

We thank the referee for this elaborative explanation. On the basis of his
comments, we checked for each variable and each month for the existence of
within-month trends. For each month and each variable, we therefore first
visualised the data using box plots, each containing the 72 observations for
each day of the month, cf. we have a 72-yearly time series. Figure 2.1.1 il-
lustrates these box plots for temperature, precipitaion and evapotranspiration
for the month March.

This figure clearly demonstrates the existence of a within-month trend for
temperature and evapotranspiration. This was also confirmed by an ANOVA
test, employed when distributions were homoscedastic, a Welch ANOVA test,
employed when distributions were heteroscedastic or a Kruskal Wallis test,
employed when distributions were not-normal and heteroscedastic. For these
tests the significance level α was set to 0.001. For precipitation no trend
was observed, which was also confirmed by the results of the statistical tests.
Therefore, we decided to standardize the temperature and evapotranspiration
data as suggested by the referee. For each month, vine copula models will
then be built on the basis of standardized temperature and evapotranspiration
data and non-standardized precipitation data.
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Figure 1: Boxplots per day of the month for temperature (top left), precip-
itation (top right) and evapotranspiration (bottom) in March
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2.1.2 Inter-serial dependence

Even when the distribution of X̃t is the same for each t, subsequent ob-
servations of the time series may not be independent. Such data is called
stationary which is less restrictive than iid. Typically, stationarity is suffi-
cient to allow for valid estimation of the marginal distributions and copula of
X̃t. But inference tools (like confidence intervals and goodness-of-fit tests)
derived under the iid assumption are no longer valid. Another potential
issue is that inter-serial dynamics can play an important role in applica-
tions. If so, these dynamics should be modeled explicitly. In the context
of hydrological discharges, this is likely the case. Large discharges often oc-
cur when extreme weather conditions have been persistent for several days,
and persistence is a sign of inter-serial dependence. A simple way to check
whether such dependence is present is to look at the autocorrelation of the
time-series, i.e., the correlation between X̃t and X̃t1 (and their squares). If
the correlation is small, one can test statistically whether it is zero. If there
is dependence, there are two popular ways to capture it:

1. Copula models: This route is taken by the authors in 2.3.3, but only
for the temperature variable. Similar models for the inter-serial de-
pendence in evapotranspiration and precipitation should be employed
in addition. If Fj,t,t1 is the joint distribution of X̃j,t and X̃j,t1, the
between-variables dependence can be modeled by a copula for the vari-
ables

U1,t = F1,t|t1(X̃1,t|X̃1,t1) , U2,t = F2,t|t1(X̃2,t|X̃2,t1) , (2)

where Fj,t|t1 is the conditional distribution of X̃j,t given X̃j,t1.

2. Classical time series models: Classical time series models (see,
e.g., Shumway et al., 2000, Chapter 3) assume that the variable X̃j,t

is a linear combination of the preceding values (t′ < t) and iid noise.
For example, the autoregressive model of order p is

X̃j,t =

p∑

k=1

φj,kX̃j,tk + ǫj,t , (3)

where φj,k are model parameters and ǫj,t is iid noise with mean zero.
The sequence ǫj,t is commonly called innovation or residual series.
The stochastic between-variable dependence can then be captured by
a copula model for (ǫ1,t, ǫ2,t) More complex models are required when
X̃j,t is autocorrelated (Harris and Sollis, 2003, Chapter 8).
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Again, we thank the referee for this elaborative explanation. We statisti-
cally checked for the existence of autocorrelation on the monthly time series
by employing a Ljung-Box Q-test with a significance level α of 0.001. As the
total time series covers 72 years of data, this test was performed for each
month and repeated 72 times. On this basis we found that autocorrelation
exists for temperature and evapotranspiration. We will first take this auto-
correlation into account by extending the vine VTPE with Et−1. In a further
stage, we will couple the vines VTpPT and VTPEpE, where Tp and Ep denote
temperature and evapotranspiration of the previous day, by fitting a copula
between the conditioned values FT |TpP and FE|TPEp

. This coupling will then
be taken into account in the sampling procedure as to generate coupled time
series of temperature and evapotranspiration.

