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Abstract.

A considerable number of river basins around the world lack sufficient ground observations of hydro-meteorological data

for effective water resources assessment and management. Several approaches can be developed to increase the quality and

availability of data in these poorly gauged or ungauged river basins, and among those, the use of earth observations products

has recently become promising. Earth observations of various environmental variables can be used potentially to increase the5

knowledge about the hydrological processes in the basin and to improve streamflow model estimates, via assimilation or cali-

bration. The present study aims to calibrate the large-scale hydrological model PCR-GLOBWB using satellite-based products

of evapotranspiration and soil moisture for the Moroccan Oum Er Rbia basin. Daily simulations at a spatial resolution of 5

arcmin x 5 arcmin are performed with varying parameters values for the 32-year period 1979-2010. Five different calibration

scenarios are inter-compared: (i) reference scenario using the hydrological model with the standard parameterization, ii) cali-10

bration using in-situ observed discharge time series, (iii) calibration using GLEAM actual evapotranspiration time series, (iv)

calibration using ESA CCI surface soil moisture time series and (v) step-wise calibration using GLEAM actual evapotranspi-

ration and ESA CCI surface soil moisture time series. The impact on discharge estimates of precipitation in comparison with

model parameters calibration is investigated using three global precipitation products, including EI, WFDEI and MSWEP.

Results show that GLEAM evapotranspiration and ESA CCI soil moisture may be used for model calibration resulting in15

reasonable discharge estimates (NSE values from 0.5 to 0.75), although better model performance is achieved when the model

is calibrated with in-situ streamflow observations. Independent calibration based on only evapotranspiration or soil moisture

observations improves model predictions to a lesser extent. Precipitation input affects to discharge estimates more than cal-

ibrating model parameters. The use of WFDEI precipitation leads to the lowest model performances. Apart from the in-situ

discharge calibration scenario, the highest discharge improvement is obtained when EI and MSWEP precipitation products are20

used in combination with a step-wise calibration approach based on evapotranspiration and soil moisture observations. This

study opens up the possibility to use globally available earth observations and reanalysis products of precipitation, evapotran-

spiration and soil moisture into large-scale hydrological models to estimate discharge at a river basin scale.
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1 Introduction

To assess and manage the available water resources within a river basin, good estimates of hydro-meteorological data, such as

precipitation, temperature and streamflow, are required. Yet many river basins around the world still have a limited number of

in-situ observations, being either ungauged (Sivapalan et al., 2003) or poorly gauged (Loukas and Vasiliades, 2014). Ungauged

or poorly gauged river basins also include those basins where data are inaccurate, scarce, intermittent or collected at different5

temporal resolutions, leading to the problem that it is not clear how to integrate these data consistently into hydrological models

(Winsemius et al., 2009). As a result, the limited availability and poor quality of data induces large uncertainty in model outputs

from these river basins (Seibert and Beven, 2009). Developing novel strategies to enhance available datasets and hydrological

models is one of the key strategies when working in ungauged basins (Hrachowitz et al., 2013).

To overcome the lack of hydro-meteorological data, a promising approach is the use of the recently developed global earth10

observations and reanalysis products to supplement the available data. In the last decades, radar and satellite technologies have

improved and have become more broadly available providing diverse hydro-meteorological datasets at finer spatial and tem-

poral resolutions: precipitation -CMORPH (Joyce et al., 2004); TRMM (Huffman et al., 2007); etc.-, soil moisture -AMSR-E

(Njoku et al., 2003); ESA-CCI (Dorigo et al., 2015); etc.-, total water storage -GRACE (Tapley et al., 2004); etc.-, evapotran-

spiration -SEBAL (Bastiaanssen et al., 1998); MOD16 (Nishida, 2003); GLEAM (Miralles et al., 2011b); etc.-, etc.15

Previous studies have demonstrated the possibility of using these global datasets to better understand the hydrological pro-

cesses in a river catchment (Kite and Droogers, 2000; Vereecken et al., 2008; Seneviratne et al., 2010; Hafeez et al., 2011) and

to improve streamflow model estimates through assimilation (e.g. surface soil moisture - Parajka et al., 2006; Brocca et al.,

2012; López López et al., 2016 - or snow cover - Roy et al., 2010; Thirel et al., 2013 - ) and/or calibration techniques or a-priori

determination of model parameters (e.g. Jacobs et al., 2003; Beck et al., 2009). Calibration approaches based on multiple re-20

motely sensed variables have some advantages in comparison with traditional calibration approaches using only observed and

modelled hydrographs in a limited number of locations. Fenicia et al. (2007) and Gupta et al. (2008) recognized that traditional

calibration may lead to over-parameterization, i. e. similar model results are obtained with more than one parameters combina-

tion, whereas calibrating to multiple variables - step-wise calibration - may partly resolve the problem of non-uniqueness and

it helps to a better understanding of the processes happening within the catchment.25

Several studies have investigated calibration approaches based on variables different to streamflow. Campo et al. (2006)

used soil moisture information from radar images from ERS-2 sensors to parameterize the hydrological model MOBIDIC.

Immerzeel and Droogers (2008) calibrated the hydrological model SWAT based on satellite evapotranspiration from MODIS

satellite images. Lo et al. (2010) improved the parameter estimation of the Community Land Model 3.0. using GRACE total

water storage data while Isenstein et al. (2015) calibrated the VIC hydrological model using snow covered area from MODIS30

satellite data. Others have combined remotely sensed variables with in-situ streamflow observations for calibration. In Rientjes

et al. (2013), the HBV model was calibrated on satellite based evapotranspiration from MODIS and streamflow. Wanders et al.

(2014) calibrated model parameters of LISFLOOD based on discharge and soil moisture observations acquired by AMSR-E,

SMOS and ASCAT while Sutanudjaja et al. (2014) calibrated the large-scale model PCR-GLOBWB using streamflow and
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soil water index information derived from the ERS scatterometers. At a global scale, Beck et al. (2016a) used parameter

regionalization to calibrate a HBV model. However, the simultaneous use of more than one environmental variable different

to streamflow for calibration is rare. A calibration approach using various variables, independently and in combination with

streamflow observations, may further improve model performance and contribute to a better understanding of hydrological

processes. In the present study, this is tested by comparing multiple calibration scenarios based on evapotranspiration, soil5

moisture and discharge data.

The previously mentioned calibration experiments were performed for well studied river basins, such as the Rhine-Meuse

river basin, with a good coverage of in-situ hydro-meteorological data. In the present study area, the Oum Er Rbia river basin

located in Morocco, ground observations are spatially sparse and limited in number classifying it as a poorly-gauged river

basin. The region frequently suffers from water scarcity and droughts and water availability is the main factor influencing socio-10

economic development, mostly driven by the agriculture (Houdret, 2008). The studies of Tramblay et al. (2012), Tramblay et al.

(2016) and Ouatiki et al. (2017) are testimony to the relevance of this area. Therefore, developing new strategies to model this

watershed is highly relevant to improve water management and assessment of the water availability within the basin.

