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Abstract. Skilful winter seasonal predictions for the North Atlantic circulation and Northern Europe have now been 

demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques 10 

being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling 

tools to provide estimates of seasonal mean river flows up to a few months ahead.  

The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high 

resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored 

to use low-resolution monthly rainfall forecasts. Rainfall forecasts (“hindcasts”) from the GloSea5 model (1996 to 2009) are 15 

used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system 

is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such 

as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates 

that only limited forecast skill is achievable for Spring/Summer seasonal hydrological forecasts, however, Autumn/Winter 

flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical 20 

rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform 

the most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the 

skill (64%) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in 

regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts 

account for ~70% of the forecast skill (mostly in areas of high rainfall to the North and West) and only 30% of the skill arises 25 

from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns 

of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial 

improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological 

extremes, not only in the UK, but also across Europe. 

 30 

1 Introduction 

A series of low-pressure systems crossing Britain in Winter 2015/16 resulted in some of the most widespread and severe 

flooding witnessed in the UK, with several rivers in the north of Britain recording their highest ever flows and thousands of 

properties flooded (Centre for Ecology & Hydrology 2016). Repairs to damaged homes, businesses and flood defences were 

required, and procedures for forecasting and mitigating the floods are understandably being examined. Until relatively recently, 35 

a lack of skill in seasonal weather forecasts in extratropical regions beyond a lead time of 1 month (Lavers et al. 2009, Arribas 

et al. 2011) discouraged the development of routine seasonal hydrological forecasts using climate model output in Britain. 

However, the potential for seasonal hydrological forecasting in the UK is now being explored. Various seasonal forecast 

systems now provide skilful forecasts out to a few months ahead (e.g. MacLachlan et al. 2015, Athanasiadis et al. 2014), 
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allowing for some form of skilful dynamical hydrological forecast. As well as using climate model output, others are 

investigating statistical relationships between large-scale North Atlantic climate indices (such as the North Atlantic Oscillation) 

and seasonal rainfall or river flow anomalies (Lavers et al. 2010a, 2010b; Macgregor and Phillips 2004; Svensson and 

Prudhomme 2005; Wedgbrow et al. 2002; Wilby 2001, Svensson et al. 2015), and these can provide increased skill when large 

scale patterns dominate regional rainfall (Scaife et al. 2014).  5 

 

A recent review of seasonal hydrological forecasting methods using climate model output by Yuan et al. (2015) highlighted 

the dependence of predictive skill on both the large scale climate drivers and the local hydrological initial condition (HIC), 

which for some regions can persist for several months. The relative importance of initial conditions and boundary forcing (the 

meteorological forecast) on the skill of seasonal hydrological prediction has been examined by a number of authors, for 10 

example a study of skill in forecasting mean seasonal river flows across Europe concluded that much of the skill could be 

attributed to correct hydrological initial conditions, rather than the weather forecast (Bierkens and van Beek, 2009). In a UK-

based study, also using seasonal forecasts, Svensson et al. (2015) identified a geographical complementarity in regional 

seasonal hydrological predictability, noting that predictability in river flows in southern and eastern Britain derived primarily 

from hydrological memory of antecedent conditions, and from meteorological predictability (predictions of the atmospheric 15 

circulation over the North Atlantic at the seasonal timescale) in northern and western areas. They were able to generate skilful 

hydrological forecasts for river flows using the large scale atmospheric circulation which governs much of UK winter 

(December to February) rainfall, and November initial conditions. 

 

Advances in the performance of operational seasonal forecast systems such as the Met Office GloSea5 system (MacLachlan 20 

et al. 2015) are now encouraging the development of hydrological forecasting systems that can make best use of these more 

skilful seasonal forecasts. In the UK, the recently developed Hydrological Outlook UK (HOUK) provides an insight into future 

hydrological conditions nationwide. It describes likely trajectories for river flows and groundwater levels on a monthly basis, 

with particular focus on the next one and three months. A number of techniques are used to project forwards from the current 

state, and results from these are used to produce a summary including a highlights map. Prudhomme et al (under review) 25 

summarises the range of techniques used in the production of the HOUK, which encompass schemes using historical river 

flow analogues, ensembles of historical sequences of observed climate, and ensembles of seasonal rainfall forecasts. The 

forecasts issued provide seasonal mean river flows and instantaneous groundwater levels with a forecast horizon of up to 12 

months ahead, with an emphasis on the next 1 to 3 months (http://hydoutuk.net/). 
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The approach using seasonal rainfall forecasts provided by the Met Office model GloSea5 is explored in more detail here. 

These rainfall forecasts are combined with hydrological modelling tools to provide estimates of hydrological conditions up to 

a few months ahead. The hydrological modelling follows on from an approach to seasonal forecasting developed by Bell et al. 

