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Response to review comments of Dr. Heye R. Bogena on the manuscript 

"Calibration of a large-scale hydrological model using satellite-based soil 

moisture and evapotranspiration products" 

Patricia López López, Edwin H. Sutanudjaja, Jaap Schellekens, Geert 

Sterk and Marc F. P. Bierkens 

 
The authors would like to thank Dr. Heye R. Bogena for his really useful, valuable and 

productive suggestions on the manuscript. His in-depth review will help us to improve the 

structure and the overall quality of our manuscript. We have included detailed responses to 

his comments in the supplementary .pdf file. We have also included a modified version of the 

original manuscript. Please note the supplement to this comment and the modified manuscript, 

with modifications in blue. 

 

General comments:  

Comment 1:  

The motivation for choosing the study area is too weak. Basically the research presented in 

this study could be accomplished in any catchment. For instance, you could mention the 

specific challenges for the calibration of hydrological models in such environments. 

 

Answer: 

We agree with the reviewer and according to his suggestion, we will include and modify 

some sentences about the specific challenges for hydrological modelling in ungauged basins 

as follows: 

P2L4-9:”… Ungauged or poorly gauged river basins also include those basins where data are 

inaccurate, scarce, intermittent or collected at different temporal resolutions, leading to the 

problem that it is not clear how to integrate these data consistently into hydrological models 

(Winsemius et al., 2009). As a result, the limited availability and poor quality of data induces 

large uncertainty in model outputs from these river basins (Seibert and Beven, 2009). 

Developing novel strategies to enhance available datasets and hydrological models is one of 

the key strategies when working in ungauged basins (Hrachowitz et al., 2013). …” 

We will also include more information about particularities of the Oum Er Rbia basin to 

improve the motivation behind the selection of this study area: 

P3L8-13: “… with a good coverage of in-situ hydro-meteorological data. In the present study 

area, the Oum Er Rbia river basin located in Morocco, ground observations are spatially 

sparse and limited in number classifying it as a poorly-gauged river basin. The region 

frequently suffers from water scarcity and droughts and water availability is the main factor 

influencing socio-economic development, mostly driven by the agriculture (Houdret, 2009). 

The studies of Ouatiki et al. (2017), Tramblay et al. (2012) and Tramblay et al. (2016) are 

testimony to the relevance of this area. Therefore, developing new strategies to model this 

watershed is highly relevant to improve water management and assessment of the water 

availability within the basin. …” 
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Comment 2:  

The introduction is repetitive and too long. Please rewrite in a more focussed way and 

describe more clearly the structure of the paper. 

Answer: 

We will modify the introduction to clarify the contents and structure of the manuscript as 

follows: 

P2L1-P4L4: “1. Introduction 

To assess and manage the available water resources within a river basin, good estimates of 

hydro-meteorological data, such as precipitation, temperature and streamflow, are required. 

Yet many river basins around the world still have a limited number of in-situ observations, 

being either ungauged (Sivapalan et al., 2003) or poorly gauged (Loukas and Vasiliades, 

2014). Ungauged or poorly gauged river basins also include those basins where data are 

inaccurate, scarce, intermittent or collected at different temporal resolutions, leading to the 

problem that it is not clear how to integrate these data consistently into hydrological models 

(Winsemius et al., 2009). As a result, the limited availability and poor quality of data induces 

large uncertainty in model outputs from these river basins (Seibert et al., 2009). Developing 

novel strategies to enhance available datasets and hydrological models is one of the key 

strategies when working in ungauged basins (Hrachowitz et al., 2013). 

To overcome the lack of hydro-meteorological data, a promising approach is the use of the 

recently developed global earth observations and reanalysis products to supplement the 

available data. In the last decades, radar and satellite technologies have improved and have 

become more broadly available providing diverse hydro-meteorological datasets at finer 

spatial and temporal resolutions: precipitation -CMORPH (Joyce et al., 2004); TRMM 

(Huffman et al., 2007); etc.-, soil moisture -AMSR-E (Njoku et al., 2003); ESA-CCI (Dorigo 

et al., 2015); etc.-, total water storage -GRACE (Tapley et al., 2004); etc.-, evapotranspiration 

-SEBAL (Bastiaanssen et al., 1998); MOD16 (Nishida et al., 2003); GLEAM (Miralles et al., 

2011b); etc.-, etc.  

Previous studies have demonstrated the possibility of using these global datasets to better 

understand the hydrological processes in a river catchment (Kite and Droogers, 2000; 

Vereecken et al., 2008; Seneviratne et al., 2010; Hafeez et al., 2011) and to improve 

streamflow model estimates through assimilation (e.g. surface soil moisture – Parajka et al., 

2006; Brocca et al., 2012; López López et al., 2016 – or snow cover – Roy et al., 2010; Thirel 

et al., 2013 –) and/or calibration techniques or a-priori determination of model parameters 

(e.g. Jacobs et al., 2003; Beck et al., 2009). Calibration approaches based on multiple 

remotely sensed variables have some advantages in comparison with traditional calibration 

approaches using only observed and modelled hydrographs in a limited number of locations. 

Fenicia et al. (2007) and Gupta et al. (2008) recognized that traditional calibration may lead 

to over-parameterization, i. e. similar model results are obtained with more than one 

parameters combination, whereas calibrating to multiple variables – step-wise calibration –

may partly resolve the problem of non-uniqueness and it helps to a better understanding of 

the processes happening within the catchment. 

Several studies have investigated calibration approaches based on variables different to 

streamflow. Campo et al. (2006) used soil moisture information from radar images from 
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ERS-2 sensors to parameterize the hydrological model MOBIDIC. Immerzeel and Droogers 

(2008) calibrated the hydrological model SWAT based on satellite evapotranspiration from 

MODIS satellite images. Lo et al. (2010) improved the parameter estimation of the 

Community Land  Model 3.0. using GRACE total water storage data while Isenstein et al. 

(2015) calibrated the VIC hydrological model using snow covered area from MODIS satellite 

data. Others have combined remotely sensed variables with in-situ streamflow observations 

for calibration. In Rientjes et al. (2013), the HBV model was calibrated on satellite based 

evapotranspiration from MODIS and streamflow. Wanders et al. (2014) calibrated model 

parameters of LISFLOOD based on discharge and soil moisture observations acquired by 

AMSR-E, SMOS and ASCAT while Sutanudjaja et al. (2014) calibrated the large scale 

model PCR-GLOBWB using streamflow and soil water index information derived from the 

ERS scatterometers. At a global scale, Beck et al. (2016a) used parameter regionalization to 

calibrate a HBV model. However, the simultaneous use of more than one environmental 

variable different to streamflow for calibration is rare. A calibration approach using various 

variables, independently and in combination with streamflow observations, may further 

improve model performance and contribute to a better understanding of hydrological 

processes. In the present study, this is tested by comparing multiple calibration scenarios 

based on evapotranspiration, soil moisture and discharge data. 