This study aims to calibrate a large-scale hydrological model (PCR-GLOBWB 2.0, https://github.com/UU-Hydro/PCR-

GLOBWB_model, Sutanudjaja et al., 2016) using soil moisture and evapotranspiration observations alone and to compare its15

discharge estimates to those obtained when the model is traditionally calibrated to streamflow data. We use the evapotranspi-

ration product generated by an enhanced version of the GLEAM model (GLEAM v3.0; Martens et al., 2016b) in combination

with the surface soil moisture product from ESA CCI (Dorigo et al., 2015). Both products are derived from satellite data.

Furthermore, the influence of precipitation forcing is considered and three different global precipitation products are used

and inter-compared: ERA-Interim reanalysis data (EI, Dee et al., 2011), WATCH Forcing Data methodology applied to ERA-20

Interim reanalysis data, (WFDEI, Weedon et al., 2014) and Multi-Source Weighted-Ensemble Precipitation data by merging

gauge, satellite and reanalysis data (MSWEP, Beck et al., 2016b).

Five different calibration approaches are performed by using five calibration scenarios that include streamflow, soil moisture

and evapotranspiration: (i) reference scenario using the hydrological model with the standard parameterization, (ii) calibration

using in-situ observed discharge time series, (iii) calibration using GLEAM actual evapotranspiration time series, (iv) calibra-25

tion using ESA CCI surface soil moisture time series and (v) step-wise calibration using GLEAM actual evapotranspiration

and ESA CCI surface soil moisture time series. The above is repeated for each of the selected global precipitation product.

A priori, it is expected that calibrating to streamflow observations yields the best discharge estimates, and that the step-wise

calibration using soil moisture and evapotranspiration provides better results than the calibration scenarios based only on soil

moisture or evapotranspiration.30

The novel aspects and new contributions of this work include the use and comparison of three different and recently gener-

ated global precipitation products, the exploration of calibration techniques based on earth observations of soil moisture and

evapotranspiration and their application into a large-scale hydrological model to provide streamflow estimates in the ungauged

river basin of Oum Er Rbia in Morocco. Furthermore, understanding the potential gain of calibrating large-scale models to

remotely sensed observations may have benefits for water resources management in data-poor river basins globally.35
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This manuscript first describes the study area, then the methodology, including the hydrological model, the data, the calibra-

tion and validation strategy and the performance metrics. Subsequently, results are presented, starting with the inter-comparison

of precipitation products and following with calibration and validation results. This manuscript ends with discussion and con-

clusions.

2 Study area5

The study area is the Oum Er Rbia River basin, which is situated in the central-west region of Morocco between the Atlas

Mountains to the south and the Mesetian area to the north flowing into the Atlantic Ocean (Figure 1). The basin’s topography

ranges from 2,800 m in the southern upstream zone to 150 m in the northern downstream zone. The Oum Er Rbia is the second

largest river in Morocco with a total length of 550 km and it drains an area of approximately 38,025 km2.

The climate in the coastal and mountainous areas is Mediterranean, characterized with high temperatures in the summer and10

warm autumn and winter months with rainfall, and semi-arid in the central plain (Jones et al., 2013). Precipitation increases

from downstream to upstream areas in the mountains. The mean annual precipitation and temperature are 400 mm and 18oC,

respectively. Approximately 70 % to 80 % of the annual rainfall is concentrated in the period from October to May.

The lowlands of the basin are mainly covered with rain-fed and irrigated agriculture fields and the upstream regions are a

combination of Mediterranean forests, woodlands and scrubs. The geology of the area is mostly composed of limestone, marls15

and sandstone with a karst aquifer in the Atlas Mountains and a multi-layered system of superficial and deep aquifers in the

western plains (Bouchaou et al., 2009).

3 Methodology

3.1 Large-scale hydrological model: PCR-GLOBWB

The large-scale hydrological model PCR-GLOBWB 2.0 (https://github.com/UU-Hydro/PCR-GLOBWB_model, Sutanudjaja20

et al., 2016) was used at a spatial resolution of 5 arcmin x 5 arcmin (approximately 10 km x 10 km at the equator) and at a

daily temporal resolution. PCR-GLOBWB is a leaky-bucket type of model applied on a cell-by-cell basis. Figure 2 illustrates

a schematic representation of the structure of PCR-GLOBWB model. For each grid cell and time step, the model determines

the water balance considering the following water storage components: soil moisture, groundwater, surface water, interception

storage and snow. The soil is divided into three vertical layers representing the top 5 cm of soil (depthZ1 ≤ 5 cm), the following25

25 cm of soil (depth Z2 ≤ 30 cm) and the remaining 120 cm of soil (depth Z3 ≤ 150 cm), in which the storages are symbolized

as S1, S2 and S3, respectively. The underlying groundwater store (S4) consists of two layers: an active or renewable layer and

a non-active or non-renewable layer of fossil water, in which the storages are symbolized as S4act and S4fos, respectively. The

model also includes the water exchange processes between the top layer and the atmosphere (precipitation, evapotranspiration

and snowmelt), between the soil layers (percolation and capillary rise) and between the soil layers and the active layer of the30

groundwater store (groundwater recharge, discharge to baseflow and capillary rise). Each grid cell is divided into sub-grids
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considering variations of elevation, vegetation, soil and land cover. Five land cover types are distinguished: irrigated paddy

field, irrigated non-paddy field, grassland (short natural vegetation), forest (tall natural vegetation) and open water. To compute

the total runoff of every grid cell, the model includes direct runoff (QDR), shallow sub-surface flow from the third soil layer

(QSF), and baseflow from the active groundwater layer (QBF). The total runoff is accumulated from all grid cells and routed

along the drainage network to obtain the river discharge (Qchannel). The PCR-GLOBWB model version used here (Sutanudjaja5

et al., 2016) simulates water availability and water abstraction, including reservoirs and domestic, industrial, livestock and

irrigational water demands. The following subsections briefly describe the model components and the parameters relevant for

the present calibration study. The reader is referred to Sutanudjaja et al. (2011) and Sutanudjaja et al. (2014) for a more detailed

explanation.

3.1.1 Direct or surface runoff10

The amount of water that goes into the soil is the net precipitation (Pn) resulting from the surplus of precipitation above

the interception capacity and the excess melt water from the snow pack. Pn is partitioned into direct runoff (QDR) and net

infiltration to the first soil layer (P 01). The partitioning is done using the Improved Arno Scheme (Hagemann and Gates,

2003), in which the fraction of saturated soil of a cell is estimated based on the cell-minimum capacity (Wmin), the cell-average

actual storage (W act=S1+S2+S3) and the water capacity for the entire soil profile (Wmax= SC1+SC2+SC3, SCn: soil water15

capacity for layer n). If Wmin = 0, direct runoff always occurs for a rainfall event. If Wmin > 0, an event Pn only generates

runoff QDR if W act >Wmin. Wmin is therefore an important parameter which governs runoff generation response time.