2.1.3 Assessing the quality of the vine copula model

There are multiple issues with how the quality of the model is evaluated:

1. To check the models validity, the authors merely look at the den-
sity/cdf of the observed and simulated values of a single time series.
This is only weakly related to the vine copula model and not a good
indicator for its fit. Under this measure, just simulating from the
distribution FE (thereby assuming that E is independent of T and
P ) would lead to results that are at least as good as the ones from
the vine copula. To adequately assess the quality of the dependence
model, pair-wise comparisons should be made. For example, one can
look at the scatter plots of observed and simulated pairs (X1,t,X2,t).
Another alternative are contour plots of the estimated joint density of
observed vs. simulated pairs. Such comparisons should be made for all
variable combinations. Similarly, multivariate return periods should
be considered instead of single-variable return periods (see, Salvadori
et al., 2011).

The vine copula models are employed to generate time series of tem-
perature or evapotranspiration that reflect the properties (statistics) of
the original observed time series. To this end, different time series
were generated by the vine copula models and their distributions were
compared to the distribution of the observed time series. Furthermore,
in order to check whether or not the dependence between the generated
variables is maintained, the values of Kendall’s tau were examined (see
Figure 5 of the original manuscript). By examining scatter plots be-
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tween observed and simulated pairs, as the referee suggests, one would
rather investigate whether the simulated values approximate the ob-
served values, as in a prediction model. In this study, however, it is
not the aim to match the observed values for each time step t as closely
as possible, but rather mimic the behaviour of the observed time series
w.r.t. statistics and extremes.

2. Figures 6 and 9 use empirical cumulative distribution functions (ECDF)
instead of densities for no obvious reason. I advise against using
ECDFs because they suggest a misleading sense of closeness between
distributions. Since ECDFs are necessarily monotone functions with
boundary values 0 and 1, their shape is quite restricted. For example,
the left panels of Figure 9(d) show that the distributions are different,
but the ECDFS still look somewhat similar. But the corresponding
densities would show almost no overlap and more clearly communicate
the dissimilarity.

It is not clear to us what the referee means with his reference to the left
panels of Figure 9(d). These panels clearly show that the distributions
(the ECDFs) of the observation and the simulation differ. The left
panel shows that the ZDP values of the simulations underestimate the
ZDP values of the original time series, the second panel from the left
shows the opposite. By showing the probability density distributions
instead of the cumulative distributions, one would also see this under-
or overestimation. (See Figure 2). Yet, we will change the figures and
use densities instead of ECDFs.

3. In Section 4, the uncertainty in the simulation model is assessed for
various degrees of data availability. From the spread of estimated den-
sities in Figures 11-15, the authors conclude that uncertainty increases
when a variable is not observed and needs to be simulated. This is
likely true, but can not be inferred from these figures. The density
plots for cases 1-3 are based on a different number of observations.
The spread seen on 125000 simulations will naturally be larger than
the the spread on 50 observations even when the actual distribution
is the same. Hence, the spreads should only be compared when they
are based on the same number of simulations.
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We are aware of the fact that the density plots for cases 1-3 are based
on a different number of observations. This is due to the fact that in
case 1 one stochastic model is employed, and hence “only” 50 time
series have to be generated, whereas two or three stochastic models
are employed in respectively case 2 and 3. In the build-up of this
manuscript, at first we “only” generated 50 time series of evapotran-
spiration in all cases. However, this means that in cases 2 and 3, only
one time series of temperature respectively temperature and precipita-
tion was generated. In such a setting, the stochasticity of VTpPT and
the MBL model would be ignored. For this reason, we decided to also
generate 50 time series of temperature in case 2 and for each of these
time series 50 time series of evapotranspiration. In case 3, we hence
generated 50 time series of precipitation and for each of these time
series, we generated 50 time series of temperature. For each of the
generated temperature time series, we also generated 50 time series of
evapotranspiration conform case 1. We are aware that this increases
the spread, which is also indicated in the paper, but we prefer not to
ignore the stochasticity of the other employed models in cases 2 and 3.

In order to compare the spreads on the basis of the same number of
simulations, we will carry out the following excercise. We will also
generate for one time series of P and T, 50 time series of E and com-
pare these separately w.r.t. the spread. By repeating this several times,
we can hence compare the spread on the basis of the same number of
observations and still take into account the stochasticity.
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2.2 Minor issues

1. Since vine copulas are the essential ingredient in your model, I suggest
to indicate this in the abstract.

We will change the abstract to better stress this.

2. p. 4, p. 165: If unconditional bivariate copulas are used (as is com-
mon), a vine copula is not a decomposition, but a construction. A
decomposition is called non-simplified vine copula and involves con-
ditional bivariate copulas (see, e.g., Stöber et al., 2013). I suggest to
rephrase this sentence.

We will rephrase this sentence.

3. p. 4, l. 167: I suggest to change all types of dependence to a wide
range of dependence structures. All types can only be modeled by a
non-simplified vine copula.