(2013), which used a distributed hydrological model driven by observations to provide the hydrological initial condition, and 

a monthly ‘water-balance anomaly’ model to estimate sub-surface water storage over the next 1 to 3 months as perturbations 35 

from the initial state, driven by Met Office seasonal rainfall forecasts. Forecasting UK-wide monthly-mean river flow is less 

straightforward than forecasting subsurface water storage, as river flow is a spatial and temporal integrator of local-scale runoff 

production, arising from a combination of antecedent storage and the partitioning of effective rainfall between surface 

/subsurface runoff and storage. This task can arguably be undertaken by a fully configured grid-based hydrological model, 

maintaining a continuous local water balance and using daily or sub-daily spatial rainfall estimates as input. However, seasonal 40 

rainfall forecasts do not provide detailed weather information at this resolution and would typically require spatio-temporal 

downscaling to achieve good estimates of river flow for catchments or regions nation-wide. While rainfall downscaling is 

relatively straightforward for a particular location or catchment, using national-scale monthly rainfall forecasts to produce 

http://hydoutuk.net/
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pixel-scale daily rainfall would require an ensemble downscaling approach based on either a weather generator or historical 

analogues, generating large multiples of ensemble flow forecasts. This approach has been explored in other studies (e.g. 

Manzanas et al. 2017, Charles et al. 2012), which showed that dynamic or statistical downscaling of seasonal forecasts can 

reduce local biases in variables such as temperature or rainfall, but do not necessarily improve the overall forecast skill.  

 5 

The alternative approach explored here is to place the greatest emphasis on the hydrological initial condition provided by an 

up-to-date model, while simplifying the generation of hydrological forecasts through use of a temporally-coarse water balance 

model with less dependence on high resolution weather information. A monthly-resolution forecast model provides additional 

benefits by reducing the computational overhead of the use of a rainfall forecast ensemble. This scheme is used to provide 

regional-scale estimates of the river flows over the coming months, and work presented here examines the skill of these 10 

forecasts for Britain, for geographical regions, for particular seasons, and at 1- and 3-month lead times.  

2 Models and Methods 

2.1 Hydrological initial condition 

Grid-to-Grid (G2G) is a spatially-distributed hydrological model, which is generally configured to a 1km2 grid across Britain, 

with a 15-minute time-step, and underpinned by digital spatial datasets of topography, soil/geology and land cover. A detailed 15 

description of G2G is presented in Bell et al. (2009), with a brief overview of the model’s subsurface (soil and groundwater) 

storage formulation provided in Bell et al. (2013). Input to the model consists of gridded time-series of precipitation and 

potential evaporation (PE) derived from observations, numerical weather prediction or regional climate models. Model output 

can be in the form of area-wide, gridded time-series of river flows, runoff and soil-moisture, or time-series of river flows at 

gauged or ungauged locations. Applications of the model include both continuous simulation of river flows in a changing 20 

climate (Bell et al., 2009, 2016) and real-time flood forecasting (Moore et al., 2006; Cole and Moore, 2009).  

 

For production of the HOUK, G2G is run continuously over several years to produce an estimate of the most recent 

hydrological condition across Britain, from which an estimate is made of the current depth of subsurface water storage. The 

G2G requires gridded time-series of rainfall and PE. Daily precipitation data on a 5km grid, provided by the Met Office for 25 

1958–present (Perry et al. 2009), were used at the 15-minute G2G time-step by equally spreading them throughout the day, 

and downscaled to 1km using a spatial weighting based on 1km Standard Average Annual Rainfall data for 1961–1990 (Bell 

et al. 2007). Monthly PE data on a 40km grid from MORECS (Hough and Jones 1997) were spread equally through the month 

and applied equally to each 1km box within each 40km square. Here, the depth of sub-surface water storage, S, consists of the 

sum of the unsaturated soil, V, and the groundwater, Vg, storages. The depth of water in groundwater storage arises from the 30 

balance between recharge and groundwater outflow over long periods, and while it is unlikely to correspond directly to a 

groundwater level observation, it can provide an indication of whether storage in the saturated zone is greater or less than the 

long-term monthly average.  

