
RV#1: 
The authors managed well to address most of the reviewer comments. The revised version of 
the manuscript has improved considerably in comparison to the version submitted previously. 
The approach presented by the authors to map irrigated land differs from attempts published 
before. 
 
Authors: 
Thank you for reviewing our manuscript again, for your valuable comments and your 
encouraging words.  
 
RV#1: 
There is certainly enough merit and innovation so that I can recommend publication if the 
authors consider the following additional aspects: 
 
1) The discussion section and the conclusion should address another reason of differences 
between the irrigated land mapped by the authors and irrigated land reported by agricultural 
statistics, FAO or other products: use of different terms and definitions. FAO and Siebert et al., 
2013 map the so called area equipped for irrigation according to FAO's definition and 
categorization of specific water management types. According to the definition used by FAO and 
Siebert et al. (2013) areas are considered as equipped for irrigation when two main criteria are 
fulfilled: 
a) presence of a permanent infrastructure for water supply and water distribution 
b) use of water from external sources for irrigation (but not in-situ water concentration). 
 
 
Authors: 
The issue of different definition of land use types and water management practices is a major 
source of errors. We discussed this regarding the land use classification products and their 
broad definition of agricultural area. The discussion about the different definition of irrigated area 
was missing and we extended the discussion and conclusion part with the “definition-problem” 
and the impact on the results. Thank you for this valuable hint; it makes the differences of the 
results more understandable and clearer.  
 
RV#1: 
Both criteria are difficult to detect by remote sensing so that, in general, a comparison between 
remote sensing based irrigated area and FAO statistics has the problem of comparing different 
things (apples with pears). For example, almost half of the paddy rice areas worldwide use in-
situ water kept on the field by retention of rainwater by earth dams. These areas are classified 
as rainfed wetlands and do not belong to the category of areas equipped for irrigation. This 
difference in the water source is difficult to detect by remote sensing and often results in a major 
difference in irrigated areas estimates for humid regions. Therefore, global remote sensing 
based approaches often report more irrigation than FAO for paddy rice areas.  
 
Other practices that are classified by FAO as being rainfed are: 
- water harvesting,  
- water concentration, 
- flood water recession with non-permanent structures, 
- using water from non-permanent dug wells. 
These practices are in particular important in arid and semi-arid regions and the areas watered 
with these practices are larger for many countries than the areas watered with formal irrigation, 
for example for most African countries. This can as well explain differences between the product 
presented by the authors and FAO-based statistics or products.  



 
Authors: 
Our definition of irrigation: all water, which is not directly related to precipitation, is considered as 
irrigation. Water harvesting, water concentration or flooding fields using earth dams will be 
detected and interpreted as irrigation. Your point is very interesting and valid and regarding to 
the fact that in the year 1999 only 47% of the paddy rice in India was classified as irrigated, very 
important for the understanding and interpretation of the results. We added this in the discussion 
and conclusion part.   
 
According to my own experience, the difference caused by the use of different terms and 
definitions are in general larger than differences caused by varying precision of the mapping 
approach. Therefore it is very important to add this aspect to the discussion. 
 
Authors: 
Thank you very much for your interesting comments and this important complement about the 
irrigation definition.  
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Abstract. Agriculture is the largest global consumer of water. Irrigated areas contribute to 40% of the 

agricultural production. Information on their spatial distribution is highly relevant for regional water 

management and food security. Spatial information on irrigation is highly important for policy and decision 10 

makers who are facing the transition towards a more efficient sustainable agriculture. However, the mapping of 

irrigated areas still represents a challenge for land use classifications and existing global data sets differ strongly 

in their results. The following study tests an existing irrigation map based on statistics and extends the irrigated 

area using ancillary data. The approach processes and analyses multi-temporal NDVI SPOT-VGT data and 

agricultural suitability data – both at a spatial resolution of 30 arc seconds – incrementally in a multi decision 15 

tree. It covers the period from 1999 to 2012. The results globally show 18% more irrigated area than existing 

approaches based on statistical data. The largest differences compared to the official national statistics are found 

in Asia and particularly in China and India. The additional areas are mainly identified within already known 

irrigated regions where irrigation is more dense than previously estimated. The validation with global and 

regional products shows the large divergence of existing data sets with respect to size and distribution of 20 

irrigated areas caused by spatial resolution, the considered time period and the input data and assumption made.  

 

Keywords: Irrigation, Global Irrigated Areas, Global Scale, Resolution, Remote Sensing, Statistics, Land Use 

Classification, Agriculture, Cropland 

1 Introduction 25 

One of the major challenges for the 21st century will be the nourishment of the rising world population (Foley et al., 2011). 

The consideration of increasing meat consumption and additionally the increased use of biofuel and bio-based materials, lead 

to estimations that global agricultural production would have to double until 2050 (Alexandratos and Bruinsma, 2012; 

Godfray et al., 2010; Tilman et al., 2011). Separated by sector, agriculture is the largest consumer of water. 69% of the global 

water withdrawal from rivers, lakes and groundwater (blue water) is used for agriculture, in some regions the share can be 30 
over 90% like in South Asia or in the Middle East (FAO, 2014b). The regional limitation of fresh water availability plays a 

crucial role for global agricultural production, considering that 40% of the global yields are harvested on irrigated fields 

(FAO, 2014a). Irrigated areas almost doubled over the last 50 years and contribute to 20% of the global harvested area today 

(FAO, 2016b). A future expansion of irrigated area and a related increase in water consumption is expected (Neumann et al., 
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2011). Due to climate change in some parts agricultural water availability is expected to decrease (Strzepek and Boehlert, 