3.1.2 Vertical water exchanges between soil and groundwater stores and shallow sub-surface flow

Net infiltration water into the first soil layer (P 01) is transferred through the remaining soil layers. Vertical water exchanges

occur between the first and the second layers (P 12), between the second and the third layers (P 23) and between the third20

soil layer and the active layer of the groundwater store (P 34). P 12,P 23 and P 34 consist of downward percolation and upward

capillary rise, which depend on the degree of saturation (s1 = S1/SC1 ,s2 = S2/SC2 and s3 = S3/SC3 ) and the unsaturated

hydraulic conductivity of each soil layer (Ksat 1,Ksat 2 and Ksat 3). If s1>s2 , percolation is equal to Ksat 1; whereas if s2>s1,

capillary rise is equal to Ksat 2× (1− s1), being (1− s1) the moisture deficit in the first soil layer. Ksat 1, Ksat 2 and Ksat 3

controls the vertical fluxes between the soil layers and the groundwater store which affect significantly to the ground water25

recharge. Moreover, Ksat 3 influences the shallow sub-surface flow from the third soil layer (QIF).

3.1.3 Baseflow

The last component that contributes to the total runoff for each grid cell is the baseflow from the active groundwater layer (QBF).

QBF is calculated as QBF = S4act× J , where J is the baseflow recession coefficient and depends on the aquifer transmissivity

and the aquifer specific yield. Therefore, J controls the direct contribution of groundwater store to the total runoff and hence,30

to the river discharge.
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3.1.4 Evapotranspiration

Actual evapotranspiration consist of transpiration (Et), bare soil evaporation from the top soil layer (Eb), open-water evapo-

ration (Ew), interception loss (Ei) and evaporation from the melt water store in the snow pack (Es). Each evapotranspiration

component is calculated using the reference potential evapotranspiration (E(p,0)) as basis and the corresponding factor coeffi-

cients related with vegetation cover fraction, crop and land cover type, surface water bodies, water stress and the interception5

flux.

3.2 Data

3.2.1 Meteorological data

The meteorological data required to force PCR-GLOBWB are air temperature, precipitation and reference potential evapo-

transpiration. Air temperature and precipitation were obtained from the WATCH Forcing Data methodology applied to ERA-10

Interim reanalysis data (WFDEI) at an original spatial resolution of 0.5o x 0.5o (Weedon et al., 2014). Reference potential

evapotranspiration was obtained through the FAO Penman-Monteith equation. Precipitation, air temperature and reference po-

tential evapotranspiration were downscaled from the original spatial resolution to a 0.08o x 0.08o grid. Precipitation and air

temperature were downscaled using precipitation and temperature lapse rates derived from the 10’ CRU-CL2.0 data (New et al.,

2002) through a linear regression analysis (Sutanudjaja et al., 2011). Reference potential evapotranspiration was downscaled15

using the e2o-downscaling-tools (Weiland et al., 2015; Schellekens and Weiland, 2017).

To test model sensitivity to precipitation, air temperature and reference potential evapotranspiration were fixed and two ad-

ditional global precipitation products were used: (i) ERA-Interim reanalysis data (EI) from the European Centre for Medium-

range Weather Forecasts (ECMWF) at the original spatial resolution of 0.5o x 0.5o (Dee et al., 2011) and (ii) Multi-Source

Weighted-Ensemble Precipitation data (MSWEP) by merging gauge, satellite and reanalysis data at the original spatial resolu-20

tion of 0.25o x 0.25o (Beck et al., 2016b).

The three global precipitation products were inter-compared and interpolated to the two weather station locations found

inside the Oum Er Rbia basin (http://www.wmo.int/pages/themes/climate/), Beni Mellal and Kasba Tadla (Figure 1). Kling-

Gupta efficiency (KGE), Nash-Sutcliffe efficiency (NSE), Pearson’s correlation coefficient (r) and Percent Bias (PBias)

between the interpolated and in-situ ground daily data were calculated. A description of the performance metrics with their25

mathematical formulation is included in section 3.4. These metrics were selected to have detailed information about differences

between precipitation products.

3.2.2 Discharge data

Daily river gauge data were obtained from the Oum Er Rbia Hydraulic Agency (ABHOER). Gauge measurements from two

gauges in the western region of the basin were used in this study (Figure 1): Ait Ouchene and Mechra Eddahk. Table 130

summarizes some key hydrological data.
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3.2.3 Evapotranspiration data

The GLEAM (Global Land Evaporation Amsterdam Model - http://www.gleam.eu/ - ) evapotranspiration product version 3.0a

(GLEAM_v3.0a), generated by VU Amsterdam in collaboration with Ghent University (Miralles et al., 2011b;Miralles et al.,

2011a; Martens et al., 2016b), was used to calibrate PCR-GLOBWB. The product consists of a global dataset based on reanaly-

sis net radiation and air temperature, satellite and gauged-based precipitation, Vegetation Optical Depth (VOD) and snow water5

equivalents spanning the 35-year period 1980-2014. To generate the GLEAM evapotranspiration product, the GLEAM model

separately estimates the different components of terrestrial evaporation, including transpiration, interception loss, bare-soil

evaporation, snow sublimation and open-water evaporation. To this end, it consists of four modules: the evaporation module,

the stress module, the soil-water balance module and the rainfall interception model (Martens et al., 2016a). GLEAM (0.25o x

0.25o) was interpolated with distance-weighted average remapping to a 0.08o x 0.08o grid for the period 1980-2010. GLEAM10

actual evapotranspiration thus obtained was subsequently compared to simulated actual evapotranspiration by PCR-GLOBWB.

3.2.4 Soil moisture data

The ESA CCI surface soil moisture combined product version 2.2 (ESA CCI SM v02.2 CP) was generated as part of the

European Space Agency (ESA) soil moisture Climate Change Initiative (CCI) project by the Vienna University of Technology

(http://www.esasoilmoisture-cci.org/). A dataset for the 35-year period 1980-2014 of surface soil moisture was produced using15

C-band scatterometer data (ERS-1/2 AMI scatterometer, MetOp Advanced Scatterometer -ASCAT-) and multi-frequency ra-

diometer data (SMMR, SSM/I, TMI, AMSR-E, Windsat and AMSR2). Soil moisture retrieved using satellite active microwave

data and satellite microwave radiometry were merged to make best use of soil moisture data from the different available satel-

lites and sensors (Liu et al., 2011; Liu et al., 2012; Dorigo et al., 2015). ESA CCI surface soil moisture combined product

represents approximately a top soil layer depth of 0.5 - 2 cm. Similarly to GLEAM evapotranspiration, ESA CCI SM product20

at an original spatial resolution of 0.25o x 0.25o was interpolated with distance-weighted average remapping to 0.08o x 0.08o

grid for the period 1980-2010.

ESA CCI surface soil moisture observations were compared to simulated soil moisture of the first of the three vertical soil

layers in PCR-GLOBWB (top 5 cm of soil). Due to differences in layer depth and/or data characteristics, systematic biases

between modelled and observed soil moisture may exist (Reichle and Koster, 2004). To overcome this expected discrepancy25

and match the remotely sensed observations to the statistics of corresponding hydrological model simulations, a mean-standard

deviation (µ−σ) matching (Draper et al., 2009) was used. This technique was implemented to rescale simulated soil moisture

against ESA CCI surface soil moisture time series to have the same mean and variance.