The previously mentioned calibration experiments were performed for well studied river 

basins, such as the Rhine-Meuse river basin, with a good coverage of in-situ hydro-

meteorological data. In the present study area, the Oum Er Rbia river basin located in 

Morocco, ground observations are spatially sparse and limited in number classifying it as a 

poorly-gauged river basin. The region frequently suffers from water scarcity and droughts 

and water availability is the main factor influencing socio-economic development, mostly 

driven by the agriculture (Houdret, 2009). The studies of Ouatiki et al. (2017), Tramblay et al. 

(2012) and Tramblay et al. (2016) are testimony to the relevance of this area. Therefore, 

developing new strategies to model this watershed is highly relevant to improve water 

management and assessment of the water availability within the basin. 

This study aims to calibrate a large-scale hydrological model (PCR-GLOBWB 2.0, 

https://github.com/UU-Hydro/PCR-GLOBWB_model, Sutanudjaja et al., 2016) using soil 

moisture and evapotranspiration observations alone and to compare its discharge estimates to 

those obtained when the model is traditionally calibrated to streamflow data. We use the 

evapotranspiration product generated by an enhanced version of the GLEAM model 

(GLEAM v3.0; Martens et al., 2016b) in combination with the surface soil moisture product 

from ESA CCI (Dorigo et al., 2015). Both products are derived from satellite data. 

Furthermore, the influence of precipitation forcing is considered and three different global 

precipitation products are used and inter-compared: ERA-Interim reanalysis data (EI, Dee et 

al., 2011), WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, 

(WFDEI, Weedon et al., 2014) and Multi-Source Weighted-Ensemble Precipitation data by 

merging gauge, satellite and reanalysis data (MSWEP, Beck et al., 2016c). 

Five different calibration approaches are performed by using five calibration scenarios that 

include streamflow, soil moisture and evapotranspiration: (i) reference scenario using the 

hydrological model with the standard parameterization, (ii) calibration using in-situ observed 

discharge time series, (iii) calibration using GLEAM actual evapotranspiration time series, 

(iv) calibration using ESA CCI surface soil moisture time series and (v) step-wise calibration 

using GLEAM actual evapotranspiration and ESA CCI surface soil moisture time series. The 

above is repeated for each of the selected global precipitation product. A priori, it is expected 
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that calibrating to streamflow observations yields the best discharge estimates, and that the 

step-wise calibration using soil moisture and evapotranspiration provides better results than 

the calibration scenarios based only on soil moisture or evapotranspiration. 

The novel aspects and new contributions of this work include the use and comparison of three 

different and recently generated global precipitation products, the exploration of calibration 

techniques based on earth observations of soil moisture and evapotranspiration and their 

application into a large-scale hydrological model to provide streamflow estimates in the 

ungauged river basin of Oum Er Rbia in Morocco. Furthermore, understanding the potential 

gain of calibrating large-scale models to remotely sensed observations may have benefits for 

water resources management in data-poor river basins globally. 

This manuscript first describes the study area, then the methodology, including the 

hydrological model, the data, the calibration and validation strategy and the performance 

metrics. Subsequently, results are presented, starting with the inter-comparison of 

precipitation products and following with calibration and validation results. This manuscript 

ends with discussion and conclusions.” 

Comment 3:  

A justification for using 6 performance metrics for the precipitation evaluation is missing. 

Since only the performance metrics NSE and KGE are used for the model validation analysis, 

I suggest to limit the precipitation data evaluation also to these metrics. 

Answer: 

We agree with the reviewer that not all the performance metrics considered for precipitation 

evaluation are significant for the inter-comparison of the precipitation products. Therefore, 

and according to the reviewer’s suggestion, we will reduce the number of performance 

metrics. We will use KGE as the main performance indicator. As KGE can be considered a 

weighted evaluation of NSE, r and Percent Bias (Gupta et al., 2009), we will also include the 

latter three metrics to analyse the importance of each component. These metrics will be added 

because similar values of KGE and NSE were found for EI and MSWEP precipitation 

datasets. Hence, r and Percent Bias will be used to analyse their differences in further detail. 

Better performance in terms of r was obtained with MSWEP and lower PBias values were 

found with EI. The analysis of these results, shown in Figure 4 (which will be also modified), 

is missing in the manuscript. We will modify the manuscript as follows (see comment 7): 

P10L25-P11L3: “… Moreover, various performance metrics between the interpolated and in-

situ ground data were calculated and shown in Figure 4. Overall, EI and MSWEP provide a 

better fit to the station data compared to WFDEI, with higher          ,           and 

        than WFDEI. When comparing EI with MSWEP, similar values of           and 

          were found, whereas higher differences exist in          and            . In terms 

of correlation MSWEP shows the best performance, but EI shows the lowest Percent Bias at 

both weather stations, with a value of less than 10 % . Only two weather stations were found 

within the basin for the previous analysis. These measurements were considered too scarce to 

cover the basin and to discard the precipitation product with the lowest performance 

(WFDEI). Therefore, the three global precipitation products were used to calibrate PCR-

GLOBWB under the five calibration scenarios. ...” 
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Comment 4:  

The presentation of the results needs to be improved. It is very difficult to keep the attention 

to the text, because the text is difficult to comprehend and the results are merely listed. Also a 

critical in-depth discussion of the results is largely missing. 

Answer: 

We will improve section 4. Results in different ways to facilitate its reading and 

comprehension. Initially, we will structure it in different subsections, starting with the inter-

comparison results of precipitation products (subsection 4.1.) (before placed in subsection 3.2. 

Data), following with calibration results (subsection 4.2.) and ending with validation results 

(subsection 4.3.). The structure will be as follows: 

4. Results 

4.1. Inter-comparison of precipitation products (see comment 3 and 7) 

4.2. Calibration results 

4.2.1. Calibration using in-situ observed discharge time series (S1) 

4.2.2. Calibration using GLEAM actual evapotranspiration time series (S2) 

4.2.3. Calibration using ESA CCI surface soil moisture time series (S3) 

4.2.4. Step-wise calibration using GLEAM actual evapotranspiration and ESA 

CCI surface soil moisture time series (S4) 

4.3. Validation results 

At the same time, section 5. Discussion will be deleted and incorporated into a last section 

called Discussion and conclusions, where the results will be critically discussed (see 

comment 29). 

Moreover, figures will be improved (see comments 16, 31, 32 and 33) together with their 

analysis (see comments 17-28). 