2010). The low irrigation efficiency of the common irrigation techniques such as sprinkler and flood irrigation (Evans and 

Sadler, 2008), the unsustainable usages of limited sources like groundwater (Wada et al., 2014), the changing river regimes 

(Döll and Schmied, 2012) and the changing supply by snow melt (Mankin et al., 2015; Prasch et al., 2013) underline the need 

of a transition towards a more sustainable and efficient use of water. The SDG’s clearly reflects this need in achieving food 5 
security and a sustainable development of land use (UNO, 2016). For a better inventory and investigation of global and 

regional water cycles and as input for crop models detailed global information on irrigated areas at a high resolution is 

needed.  
Attempts to identify irrigated areas already exist that do not rely on surveys and are independent from statistics (Ozdogan et 

al., 2010). Remote sensing can be an alternative approach for mapping irrigated areas. Previous studies showed that remote 10 
sensing data can be used to detect irrigated areas for small and medium scale analyses (Abuzar et al., 2015; Ambika et al., 

2016; Jin et al., 2016; Ozdogan and Gutman, 2008). Vegetation indices (Ozdogan and Gutman, 2008) or climate elements, 

such as evapotranspiration (Abuzar et al., 2015) derived from satellite information and combined with meteorological data 

were used to determine irrigated area. Ozdogan et al. (2010) summarised different approaches for mapping irrigated areas 

from local to global scale.  15 
There are only few studies which identify irrigated areas globally (Salmon et al., 2015; Siebert et al., 2005; Thenkabail et al., 

2009a). Land use classification data sets often neglect irrigated area. Some classify irrigated area as a separate class (ESA, 

2015; USGS, 2000), but do not focus on irrigated areas.  

A common approach to the specific mapping of irrigated area, such as provided by the Global Map of Irrigation Areas 

(GMIA) (Siebert et al., 2005), distributes statistical data of national and subnational agricultural surveys like AQUASTAT 20 

(FAO, 2016a) to the agricultural and other classes of land use classifications. However, approaches that are restricted to 

statistics alone are hard to verify, since statistics may include errors and multi-scale statistics do hardly exist globally. For 

instance in some countries in West Africa the informal irrigated areas in urban and peri-urban areas are twice the size of the 

official irrigated areas for the whole country (Drechsel et al., 2006). Irrigation may increase due to economic growth and a 

dietary shift from staple crops towards more vegetables and fruits (Molden, 2007). Already 15 years ago the official FAO 25 
statistics engendered criticism after comparing national statistics with remote sensed based data (Vorosmarty and Sahagian, 

2000). The study of Thenkabail et al. (2009a) globally identified 43% more irrigated areas than reported in official FAO 

statistics. The discrepancies between those data were explained by the politicized nature of the FAO data reports and different 

definitions of irrigated area (Vörösmarty, 2002). The Global Irrigated Area Mapping (GIAM) of Thenkabail et al. (2009a) is 

a combination of meteorological data, land use classification information (forest) and remote sensing data from multiple 30 
satellite sensors. It is validated using ground truth data and Google Earth images. Thenkabail et al. (2009a) showed that the 

global irrigated areas might be underestimated by the official statistics. Another approach to map global irrigated areas was 

developed by Salmon et al. (2015). They combine statistics, climate- and remote sensing data. The study also shows an 

underestimation by the national- and subnational statistics – although a small one. Salmon et al. (2015) showed that merging 

remote sensing data and ancillary data is suitable for irrigation mapping. Thenkabail et al. (2009b) concludes that ‘both 35 
remote sensing and national statistical approaches require further refinement’. 

The aim of this study is to test an existing statistics-based medium-resolution irrigation map (Siebert et al., 2013) with high-

resolution data from satellite observations, which are available in the meantime. We study, through extraction of likely 

irrigated areas from the high spatial resolution data, to what extent and where formally hidden irrigated areas show up. At 

first we downscale Siebert et al. (2005) statistically based irrigation map using high resolution remote sensing information. In 40 
a second step we derive irrigated land from agricultural suitability data combined with remote sensing information consisting 

of multi-temporal NDVI-profiles at a high spatial resolution. By following a decision tree we identify irrigated areas as 

showing an active vegetation growth in agricultural unsuitable regions. If these irrigated areas are not reported by the official 
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statistics they are added in the new irrigation map. Hence, the new irrigation map is not restricted to irrigated areas known by 

official reports and allows for extending these predetermined areas. Finally, we compare our results with existing global 

approaches as well as with regional analysis (USA, India, China) and investigate the differences with the official national and 

subnational statistics. 

2 Data and Method 5 

The basic idea of our approach is to combine different data sets providing different kind of information. The applied data sets 

are available at different spatial resolutions (Tab. 1). In a first step the data sets are homogenized to the same spatial 

resolution. We decided for a high spatial resolution of 30 arc seconds (approx. 1 km² at the equator), since the demand for 

high resolution global data is increasing in different applications (Deryng et al., 2016; Jägermeyr et al., 2015; Liu et al., 2007; 