This will be changed in the manuscript.

4. p. 5, l. 179: What do you mean by C-vine copulas are easier to
construct than D-vine copulas? In fact, any three-dimensional vine is
both a C- and D-vine, which can be easily verified by re-arranging the
vertices of the vine graph

This sentence will be removed from the manuscript.

5. p. 6, l. 203 ff.: I am afraid a reader without prior knowledge of
vine copulas will not understand your paragraph on how the model is
estimated. Instead of your explanation, it should suffice to refer the
reader to Aas et al. (2009).

As we think it’s important to explain to the reader how we handled the
estimation of the vine, we will revise this paragraph to make it more
clear to the reader and add a reference to Aas et al. (2009).

6. How are marginal distributions modeled/estimated?

Empirical distributions are employed as marginal distributions. This
will be added in the manuscript.

7. Figures 4, 1217 should use a larger smoothing parameter to decrease
variability of the density estimates. A large proportion of the observed
variability is due to the density estimation technique. This is not the
kind of variability you want to assess.
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We will investigate the impact of the smoothing parameter to decrease
the variability.

8. Figure 22: What is i?

The values of the ECDF, indicated in the abscissa, reflect the values
of i.

3 Comments of the second reviewer

This is a nice study that uses copula-based approaches to stochastically gen-
erate mutually dependent rainfall and evapotranspiration forcing for rainfall
runoff models. This could be used for design purposes where observation
is sparse or missing. However, this approach does not seem to be work-
ing properly for the extreme events (which are needed for design purposes).
Acknowledging this fact, the study is valuable for the areas with no ob-
servation. Overall, paper is well written and well structured. I have some
comments (most of them major) that could potentially improve the quality
of this paper.

We thank the reviewer for his appreciation for our work and the valuable
comments made. Yet, the suggestion made by the reviewer that this study
would be applicable for areas without observations is not correct, as the model
is fully constructed on simultaneously observed time series of precipitation,
temperature and evapotranspiration.

1. Line 46: Authors use stochastic process models to generate precipita-
tion series. My question is:
How do stochastic process models handle changing characteristics of
precipitation? Several studies have shown, for parts of the world, that
rainfall events are shrinking in time and expanding in amplitude. Also
there is a temporal shift in rainfall events in some parts of the world,
let alone the changes in the distribution of rainfall/snow. Addressing
these issues could be helpful.

Two possible (and jointly occurring) phenomena may cause temporal
changes in precipitation characteristics (but also of temperature and
evapotranspiration). The first is the annual cycle, the second a long-
term trend due to e.g. climate change. In our paper, we only account
for the annual cycle by building models at a monthly basis. The sec-
ond process (i.e. long-term changes) is not accounted for and is not the
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aim of this study. We do not aim at constructing very long time series
that reflect both phenomena. We mainly aim at building a model that
allows for constructing alternative time series having the same charac-
teristics as those of the current observations (for which it was shown
that no long-term temporal trend is present). This model allows for
constructing much longer time series than the observations, allowing,
to a certain extent, to assess extreme events with a return period larger
than the length of the original time series. This model also allows, as
is shown in the paper, to generate alternative time series of the same
length of the observed time series (i.e. the model predictions and the
observed time series are likely outcomes of the meteorological process
the observations are just one realisation, the model mimicks alternative
realisations through a fully data-driven/statistical framework). When
these time series are used as input to a hydrologic model, their outputs
will provide alternative realisations resulting from the same meteoro-
logical process.

Given the fact that the precipitation-evaporation (P-ET) model that is
developed in this paper is fully based on observed time series, we be-
lieve that the issue of temporal shifts in rainfall events in some parts
of the world is not relevant. Also the changes in distributions of rain-
fall/snow is not accounted for. The model is only considering rainfall,
as in the observed time series in Uccle, the fraction of snow events is
very small. If discerning between snow and rainfall would be needed,
the model should be extended.

We will improve the text to make sure that the reader is aware that no
long-term temporal changes are considered, nor that the model can be
applied in areas without observations.

2. Lines 91-94: I don’t understand how the number of stochastically gen-
erated forcing data could influence the uncertainty of the rainfall-runoff
model’s response. Uncertainty is a characteristic of the forcing data
(let’s neglect the modeling uncertainties for now), not the number of
generated time series. So if you find a time series that fit your runoff
extremes well, this is just a random phenomenon. This cannot be the
basis for prediction, as we can’t determine the best forcing for future,
and need to rely on the ensemble of forcing data.