2.2 Water-balance model for flows 

Following Bell et al. (2013) the continuity equation can be used to express change in total subsurface water storage, S, as a 35 

balance between input precipitation P and outputs through actual evaporation E and net outflow per unit area Q, so 

,d/d QEPtS  where all quantities are expressed in water depth (mm) over a model grid-cell. In terms of discrete 

months, if 𝑆𝑚 and 𝑆𝑚+1 represent the storage at the end of months m and m+1, and if 𝑃𝑚+1, 𝐸𝑚+1 and 𝑄𝑚+1 denote mean 

rainfall, evaporation and net outflow per unit area over the month m+1,  
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𝑆𝑚+1 ≅ 𝑆𝑚 + 𝑃𝑚+1 − 𝐸𝑚+1 − 𝑄𝑚+1                 (1) 

At a monthly time-step it is assumed here that daily/sub-daily changes in rainfall, storage, and net outflows can be neglected 

and gross simplifying assumptions can be made as to whether excess effective rainfall is stored in the subsurface or released 

via runoff from saturated pixels. Storage of water in each pixel is assumed to vary between 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥 , the historical 

minimum and maximum G2G-simulated storage of each 1km pixel’s sub-surface water store respectively. By combining the 5 

current storage 𝑆𝑚  as estimated by the G2G at the forecast time origin with monthly seasonal forecasts of 𝑃𝑚+1  and 

𝐸𝑚+1, corresponding forecasts of storage and flow can be produced as follows: 

 

1. For a discrete month, m, an initial estimator of the storage in each pixel at the end of the following month (m+1) can 

be given by 10 

�̂�𝑚+1
∗ ≈  𝑆𝑚 + 𝑃𝑓 − 𝐸𝑓          (2) 

where 𝑃𝑓 and 𝐸𝑓 are seasonal forecasts of mean monthly rainfall and actual evaporation, and the * indicates an initial 

(as opposed to final) estimator.  

 

2. The initial estimator for forecast storage �̂�𝑚+1
∗    (Eq. 2) neglects forecast 𝑄𝑚+1 which can be significant, but is less 15 

easy to forecast directly than storage as its magnitude will depend on a number of factors including soil properties, 

storage, effective rainfall and topography. Typically in hydrological models, river flow is estimated through a 

relationship between incoming effective rainfall and antecedent soil-moisture and sub-surface water storage, and for 

the seasonal forecasting application considered here, 𝑄𝑚+1 is also estimated through a relationship of the form Q ≃

𝑓(𝑆). For the national-scale application required for the HOUK encompassing a wide range of soils, geology and 20 

catchment characteristics, a very simple empirical relationship relating grid-cell net outflow in a month to mean 

monthly river flow is assumed: 

�̂�𝑚+1 ≃ �̂�𝑚+1
∗ �̅�𝑚+1

 �̅�𝑚+1
 .         (3) 

Here, mean monthly net outflow in month m+1 is estimated in terms of the forecast storage �̂�𝑚+1
∗  scaled by the ratio 

between G2G model-derived estimates of long-term mean river flow per unit catchment area, �̅�𝑚+1, and storage 𝑆�̅�+1 25 

for the month (1962 to 2010).  

 

3. Replacing the unknown 𝑄𝑚+1 in Eq. (1) with its estimator �̂�𝑚+1 yields an improved estimate of 𝑆𝑚+1: 

�̂�𝑚+1 ≈ (𝑆𝑚 + 𝑃𝑓 − 𝐸𝑓) (1 −
�̅�𝑚+1

�̅�𝑚+1
)  ≈ {

�̂�𝑚+1
∗ (1 −

�̅�𝑚+1

�̅�𝑚+1
) , for 

�̅�𝑚+1

�̅�𝑚+1
< 1

0, else.
   (4) 

 30 

Eqs (1), (3) and (4) form the basis of the water balance model (WBM), which considers two situations according to whether 

the forecast sub-surface storage in the pixel is saturated: 

 For saturated pixels, defined as �̂�𝑚+1 ≥ 𝑆𝑚𝑎𝑥, further excess rainfall cannot be accommodated as subsurface storage 

and is instead assumed to contribute directly to surface runoff and river flows. Then storage at the end of the next 

month 𝑆𝑚+1 = 𝑆𝑚𝑎𝑥  and, re-arranging Eq. (1), 𝑄𝑚+1 ≈ 𝑆𝑚 + 𝑃𝑓 − 𝐸𝑓 − 𝑆𝑚𝑎𝑥 . 35 

 For unsaturated pixels, defined as �̂�𝑚+1 < 𝑆𝑚𝑎𝑥, excess rainfall is assumed to contribute to both sub-surface storage 

and net outflow, and forecasts of these variables are estimated from Eqs (4) and (3) respectively. For a small number 
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of locations in highly spatially variable catchments, where 
�̅�𝑚+1

�̅�𝑚+1
≥ 1, to maintain continuity,  𝑆𝑚+1= 0, and 𝑄𝑚+1 =

𝑆𝑚 + 𝑃𝑓 − 𝐸𝑓. 

 

Net outflow estimates (mm) for each grid-square in each region are converted to monthly mean river flows (m3s-1) through 

lateral transfer of upstream flows from each catchment to the catchment outlet for every river grid-cell, using the 1km flow 5 

directions identified for the kinematic wave routing implemented in the G2G Model (Davies and Bell 2008, Bell et al. 2009). 