Mauser et al., 2015; Rosenzweig et al., 2014) and the pixel size of approximately 1 km² is already close to large fields 10 
(depending on the region) or an agglomeration of smaller irrigated fields. For Africa and Asia, the field size of 1 km² might 

be too large (Fritz et al., 2015), but usually, irrigated fields may be much bigger in size, since irrigation is often applied by 

large scaled farms. Small fields are agglomerated since irrigation is usually not practiced on a single field, due to high 

investment and installation costs of irrigation systems. The resulting data at 30 arc seconds only distinguishes between 

irrigated and rain-fed and does not contain percentage shares.  15 
The decision tree in Figure 1 shows how the data sets are analysed and formerly not detected irrigated areas are identified. As 

we mentioned above, the basic idea is to increase the spatial resolution of an existing global irrigation map to 30 arc seconds 

and to extend the data set by additional identified irrigated areas. The lower grey box in Fig. 1 shows the principal of the 

downscaling process, where we assign the percentage values of Siebert et al. (2005) to the high-resolution pixels within a 

medium-resolution pixel which show the highest NDVI values (see section 2.1). The assigned irrigation percentages to the 20 
high-resolution pixels form the basis of our new irrigation map. The upper grey box in Fig. 1 shows the processing of the 

NDVI data, which is only done on agricultural used areas (see section 2.2 and 2.3). The processed NDVI data are compared 

to a global high-resolution data set on agricultural suitability (see section 2.5 and the right grey box in Fig 1.). The 

combination of the downscaling and the comparison of NDVI and agricultural suitability results in a global high resolution 

irrigation map. The development of the map is described more in detail in the following section. 25 

2.1 The downscaling of the statistically based data set 

Siebert et al. (2005) distribute statistical data to the Global Map of Irrigated Areas (GMIA). The data set has a resolution of 5 

arc minutes and is available in several versions – we applied the version 5.0 (Siebert et al., 2013). To combine the different 

data sets to a final irrigation map at a resolution of 30 arc seconds, the resolution of GMIA has to increase. For the 

downscaling process, shown in the lower grey box in Fig. 1, we use global bimonthly maximum MERIS NDVI data (ESA, 30 
2007) at a spatial resolution of 10 arc seconds and calculate the yearly maximum NDVI (Fig. 2). The bimonthly maximum 

NDVI data covers the period November 2004 – June 2006 and represents more or less the center of the covered time period 

of the applied GMIA version. After upscaling the yearly maximum NDVI to 30 arc seconds using a majority algorithm, the 

GMIA data are distributed to the areas with the highest NDVI within a corresponding coarse pixel. To avoid distributions to 

dense woodlands (closed tree cover >40%), cities and open water, these areas are excluded from the distribution, based on the 35 
ESA-CCI-LC data set (ESA, 2015). Pixels with a percentage share of irrigated area below 1% are not considered. The 

downscaled data set of Siebert et al. (2013) shows the irrigated area at a high spatial resolution of 30 arc seconds and will in 

the next steps be extended by irrigated area, which are not part of the statistics yet. In the following, the downscaled data set 

of Siebert et al. (2013) will be named as “downscaled GMIA”. 
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2.2 Remote sensing data 

This part of the decision tree is shown in the upper left grey box in Fig. 1. For the detection of the actual active vegetation we 

used the NDVI product of ESA-CCI (ESA, 2015). The data provides 7-daily-NDVI means and covers the time period from 

1999 to 2012. From this data, we calculated the annual course of NDVI, averaged over the whole time period. Thereof we 

derived the number of annual NDVI peaks. In order to increase the precision of detecting active vegetation, each pixel is 5 
analysed according to a NDVI threshold approach (Ambika et al., 2016; Shahriar Pervez et al., 2014). The chosen thresholds 

are a result of a comparison of different studies (Ambika et al., 2016; Shahriar Pervez et al., 2014) and the comparison of 

NDVI values of known irrigated and rain-fed areas. Following criteria need to be fulfilled and are shown in Fig. 3:  

 The minimum NDVI has to be below 0.4, while the maximum NDVI has to be over 0.4. Since the NDVI product is 

a 7-daily mean over 14 years, it is very likely that fields lie fallow within the time period, resulting in lower mean 10 
values. Therefore, a NDVI of 0.4 turned out to be a suitable lower threshold. This guarantees clear distinction 

between non vegetated and vegetated pixels and eliminates evergreen vegetation, such as forests and pasture. 

Thresholds like minimum and maximum NDVI used in this study have a strong effect on the result. For a global 

study it is difficult to find universal, transferable thresholds that can be applied globally.  

 Minimum and maximum NDVI must at least differ by 0.2 points to identify only pixels with a dynamic annual 15 
course that is assumed for agricultural areas.  

 NDVI peaks must be at least 12 weeks apart to assign a peak to a specific growing period, assuming that the length 

of a growing period is 12 weeks in minimum (Sys et al., 1993). Additionally, this allows for separating multiple 

growing periods within a year. Often, a slight greening right after harvest was observed. This can be explained e.g. 

through the seeding of legumes for soil treatment, or the development of natural vegetation after harvest, which 20 
results in an increase of NDVI.  

 In order to avoid classifying multiple peaks as a regular harvest, it turned out that two sequenced peaks must not 

differ by more than 25%.  

The described criteria of minimum, maximum and yearly course of NDVI and the length of growing period turned out as 

robust to determine the number of crop cycles globally. The chosen criteria are suitable regarding the fact, that we used 7-25 
daily-NDVI-means averaged over 14 years. 

2.3 Land use classification products 

The extension of irrigation is restricted to agricultural areas. The information on cropland are taken from the ESA-CCI-LC 

product (cropland rain-fed, cropland irrigated, mosaic cropland > 50%) (ESA, 2015) and from the predecessor GlobCover 

(ESA, 2010) (Post-flooding or irrigated croplands, rain-fed croplands, mosaic cropland (50-70%)). According to the authors, 30 
the ‘accuracy associated with the cropland and forest classes’ is high ‘and therefore a quite good result’ (ESA, 2015). The 

user’s accuracies of both data sets are shown in Tab. 2. The classification of cropland depends on the definition of cropland. 