The adjusted simulated surface soil moisture values θ
′

sim were calculated as

θ
′

sim =
σθobs
σθsim

× (θsim− θsim)+ θobs (1)30

where θsim are the simulated soil moisture values, θobs is the ESA CCI soil moisture observations, σθsim and σθobs are the

standard deviations of the simulated and observed soil moisture values and θobs and θobs are the means of the simulated and

observed soil moisture values.
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When comparing the original and the rescaled soil moisture, it is observed that the mean-standard deviation technique

effectively removes the biases between the simulated and observed soil moisture time series (see Figure 1 of the Supplementary

Information).

3.3 Calibration and validation strategy

Alternative single objective calibration approaches based on discharge, actual evapotranspiration and surface soil moisture5

and a multiobjective calibration approach based on actual evapotranspiration and surface soil moisture were inter-compared.

Five different calibration scenarios were carried out. Calibration scenario S0 represents the reference calibration scenario,

which was not locally calibrated for the Oum Er Rbia basin, but uses a-priori model parameters derived from vegetation,

soil properties and geological information at a global scale (latest model version of PCR-GLOBWB). Calibration scenario S1

aims to calibrate the hydrological model using in-situ discharge observations, following the traditional calibration approach.10

Calibration scenarios S2 and S3 use GLEAM actual evapotranspiration and ESA CCI surface soil moisture time series for

calibration, respectively. Calibration scenario S4 represents the multiobjective calibration approach and it consists of a step-

wise calibration scheme that attempts to combine the strengths of calibration scenarios S2 and S3. Step one is simply scenario

S2, where all the model parameters are allowed to be adjusted based on GLEAM actual evapotranspiration. In step two, those

parameters that are clearly identified by calibration scenario S2 are held constant and the remaining parameters are allowed to15

be adjusted according to ESA CCI surface soil moisture, calibration scenario S3.

The five calibration scenarios were analysed for each of the three global precipitation products to study their impact on

model parameters calibration and model performance. The calibration scenarios are described in Table 2, including the scenario

identifier.

For the calibration using in-situ observed discharge time series (S1), two river gauge observation time series were used20

(section 3.2.2). The objective function to maximize for the calibration scenarios was Kling-Gupta efficiency (KGE) , instead

of the traditional Mean Squared Error (MSE) or Nash Sutcliffe efficiency (NSE) to avoid underestimating the variability of

values (Gupta et al., 2009). The mathematical formulation and description of the used objective function are included in section

3.4.

To calibrate PCR-GLOBWB for each of the three precipitation products, 81 runs with different parameter values were25

simulated: minimum soil water capacity (Wmin), soil saturated hydraulic conductivites (Ksat 1, Ksat 2 and Ksat 3) and baseflow

recession coefficient (J). These model parameters, which vary spatially over the basin, influence different model parts of the

model behaviour, as it was explained in section 3.1. For the variation of the parameter values, spatially uniform prefactors were

used: fw, fK and fj (Table 3). The remaining model parameters were kept fixed.

The prefactors to vary model parameter values were referred to the parameters of the S0 calibration scenario. The spatial30

distribution of the parameters Wmin, Ksat and J used in S0 scenario can be found in Figure A1 of Appendix A.

Furthermore, the uncertainty of reference potential evapotranspiration (Ep,0ref ) was also investigated using a correction

prefactor, fe, to this model variable. Considered values for fe prefactor are included with the previously mentioned ones in

Table 3.
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As reference calibration scenario, S0 prefactors are: fw = 1, fK = 0, fj = 1 and fe = 1. The model performances of all the

simulations were evaluated for each of the five calibration scenarios to identify the best prefactor sets as the calibrated prefactor

sets.

All the simulations were performed at a daily temporal resolution for the 32-year period 1979-2010. The 2-year period 1979-

1980 was used to spin up the hydrological model until reaching a dynamically steady state. The model was calibrated based on5

monthly values of discharge, actual evapotranspiration and surface soil moisture. Validation was also carried out at a monthly

temporal resolution but exclusively for streamflow, aiming to analyse if similar discharge estimates may be obtained with a

calibrated model based on remotely sensed observations (S2, S3 and S4), in comparison with a model traditionally calibrated

to in-situ discharge data (S1). The 13-year period 1981-1993 was used for model calibration and during the 17-year period

1994-2010, the model was validated.10

3.4 Performance metrics

To inter-compare the three global precipitation products six metrics were used: Nash-Sutcliffe efficiency (NSE), Kling-Gupta

efficiency (KGE), Pearson’s correlation coefficient (r) and Percent Bias (PBias). Moreover, one of those metrics, KGE,

was chosen as objective function to calibrate and validate model performance for each calibration scenario. NSE, PBias and

r were also used as additional assessment measurements in the validation procedure.15

Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970), NSE, is defined as

NSE = 1−
∑n
t=1[x(t)− y(t)]2∑n
t=1[y(t)− y]2

(2)

where x(t) and y(t) are the modeled and observed variable at t time step (months), y is the mean of observed data and n is the

total number of observations. NSE is widely used for calibrating and validating hydrological models in terms of discharge.

NSE varies from −∞ to 1. If NSE = 0, modeled values perform as well as the mean of the observations. If NSE < 0,20

modeled values perform worse than the mean of the observations.

Gupta et al. (2009) analysed various decompositions of NSE and proposed an alternative model performance criteria,

Kling-Gupta efficiency (KGE), to avoid the problems that can be derived of using the NSE criterion (e.g. high sensitivity to

extreme values and bias). KGE is given as

KGE = 1−
√

(r− 1)2 +(α− 1)2 +(β− 1)2 (3)25

where r represents the Pearson’s correlation coefficient, α is the ratio between the variance of the modeled variable and the

variance of the observed variable and β is the ratio between the mean of the modeled variable and the mean of the observed

variable, i.e. β represents the bias. Analogous to NSE, KGE ranges from −∞ to 1 with an ideal value of 1. KGE measures

simultaneously bias, variability and correlation.

Pearson’s correlation coefficient (Pearson, 1896), r, measures the degree of linear association between modeled and observed30

values and it is defined as

r =

∑n
t=1(x(t)−x)(y(t)− y)√∑n

t=1(x(t)−x)2
√∑n

t=1(y(t)− y)2
(4)
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where x(t) and y(t) are the modeled and observed variable at t time step (months), y is the mean of observed data, x is the mean

of modeled data and n is the total number of observations. r varies within the interval [-1,1]. r is mainly used in hydrological

modeling to evaluate the timing of modeled to observed time series.

Percent Bias indicates the average tendency of the modeled values to over- or underestimate the observations. PBias, is

calculated in percentage terms as5

PBias= 100×
∑n
t=1(x(t)− y(t))∑n

t=1 y(t)
(5)

The optimal value of PBias is 0.