WBM flows for every 1km river location are scaled with respect to historical mean WBM flow (1962 -2010) and these 

standardised flows are averaged to provide a mean value for each of 17 geographic regions (Figure 1b). The coarse spatial 

resolution of the input rainfall forecasts has discouraged the development of river flow forecasts at a 1km resolution to ensure 

that users of the Hydrological Outlook do not infer that rainfall forecasts are available or skilful at this resolution. Production 10 

of regional scale forecasts (in preference to national scale) is viewed as a pragmatic compromise. 

2.3 Seasonal rainfall forecasts  

The long range meteorological forecasts used here were produced using the Met Office Global Seasonal forecast System 

(MacLachlan et al. 2015) and consist of a multi-member ensemble of UK-average (i.e. spatially uniform) monthly total rainfall 

forecast for the next month, available at the start of each month. The climate model at the core of this forecast system has 15 

atmospheric resolution of 0.83 degrees longitude by 0.55 degrees latitude, 85 quasi-horizontal atmospheric levels and an upper 

boundary at 85km near the mesopause to represent stratospheric processes which are important for winter forecasts (Scaife et 

al. 2016). The ocean resolution is 0.25o globally in both latitude and longitude with 75 quasi-horizontal levels. This ocean 

resolution is necessary to reduce key biases in the ocean and atmosphere and give a realistic winter atmospheric blocking 

climatology in the model (Scaife et al. 2011). A multi-member ensemble of 1- and 3-month rainfall forecasts (mm/day) was 20 

run for each season in the period 1996 to 2009 with lagged start dates centred on 1st February, 1st May, 1st August and 1st 

November. 12 ensemble members were available for forecasts starting in August and February and 24 for those starting in 

May and November. Thus ensembles of 1-month ahead forecasts are provided for December, March, June and September, and 

3-month ahead forecasts for Winter (DJF), Spring (MAM), Summer (JJA) and Autumn (SON). Members from the same start 

date differ only by stochastic physics. Initial atmospheric and land surface data were taken from ERA interim observational 25 

reanalyses and initial conditions for the global ocean and sea ice concentration were from the FOAM data assimilation system 

(Blockley et al. 2014). 

 

The spatially-uniform rainfall forecasts present a dilemma for hydrological modellers who typically require high spatial and 

temporal resolution weather information to estimate a water balance and represent the highly spatially and temporally variable 30 

nature of streamflow. An ensemble of mean UK rainfall forecasts provides no information on whether the rainfall is more 

likely to occur in the North or South, however, it does provide some indication of whether the rainfall totals will be higher or 

lower than the climatological (long-term) mean. Such spatially-uniform forecasts will be unable to provide the spatial 

heterogeneity observed in UK rainfall and would under/overestimate rainfall in Northern/Southern regions if used directly. 

Instead, the rainfall forecasts 𝑃𝑓  are converted to spatially uniform rainfall anomalies, 𝑎 = 𝑃𝑓  – 𝑃�̅�  (mm) relative to the 35 

GloSea5 estimate of climatological mean rainfall (𝑃�̅� ). A spatially distributed UK monthly rainfall amount, 𝑃∗ , is then 

calculated as 𝑃∗  =  
𝑃𝑖𝑗

�̅�
(�̅� + 𝑎), where �̅� and 𝑃𝑖𝑗  are the UK-mean and the local (1km pixel) monthly mean rainfall (1971-

2000) respectively. This approach to spatial-downscaling using historical mean rainfall observations is similar to one used by 

Bell et al. (2009) to downscale 25km resolution regional climate model data to a 1km resolution. 

 40 
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To produce the 3-month ahead flow forecasts using the GloSea5 hindcast dataset, either sequential monthly rainfall forecasts 

or a 3-month mean rainfall forecast were available for use as input, thus for Winter (DJF), forecasts were available for D, J 

and F separately and the 3-month (DJF) mean. In the analysis that follows forecast skill has been assessed using both temporal 

resolutions of rainfall forecast, but as the results are very similar, only results for the mean 3-month ahead forecast are 

presented. This is consistent with the monthly Hydrological Outlook for which forecasts at lead times of 1- and 3-months only 5 

are available. Disaggregation of the 3-month ahead forecast into monthly rainfall amounts is achieved through distributing the 

3-month rainfall forecast anomaly between the 3 individual months according to their relative contribution to the UK mean 

seasonal rainfall (1962 to 2010). 

2.4 Seasonal flow forecasts 

To produce seasonal flow forecasts (hindcasts), the water balance model for flows (Section 2.2) is initialised with the most 10 

recent G2G estimate of sub-surface water storage (Section 2.1). GloSea5 seasonal rainfall forecasts (1- and 3-month ahead, 

Section 2.3) are applied alongside climatological monthly mean actual evaporation (AE) estimated from a long Grid-to-Grid 

model run (1962 to 2010). 