 

Detailed comments (P: page, L: line or lines):  

Comment 5:  

P3L18: GLEAM is a comprehensive model for the estimation of terrestrial evaporation and 

root-zone soil moisture from satellite data. Please clarify 

Answer: 

The review is right. Indeed the GLEAM is a model that estimates the different components of 

terrestrial evaporation. We will clarify this aspect in section 1. Introduction as follows: 
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P3L16-17: “… to streamflow data. We use the evapotranspiration product generated by an 

enhanced version of the GLEAM model (GLEAM v3.0; Martens et al., 2016b) in 

combination …” 

This will be also clarified in section 3.2.3. Evapotranspiration data and in section 3.2.4. Soil 

moisture data as follows: 

P7L6-10: “… 1980-2014. To generate the GLEAM evapotranspiration product, the GLEAM 

model separately estimates the different components of terrestrial evaporation, including 

transpiration, interception loss, bare-soil evaporation, snow sublimation and open-water 

evaporation. To this end, it consists of four modules: the evaporation module, the stress 

module, the soil-water balance module and the rainfall interception model (Martens et al., 

2016a). GLEAM evapotranspiration (0.25
o
 x 0.25

o
) was interpolated …” 

P7L20: “…. Similarly to GLEAM evapotranspiration, ESA CCI SM product …” 

Comment 6:  

P7L3-20: This section is copious and repetitive. Please rewrite in a more clear and concise 

way. 

Answer: 

We agree with the reviewer’s comment and this section will be rewrite as follows: 

P6L9-27: “… The meteorological data required to force PCR-GLOBWB are air temperature, 

precipitation and reference potential evapotranspiration. Air temperature and precipitation 

were obtained from the WATCH Forcing Data methodology applied to ERA-Interim 

reanalysis data (WFDEI) at an original spatial resolution of 0.5
o
 x 0.5

o
 (Weedon et al., 2014). 

Reference potential evapotranspiration was obtained through the FAO Penman-Monteith 

equation. Precipitation, air temperature and reference potential evapotranspiration were 

downscaled from the original spatial resolution to a 0.08
o
 x 0.08

o
 grid. Precipitation and air 

temperature were downscaled using precipitation and temperature lapse rates derived from 

the 10’ CRU-CL2.0 data (New et al., 2002) through a linear regression analysis (Sutanudjaja 

et al., 2011). Reference potential evapotranspiration was downscaled using the e2o-

downscaling-tools (Schellekens and Sperna Weiland, 2017; Sperna Weiland et. al. 2015).  

To test model sensitivity to precipitation, air temperature and reference potential 

evapotranspiration were fixed and two additional global precipitation products were used: (i) 

ERA-Interim reanalysis data (EI) from the European Centre for Mediumrange Weather 

Forecasts (ECMWF) at the original spatial resolution of 0.5
o
 x 0.5

o
 (Dee et al., 2011) and (ii) 

Multi-Source Weighted-Ensemble Precipitation data (MSWEP) by merging gauge, satellite 

and reanalysis data at the original spatial resolution of 0.25
o
 x 0.25

o
 (Beck et al., 2016c).  

The three global precipitation products were inter-compared and interpolated to the two 

weather station locations found inside the Oum Er Rbia basin 

(http://www.wmo.int/pages/themes/climate/), Beni Mellal and Kasba Tadla (Figure 1). Nash-

Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE), Pearson’s correlation coefficient 

(r) and Percent Bias (PBias) between the interpolated and in-situ ground daily data were 

calculated. A description of the performance metrics with their mathematical formulation is 
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included in section 3.4. These metrics were selected to have detailed information about 

differences between precipitation products. …” 

Comment 7:  

P7L32-P8L6: This section should be placed in the results section. Please indicate the 

temporal resolution of the data from the rainfall gauging stations. In addition it is not clear 

to me, why you need to six performance metrics for the precipitation validation. Also, just 

listing the values of the metrics is not sufficient 

Answer: 

We think that moving this subsection to section 4. Results is a good suggestion to improve 

the structure and analysis of the results. Following the reviewer’s suggestion the inter-

comparison of the three global precipitation products will be placed in section 4. Results, 

subsection 4.1. Inter-comparison of precipitation products (see comment 4). We will indicate 

the daily temporal resolution of the precipitation validation (P6L29). We will reduce the 

number of performance metrics and we will improve the analysis of these metrics (see 

comment 3). Therefore, this section will be modified as follows: 

P10L16-P11L2: “4.1. Inter-comparison of precipitation products 

To inter-compare the precipitation products, the annual mean precipitation for the study time 

period (1979-2010) for each forcing dataset was calculated (Figs. 3a, 3b and 3c). In addition 

to the spatial resolution difference, MSWEP is able to capture the rainfall pattern over the 

Atlas Mountains rather well, which is only roughly distinguished by WFDEI and 

unrecognized by EI. The finer spatial resolution and the combination of reanalysis, satellite 

and in-situ data are probably the reasons for its more plausible spatial pattern. Furthermore, 

climatology of precipitation products was analyzed (Fig 3d). WFDEI ranges from 4.5 mm in 

July to 57 mm in February, whereas EI and MSWEP show a lesser variability with 

precipitation values from 10.5 mm in July to 42.6 mm in November. Smaller differences 

between WFDEI and EI and MSWEP are observed during the summer months. EI and 

MSWEP show similar temporal precipitation patterns. Annual mean precipitation over the 

entire basin obtained with MSWEP (355.15 mm) is approximately 80 mm higher than with 

EI (276.67 mm). Similar annual median values are obtained with the three global 

precipitation products, although the distribution of WFDEI highly differs from the other two 

products. 

Moreover, various performance metrics between the interpolated and in-situ ground data 

were calculated and shown in Figure 4. Overall, EI and MSWEP provide a better fit to the 

station data compared to WFDEI, with higher          ,           and         than WFDEI. 

When comparing EI with MSWEP, similar values of           and           were found, 

whereas higher differences exist in          and            . In terms of correlation MSWEP 

shows the best performance, but EI shows the lowest Percent Bias at both weather stations, 

with a value of less than 10 % . Only two weather stations were found within the basin for the 

previous analysis. These measurements were considered too scarce to cover the basin and to 

discard the precipitation product with the lowest performance (WFDEI). Therefore, the three 

global precipitation products were used to calibrate PCR-GLOBWB under the five 

calibration scenarios.” 
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Comment 8:  

P9L3: Why did you use the first three layers? Given the extremely low penetration depth of 

the C-band data used for the ESA CCI SM product, you should only compare to the first layer. 

The depth of this layer needs to match the penetration depth of the C-band data, i.e. 2 cm. 