In both data sets pasture is neither a separate class nor part of the class ‘grassland’ or ‘cropland’. False classification of 

cropland can therefore lead to false classification of irrigated areas. The combination of both data sets increases the chance to 

classify irrigated areas only on cropland. Pixels that are classified as mosaic cropland in the underlying land use data sets are 35 
weighted by the averaged amount of cropland fraction for the corresponding class. All other cropland pixels are assumed to 

be 100% cropland. 

2.4 Agricultural suitability data 

Agricultural suitability data are taken from Zabel et al. (2014). The data describes the suitability for 16 staple, energy and 

forage crops (Tab. 3) according to climate, soil and topography conditions at a spatial resolution of 30 arc seconds. It 40 

4 
 
 

 



determines suitability for crop cultivation and the potential number of crop cycles per year, under the climate for 1981-2010 

(Zabel et al., 2014). Soil properties are not considered in this approach, because human activities may alter soil properties e.g. 

by fertilizer and manure application and soil tillage. The data is available for past and future climate periods as well as for 

rain-fed and irrigated conditions separately. The data set used in this study represents for each pixel the highest suitability 

value over all selected crops as well as the annual course of the growing period and the potential number of crop cycles per 5 
year. 

2.5 High resolution mapping of irrigated areas 

The downscaled GMIA data serve as a basis, providing a proven global distribution of irrigated areas. The irrigated areas 

which are already part of the statistics are extended by additional – until now – not captured irrigated areas. The identification 

of the additional irrigated areas in the new irrigation map is accomplished using the criteria described above and relationships 10 
of the annual temporal NDVI profiles to the agricultural suitability. The general criterion for the identification of unknown 

irrigated areas is that the land use is already cropland according to ESA-CCI-LC and GlobCover. The restriction to cropland 

avoids the classification of irrigated areas in other land uses or covers in dry areas with high NDVI values due to lichens or 

weed, since a low agricultural suitability does not exclude plant growth at all. The upper right grey box in Fig. 1 shows the 

assumption for irrigated areas using the NDVI and agricultural suitability data: 15 
 

A. The annual NDVI course clearly suggests a dynamic vegetation growth while the agricultural suitability shows a 

low value.  

B. The number of NDVI peaks is higher than the potential number of crop cycles per year under rain-fed conditions.  

C. Land is not suitable but classified as cropland while at the same time NDVI values and yearly courses indicate 20 
vegetation.  

 

If one of the criteria is true, we assume the full area of the 30 arc second pixel as being irrigated. As a result, the combination 

of A, B, and C identify the irrigated pixels, which were not assigned to irrigation areas in the downscaled GMIA irrigation 

map.  25 

3 Results  

3.1 Global analysis 

The new global irrigation map shows 18% more irrigated areas than the downscaled GMIA (Fig. 4). Overall, 3,674,478 km² 

of irrigated areas have been identified, which is an increase of 659,605 km² compared to the downscaled GMIA (Fig. 5). The 

global result confirms the underestimation of irrigated areas of Thenkabail et al. (2009a) who globally identified 3,985,270 30 
km² irrigated areas by a remote sensing based approach and are significantly higher than the results of Salmon et al. (2015) 

with 3,141,000 km² and the global estimates of the FAO or of Siebert et al. (2005). 

Figure 5 shows the global irrigated area additionally allocated through each of the criteria A, B, and C of section 2.5. The 

largest amount of additional irrigated area is identified by considering multiple cropping (B). In this case, 493,123 km² are 

not part of the downscaled GMIA. These areas are mainly found in Asia (Fig. 4), where according to our results, irrigation is 35 
often required to allow for multiple cropping. 100,069 km² are additionally identified, because they are not suitable for crop 

cultivation but are classified as cropland (indicator C). By the use of indicator A, 76,054 km² are additionally allocated. 
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3.2 Regional analysis 

The indicators A, B and C show different amounts of additional irrigated area for different regions. Methods A and C 

identified irrigated areas mostly in arid and semi-arid regions, by comparing low or no suitability versus high NDVI. Figure 6 

shows that additional irrigated areas by using A and C are mainly found in regions with annual precipitation < 500 mm, 

according to the WorldClim data set for 1961-1990 (Hijmans et al., 2005).  5 
In humid regions, criterion A and C are not sensitive, because agricultural suitability values in humid regions are high since 

precipitation is not limiting. We found that B extends irrigated areas in regions with low as well as high annual precipitation 

(Fig. 6), where irrigation is often used to allow for a second harvest. In total, Figure 6 demonstrates that irrigation decreases 

with increasing precipitation, but irrigation not only takes place in dry regions. The largest amounts of new areas are in 

countries where irrigation plays an important role for agriculture. Irrigated areas seem to be denser in already irrigated 10 
regions.  

3.2.1 Asia 

The newly identified irrigated areas are mainly found in Asia, particularly in Central and South East Asia. The countries with 

the largest amount of additional area are India (+267,283 km²) and China (+149,871 km²). In these countries, irrigation plays 

a dominant role in agriculture, where 40% (India) and 57% (China) of the total cropland is irrigated according to statistics 15 
(FAO, 2016b). Nevertheless, statistics seem to largely underestimate irrigated areas, particularly in India. Here, we found on 

the one hand considerable additional irrigated areas compared to GMIA within regions that are sparsely irrigated, such as the 

state of Madhya Pradesh (Fig. 7). On the other hand, irrigated areas are additionally identified within regions that already 

show a high irrigation density, such as Uttar Pradesh along the foothills of the Himalayan Mountains, where the density of 

irrigated areas even increases in our results (Fig. 7). Particularly in these regions the irrigated areas where detected comparing 20 
the potential vegetation cycles to the actual yearly NDVI coarse. Due to the seasonality of the precipitation only one harvest 

is possible – the second has to be achieved by irrigation. Even legumes, which serve as nitrogen fertilizers, have to be 

irrigated.  