 

While the skill of a single set of forecasts can be compared to observations using measures such as the Pearson correlation 15 

coefficient, the performance of an ensemble of seasonal flow forecasts can more easily be assessed using the relative operating 

characteristic (ROC) skill score (Kharin and Zwiers 2003), used widely for probabilistic weather forecast verification. For 

ensembles, the ROC is a curve that indicates the relationship between hit rate and false alarm rate as different sorted ensemble 

members are used as decision thresholds. The ROC is commonly summarized through the integrated area under the curve, 

AUC, using SROC=2*AUC-1: A perfect forecast has SROC=1 (AUC=1.0), while forecasts with no skill have SROC<=0 20 

(AUC<=0.5). The scores are calculated separately for each of three severity bands (below normal, 0 – 28%; normal, 28-72%; 

above normal, 72-100%), by ranking standardised river flow forecasts for the 17 geographical regions of Britain in relation to 

simplified percentile ranges of historical flow estimates for each month based on 49 years of WBM simulated flows (1962–

2010). The relatively wide bands were selected to agree with that used by both the rest of the HOUK methods, and by the 

Hydrological Summary produced by the National Hydrological Monitoring Programme (Dixon et al. 2013), and serve to 25 

highlight when flows are unusually high or low.  

 

To assess the importance of various factors involved in the seasonal flow forecasts, the performance of four alternatives is 

compared: 

(a) WBM with GloSea5 rainfall forecasts and the most recent G2G HIC (“GloSea5+HIC”); 30 

(b) WBM with GloSea5 rainfall forecasts and a G2G historical mean HIC (1962-2010) (“GloSea5+avHIC”); 

(c) WBM with an historical observed (spatially averaged) rainfall ensemble (49 members, 1962-2010) and the G2G HIC 

(“Hist+HIC”); and 

(d) Flow persistence with the G2G HIC (“Pers”).  

Comparing (b) to (a) gives an idea of relative contribution of the HIC to forecast skill, while comparing (c) to (a) gives an idea 35 

of the relative contribution of GloSea5 rainfall to forecast skill. Flow persistence (d) (carrying the most recent flow anomaly 

forward to the next 1- and 3-months) provides a much simpler form of forecast, for overall comparison. The skill of WBM 

with the G2G historical mean HIC and the ensemble of historical observed rainfall was also assessed but, as would be expected, 

the ensemble of forecasts had zero skill (SROC=0) and for brevity have been excluded from the analysis. Performance results 

for the remaining four alternatives are presented in Section 0. 40 
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3 Results  

3.1 Assessment of water balance model for flows 

The performance of the WBM to produce flow forecasts was assessed at a regional scale for the period January 1962 to 

December 2010 using observed gridded rainfall inputs (i.e. assuming a perfect rainfall forecast) and monthly mean AE (1962-

2010) from the G2G, and initialising the WBM each month with the most recent G2G HIC. The resulting output, consisting 5 

of a temporal sequence of fixed lead-time, 1- and 3-month ahead regional flow forecasts, was compared to G2G regional mean 

monthly flows derived from a continuous simulation from 1962-2010 driven by observed (spatially distributed) daily 5km 

gridded rainfall observations and MORECS PE as input (described in Section 2.1). A comparison with measured river flows 

at individual sites across Britain has not been undertaken because the WBM has been developed to provide regional monthly 

flows, and observed mean flows are not available at a regional scale.  10 

 

Figure 1 (a) Regional WBM performance (1-month and 3-months ahead) compared to G2G output for 17 regions, in terms of the 

(Pearson) r2. The regions are shown in (b). Monthly time-series of (c) 1-month and (d) 3-month ahead forecasts for the period 

January 1990 to December 2000: mean G2G (black) and WBM (red) simulated flows for the Forth region. 
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Figure 1a provides a summary of WBM forecast performance in terms of the (Pearson) r2 at the regional scale when compared 

to G2G output. For all 17 regions, the 1-month ahead WBM simulates more than 80% of the variability in G2G flows, and for 

8 regions (typically upland regions highly responsive to rainfall), it explains more than 90%. The 3-month ahead forecasts all 

explain more than 90% of the variability. By way of example, Figure 1c and d show modelled regional mean river flows for 5 

the Forth region (which has the median model performance for the 1-month lead time), illustrating how closely the 1- and 3-

month ahead WBM forecasts match continuous simulation G2G regional mean flows. Regional flows are estimated as the 

regional mean of 𝑸/�̅� at every location (1km pixel) for which �̅� > 0.05 𝑚3𝑠−1. The division by �̅� enables equal weighting 

for upstream and downstream river locations. 