Answer: 

According to P7L27-28: “ESA CCI surface soil moisture observations were compared to 

simulated soil moisture with the first of the three vertical soil layers in PCR-GLOBWB.” To 

clarify this and following the reviewer’s suggestion, we will include a note as follows: 

P7L23-24: “… ESA CCI surface soil moisture observations were compared to simulated soil 

moisture of the first of the three vertical soil layers in PCR-GLOBWB (top 5 cm of soil). …” 

Comment 9:  

P9L5-8: In my opinion this procedure leads to an untrustworthy and unsound comparison of 

simulated and observed soil moisture. A direct comparison of model results and observed 

data is a prerequisite for an unbiased and unadorned evaluation of the simulation results. 

Answer: 

Following the reviewer’s suggestion, we produced two figures with the original and the 

rescaled simulated soil moisture time series before and after the mean-standard deviation 

matching technique is applied (see comment 25). This rescaling approach applied to surface 

soil moisture have been previously used in several studies to overcome the existent 

uncertainties in satellite observations and model estimates (Koster et al., 2009; Renzullo et al., 

2014; Su et al., 2013). However, we agree with the reviewer that other possible approaches 

could have been investigated including an analysis of the optimal soil depth in the model 

corresponding to the depth for satellite measurements. Due to computational time limitations 

and to avoid numerical stability problems derived from the daily temporal resolution, we 

decided to follow a mean-standard deviation matching technique.  

Comment 10:  

P9L15-34: This section is copious and repetitive. Please rewrite in a more clear and concise 

way. 

Answer: 

We will modify the section as follows: 

P8L5-19: “… Alternative single objective calibration approaches based on discharge, actual 

evapotranspiration and surface soil moisture and a multiobjective calibration approach based 

on actual evapotranspiration and surface soil moisture were inter-compared. Five different 

calibration scenarios were carried out. Calibration scenario S0 represents the reference 

calibration scenario, which was not locally calibrated for the Oum Er Rbia basin, but uses a-

priori model parameters derived from vegetation, soil properties and geological information 

at a global scale (latest model version of PCR-GLOBWB). Calibration scenario S1 aims to 

calibrate the hydrological model using in-situ discharge observations, following the 

traditional calibration approach. Calibration scenarios S2 and S3 use GLEAM actual 
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evapotranspiration and ESA CCI surface soil moisture time series for calibration, respectively. 

Calibration scenario S4 represents the multiobjective calibration approach and it consists of a 

step-wise calibration scheme that attempts to combine the strengths of calibration scenarios 

S2 and S3. Step one is simply scenario S2, where all the model parameters are allowed to be 

adjusted based on GLEAM actual evapotranspiration. In step two, those parameters that are 

clearly identified by calibration scenario S2 are held constant and the remaining parameters 

are allowed to be adjusted according to ESA CCI surface soil moisture, calibration scenario 

S3. 

The five calibration scenarios were analysed for each of the three global precipitation 

products to study their impact on model parameters calibration and model performance. The 

calibration scenarios are described in Table 2, including the scenario identifier. …” 

Comment 11:  

P10L2: Why did you choose KGE for this analysis? 

Answer: 

Traditional calibration and evaluation approaches of hydrological models with observed data 

use Mean Squared Error (MSE) and Nash-Sutcliffe efficiency (NSE) as the objective 

functions to maximize. However, Gupta et al., (2009) proposed Kling-Gupta efficiency (KGE) 

as an alternative criterion to avoid possible problems derived from the use of NSE, such as 

the underestimation of high values and overestimation of low values. Moreover, KGE can be 

considered a weighted evaluation of NSE, r and Percent Bias. Based on this, we decided to 

choose KGE for the analysis of calibration results. We will add a sentence explaining the 

selection of KGE as follows: 

P8L21-23: “… for the calibration scenarios was Kling-Gupta efficiency (KGE), instead of the 

traditional Mean Squared Error (MSE) or Nash Sutcliffe efficiency (NSE) to avoid 

underestimating the variability of values (Gupta et al., 2009). The mathematical …” 

We will also modify the manuscript as follows: 

P15L17-24: “… A possible route to overcome this problem may be to use various 

performance indicators (for example, KGE, NSE, PBias and r) as objective functions to 

optimize in each calibration scenario, instead of using a single one. This multiobjective 

calibration approach may further improve discharge model estimates. …” 

Comment 12:  

P10L4: In my view, it does not make sense to recalibrate for each precipitation data set. I 

would be more sensible to use the data that corresponds best with the rainfall gauging station 

data. 

Answer: 

As it is indicated in P8L17-19, the analysis of the five calibration scenarios for each global 

precipitation product, allow us to study their impact on model parameters calibration and 

model performance. Moreover, we can analyse the influence and/or importance on model 

performance of the calibration approach in comparison with the precipitation dataset used as 

forcing.  
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Furthermore, from the inter-comparison of precipitation products included in section 4.1 (see 

comments 3 and 7) it was not possible to select only one precipitation product, because 

MSWEP performed better for some indicators and worse for others in comparison with EI.  

On the other hand, only two rainfall stations were found inside the Oum Er Rbia basin, as it is 

mentioned in section 3.2.1. Meteorological data. These measurements were considered too 

scarce in number and spatially sparse to cover the entire basin and therefore, to select the best 

global precipitation product and discard the remaining ones. 

We will add a sentence on this aspect in section 4.1. Inter-comparison of precipitation 

products as follows: 

P10L29P11L5-2: “… than 10 % . Only two weather stations were found within the basin for 

the previous analysis. These measurements were considered too scarce to cover the basin and 

to discard the precipitation product with the lowest performance (WFDEI). Therefore, the 

three global precipitation products were used to calibrate PCR-GLOBWB under the five 

calibration scenarios. ...” 

Comment 13:  

P10L5: I guess the different Ksat-values correspond to the soil layers S1-3. What about the 

Ksat-value for S4? 

Answer: 

Indeed, we also calibrated the Ksat4, with the calibration of the baseflow recession coefficient 

(J). Soil in PCR-GLOBWB is divided into three vertical layers representing the top 5 cm of 

soil (S1), the following 25 cm of soil (S2) and the remaining 120 cm of soil (S3). Under the 

third soil layer, there is a groundwater store (S4). The saturated hydraulic conductivities of 1
st
, 

2
nd

 and 3
rd

 soil layers are Ksat1, Ksat2 and Ksat3, which controls the vertical fluxes between soil 

layers and the groundwater store, affecting the groundwater recharge. Baseflow from the 

active groundwater layer depends on the baseflow recession coefficient (J), which varies in 

function of the aquifer transmissivity and the aquifer specific yield. Therefore, J is included 

as a model parameter to calibrate. J is a recession coefficient parameterized based on 

Kraaijenhoff van de Leur (1958): 

  
      

     
 

With    and    indicating aquifer transmissivities and specific yields, and L indicating 

average flow lengths. 