When the performance metrics were calculated between simulated and observed soil moisture estimates, the subscript sm

was added to the metric, i.e. NSEsm, KGEsm, rsm and PBiassm. Similarly, when comparing actual evapotranspiration

estimates, precipitation and discharge, the added subscripts were evap, precip and q , respectively.10

4 Results

4.1 Inter-comparison of precipitation products

To inter-compare the precipitation products, the annual mean precipitation for the study time period (1979-2010) for each

forcing dataset was calculated (Figures 3a, 3b and 3c). In addition to the spatial resolution difference, MSWEP is able to capture15

the rainfall pattern over the Atlas Mountains rather well, which is only roughly distinguished by WFDEI and unrecognized

by EI. The finer spatial resolution and the combination of reanalysis, satellite and in-situ data are probably the reasons for its

more plausible spatial pattern. Furthermore, climatology of precipitation products was analyzed (Figure 3d). WFDEI ranges

from 4.5 mm in July to 57 mm in February, whereas EI and MSWEP show a lesser variability with precipitation values from

10.5 mm in July to 42.6 mm in November. Smaller differences between WFDEI and EI and MSWEP are observed during the20

summer months. EI and MSWEP show similar temporal precipitation patterns. Annual mean precipitation over the entire basin

obtained with MSWEP (355.15 mm) is approximately 80 mm higher than with EI (276.67 mm). Similar annual median values

are obtained with the three global precipitation products, although the distribution of WFDEI highly differs from the other two

products.

Moreover, various performance metrics between the interpolated and in-situ ground data were calculated and shown in Figure25

4. Overall, EI and MSWEP provide a better fit to the station data compared to WFDEI, with higherKGEprecip,NSEprecip and

rprecip than WFDEI. When comparing EI with MSWEP, similar values of KGEprecip and NSEprecip were found, whereas

higher differences exist in rprecip and PBiasprecip. In terms of correlation MSWEP shows the best performance, but EI shows

the lowest Percent Bias at both weather stations, with a value of less than 10 %. Only two weather stations were found within

the basin for the previous analysis. These measurements were considered too scarce to cover the basin and to discard the30
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precipitation product with the lowest performance (WFDEI). Therefore, the three global precipitation products were used to

calibrate PCR-GLOBWB under the five calibration scenarios.

4.2 Calibration results

Model parameters were calibrated using discharge, evapotranspiration and soil moisture observations through five different5

calibration scenarios for the time period 1981-1993. Figure 5 shows results of all runs produced in this study for different

calibration scenarios based on: in-situ discharge observations (S1) at Ait Ouchene (Figure 5a) and Mechra Eddahk (Figure

5b), GLEAM actual evapotranspiration (S2, Figure 5c) and ESACCI surface soil moisture (S3, Figure 5d). For each sub-figure

in Figure 5, KGE results (y-axis) of using the three precipitation products are plotted in different rows (top: EI, middle:

WFDEI and bottom: MSWEP) and prefactor values are plotted in different columns (x-axis, 1st column: fe, 2nd column: fj ,10

3rd column: fk and 4th column: fw). Each scatterplot contains 81 dots representing each run with a different combination of

parameter values. This means that the KGE values are the same in the four scatterplots of a row (y- axis), but in each of these

scatterplots, they are plotted against a different prefactor (x-axis). With Figure 5, prefactor, and therefore parameter, ranges

leading to better and worse performances can be distinguished, as well as their global optimal values. If no optimal value can

be inferred, prefactors from the calibration scenario S0 are maintained (fe = 1, fj = 0, fk = 0 and fw = 1).15

Once the best runs for each calibration scenario were identified, their discharge performance was checked at the two gauging

stations: Mechra Eddahk, in Figure 6, and Ait Ouchene, in Figure 2 of the Supplementary Information. Observed discharge

(y-axis) and estimated discharge (x-axis) are plotted in Figure 6 for the five calibration scenarios. Different rows in Figure 6

indicate the three global precipitation products (top: EI, middle: WFDEI and bottom: MSWEP) and different columns indicate

the five calibration scenarios (1st column: S0, 2nd column: S1, 3rd column: S2, 4th column: S3 and 5th column: S4). The20

performance indicators NSE and KGE for discharge are included in every scatterplot in Figure 6 (NSEq and KGEq).

To summarize results shown in Figures 5 and 6, Table 4 includes for each calibration scenario the identified optimal param-

eters values and the KGEq performance values at Ait Ouchene and Mechra Eddahk.

4.2.1 Calibration using in-situ observed discharge time series (S1)25

Figures 5a and 5b (calibration scenario S1) are similar. From these figures, fe (1st column) and fw (4th column) are well

identified by discharge calibration at both gauging stations when forced with any of the three precipitation products. fe = 1.25

and fw = 1.25 lead to the highest KGEq values. However, it is not possible to identify the best prefactors of fj (2nd column)

and fk (3rd column). There are no clear and distinct maximum values in the scatterplots of these figures, hence fj = 0 and

fk = 0 are used.30

From Figure 6 (2nd column), the highest discharge performance is obtained when the model is calibrated with in-situ

discharge observations (S1).
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For all the calibration scenarios, a few general observations can be made. Scatterplots (Figure 6) highlight an overall better

agreement and a lower bias between discharge observations and estimates for the Ait Ouchene (see Figure 2 in the Supplemen-

tary Information) than for Mechra Eddahk station. KGEq values at Ait Ouchene station for calibration scenario S0 are lower

than for Mechra Eddahk station. This may be due to their different locations within the basin, the former one being situated in

the Atlas Mountains, where precipitation estimates can be less accurate, and in a tributary of the Oum Er Rbia River, whose5

representation in PCR-GLOBWB can be limited by the model spatial resolution.

Scatterplots (Figure 6) also show that estimated discharges are closer to observed discharges at both gauging stations when

PCR-GLOBWB is forced with EI precipitation. Moreover, scatterplots indicate a worse agreement and a tendency to over-

estimate discharge when WFDEI and MSWEP are used. KGEq values for the reference calibration scenario S0 at Mechra

Eddahk are 0.607, 0.325 and 0.561 when EI, WFDEI and MSWEP are used as forcing data respectively. These performance10

discrepancies are related with the differences between EI, WFDEI and MSWEP precipitation products discussed in section 4.1.

The lower quality of WFDEI in this region compared with the other precipitation datasets may be a possible reason of the lower

discharge performance. When MSWEP was compared with in-situ precipitation data, performance in terms of correlation was

higher than EI. However, EI showed less bias. The higher performance of discharge estimates when PCR-GLOBWB is forced

with EI may be due to this bias difference and that the validation is carried out at a monthly temporal resolution, reducing the15

impact of correlation.

4.2.2 Calibration using GLEAM actual evapotranspiration time series (S2)

Figure 5c (calibration scenario S2) indicates that only prefactor fe (1st column) can be clearly identified (the highest

KGEevap values are obtained with fe = 1.25), whereas the remainder of the prefactors (fj , fw and fk) are non identifi-20

able, suggesting that evapotranspiration-based calibration may be unreliable in their identification. Therefore, model run with

prefactors fe = 1.25, fj = 0, fk = 0 and fw = 1 is considered as the calibrated run based on the evapotranspiration perfor-

mance.

From Figure 6 (3rd column), results indicate an increase of KGEq and NSEq values when GLEAM evapotranspiration is

used for model calibration compared to the reference scenario (S0, 1st column of Figure 6). However, higher model perfor-25

mance values are obtained when calibrating based on in-situ discharge observations (S1, 2nd column of Figure 6).