Within Asia, the developed method unveils large previously unknown irrigated areas in Kazakhstan (+30,661 km²), Pakistan 

(+26,667 km²), Myanmar (+25,212 km²), Uzbekistan (+17,454 km²) and Turkmenistan (+13,483). In Central Asia, 25 
particularly the irrigated areas along the rivers are larger than previously reported. The Asian countries with the largest 

percentage difference compared to FAOSTAT (FAO, 2016b) statistical data (averaged from 1999-2012) are Mongolia 

(+815%), Kazakhstan (+183%), Myanmar (+119%) and Yemen (+103%).  

3.2.2 Africa 

Irrigation plays a minor role in the tropical regions of Africa, while there are contiguous irrigated regions along the Nile in 30 
Egypt and Sudan, some smaller irrigated areas within the Mediterranean countries and some irrigated areas within Southern 

Africa. The countries with the largest amount of additional irrigated areas are found in Somalia (+6,427 km²), Egypt (3,867 

km²), and Ethiopia (+3,536 km²). The irrigated regions along the Nile Delta are denser and result in an increase of irrigated 

area of 12% in Egypt. The African continent shows the highest percentage discrepancy when being compared to FAOSTAT 

(averaged from 1999-2012) (Tab. 4). Countries with the highest percentage difference to statistics are Chad (+500%), 35 
Somalia (315%), Kenya (311%) and Cameroon (+243%). 

3.2.3 Europe 

The discrepancy between the downscaled GMIA and the new irrigation map in Europe is smaller than in the regions 

mentioned above. The largest differences exist in Italy (+11,059 km²), Spain (+5,270 km²) and Greece (+3,922 km²). While 
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the Po valley, the largest contiguous irrigated region within Europe, does not show significant differences between the 

downscaled GMIA and our high-resolution irrigation map, many additional areas on Sardinia and Sicily are detected. In 

Spain, the known irrigated areas near to the Pyrenees are well captured by GMIA but especially the intensely used 

agricultural area around Valladolid in the North West of Spain shows additional irrigated areas according to our results. The 

highest percentage difference to FAOSTAT is found for Bosnia and Herzegovina (+500%), Croatia (+220%), Montenegro 5 
(+207%) and some other countries in the East Europe. The comparison of FAOSTAT to GMIA in these regions results in 

similar high differences, since the FAOSTAT data were obviously not used in the GMIA data. The highest percentage 

difference in Western Europe to FAOSTAT are found in Portugal (+41%), Great Britain (+28%), France (+27%) and Italy 

(+26%).  

3.2.4 America 10 

The position and extent of the large irrigated areas in North America in Fig. 4 are very consistent to the distributed statistics 

of the downscaled GMIA. Only in the North Western part of the USA our results show significantly more irrigated areas than 

GMIA. It is notable that additional identified irrigated areas are found next to already detected irrigated areas in California, 

North West and the Middle West of the USA. Thus, density increases within irrigated agglomeration regions. The percentage 

difference to FAOSTAT is relatively low compared to the other continents (Tab. 4). The highest percentage difference is 15 
found in Chile (+71%), Canada (+41%), Mexico (+12%) and Brazil (+8%).  

To demonstrate the effect of the high spatial resolution of the results, Fig. 8 shows the results for a specific extent in the 

North West of the USA (Oregon). The comparison of the new irrigation map at 30 arc seconds resolution with the GMIA at 5 

arc minutes resolution demonstrates the improvement of the data (Fig. 8). The higher resolution allows for a more precise 

identification of irrigated fields. Further, the additionally recognized irrigated areas that are not included in the GMIA data 20 
set match well with the underlying true colour satellite image. In this case it also shows that the resolution of 30 arc seconds 

degree is suitable for field scale for irrigation mapping in this region.  

3.3 Differences between the downscaled GMIA and the original GMIA 

The downscaling process leads to differences between the downscaled and the original GMIA data. Since fractions of 

irrigated areas < 1% are not allocated to the finer resolution, they are neglected within the downscaling process. This leads to 25 
a global loss of irrigated area of 46,329 km². If there are no pixels available for distribution, e.g. due to excluded land such as 

forests, water bodies or urban areas, the irrigated area may not be allocated, which results to a global reduction of 19,780 

km². Since we can only distribute integer values we additionally lose 2,442 km² through rounding the floating point numbers 

of the percentage share of the irrigated areas. Overall, we do not distribute 68,551 km² of irrigated areas, which are 2.28% of 

the GMIA data set in its original resolution. This small difference in percentages allows us to spatially compare at the same 30 
spatial resolution the new irrigation map with the downscaled GMIA, which results from the procedure described above.  

4 Validation 

The new irrigation map partially shows significant differences to the statistics and the resulting GIAM data set. No final truth 

exists on the amount and location of global irrigated area. Nevertheless, in order to validate the new high resolution irrigation 

map we compare our results to existing global and also regional studies. The comparison of ground truth data with the new 35 
irrigation map can also be a way to outline the differences between the new map and ground truth data. There are ground 

truth data available (European Environment Agency, 2014), providing point specific land use information for specific 

regions, but they are rare and not always tagged with needed land use information like irrigation. Further, there are always 

scaling issues, concerning the spatial resolution, in comparing point information with spatial information. For the validation 
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we decided to compare our map with the existing global data set IWMI-GIAM (Thenkabail et al. (2009a) and GRIPC 

(Salmon et al. (2015). Additionally we compare our results with regional studies in the USA (Ozdogan et al., 2010), China 

(Zhu et al., 2014) and India (Ambika et al., 2016), where we map the highest absolute differences compared to the statistical 

data and where irrigation is an important practice in agriculture. Regional studies are able to develop approaches which 

consider local characteristics, while global studies have to transfer their methods to regions with completely different 5 
conditions. The global comparison is done on country level and the regional comparison on the level of states or provinces. 