3.2 Assessment of seasonal flow forecasts 10 

An assessment of model skill using the SROC skill score has been undertaken for Britain as a whole, for 17 regions, two lead-

times, four forecast starting points (seasons). A skill assessment should ideally take into account all these factors, and although 

the average performance measure over all areas shown in Figure 2a disguises the complexity in regional response and forecast 

model performance at different times of year, it does immediately highlight the utility of using the HIC with rainfall ensembles 

(GloSea5 or historical) over use of an average HIC or flow persistence. It is important to note that although skill scores improve 15 

with the number of ensemble members (Scaife et al., 2014), for the skill assessments here, the ensemble size varies: the 

historical rainfall ensemble has 49 members, while the rainfall forecast ensemble has 12 or 24 members for autumn/summer 

and summer/winter respectively. Thus the forecast rainfall skill scores may be an underestimate of the real-time skill 

(operational GloSea5 forecasts have 42 members). At the 1-month lead time the WBM with G2G HIC driven by an historical 

rainfall (climatology) ensemble performs best, and the forecasts based on persistence or Glosea5+HIC perform less well, but 20 

show some skill. For the longer 3-month lead time, the WBM with G2G HIC driven by either historical or GloSea5 rainfall 

perform similarly; persistence forecasts (Pers) or use of an average HIC are not recommended at this lead time. 

 

When the overall performance scores shown in Figure 2a are split between seasons, utility of GloSea5 forecasts in 

September/Autumn and December/Winter becomes apparent (Figure 2b,c: GloSea5+HIC). For forecasts that use the HIC, use 25 

of an ensemble of historical rainfall provides some skill (S_ROC > 0) across all seasons, particularly at the 1-month lead time, 

but use of GloSea5 rainfall forecasts is more skilful in autumn (yellow bars), and also in winter (blue bars) at the 3-month lead 

time. There is little skill in summer flow forecasts (red bars) whatever type of rainfall forecasts is used, with the best 1-month 

ahead forecast performance achieved using historical rainfall, and best 3-month ahead forecasts from persistence of current 

flow conditions or historical rainfall. Scaife et al (2016) identify several mechanisms as to why extratropical seasonal forecast 30 

skill is most apparent in winter, and thus less apparent in summer months. Seasonal forecasts of flows in spring have only 

modest skill and use of historical rainfall and the HIC is recommended at both lead times.  
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Figure 2 Bar charts showing SROC (a) averaged across three severity bands, four seasons and 17 regions, at two forecast lead times 

(1 and 3 months). (b,c) as (a) but presenting results for the four months/seasons separately at the two forecast lead times. 

 

Svensson et al. (2015) and Svensson (2016) highlight the value of a flow persistence forecast in Southern and Eastern regions 5 

of Britain in catchments with a high subsurface aquifer storage component and for which river flows respond slowly to rainfall. 

Here, analysing the ensemble results for each of the 17 regions, the skill of a flow persistence forecast in Southern and Eastern 

areas is apparent, but using a rainfall forecast ensemble (historical or GloSea5) and the most recent HIC is more skilful. The 

SROC skill scores for each of the 17 regions (Figure 3), indicate that skill (averaged over all seasons) is greatly dependent on 

the geographical region, with the historical rainfall ensemble with a HIC providing the best forecast in most regions, although 10 

at the 3-month lead time, a GloSea5 forecast ensemble with the HIC performs well. 

 

Although an ensemble of climate forecasts can provide some indication of the range of possible rainfall totals over the next 

few months, ensembles of seasonal climate predictions have been shown to possess a low ratio of predictable signal to 

unpredictable noise (Kumar 2009, Eade et al. 2014, Scaife et al. 2014). These authors indicate that a single ensemble mean 15 

forecast can have greater skill than that of the constituent ensemble members, and Murphy (1990) provides a quantification of 

the apparent improvement in skill through its reduction in initial state uncertainty. More recently, Eade et al. (2014) suggest 

that improvements in forecast skill could be achieved through using the mean of a large ensemble, followed by a post-

processing step to adjust the ensemble mean so its variance agrees with the predictable component of the observed variance. 