4.2.3 Calibration using ESA CCI surface soil moisture time series (S3)

Figure 5d (calibration scenario S3) indicate that prefactors fk (3rd column) and fw (4th column) can be identified, fw = 1.25

and fk = 0.25. There is a clear maximum value ofKGEsm with these prefactors values. Prefactors fe (1st column) and fj (2nd30

column) are not identifiable when soil moisture is used for calibration. Therefrom, the calibrated run based on soil moisture

performance is the model run with prefactors fe = 1, fj = 0,fk = 0.25 and fw = 1.25. This implies that ESA CCI soil moisture

may be used to indirectly tune groundwater recharge by calibrating the upper soil saturated hydraulic conductivities, Ksat.
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From Figure 6 (4th column), scatterplots indicate an improvement in the correspondence between observed and estimated

discharge compared to the non-calibrated scenario (S0, 1st column of Figure 6). Similarly to calibration scenario S2 (3rd

column of Figure 6), this improvement is lower than when the model is calibrated based on ground discharge observations (S1,

2nd column of Figure 6).

The calibrated runs based on evapotranspiration (S2, 3rd column of Figure 6) and soil moisture (S3, 4th column of Figure5

6) result in lower discharge performances compared to the reference scenario (S0) at some cases, e.g. when EI precipitation is

used at Mechra Eddahk location, KGEq(S0) = 0.607, KGEq(S2) = 0.534 and KGEq(S3) = 0.522.

4.2.4 Step-wise calibration using GLEAM actual evapotranspiration and ESA CCI surface soil moisture time series

(S4)10

Calibration scenario S4 attempts to combine the strengths of scenarios S2 and S3. In the first step, the model is calibrated

using GLEAM evapotranspiration (S2, Figure 5c). From Figure 5c, only fe prefactor is well identified (the highest KGEevap

value is obtained with fe = 1.25). In the second step, fe prefactor that has been identified was held constant and the remaining

three prefactors were allowed to be calibrated according to ESA CCI soil moisture (S3, Figure 5d). From Figure 5d, fw

and fk are identifiable (the highest KGEsm values are obtained with fw = 1.25 and fk = 0.25). As a result, for calibration15

scenario S4, the prefactors identified during the evapotranspiration calibration (S2): fe = 1.25 and during the soil moisture

calibration (S3): fw = 1.25 and fk = 0.25 are adopted. This step-wise calibration approach using multiple system variables

allow to identify more parameters than when those variables are separately used. Nonetheless, neither of the steps in calibration

scenario S4 allow the clear identification of fj , so its value for the calibration scenario S0 is used, fj = 0.

From Figure 6 (5th column), calibration using GLEAM evapotranspiration and ESA CCI soil moisture leads to further20

improvements than when these observations are separately used. For example, when MSWEP precipitation is used to model

discharge at Mechra Eddahk station, KGEq varies between 0.703, 0.693, 0.613 and 0.573 for calibration scenarios S1, S4, S2

and S3, respectively (KGEq = 0.561 for the reference scenario S0). At Ait Ouchene station (see Figure 2 in the Supplementary

Information), KGEq varies between 0.520, 0.342, 0.331 and 0.271 for calibration scenarios S1, S4, S2 and S3, respectively

(KGEq =−0.542 for the reference scenario S0).25

4.3 Validation results

Once the model had been calibrated for each calibration scenario and each precipitation product, comparisons between

estimates (before and after the calibration) and observations of actual evapotranspiration, surface soil moisture and discharge

were carried out for the validation time period (1994-2011). To perform the analysis of these results, time series plots are30

included in Figures 7 and 8.

In Figure 7a, simulated actual evapotranspiration time series of the reference run (S0, red dashed line) and the step-wise

calibrated run (S4, purple dashed line) are plotted against GLEAM actual evapotranspiration observations (black line). Simi-

larly as Figure 7a, Figure 7b shows simulated surface soil moisture of the reference run (S0, red dashed line) and the step-wise
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calibrated run (S4, purple dashed line) plotted against ESA CCI surface soil moisture time series (black line). The rescaled

soil moisture time series (after mean-standard deviation matching technique applied, see section 3.2.4) are shown. In Figure

7c, estimated discharge of the reference run (S0, red dashed line) and the step-wise calibrated run (S4, purple dashed line) are

plotted against discharge observations (black line) at Mechra Eddahk. KGE values for actual evapotranspiration, surface soil

moisture and discharge are included in Figures 7a, 7b and 7c. For the sake of simplicity, only results when the model is forced5

with MSWEP precipitation are shown.

Similarly to Figure 7, Figure 8 shows simulated evapotranspiration (Figure 8a), surface soil moisture (Figure 8b) and dis-

charge (Figure 8c) against observations. However, in Figure 8, estimates of the discharge-calibrated run (S1, red dashed line)

and the step-wise calibrated run (S4, purple dashed line) are plotted against observations (black line).

From Figure 7a, the calibration procedure based on GLEAM evapotranspiration and ESA CCI soil moisture (S4) produces an10

increase of 18 % inKGEevap compared to the reference run (S0). From Figure 7b, estimated and observed surface soil moisture

time series show a good correspondence. KGEsm difference of 0.028 is found between the reference (S0) and the step-wise

(S4) calibration scenarios. From Figure 7c, the step-wise calibrated run (S4) reproduces the monthly observed discharge well,

except some simulated extreme peaks which were not observed, e.g. January and June in 2002 and some which were not

simulated properly, e. g. January and May in 1996 and 1997. This lack of fit may be due to errors in the precipitation data,15

because higher discharge differences are shown when WFDEI and MSWEP products are used in comparison to EI product.

Other possible reasons may be related with model structural deficiencies. When comparing discharge time series (Figure 7c),

calibration scenario S4 slightly improves KGEq compared to calibration scenario S0, with KGEq values varying from 0.648

to 0.710.

From Figure 8a, an increase of 14 % inKGEevap is produced when the discharge calibration scenario (S1) is used compared20

to the reference run (S0). This improvement in evapotranspiration estimates is higher when calibrating the model using GLEAM

evapotranspiration and ESA CCI soil moisture (S4, KGEevap = 0.689) than when calibrating it only for ground discharge

(S1, KGEevap = 0.666). Similarly to Figure 8a showing the evapotranspiration comparison, Figure 8b indicates that a higher

KGEsm value is obtained when using GLEAM and ESA CCI observations for calibration (S4, KGEsm = 0.856) than when

calibration is based on in-situ discharge observations (S1,KGEsm = 0.834). From Figure 8c comparing discharge time series,25

step-wise calibration scenario S4 leads to an increase of 10 % in KGEq , compared to the increase of 5 % obtained when

discharge observations are used for calibration (S1).