For each country/state the irrigated area is calculated and compared to other studies. 

4.1 Global Validation 

The resulting global irrigated area of 3.67 mkm² lie between the results of GRIPC’s 3.14 mkm² (Salmon et al., 2015) and 

IWMI-GIAM’s (Thenkabail et al., 2009a) 3.98 mkm² values. All three data sets show more irrigated area than reported by the 10 
statistics. Despite the absolute difference our new high-resolution map shows strong correlation with both data sets (IWMI-

GIAM r=0.97; GRIPC r=0.99) (Fig. 9) when correlating country values. The irrigated area is weighted with the size of the 

country area. Thus, the deviations of the countries are comparable with each other. The slope shows a small overestimation of 

our results compared to GRIPC (1.04) and a larger underestimation of the IWMI-GIAM (0.76). The regression plots also 

show the range of deviation (Fig. 9). The linear fit is strongly influenced by the high values and shows the underestimation of 15 
our results compared to IWMI-GIAM and overestimation compared to GRIPC (Fig. 9). The average difference per country is 

expressed by the Root-Mean-Squared-Error (RMSE). The RMSE of IWMI-GIAM (3.48%) and GRIPC (3.24%) are quite 

similar. The results of GRIPC (3.14 mkm²) are very close to the official statistics (3.07 mkm²). GRIPC uses a regionally 

based field-size factor which weights the size of the pixels. Without the field-size factor the results show remarkably more 

irrigation (3.76 mkm² instead of 3.14 mkm²). If we apply the GRIPC field-size factor to our results, it changes the amount of 20 
irrigated area to 3.05 mkm². The use of field size factors can be a way to adjust regions characterized by small holder farms 

and heterogeneous landscapes. On the other hand it would have to appropriately be determined and validated and may create 

another source of uncertainty. 

 

4.2 Regional Validation 25 

The regional data suggest a strong linear correlation between our results and the regional studies described by the correlations 

coefficient r=0.94 (USA), 0.84 (China) and r=0.92 (India) (Fig. 10). The slope shows an overestimation of our results 

regarding all compared data sets. The RMSE was weighted with the size of the compared state and shows a small 

overestimation of our data set compared to the regional studies.  

The difference of our result and the irrigated area in the USA given by Ozdogan et al. (2010) can be explained by the 30 
statistical acreages that were used to derive our irrigation map. They are 25% larger than the corresponding acreages of 

Ozdogan et al. (2010). Our map extends this area and results in 28.7% more irrigated area than given by Ozdogan et al. 

(2010). The regions where our analysis shows more irrigated areas are in the dry regions at the Western USA and in the 

South (Tab. 7). The largest irrigated areas in the USA are found in California, where we estimate 41,816 km² of irrigated 

areas. Ozdogan et al. (2010) calculate 26,808 km² of irrigated areas, while the United States Geological Survey (USGS) 35 
reports 42,087 km² of irrigated areas for the year 2010 (Maupin et al., 2014). California is a good example for the different 

information about irrigated areas and the problems of validating irrigation maps. Even the official statistics for the year 2010 

has two different values: the USGS states an irrigated area in California of 42,087 km², while the California Department of 

Water Resources (2010) reports 38,033 km²(Resources, 2010)(Resources, 2010)(Resources, 2010)(Resources, 

2010)(Resources, 2010)(Resources, 2010)(Resources, 2010)(Resources, 2010)(Resources, 2010). The example of California 40 
shows that the available statistics differ remarkably, which leads to strong impacts on the validation results. The complaints 
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in California against the Water Rights regarding “Unauthorized Diversion” prove the illegal irrigation activities (California 

Environmental Protection Agency , 2017) which are not part of the official statistics and is not only an issue of small holder 

farmers or of watering lawns (Bauer et al., 2015). The comparison of our irrigation map with a study of irrigated areas in 

India shows a smaller relative error compared to the irrigation map of the USA. Overall the results are 138,172 km² higher 

than the results for India of Ambika et al. (2016). The differences could be caused by the different spatial resolution. The data 5 
of Ambika et al. (2016) is applied at a spatial resolution of ~250 m which fits better to the small fields and the heterogeneous 

landscape of smallholder farms as they occur in India. 

Zhu et al. (2014) developed an irrigation map of China. The irrigation map of China (Zhu et al., 2014) represents official 

statistics downscaled by using NDVI data. The differences to the new irrigation map are high and expectable, due to the 

restriction to the statistics. The highest differences are found in the province of Xinjiang (percentage and absolute) in the 10 
North Western part of China. Xinjiang is characterised by a very dry continental climate. Nearly 90% of the area has less than 

200 mm of precipitation per year (Hijmans et al., 2005). Therefore, agriculture is almost impossible without irrigation. 

Similar to the examples in the US and in India, the distribution and the patterns of the irrigated areas fit to the data of Zhu et 

al. (2014) but are denser. Irrigated areas seem to exceed the official numbers and confirms results of previous studies on 

water allocation and water consumption in the Tarim basin, where the water consumption exceeds the relevant water quotas 15 
(Thevs et al., 2015). The denser distribution of irrigated areas in the Tarim basin shows the overuse of water despite the water 

quotas of the Chinese government and results in an underestimation of irrigated areas by the official reports. 