The number of stochastically generated forcing data does not influence
the uncertainty of the rainfall-runoff (RR) models response. Yet, the
idea is that the actual observation time series is only one realisation
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of the meteorological process, and therefore, the output, i.e. discharge,
is also but one realisation. Yet, suppose, due to chaos apparent in
the climatological system, an alternative observation time series would
have occurred, then an alternative discharge record would have been
obtained, different from the actual observed one. The latter will pro-
vide other design values (i.e. discharge values corresponding to a given
return period) than the actual observed one. Yet, both are realisations
of the same process, causing that the discharge values for a given re-
turn period actually follow a certain distribution, and thus results in
uncertainty on e.g. extreme values, average values. This uncertainty
cannot be assessed without evaluating an ensemble of possible outcomes
of the meteorological process.

We will add some text to the manuscript to better describe the source
of the uncertainty.

3. Lines 95-96: Section 2 should precede section 3!

This will be corrected.

4. I am confused about how sections 2.1 and 2.2 are connected. His-
torical record of climate forcing are obtained for Brussels, and RR
model is calibrated for the Grote Nete catchment. How do you use a
model calibrated against one watershed, to predict runoff at another
watershed?

The climate forcing data obtained at Uccle are very representative for
the climate observed in the Grote Nete catchment (the distance be-
tween Uccle (which is a town near Brussels, not a catchment) and
the Grote Nete catchment is between 50 and 100 km). The RR model
of the Grote Nete catchment was actually calibrated using data (how-
ever much shorter in length) observed near the catchment. Yet, given
that the meteorological conditions are nearly the same, one can as-
sume that the statistics of the modelled discharge obtained with the
forcing data observed near the catchment and those observed at Uccle
are negligible (actually, this was shown in studies performed for the
Flemish Environmental Agency). Still, in this study, we compare the
modelled discharge, obtained from the observations in Uccle, with forc-
ings resulting from the P-ET model. Given the fact that the model is
parameterised using the data of Uccle, the results using observed and
modelled forcings can be compared. The idea of the paper is to show
the impact of different alternative realisations of the P-ET model on
discharge predictions, and to show how these alternative realisations
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differ from the one realisation that correspond to true observations.
The RR model used should be considered as a tool to demonstrate this,
it is not intended to make predictions (although, studies for the Flem-
ish Environmental Agency have shown that the statistics of the dis-
charge series derived using the Uccle time series are similar to those
of forcings measured near the catchment, and to those calculated on
the actual discharge time series).

Moreover, 1 year of data for evaluation is not enough. You will need a
couple of years to ensure calibrated model can capture different aspects
of a catchment.

We understand the comment, though we believe it is not relevant. The
PDM is in this study used as a tool to convert forcings into discharge,
and the same model is used for both observed forcings (in Uccle) as
modelled forcings. Yet, to make it realistic, we made use of a cali-
brated model, which indeed is not fully assessed for all possible hydro-
logical circumstances. However, this model has shown to be able to
well mimick the discharge behaviour of the Grote Nete catchment (as
well as many other catchments in Flanders) and is used in operational
water management. We believe that the model sufficiently mimicks
the different hydrologic processes to show the potential of the developed
generator for water management purposes. We will add some text ex-
plaining that the model used is sufficient for answering the objectives
of the paper.

5. Section 2.3: Copulas characterize dependence structure of different
variables. This means there should be a dependence structure. Did
you quantify the correlation between evaporation, temperature, and
precip? If so, is it significant? At what temporal scale? My under-
standing is that you perform your analysis at daily scale, and I fear
the correlation might not be significant at the daily scale.

We do not fully grasp the fear of the reviewer, but the correlation
between the variables has been checked. Yet, the dependence structures,
as is apparent in the input time series, are used to build the copula
models.

6. Line 150: bivariate → It could be multivariate

True, equation (1) can be written with more than two dimensions.
However, as equation (1) only concerns 2 variables, we maintain the
used terminology (i.e. bivariate copula).
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7. Line 152: I would reference to Joe 1997 too. Joe and Nelsen both
played an important role in introducing copula to the scientific com-
munity.

We will add a reference to Joe (1997).