To further understand the added value of using GLEAM evapotranspiration and ESA CCI soil moisture data for model

calibration, the variations of KGEq , NSEq , rq and PBias between each calibration scenario (S1, S2, S3 and S4) and the

reference calibration scenario (S0) were calculated and plotted for the validation time period in Figure 9. Rows indicate the30

three global precipitation products and columns indicate the performance indicators. The variations of the performance metrics

are shown with barplots for the two gauging stations, Ait Ouchene and Mechra Eddahk. At each location, a positive value of

KGEq , NSEq , PBias and rq means that either S1, S2, S3 or S4 scenario obtained a higher skill score than S0, whereas a

negative value means that those scores decreased after calibration.

14



Figure 9 shows that variations of the performance indicators are lower when EI precipitation product is used. The highest

differences between the calibration scenarios were obtained when the model is forced with WFDEI precipitation. In the inter-

comparison of the calibration scenarios, calibration scenario using in-situ observed discharge data (S1) obtains overall the

highest increase ofKGEq ,NSEq and rq and the highest reduction of PBiasq when any of the precipitation products are used,

as it was expected. SimilarKGEq andNSEq increases and PBiasq decreases are obtained when the model is calibrated using5

only soil moisture (S3) and using the combination of evapotranspiration and soil moisture (S4), but larger improvements in rq

are obtained with the step-wise calibration scenario (S4). KGEq , NSEq and rq gains when comparing calibration scenarios

S2 and S0 are positive, but of a lower magnitude than when model is calibrated in scenarios S3 and S4. The higher performance

of scenario S4 may be due to the fact that this calibration approach uses multiple system variables providing more hydrological

information and allowing the identification of more parameters than when those variables are separately used.10

In each barplot of Figure 9, metrics improvements are larger at Ait Ouchene station than at Mechra Eddahk station. This is

due to the lower discharge performance for the reference calibration scenario S0 at the former gauging location. Note that in

some cases where the change in KGEq is negative (e.g. when EI precipitation is used at Ait Ouchene station), this is because

although there was an improvement in the KGEq performance indicator during the calibration time period, when calculating

it for the validation time period, it is possible that the metric slightly worsens. Note that some variations in NSEq , PBiasq15

and rq are small or close to 0, because its calibration was optimised for KGEq and not for those particular metrics in terms of

discharge. A possible route to overcome this problem may be to use various performance indicators (for example,KGE,NSE,

PBias and r) as objective functions to optimize in each calibration scenario, instead of using a single one. This multiobjective

calibration approach may further improve discharge model estimates.

20

5 Discussion and conclusions

This study investigates alternative routes to calibrate the large-scale hydrological model PCR-GLOBWB using earth ob-

servations globally available for the data-poor river basin of Oum Er Rbia in Morocco. Three global precipitation products,

EI, WFDEI and MSWEP, are inter-compared and applied to force PCR-GLOBWB. Five different calibration scenarios are

followed where GLEAM actual evapotranspiration and ESA CCI surface soil moisture data are used to identify model pa-25

rameters with the aim to improve discharge estimates. In-situ discharge observations are also used for calibration, as they are

traditionally used to calibrate hydrological models.

Results show that GLEAM actual evapotranspiration and ESA CCI soil moisture observations may be used to calibrate de-

termined PCR-GLOBWB model parameters. GLEAM actual evapotranspiration can be used to calibrate the reference potential

evapotranspiration (fe) as expected, affecting the water exchange between the top soil layer and the atmosphere and hence the30

soil water balance. ESA CCI soil moisture data can be used to calibrate the minimum soil water capacity (fw) and the saturated

hydraulic conductivities of the soil layers (fk), determining the surface runoff generation response, the shallow sub-surface

flow and the groundwater recharge. However, calibration using only GLEAM evapotranspiration data or only ESA CCI soil

moisture can result in more than one parameters combination to be optimal in terms of discharge (overparametrization or equi-
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finality problem). To overcome this problem, a step-wise calibration scenario based on both observations, evapotranspiration

and soil moisture, is necessary to identify the optimal values of reference potential evapotranspiration (fe), runoff-infiltration

partitioning parameters (fw) and the soil saturated hydraulic conductivity (fk). Nonetheless, neither of these observations can

be used to calibrate the baseflow from the active groundwater layer (fj). To identify baseflow recession coefficient parameter

(fj) a multiobjective calibration approach to streamflow observations could be followed. Similarly to Fenicia et al. (2007),5

multiple objective functions may be optimized in sequential steps for high flows, low flows and timing.

Spatially uniform prefactors for the entire Oum Er Rbia basin were used for the variation of the parameter values in this

study. Developing novel calibration strategies where prefactors and so, model parameters vary with soil type, land use, elevation

and/or other characteristics within the basin would be a promising research route to investigate. Furthermore, the present work

inter-compare five calibration scenarios using a brute force method, where several combinations of parameters values are10

tested and the best performing is selected. For these combinations, and due to computational limitations, only four prefactors

were considered leading to 81 model runs per precipitation product. Using more prefactor values and therefore, more runs

may improve the estimation of the optimal parameters set for each calibration scenario. A suggestion for future studies may

be to use an Ensemble Kalman Filter to calibrate the hydrological model, as previously presented in literature (Moradkhani

et al., 2005; Wanders et al., 2014). Furthermore, the validation of this study was carried out exclusively on streamflow. Other15

validation approaches, including the empirical orthogonal functions, wavelet analysis or their combination, may be another

promising way towards a more in-depth validation of distributed hydrological models (Mascaro et al., 2015; Koch et al., 2015;

Fang et al., 2015).

A step-wise calibration approach based on GLEAM actual evapotranspiration and ESA CCI soil moisture results in discharge

estimates of acceptable accuracy (Moriasi et al., 2007), compared to discharge estimates derived from a model that has been20

calibrated to in-situ discharge measurements. Traditional calibration to in-situ discharge measurements results in the highest

model performance, as expected. A model calibrated only on evapotranspiration or soil moisture observations achieves a lower

discharge performance than when they are used together.

In the inter-comparison between the three global precipitation products, WFDEI shows the lowest performance, whereas EI

and MSWEP perform quite well. Apart from the in-situ discharge calibration scenario, the highest discharge improvement is25

obtained when the two latter forcing data are used in combination with a step-wise calibration approach based on evapotran-

spiration and soil moisture observations.

Results indicate that precipitation impact on streamflow estimates is more significant than the one derived from calibrating

model parameters, thus the lower quality of WFDEI compared to EI and MSWEP, decreases model performance and calibra-

tion is biased in order to compensate precipitation errors. Further investigation of the effect of precipitation errors on model30

efficiency, but also on model parameters estimation may be an interesting route for hydrological research (Andréassian et al.,

2004; Looper et al., 2012).

Although there is still room for further research, this study shows that globally available earth observations, such as evap-

otranspiration or soil moisture, can be used to further parameterize large-scale hydrological models providing reasonable dis-

charge estimates at regional or basin scale. In principle, these calibration approaches can be applied and investigated in other35
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basins without or with limited in-situ ground hydro-meteorological data (ungauged basins), not only to estimate discharge,

but also to improve the understanding of the hydrological processes in the basin. Results suggest the potential of using other

satellite products for hydrological modeling studies, including soil moisture products such as AMSR-E (Njoku et al., 2003)

and SMOS (Kerr et al., 2001), evapotranspiration products such as SEBAL (Bastiaanssen et al., 1998) and MOD16 (Nishida,

2003), total water storage products such as GRACE (Tapley et al., 2004), etc. The spatial information of these satellite-based5

products could be used in a different way than the one explained in this study. For example, a calibration scenario based on

a pixel by pixel, instead of basin average, comparison of surface soil moisture and actual evapotranspiration model estimates

and observations could further improve discharge estimates. This calibration approach would have into account the spatial

variability of the variables over the basin. Previous studies investigate how to incorporate spatial information into hydrological

models using innovative spatial performance metrics to analyse the spatial sensitivity of simulated land-surface patterns (Koch10

et al., 2017).