5 Discussion and Conclusion 

This study is about developing a new global irrigation map and its comparison with the most common irrigation maps on the 

global as well as on the regional scale. The results enable a high spatial resolution global view on the distribution of irrigated 20 
areas. The analysis indicates that the high-resolution view allows detecting additional irrigated areas, which were not covered 

by the existing data sets. This also increases the global estimate of irrigated land by 18% compared to the reported statistics.  

Differences between irrigation maps result from the quality and the spatial resolution of the input data, the assumption made 

and from the different terms and definition of irrigated area. The large differences between our results and the statistics in 

Central Asia (Mongolia, Kazakhstan) may result from classification errors in the underlying input data. Despite the high 25 
accuracy of the applied land use data sets, the ESA-CCI-LC and GlobCover land use classification include uncertainties, 

which lead to errors in mapping irrigated areas. For example grassland, pastures or meadows are sometimes classified as 

cropland. Especially in dry regions, such as in Central Asia, this misinterpretation of cropland leads to a false classification of 

irrigated area. Further, since the collapse of the Soviet Union the cropping patterns of the independent countries in Central 

Asia changed tremendously and fallow fields may influence the land use classification products until today.  30 
The cropland area in the underlying land use data is not given as a proportional area of cropland within a pixel, which may 

also lead to an overestimation of cropland and thus also of irrigation. 

The use of the agricultural suitability may lead to errors because it consists of 16 crops and may neglect e.g. drought resistant 

varieties or other species that are adapted to regional climatic conditions. Some typically irrigated crops are not considered in 

the crop suitability data, such as expensive and therefore most likely irrigated vegetables, olive trees, almond trees, as well as 35 
irrigated pastures, which potentially leads to an underestimation of irrigated area. On a global scale, these areas are 

nevertheless assumed to be relatively small. 

Errors in classifying irrigated areas could occur through high groundwater levels or the proximity to open water; plants could 

reach water sources through capillary rise or directly tap the groundwater. This creates alternate water availability for the 

plants and can mimic irrigation in otherwise unsuitable locations.  40 
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A major reason for the differences between the irrigation maps lies in the different definition of irrigated area. While the FAO 

defines irrigated area as “area equipped for irrigation” (FAO, 2016b), the new irrigation map presented here classifies 

irrigated area if additional water – besides precipitation – is applied on a field. In some regions this may influence the result. 

For example in Bangladesh paddy fields are not considered as irrigated land as they cultivate mainly during the wet season 

and have no permanent irrigation infrastructure. The high differences in India may also result from the different definition, 5 
where 1999 only 47% of the total harvested area for paddy rice was irrigated with permanent irrigation infrastructure 

(Frenken, 2012). The precipitation is harvested and concentrated on the paddy fields and used for rice cultivation by flood 

water recession (Frenken, 2012). Non-equipped cultivated wetlands, an upgrade of rain-fed cropland using soil moisture 

conservation, supplemental irrigation through water harvesting, non-permanent dug wells or water concentration may also 

result in irrigated area in the presented irrigation map (Molden, 2007). Due to the definition of “area equipped for irrigation” 10 
these areas are not part of the FAO-irrigation-class and accordingly not part of FAO related irrigation maps. This may 

influence the results particular in semi-arid and arid regions and in regions with small-scale -and non-permanent irrigation 

systems (Frenken, 2012). 

Compared with statistics and existing studies, our results show differences in both directions: underestimation and 

overestimation – depending on the reference data. The example of information on irrigated areas in the USA illustrates that 15 
the large discrepancies between the studies can be explained by the input data and the references. 

The highest discrepancies to the statistics are generally found in developing countries. Possible reasons are inadequate 

statistics that may often also be a result of political interests (Thenkabail et al., 2009b). General uncertainties or inadequacies 

of agricultural statistics are well known in many developing countries and e.g. discussed in Young (1999), and Thenkabail et 

al. (2009b). The results suggest that not all irrigated areas are correctly reported in the official statistics. This indicates the 20 
existence of illegal or unregistered irrigation activities. The results also go along with former analyses that showed large 

underestimation of irrigated areas in statistical data, especially for India (Thenkabail et al., 2009b) and West Africa (Drechsel 

et al., 2006). Even the FAO recommends a careful handling of their official reports of the countries in Central, Southern and 

Eastern Asia since many countries make no distinctions between rain-fed and irrigated cropland (Frenken, 2013, 2012). 

Independent survey techniques are strongly needed to verify the official statistics and reports.  25 
The huge differences in between estimated and reported irrigated area demonstrate the need of further research in the field of 

irrigation mapping to get a more realistic picture of water withdrawal. The recent progress in the availability of remote 

sensing instruments through the Copernicus system of the EU (European Commision 2017) that delivers weekly global high 

resolution (10-20 m) coverage improves the data availability for land use classifications and crop status analysis and is very 

promising for irrigation mapping.  30 
Irrigation is important to increase agricultural production (Smith, 2012), it reduces vulnerability of crop failures, increases 

food security and income (Bhattarai et al., 2002; Mengistie and Kidane, 2016). At the same time, more irrigated areas require 

more water that is mainly taken from surface runoff and groundwater storage. This may increase the pressure in existing 

water resources and lead to an overuse of regionally available water resources which may threat future agricultural activities 

(Du et al., 2014). Therefore, an accurate and more detailed inventory of irrigated areas is required to better estimate and 35 
manage available water resources to avoid an overuse of water. 
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Tables and Figures 

Name Description Period  Resolution Data Source 

Global Map of 

Irrigation Areas 

(GMIA) version 

5.0 

Areas equipped for irrigation 

in percent of the total pixel 

area.  