8. Lines 171-173: I agree that vine copulas are very flexible, but it comes
at a price! A model with 4 degrees of freedom is more flexible than a
competitor with 2! However, usually there is not enough information
to constrain all parameters. The copula literature usually does not
address the parameter uncertainties, and so they neglect the identifia-
bility of parameters. I would address this predicament here. For more
info, refer to Figure 6 of: Sadegh, M., E. Ragno, and A. AghaKouchak
(2017), Multivariate Copula Analysis Toolbox (MvCAT): Describing
dependence and underlying uncertainty using a Bayesian framework,
Water Resour. Res., 53, doi:10.1002/2016WR020242.
Link: http://onlinelibrary.wiley.com/doi/10.1002/2016WR020242/full

We include this remark in the paper and make a reference to the paper
suggested.

9. Line 191: As a minor issue, when someone talks about a 3-dimensional
model, I expect the model to have three parameters. When someone
talk about trivariate model, I expect a multivariate model that asso-
ciates three variables.

In literature, the terminology n-dimensional copulas is commonly used
for a copula that involves n variates. One wouldn′t call the Frank
copula a one-dimensional copula as it only has one parameter. We
believe this is a misconception of the reviewer. We therefore prefer
not to change the terminology.

10. Line 203: How did you construct the marginal distribution? Empiri-
cal? Fitted distribution?

We used the empirical distributions to construct the marginal distri-
butions. We will add this information in the manuscript.

11. Eq. 3: how did you calculate inverse of the vine copula? Analytical
or numerical?

The inversions, necessary for sampling a value out of the vine copula,
were performed numerically.

12. Line 253: pvalue larger than 0.05 or smaller?!
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The obtained p-values were larger than 0.05. More details about the
theory and the p-values of the White test are given in Shepsmeier,
2015.

13. Section 2.4: How did you calibrate the modified BartlettLewis (MBL)
model, given the stochastic nature of precipitation prediction models?
With stochastic models, usually summary statistics of data and simu-
lation are compared, rather than original time series. For this purpose,
approximate Bayesian computation is a great framework.

We will briefly mention in the paper how the model was calibrated.
Actually, the model was taken from a previous study (Pham et al.,
2013).

14. Lines 338-344: I cannot disagree more! Forcing and model uncertain-
ties are intertwined, and interact in a nonlinear manner. It is not as
simple as you explained. You cannot simply use a RR model calibrated
for one watershed to simulate runoff at another watershed! Tens (Hun-
dreds) of papers are available on the regionalization topic, not many of
them really provided a sound ground for transferring model parame-
ters from one watershed to another! Worse is that authors assume this
modeling uncertainty does not interact with the forcing uncertainty.

The comment of the reviewer is based on the misconception that the RR
model is calibrated for one catchment and applied to another one. As
stated before, Uccle is a city (not a catchment) where the headquarter of
the Royal Meteorological Office of Belgium is located. At this place, the
meteorological data are obtained. These data, which are statistically
similar to those observed in the catchment of the Grote Nete (situated
less then 100 km from Uccle), are then used in the model of the Grote
Nete catchment to model its discharge. The advantage of the data at
Uccle is their length (72 years). Such long time series near the Grote
Nete are not available. Furthermore, the simulations are made for one
single catchment (i.e. that of the Grote Nete), making use of a model
calibrated for it. In this sense, the exercise done in the paper allows
for partly reducing the uncertainty due to the use of PDM.

15. Figure 22: 22 figures? Is that many figures really necessary when most
of them don’t provide any new info?

We are aware of the large number of figures, however, we believe that
they all are necessary to fully get the point we wish to make. Yet, by
showing only the results for some months instead of for all months of
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the year, we can reduce the number of subplots per figure while keeping
the same message. By doing this exercise, it may become possible to
merge figures attributed each time to one case into one figure showing
results for the three cases. ”

We are aware of the large number of figures, however, we believe that
they all are necessary to fully get the point we wish to make (unless
we refer to results that are not shown, but this is quite annoying for
readers trying to dig into the results). Of course, instead of showing
all months of the year, we can reduce this to a couple of months.

16. Lines 476-478: I have a hard time accepting this claim. If you generate
a much longer synthetic (stochastic) forcing, then lets say predictions
at a 100 years return period level improves. I accept this. But I cannot
accept the general comment that longer fording data reduces overall
uncertainties. What if I had to estimate a 500 years return period
flow?

The uncertainties that are reduced are the result of working with time
series of a given length. This should be better framed in the conclu-
sion: not all uncertainties reduce, only the ones that are due the limited
length of the time series reduce, while those caused by the stochastic
nature of the climatological variables remain. To answer to the ques-
tion on what to do when a 500-year return period of discharge would
be needed, then the advice should be to model discharge with forcing
time series that are a multitude of the return period one aims for. In
this case, one should model series of 5000 years or more.
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