Svensson et al. (2015) restricted their UK-wide analysis of methods for winter flow forecasts to ensemble mean forecasts (3-20 

month ahead) from GloSea5 and rainfall climatology together with a persistence forecast, and found that skilful long-range 

forecasts of winter flows could be achieved through a combination of the hydrogeological memory of antecedent conditions 

in southern and eastern parts of the UK, and from meteorological predictability in northern and western areas. Here, it has not 

been possible to include the effect of the NAO index that was used by Svensson et al. (2015) alongside the GloSea5 winter 

forecasts, but the skill of ensemble mean GloSea5 rainfall forecasts has been evaluated for all seasons (not just winter). Results 25 

as Pearson correlation (r) are summarised for UK regions in Figure 4 for both Spring/Summer (labelled “SprSum”) and 

Autumn/Winter (“AutWin”). The forecast methods used are labelled as in Figure 3, but for GloSea5 and Historical rainfall 

forecast ensembles, only the ensemble mean forecast is used. 
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Figure 3 UK regional maps showing mean forecast skill for four seasons in terms of the SROC ensemble skill score (higher skill shown 

in blue) 
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Figure 4 Maps showing 1- and 3-month ahead forecast skill (correlation r) for Spring/Summer (top) and Autumn/Winter (bottom). 

Thresholds are shown for r<0.317 (not significant); 0.317<r<0.437 (significant at 5% level); 0.437<r<0.588 (significant at 1% level) 

and r>0.588 (significant at 0.05% level). 

The difference in forecast skill between the seasons is immediately apparent, with a significant level of skill achieved for 5 

Autumn/Winter forecasts in many parts of Britain by including GloSea5 seasonal dynamical rainfall predictions: 

 For Spring/Summer hydrological forecasts, some skill (at the 1% significance level in the West of Scotland) is 

afforded through the use of a mean historical rainfall forecast in Scotland (1-month ahead only) and Southeast regions 

(1- and 3-months ahead), however none of the methods tested is able to provide skilful seasonal forecasts of 

Spring/Summer flows in Northern and Western England or Wales. Across Britain as a whole, only the use of a mean 10 
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historical rainfall forecast for a 1-month ahead flow forecasts shows any significant skill (mean correlation of 0.33, 

significant at the 5% level).  

 By comparison, Autumn/Winter flows can be reasonably well forecast across Britain using ensemble mean rainfall 

forecasts based on GloSea5 or historical rainfall, with mean correlations of 0.53 and 0.50 respectively for 1-month 

ahead forecasts and 0.59 and 0.43 for 3-months ahead. Forecasts using historical rainfall perform better at the 1-5 

month ahead lead-time than at 3-months ahead, and again, skill is greater in Scotland and Southeast Britain than in 

Wales and Northern Britain.  

The use of an average HIC with Spring/Summer rainfall forecasts from GloSea5 leads to forecasts with no significant skill as 

it removes the main component of forecast skill which in Spring/Summer is associated with hydrological persistence. However, 

Autumn/Winter flow forecasts using ensemble mean GloSea5 rainfall and an average HIC perform surprisingly well across 10 

Britain, confirming that there is a significant element of skill associated with GloSea5 forecasts in Autumn/Winter at the 3-

month lead time, often resulting in skilful flow forecasts in regions where this skill is less dependent on a good HIC. 

 

By comparing forecast skill scores from different model configurations, it becomes possible to attribute overall forecast skill 

to the different model components such as HIC, GloSea5 ensemble and GloSea5 ensemble mean. Figure 5 provides an 15 

indication of the source of the forecast skill in Autumn/Winter for each region, alongside critical values for significance levels 

of Pearson’s r, 5%, 1% and 0.05% (for a one-tailed test). For each region, the HIC skill is assumed to be the difference between 

the forecast skill for GloSea5 with HIC and with the long-term mean HIC (“avHIC”). Any GloSea5 skill beyond that associated 

with HIC can then be attributed to either the mean skill of the individual ensemble members, or to the ensemble mean forecast 

(if they are greater than the HIC skill).  20 

 

Figure 5 Sources of flow forecast skill (Pearson’s r) in Autumn/Winter: (a) 1-month ahead; (b) 3-months ahead. Significance levels 

are shown with black horizontal lines (see Figure 4). A map showing regions geographically is provided in Figure 1b. 
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At the 1-month ahead lead time, the skill of Autumn/Winter GloSea5-derived forecasts in regions with long-term memory in 

the Southeast (Thames, Southern, Wessex) and Scotland (Highland, NE Scotland, Tweed) is primarily attributable to the 

dependence of the flows on the antecedent conditions provided by the HIC (blue bars in Figure 5). Averaged across all regions, 

the largest source (64%) of skill in the 1-month ahead seasonal flow forecasts comes from the hydrological initial condition. 