2000-2008 5 arc minutes  Siebert et al. (2013) 

Agricultural 

Suitability 

Agricultural suitability, rain-

fed and irrigated for the period 

1980-2010 

1981-2010 30 arc seconds Zabel et al. (2014) 

Multiple Cropping Numbers of crop cycles, rain-

fed and irrigated 

1981-2010 30 arc seconds Zabel et al. (2014) 

Maximum NDVI Maximum of global bimonthly 

NDVI maxima from the 

ENVISAT MERIS instrument  

2004-2006 10 arc seconds ESA (2007) 

7-daily-mean 

NDVI 

7-daily-mean NDVI data 

SPOT-VGT 

1999-2012 30 arc seconds ESA (2015) 

ESA-CCI-LC (v. 

1.6.1) 

Land classification product 2008-2012 10 arc seconds ESA (2015) 

GlobCover Land classification product 2009 10 arc seconds ESA (2010) 

WorldClim 

Precipitation 

Yearly reanalysis precipitation 

data.  

1961-1990 30 arc seconds Hijmans et al. 

(2005) 

Table 1: Applied global data sets. 

 

 

 5 

 ESA-CCI-LC GlobCover 

User’s 

Accuracy 

Cropland rain-fed 88% 82% 

Cropland irrigated 92% 83% 

Mosaic cropland > 50% 59% 97% 

Table 2: Accuracy of the applied land use data sets. 

 

Crop name 

Barley (hordeum vulgare) 

Cassava (manihot esculenta) 

Groundnut (arachis hypogaea) 

Maize (zea mays) 

Millet (pennisetum americanum) 

Oil palm (elaeis guineensis) 

Potato (solanum tuberosum) 

Rapeseed (brassica napus) 
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Paddy rice (oryza sativa) 

Rye (secale cereale) 

Sorghum (sorghum bicolor) 

Soy (glycine maximum) 

Sugarcane (saccharum officinarum) 

Sunflower (helianthus annus) 

Summer wheat (triticum aestivum) 

Winter wheat (triticum gestivum) 

Table 3: List of all considered crops.  

 
Figure 1: The scheme used for processing and analysing of the different spatial data and the multi decision tree to 
determine irrigated area. The grey boxes show the described subchapters 2.1, 2.2 and 2.5.  
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Figure 3: Idealized NDVI course of single- and multi-cropping and the conditions which must be fulfilled. 
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Figure 2: Yearly maximum NDVI derived from maximum bimonthly NDVI data of the EnviSAT MERIS instrument. 
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Figure 4: Irrigated areas identified by different approaches. 

 

 
Figure 5: Results of the new irrigation map compared the downscaled GMIA. 5 
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Figure 6: Yearly precipitation within the irrigated areas. Criteria A and C are suitable in dry regions while criterion 
B identifies in humid regions as well. Further, irrigation decreases with increasing precipitation, but is also used in 
regions with high yearly precipitation. 
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Region New irrigation 

map [km²] 

GMIA downscaled 

[km²] 

FAOSTAT 

1999-2012 [km²] 

Africa 163,783 136,826 137,817 

Eastern Africa 38,232 25,194 24,589 

Middle Africa 3,820 1,685 1,692 

Northern Africa 89,870 82,853 83,969 

Southern Africa 15,844 15,828 15,956 

Western Africa 16,018 11,267 11,611 

America 520,446 500,106 494,988 

Caribbean 13,267 13,248 13,346 

Central America 76,072 73,226 70,638 

South America 133,743 122,695 135,183 

North America 297,365 290,938 275,822 

Asia 2,675,125 2,094,375 2,147,293 

Central Asia 165,668 102,861 99,412 

Eastern Asia 799,187 642,388 664,684 

Southern Asia 1,284,744 976,866 1,018,484 

South-Eastern Asia 252,997 216,052 213,601 

Western Asia 172,528 156,209 151,112 

Europe 269,190 238,939 262,372 

Eastern Europe 83,967 81,799 109,648 

Northern Europe 10,227 10,227 10,015 

Southern Europe 130,460 106,134 104,132 

Western Europe 44,536 40,780 38,578 

Oceania 41,844 41,266 30,673 

Australia and New 

Zealand 41,821 

41,242 30,525 

Melanesia 24 24 134 

Micronesia 0 0 3 

Polynesia 0 0 10 

World 3,670,390 3,011,512 3,073,142 

Table 4: The results of the new irrigation map compared to the downscaled GMIA and FAOSTAT (FAO, 2016b). The 
countries are grouped according to the UN-Geographical Regions (UNO, 2013). 
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Figure 7: The Indian subcontinent and its identified irrigated areas. The blue areas are the information of the 
downscaled GMIA. Irrigation is more dense than expected in already irrigated regions and new areas appear in the 
state Madhya Pradesh. 
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Figure 8: Small scaled analysis of the new irrigation map (lower left) and GMIA (upper right) in the USA. 
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Figure 9: Regression plots of the two compared global data sets. The blue line is the linear fit, the dotted black line the linear 
equation.  
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Figure 10: Regression plots of the compared our irrigation map compared to regional data sets of the USA (Ozdogan et al, 
2010), India (Ambika et al. 2016) and China (Zhu et al., 2014). The blue line is the linear fit, the dotted black line the linear 
equation.  
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