Comment 14:  

P10L6: Reference potential ET is not a parameter. Since it varies in time, it is variable. 

Answer: 

Indeed, reference potential evapotranspiration is a variable and not a model parameter. We 

calibrated three model parameters and in addition, we also checked the uncertainty of 
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reference potential evapotranspiration following a similar approach with prefactors. We will 

modify the manuscript to clarify this topic as follows: 

P8L25-P9L3: “… To calibrate PCR-GLOBWB for each of the three precipitation products, 

81 runs with different parameter values were simulated: minimum soil water capacity (Wmin), 

soil saturated hydraulic conductivites (Ksat1, Ksat2 and Ksat3) and baseflow recession 

coefficient (J). These model parameters, which vary spatially over the basin, influence 

different model parts of the model behaviour, as it was explained in section 3.1. For the 

variation of the parameter values, spatially uniform prefactors were used: fw, fk and fj (Table 

3). The remaining model parameters were kept fixed. 

The prefactors to vary model parameter values were referred to the parameters of the S0 

calibration scenario. The spatial distribution of the parameters Wmin, Ksat  and  J used in S0 

scenario can be found in Figure A1 of Appendix A. 

Furthermore, the uncertainty of reference potential evapotranspiration (Ep,0ref) was also 

investigated using a correction prefactor, fe, to this model variable. Considered values for fe 

prefactor are included with the previously mentioned ones in Table 3. 

As reference calibration scenario, S0 prefactors are: fw=1, fk=0, fj=1 and fe=1. The model 

performances of all the simulations were evaluated for each of the five calibration scenarios 

to identify the best prefactor sets as the calibrated prefactor sets. …” 

Comment 15:  

P12L8: Delete “nearly” 

Answer: 

We will delete “nearly”. 

Comment 16:  

P12L8: Due its complexity, Figure 5 is difficult to comprehend. In particular, the meaning of 

the dots in the scatterplots stays unclear with regard to what are actually representing (i.e. 

why is there more than one dot per variant). Since only three different values of the 

prefactors are considered no continuous scale should be used for the x-axis (otherwise the 

reader gets puzzled why the dots are not spreading). 

Answer: 

We agree with the reviewer that Figure 5 is quite complex and difficult to explain and 

therefore, to understand. We will improve this figure in different ways: we will use different 

colours and dot shapes to indicate different values of fe, we will modify the horizontal axis of 

each scatterplot limiting the tick marks and numbers to the values of the used calibration 

prefactors and we will change the label of y-axis to indicate when KGE values are based on 

discharge, actual evapotranspiration and surface soil moisture using subscripts     , 

        and      . Moreover, to facilitate the comprehension of the scatterplot, we will 

modify the figure explanation as follows: 

P11L5-15: “… Model parameters were calibrated using discharge, evapotranspiration and 

soil moisture observations through five different calibration scenarios for the time period 
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1981-1993. Figure 5 shows results of all runs produced in this study for different calibration 

scenarios based on: in-situ discharge observations (S1) at Ait Ouchene (Figure 5a) and 

Mechra Eddahk (Figure 5b), GLEAM actual evapotranspiration (S2, Figure 5c) and ESACCI 

surface soil moisture (S3, Figure 5d). For each sub-figure in Figure 5, KGE results (y-axis) of 

using the three precipitation products are plotted in different rows (top: EI, middle: WFDEI 

and bottom: MSWEP) and prefactor values are plotted in different columns (x-axis, 1
st
 

column: fe, 2
nd

 column: fj, 3
rd

 column: fk and 4
th

 column: fw). Each scatterplot contains 81 

dots representing each run with a different combination of parameter values. This means that 

the KGE values are the same in the four scatterplots of a row (y- axis), but in each of these 

scatterplots, they are plotted against a different prefactor (x-axis). With Figure 5, prefactor, 

and therefore parameter, ranges leading to better and worse performances can be 

distinguished, as well as their global optimal values. If no optimal value can be inferred, 

prefactors from the calibration scenario S0 are maintained (fe=1, fj=0, fk=0 and fw=1) …” 

Comment 17:  

P12L10: Please explain in more detail, why these prefactors should be well defined. 

Answer: 

According to the reviewer’s comment, we will improve the explanation of prefactors 

identifiabilities as follows: 

P11L26-30: “… Figures 5a and 5b (calibration scenario S1) are similar. From these figures, fe 

(1
st
 column) and fw (4

th
 column) are well identified by discharge calibration at both gauging 

stations when forced with any of the three precipitation products. fe = 1.25 and fw = 1.25 lead 

to the highest KGEq values. However, it is not possible to identify the best prefactors of fj (2
nd

 

column) and fk (3
rd

 column). There are no clear and distinct maximum values in the 

scatterplots of these figures, hence fj = 0 and fk = 0 are used. …” 

Comment 18:  

P12L16: “are considered” 

Answer: 

We will modify this sentence as follows: 

P12L21-23: “… Therefore, model run with prefactors fe = 1.25, fj = 0, fk = 0 and fw = 1 is 

considered as the calibrated run based on the evapotranspiration performance. …”  

Comment 19:  

P12L17: Please explain in more detail, why these prefactors should be well defined. 

Answer: 

Similarly to comment 17, we will include a note as follows: 

P12L19-21: “… Figure 5c (calibration scenario S2) indicates that only prefactor fe (1
st
 

column) can be clearly identified (the highest KGEevap values are obtained with fe=1.25), 
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whereas the remainder of the prefactors (fj, fw and fk) are non identifiable, suggesting that 

evapotranspiration-based calibration may be unreliable in their identification. Therefore, …” 

Comment 20:  

P12L23-31: This section is incomprehensible. Please rewrite. 

Answer: 

We will modify this section as follows: 

P13L11-19: “…Calibration scenario S4 attempts to combine the strengths of scenarios S2 and 

S3. In the first step, the model is calibrated using GLEAM evapotranspiration (S2, Figure 5c). 

From Figure 5c, only fe prefactor is well identified (the highest KGEevap value is obtained 

with fe = 1.25). In the second step, fe prefactor that has been identified was held constant and 

the remaining three prefactors were allowed to be calibrated according to ESA CCI soil 

moisture (S3, Figure 5d). From Figure 5d, fw and fk are identifiable (the highest KGEsm 

values are obtained with fw = 1.25 and fk = 0.25). As a result, for calibration scenario S4, the 

prefactors identified during the evapotranspiration calibration (S2): fe = 1.25 and during the 

soil moisture calibration (S3): fw = 1.25 and fk = 0.25 are adopted. This step-wise calibration 

approach using multiple system variables allow to identify more parameters than when those 

variables are separately used. Nonetheless, neither of the steps in calibration scenario S4 

allow the clear identification of fj, so its value for the calibration scenario S0 is used, fj = 

0. …” 

Comment 21:  

P12L34: “scatterplots” 

Answer: 

We will correct “scatteplots” to “scatterplots”. 