Future studies may investigate step-wise calibration approaches using the combined information from multiple hydrologi-

cal system variables. By incorporating several data products, different parts or components of the model can be optimized to

increase the overall model performance. Another approach could be to calibrate the model to different variables with multiple

objective functions - multiobjective calibration- (Gupta et al., 1998; Khu and Madsen, 2005; Fenicia et al., 2007). Alterna-15

tively, these hydro-meteorological data which are globally available may be used to identify and develop relationships between

different basins using similarities, classification and scaling frameworks, as presented in previous studies (Samaniego et al.,

2010b; Kumar et al., 2013).
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Table 1. Hydrological and geographical information of the analysed catchments at the Oum Er Rbia basin.

Station name River Upstream basin area (km2)
Oulet location

Elevation (m AOD)
Longitude Latitude

Ait Ouchene El Abid 2350 -6.180 32.225 1070

Mechra Eddahk Oum Er Rbia 6555 -6.52 32.435 406
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Table 2. Calibration scenarios.

Scenario identifier Description

S0 Reference scenario

S1 Calibration using in-situ observed discharge time series

S2 Calibration using GLEAM actual evapotranspiration times series

S3 Calibration using ESA CCI surface soil moisture time series

S4 Step-wise calibration: using GLEAM actual evapotranspiration and ESA CCI surface soil moisture time series
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Table 3. Parameter values used in the calibration processes.

Parameters ID Description Prefactors Parameter values

Wmin Minimum soil water capacity fw ∈ {0.75,1,1.25} Wmin = fw ∗Wmax

Ksat1 Saturated hydraulic conductivity of 1st soil layer fk ∈ {−0.25,0,0.25} log(Ksat1) = fk + log(Ksat1ref )

Ksat2 Saturated hydraulic conductivity of 2nd soil layer fk ∈ {−0.25,0,0.25} log(Ksat2) = fk + log(Ksat2ref )

Ksat3 Saturated hydraulic conductivity of 3rd soil layer fk ∈ {−0.25,0,0.25} log(Ksat3) = fk + log(Ksat3ref )

J Baseflow recession coefficient fj ∈ {−0.5,0,0.5} log(J) = fj + log(Jref )

Ep,0 Reference potential evapotranspiration fe ∈ {0.75,1,1.25} Ep,0 = fe ∗Ep,0ref
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Table 4. Parameter identifiabilities and optimal values for each calibration scenario.

Calibration scenario fe fj fk fw KGE (Ait Ouchene) KGE (Mechra Eddahk)

S0 1 0 0 1 0.470 / -1.906 / -0.542** 0.607 / 0.325 / 0.561

S1 1.25 NI* NI 1.25 0.510 / -0.494 / 0.520 0.688 / 0.439 / 0.703

S2 1.25 NI NI NI 0.508 / -0.580 / 0.342 0.602 / 0.423 / 0.693

S3 NI NI 0.25 1.25 0.487 / -0.607 / 0.331 0.634 / 0.369 / 0.613

S4 1.25 NI 0.25 1.25 0.478 / -0.768 / 0.271 0.522 / 0.328 / 0.573

*NI indicates that the parameter was not identifiable

**KGE values are obtained from observed and simulated discharge when PCR-GLOBWB is

forced with EI / WFDEI / MSWEP
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Figure 1. Oum Er Rbia River basin and its location in Morocco (The delineation of the catchment is physically based). Yellow points

represent the gauging stations and green squares represent the weather stations.
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Figure 2. PCR-GLOBWB model structure, adapted from Van Beek et al. (2011).
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Figure 3. (a) EI annual mean precipitation, (b) WFDEI annual mean precipitation and (c) MSWEP annual mean precipitation for 1979-2010

time period and (d) climatology of EI, WFDEI and MSWEP precipitation products.
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Figure 4. Performance metrics of daily EI, WFDEI and MSWEP precipitation products at Beni Mellal and Kasba Tadla weather stations,

including Kling-Gupta efficiency (KGE), Nash-Sutcliffe efficiency (NSE), Pearson’s correlation coefficient (r) and Percent Bias (PBias).
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Figure 5. Scatterplots of discharge performance indicator KGE based on the monthly observations versus prefactors fe, fj , fk and fw

for the calibration scenarios S1 ((a) Ait Ouchene (b) Mechra Eddahk), S2 (c) and S3 (d). In each sub-figure, columns indicate the different

calibrated prefactors and rows indicate the three global precipitation products used as model forcing. Different colors and dot shapes indicate

different fw values.
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Figure 6. Scatterplots of monthly estimated discharge (x-axis) and observed discharge (y-axis) at Mechra Eddahk. Rows indicate the three

global precipitation products and columns indicate the five calibration scenarios.
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Figure 7. (a) Monthly GLEAM actual evapotranspiration (black) and estimated actual evapotranspiration (red and purple) time series. (b)

Monthly ESA CCI soil moisture (black) and estimated soil moisture (red and purple) time series. (c) Monthly observed discharge (black) and

estimated discharge (red and purple) time series. The red dashed lines represent estimates from calibration scenario S0 (reference scenario).

The purple dashed lines represent the calibrated time series from calibration scenario S4 which are taken from the runs that yield the best

simulations. Estimated time series over the entire Oum Er Rbia basin for the validation time period obtained with MSWEP precipitation are

shown.
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Figure 8. (a) Monthly GLEAM actual evapotranspiration (black) and estimated actual evapotranspiration (red and purple) time series. (b)

Monthly ESA CCI soil moisture (black) and estimated soil moisture (red and purple) time series. (c) Monthly observed discharge (black) and

estimated discharge (red and purple) time series. The red dashed lines represent estimates from calibration scenario S1. The purple dashed

lines represent the calibrated time series from calibration scenario S4 which are taken from the runs that yield the best simulations. Estimated

time series over the entire Oum Er Rbia basin for the validation time period obtained with MSWEP precipitation are shown.
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Figure 9. KGE, NSE, r and PBias variations comparing monthly discharge estimates of calibration scenarios S1, S2, S3 and S4 with S0.

Rows indicate the three global precipitation products and columns indicate the performance metrics.
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Figure A1. Initial model parameter values for the S0 calibration scenario (reference): (a) total soil water storage capacity (Wmax = SC1 +

SC2 +SC3), (b) saturated hydraulic conductivity of the 1st and 2nd soil layers (Ksat1 and Ksat2), (c) saturated hydraulic conductivity of

3rd soil layer (Ksat3) and (d) baseflow recession coefficient (J).
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