Comment 22:  

P13L3: The scatterplots of Figures 6 and 7 are quite repetitive. I would be enough to present 

only the NSE and KGE values of all variants and some selected scatterplots in case it is 

helpful for the discussion of the results. 

Answer: 

We agree with the reviewer on this matter. We believe that scatterplots of Figures 6 and 7 are 

helpful for the analysis and the discussion of the results. During the writing of the manuscript, 

the authors considered to delete Figure 6 and include only scatterplots for Mechra Eddahk 

station (Figure 7). However, this may give the impression that both discharge stations 

performs similarly for all calibration scenarios and precipitation products, which is not true. 

Therefore, we will move Figure 6 from the manuscript and include it to the Supplementary 

Information. 

We will also improve the explanation of Figure 6 and Figure 2 in the Supplementary 

Information and we will modify the analysis of calibration results of these figures as follows: 
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P11L16-21: “… Once the best runs for each calibration scenario were identified, their 

discharge performance was checked at the two gauging stations: Mechra Eddahk, in Figure 6, 

and Ait Ouchene, in Figure 2 of the Supplementary Information. Observed discharge (y-axis) 

and estimated discharge (x-axis) are plotted in Figure 6 for the five calibration scenarios. 

Different rows in Figure 6 indicate the three global precipitation products (top: EI, middle: 

WFDEI and bottom: MSWEP) and different columns indicate the five calibration scenarios 

(1
st
 column: S0, 2

nd
 column: S1, 3

rd
 column: S2, 4

th
 column: S3 and 5

th
 column: S4). The 

performance indicators NSE and KGE for discharge are included in every scatterplot in 

Figure 6 (NSEq and KGEq). …” 

P11L31-8: “… From Figure 6 (2nd column), the highest discharge performance is obtained 

when the model is calibrated with in-situ discharge observations (S1).  

For all the calibration scenarios, a few general observations can be made. Scatterplots (Figure 

6) highlight an overall better agreement and a lower bias between discharge observations and 

estimates for the Ait Ouchene (see Figure 2 in the Supplementary Information) than for 

Mechra Eddahk station. KGEq values at Ait Ouchene station for calibration scenario S0 are 

lower than for Mechra Eddahk station. …” 

P12L24-26: “… From Figure 6 (3
rd

 column), results indicate an increase of KGEq and NSEq 

values when GLEAM evapotranspiration is used for model calibration compared to the 

reference scenario (S0, 1
st
 column of Figure 6). However, higher model performance values 

are obtained when calibrating based on in-situ discharge observations (S1, 2
nd

 column of 

Figure 6). …” 

P13L1-4: “… From Figure 6 (4
th

 column), scatterplots indicate an improvement in the 

correspondence between observed and estimated discharge compared to the non-calibrated 

scenario (S0, 1
st
 column of Figure 6). Similarly to calibration scenario S2 (3

rd
 column of 

Figure 6), this improvement is lower than when the model is calibrated based on ground 

discharge observations (S1, 2
nd

 column of Figure 6). …” 

Comment 23:  

P13L6-7: This is very obvious and provokes the question why you are using the poorer 

precipitation data sets for the model calibration analysis at all. 

Answer: 

This aspect has been already addressed in comment 12. Only two rainfall stations were found 

inside the Oum Er Rbia basin. These measurements were considered too scarce in number 

and spatially sparse to cover the entire basin and therefore, to select the best global 

precipitation product and discard the remaining ones. We will modify the manuscript as 

follows: 

P12L7-16: “… Scatterplots (Figure 6) also show that estimated discharges are closer to 

observed discharges at both gauging stations when PCR-GLOBWB is forced with EI 

precipitation. Moreover, scatterplots indicate a worse agreement and a tendency to 

overestimate discharge when WFDEI and MSWEP are used. KGEq values for the reference 

calibration scenario S0 at Mechra Eddahk are 0.607, 0.325 and 0.561 when EI, WFDEI and 

MSWEP are used as forcing data respectively. These performance discrepancies are related 

with the differences between EI, WFDEI and MSWEP precipitation products discussed in 
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section 4.1. The lower quality of WFDEI in this region compared with the other precipitation 

datasets may be a possible reason of the lower discharge performance. When MSWEP was 

compared with in-situ precipitation data, performance in terms of correlation was higher than 

EI. However, EI showed less bias. The higher performance of discharge estimates when 

PCR-GLOBWB is forced with EI may be due to this bias difference and that the validation is 

carried out at a monthly temporal resolution, reducing the impact of correlation. …” 

Comment 24:  

P13L26: You should first introduce the motivation for presenting these figures. 

Answer: 

According to the reviewer’s comment and considering the new structure of the results section, 

we will include a short paragraph explaining the motivation of Figures 7 and 8. We will also 

modify the analysis of Figures 7 and 8 as follows: 

P13L28-P14L9: “… Once the model had been calibrated for each calibration scenario and 

each precipitation product, comparisons between estimates (before and after the calibration) 

and observations of actual evapotranspiration, surface soil moisture and discharge were 

carried out for the validation time period (1994-2011). To perform the analysis of these 

results, time series plots are included in Figures 7 and 8. 

In Figure 7a, simulated actual evapotranspiration time series of the reference run (S0, red 

dashed line) and the step-wise calibrated run (S4, purple dashed line) are plotted against 

GLEAM actual evapotranspiration observations (black line). Similarly as Figure 7a, Figure 

7b shows simulated surface soil moisture of the reference run (S0, red dashed line) and the 

step-wise calibrated run (S4, purple dashed line) plotted against ESA CCI surface soil 

moisture time series (black line). The rescaled soil moisture time series (after mean-standard 

deviation matching technique applied, see section 3.2.4) are shown. In Figure 7c, estimated 

discharge of the reference run (S0, red dashed line) and the step-wise calibrated run (S4, 

purple dashed line) are plotted against discharge observations (black line) at Mechra Eddahk. 

KGE values for actual evapotranspiration, surface soil moisture and discharge are included in 

Figures 7a, 7b and 7c. For the sake of simplicity, only results when the model is forced with 

MSWEP precipitation are shown. 

Similarly to Figure 7, Figure 8 shows simulated evapotranspiration (Figure 8a), surface soil 

moisture (Figure 8b) and discharge (Figure 8c) against observations. However, in Figure 8, 

estimates of the discharge-calibrated run (S1, red dashed line) and the step-wise calibrated 

run (S4, purple dashed line) are plotted against observations (black line). …” 

Comment 25:  

P13L35: I would rather like to see the unscaled results, because this procedure embellishes 

the model results. 

Answer: 

According to the reviewer’s suggestion, we produced two figures with the original and the 

rescaled simulated soil moisture time series before and after the mean-standard deviation 

matching technique is applied. 
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From these figures, the bias correction is observed between the rescaled and the original soil 

moisture time series. However, the inclusion of this fourth line (non-rescaled soil moisture) in 

the time series graphs of Figures 7 and 8 would difficult their interpretation and we believe 

that adding a new figure to the manuscript with original soil moisture time series would not 

improve the results analysis. Therefore, we will include it in Figure 1 of the Supplementary 

Information. We will also modify the manuscript as follows: 

P8L1-3: “… When comparing the original and the rescaled soil moisture, it is observed that 

the mean-standard deviation technique effectively removes the biases between the simulated 

and observed soil moisture time series (see Figure 1 of the Supplementary Information). …” 

Comment 26:  

P14L9-10: You could simply check using the measured precipitation data. 
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Answer: 

Only two rainfall stations were found inside the Oum Er Rbia basin. These measurements 

were considered too scarce in number and spatially sparse to cover the entire basin and 

therefore, to check the global precipitation products (see comments 12 and 23). Moreover, the 

lack of fit can be also due to model structural deficiencies. We will modify this section as 

follows: 

P14L15-17: “… 1997. This lack of fit may be due to errors in the precipitation data, because 

higher discharge differences are shown when WFDEI and MSWEP products are used in 

comparison to EI product. Other possible reasons may be related with model structural 

deficiencies. When…” 

Comment 27:  

P14L30: See comment P13L6-7 

Answer: 

According to the reviewer’s comment, we will delete the sentence: “This is a consequence of 

the precipitation discrepancies analysed in section 3.2.1.” 

Comment 28:  

P15L8-9: So wouldn’t it be more sensible to use multi-objective function calibration 

procedure? 

Answer: 

A multiobjective calibration approach using various objective functions, such as KGE, NSE, 

NSE for low flows, NSE for high flows, etc., may be an alternative route to calibrate model 

parameters. We will include a short paragraph on this topic in section 4.3. Validation results 

as follows: 

P15L17-19: “… in terms of discharge. A possible route to overcome this problem may be to 

use various performance indicators (for example, KGE, NSE, RMSE and r) as objective 

functions to optimize in each calibration scenario, instead of using a single one. This 

multiobjective calibration approach may further improve discharge model estimates. …” 

We will also discuss this topic in section 5. Discussion and conclusions as follows: 

P16L5-6: “… a multiobjective calibration approach to streamflow observations could be 

followed. Similarly to Fenicia et al. (2007), multiple objective functions may be optimized in 

sequential steps for high flows, low flows and timing. …” 

Comment 29:  

P15L10: The discussion chapter is largely a summary of the results (first half) and an 

outlook, which should be placed in the conclusion chapter. In order to reduce redundancy, I 

suggest skipping this chapter and moving parts to the results and conclusion chapters. 
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Answer: 

We believe that the reviewer is right and we will modify these sections. We consider that 

there are aspects, such as the possibility of other calibration approaches: multiobjective 

calibration, scaling relationships, catchments classification schemes, etc. or the potential use 

of other satellite products for hydrological modelling that are of interest of discussion. 

Therefore, and following the reviewer’s suggestion, we will delete section 5. Discussion and 

we will modify section 6. Summary and conclusions to Discussion and conclusions to avoid 

repetitions as follows: 

“5. Discussion and conclusions 

This study investigates alternative routes to calibrate the large-scale hydrological model 

PCR-GLOBWB using earth observations globally available for the data-poor river basin of 

Oum Er Rbia in Morocco. Three global precipitation products, EI, WFDEI and MSWEP, are 

inter-compared and applied to force PCR-GLOBWB. Five different calibration scenarios are 

followed where GLEAM actual evapotranspiration and ESA CCI surface soil moisture data 

are used to identify model parameters with the aim to improve discharge estimates. In-situ 

discharge observations are also used for calibration, as they are traditionally used to calibrate 

hydrological models. 

Results show that GLEAM actual evapotranspiration and ESA CCI soil moisture 

observations may be used to calibrate determined PCR-GLOBWB model parameters. 

GLEAM actual evapotranspiration can be used to calibrate the reference potential 

evapotranspiration (fe), affecting the water exchange between the top soil layer and the 

atmosphere and hence the soil water balance. ESA CCI soil moisture data can be used to 

calibrate the minimum soil water capacity (fw) and the saturated hydraulic conductivities of 

the soil layers (fk), determining the surface runoff generation response, the shallow sub-

surface flow and the groundwater recharge. However, calibration using only GLEAM 

evapotranspiration or only ESA CCI soil moisture can result in more than one parameters 

combination to be optimal in terms of discharge (overparametrization or equifinality 

problem). To overcome this problem, a step-wise calibration scenario based on both 

observations, evapotranspiration and soil moisture, can be included, allowing the 

identification of the optimal values of fe, fw and fk. Nonetheless, neither of these observations 

can be used to calibrate the baseflow from the active groundwater layer (fj). To identify 

baseflow recession coefficient parameter (fj) a multiobjective calibration approach to 

streamflow observations could be followed. Similarly to Fenicia et al. (2007), multiple 

objective functions may be optimized in sequential steps for high flows, low flows and timing. 

Spatially uniform prefactors for the entire Oum Er Rbia basin were used for the variation of 

the parameter values in this study. Developing novel calibration strategies where prefactors 

and so, model parameters vary with soil type, land use, elevation and/or other characteristics 

within the basin would be a promising research route to investigate. Furthermore, the present 

work inter-compare five calibration scenarios using a brute force method, where several 

combinations of parameters values are tested and the best performing is selected. A 

suggestion for future studies may be to use an Ensemble Kalman Filter to calibrate the 

hydrological model, as previously presented in literature (Moradkhani et al., 2005; Wanders 

et al., 2014). Furthermore, the validation of this study was carried out exclusively on 

streamflow. Other validation approaches, including the empirical orthogonal functions, 

wavelet analysis or their combination, may be another promising way towards a more in-
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depth validation of distributed hydrological models (Mascaro et al., 2015; Koch et al., 2015; 

Fang et al., 2015). 

A step-wise calibration approach based on GLEAM actual evapotranspiration and ESA CCI 

soil moisture results in discharge estimates of acceptable accuracy (Moriasi et al., 2007), 

compared to discharge estimates derived from a model that has been calibrated to in-situ 

discharge measurements. Traditional calibration to in-situ discharge measurements results in 

the highest model performance, as expected. A model calibrated only on evapotranspiration 

or soil moisture observations achieves a lower discharge performance than when they are 

used together.  

In the inter-comparison between the three global precipitation products, WFDEI shows the 

lowest performance, whereas EI and MSWEP perform quite well. Apart from the in-situ 

discharge calibration scenario, the highest discharge improvement is obtained when the two 

latter forcing data are used in combination with a step-wise calibration approach based on 

evapotranspiration and soil moisture observations. 

Results indicate that precipitation impact on streamflow estimates is more significant than the 

one derived from calibrating model parameters, thus the lower quality of WFDEI compared 

to EI and MSWEP, decreases model performance and calibration is biased in order to 

compensate precipitation errors. Further investigation of the effect of precipitation errors on 

model efficiency, but also on model parameters estimation may be an interesting route for 

hydrological research (Andréassian et al., 2004; Looper et al., 2012). 

Although there is still room for further research, this study shows that globally available earth 

observations, such as evapotranspiration or soil moisture, can be used to further parameterize 

large-scale hydrological models providing reasonable discharge estimates at regional or basin 

scale. In principle, these calibration approaches can be applied and investigated in other 

basins without or with limited in-situ ground hydro-meteorological data (ungauged basins), 

not only to estimate discharge, but also to improve the understanding of the hydrological 

processes in the basin. Results suggest the potential of using other satellite products for 

hydrological modelling studies, including soil moisture products such as AMSR-E (Njoku et 

al., 2003) and SMOS (Kerr et al., 2001), evapotranspiration products such as SEBAL 

(Bastiaanssen et al., 1998) and MOD16 (Nishida, 2003), total water storage products such as 

GRACE (Tapley et al., 2004), etc. Future studies may investigate step-wise calibration 

approaches using the combined information from multiple hydrological system variables. By 

incorporating several data products, different parts or components of the model can be 

optimized to increase the overall model performance. Another approach could be to calibrate 

the model to different variables with multiple objective functions - multiobjective calibration- 

(Gupta et al., 1998; Khu and Madsen, 2005; Fenicia et al., 2007). Alternatively, these hydro-

meteorological data which are globally available may be used to identify and develop 

relationships between different basins using similarities, classification and scaling 

frameworks, as presented in previous studies (Samaniego et al., 2010b; Kumar et al., 2013).” 

Comment 30: 

P16L12: Another promising way towards a more in-depth validation of distributed models 

are the empirical orthogonal functions analysis and the wavelet coherence analysis (e.g. 

Fang et al., 2015). 
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Answer: 

We will include a paragraph about alternative ways for validation of distributed hydrological 

models (see comment 29): 

P16L15-18: “… Furthermore, the validation of this study was carried out exclusively on 

streamflow. Other validation approaches, including the empirical orthogonal functions, 

wavelet analysis or their combination, may be another promising way towards a more in-

depth validation of distributed hydrological models (Mascaro et al., 2015; Koch et al., 2015; 

Fang et al., 2015) …” 

 

Figures: 

Comment 31:  

Figure 3: The precipitation field seems to be shifted (the highest precipitation amounts are 

expected in the Atlas mountain ranges, see e.g. Chehbouni et al., 2008). You should add dots 

in the lower graphic. 

Answer: 

We will correct the precipitation shift mistake in Figures 3a, 3b and 3c. We will include dots 

in Figure 3d and therefore, produce a new complete Figure 3. 

Comment 32:  

Figure 5: The scatterplots are too crowed and difficult to read. 

Answer: 

This comment has been already addressed in comment 16. 

Comment 33:  

Figures 6-10: Always indicate that you are showing monthly values, e.g. “Monthly observed 

discharge”. 

Answer: 

According to the reviewer’s comment, we will modify Figures 5, 6, 7, 8 and 9 to indicate that 

the temporal resolution is always monthly. 

 

Additional modifications 

For the results analysis consistency of the manuscript, we will replace RMSE with PBias in 

Figure 9. The text will be also modified accordingly. 
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Additional modifications in figures and figures to be included 

 

Figure 3. (a) EI annual mean precipitation, (b) WFDEI annual mean precipitation and (c) 

MSWEP annual mean precipitation for 1979-2010 time period and (d) climatology of EI, 

WFDEI and MSWEP precipitation products. 
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Figure 4. Performance metrics of daily EI, WFDEI and MSWEP precipitation products at 

Beni Mellal and Kasba Tadla weather stations, including Kling-Gupta efficiency (KGE), 

Nash-Sutcliffe efficiency (NSE), Pearson's correlation coefficient (r) and Percent Bias 

(PBias). 
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Figure 5. Scatterplots of discharge performance indicator KGE based on the monthly 

observations versus prefactors fe, fj, fk and fw for the calibration scenarios S1 ((a) Ait 

Ouchene (b) Mechra Eddahk), S2 (c) and S3 (d). In each sub-figure, columns indicate the 

different calibrated prefactors and rows indicate the three global precipitation products used 

as model forcing. Different colours and dot shapes indicate different fw values. 
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Figure 7. (a) Monthly GLEAM actual evapotranspiration (black) and estimated actual 

evapotranspiration (red and purple) time series. (b) Monthly ESA CCI soil moisture (black) 

and estimated soil moisture (red and purple) time series. (c) Monthly observed discharge 

(black) and estimated discharge (red and purple) time series. The red dashed lines represent 

estimates from calibration scenario S0 (reference scenario). The purple dashed lines 

represent the calibrated time series from calibration scenario S4 which are taken from the 

runs that yield the best simulations. Estimated time series over the entire Oum Er Rbia basin 

for the validation time period obtained with MSWEP precipitation are shown. 
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Figure 8. (a) Monthly GLEAM actual evapotranspiration (black) and estimated actual 

evapotranspiration (red and purple) time series. (b) Monthly ESA CCI soil moisture (black) 

and estimated soil moisture (red and purple) time series. (c) Monthly observed discharge 

(black) and estimated discharge (red and purple) time series. The red dashed lines represent 

estimates from calibration scenario S1. The purple dashed lines represent the calibrated time 

series from calibration scenario S4 which are taken from the runs that yield the best 

simulations. Estimated time series over the entire Oum Er Rbia basin for the validation time 

period obtained with MSWEP precipitation are shown. 
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 Figure 9. KGE, NSE, r and PBias variations comparing monthly discharge estimates of 

calibration scenarios S1, S2, S3 and S4 with S0. Rows indicate the three global precipitation 

products and columns indicate the performance metrics. 

 

 

 