This component of skill is also key to the success of the historical rainfall and persistence forecasts in Autumn/Winter. In many 5 

regions, particularly Northern and Western areas (Northumbria, Yorkshire, South-West, Welsh, North-West, Solway, Clyde, 

Forth, Tweed) a further 20 to 30% increase in skill arises from the GloSea5 ensemble mean (grey bars), and for a few regions 

(e.g. Anglia, Severn-Trent, Clyde) modest skill (10 to 20%) is derived from the mean skill of the individual ensemble members 

(red bars). At the 3-month ahead lead time, the influence of the HIC on forecast skill is less apparent, and only 4 regions have 

levels of HIC-related skill significant at the 5% level. Averaged across all regions, the HIC contributes to only a modest 30% 10 

of the forecast skill, whereas GloSea5 forecasts account for ~70% of the forecast skill, of which 46% comes from mean 

ensemble skill and 23% from the mean skill of the individual ensemble members. This confirms the findings of Section 3.2 

(Figure 2) that indicated that at the 3-month lead time, an ensemble of GloSea5 forecasts and a good HIC performs well. A 

similar analysis of the source of skill in Spring/Summer forecasts (not shown here) indicates that almost all the skill in the 

forecasts comes from the HIC, with little skill arising from the GloSea5 rainfall forecasts (Figure 2 indicates that an historical 15 

rainfall ensemble would be a better choice in Spring and Summer). 

Summary and recommendations 

The Hydrological Outlook UK (HOUK, Prudhomme et al., under review) provides an insight into future hydrological 

conditions nationwide across Britain. It uses a range of techniques to provide likely trajectories for seasonal mean river flows 

and instantaneous groundwater levels on a monthly basis, with particular focus on the next one and three months. One of the 20 

techniques uses ensembles of UK-mean, monthly resolution seasonal rainfall forecasts provided by the Met Office GloSea5 

model with hydrological modelling tools. The approach combines a high resolution, spatially distributed hydrological initial 

condition provided by a hydrological model (Grid-to-Grid) driven by weather observations up to the forecast time origin, with 

a monthly resolution water balance model (WBM) to forecast regional mean river flows for the next 1 and 3 months ahead.  

 25 

The forecast skill of these regional-scale estimates of the river flows has been assessed for Britain, with results broken down 

between geographical regions, seasons, and at 1- and 3-month lead times. Every month, the whole ensemble of rainfall 

forecasts is used in the operational HOUK to provide a range (median and four quartiles) of seasonal forecast flows over the 

next few months. However, recent literature (discussed in Section 3.2) suggests that ensembles of seasonal climate predictions 

can have such a low ratio of predictable signal to unpredictable noise that the ensemble mean forecast has much greater skill 30 

than the constituent ensemble members. Here, forecast skill has been assessed using both the whole rainfall ensemble and the 

ensemble mean. By comparing forecast skill scores from different model configurations, it has been possible to attribute overall 

forecast skill to the different model components such as hydrological initial condition (HIC), GloSea5 ensemble and GloSea5 

ensemble mean.  

 35 

The analysis indicates that only limited forecast skill is achievable for Spring/Summer hydrological forecasts (through the use 

of historical rainfall rather than rainfall forecasts), however, Autumn/Winter flows can be reasonably well forecast across 

Britain using ensemble mean rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of 

forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform the most consistently well 

across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Most of the skill (64%) in the 1-month 40 
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ahead seasonal flow forecasts can be attributed to the hydrological initial condition, whereas for the 3-month ahead lead time, 

GloSea5 forecasts account for ~70% of the forecast skill.  

 

Svensson et al (2015) highlighted that skilful seasonal predictions of UK river flows are “now a viable proposition” provided 

by the HOUK every calendar month at a national scale from (http://hydoutuk.net/). Currently, the whole (~42 member) 5 

ensemble of GloSea5 rainfall forecasts is used to provide a range (median and four quartiles) of seasonal forecast flows over 

the next few months. The enhanced level of skill that can be achieved through the use of the ensemble mean forecast alone is 

an important consideration, but in practice this will be very close to the ensemble median already presented alongside the 

minimum, maximum and mid-quartile seasonal flow forecasts. Continued presentation of this full range of flow scenarios for 

the coming 1- and 3-months may be advantageous in that it informs water managers, not only of the most likely possibility, 10 

but also to the range of possibilities. Based on the skill analysis presented here, users of the Hydrological Outlook UK would 

be advised to have greatest confidence in Autumn and Winter flow forecasts that use GloSea5 rainfall, particularly at the 3-

month lead time. For Spring/Summer flow forecasts, use of an ensemble forecast based on historical rainfall is surprisingly 

good and would be recommended for use across Scotland, and flow forecasts based on persistence were found to be the most 

skilful in South-East regions (Thames, Anglia, Wessex and Southern). The HOUK has been in operation for 4 years (publically 15 

available from autumn 2013) and thus is a relatively new product. At present, automated web statistics indicate approximately 

300 readers or users of the HOUK website per month (Prudhomme et al., under review). Exactly how water managers use the 

HOUK in practice has not yet been assessed, but ongoing evaluations of the skill in the different methods used in the 

construction of the Outlook will undoubtedly help provide the evidence required to support use of the product in decision-

making. 20 

 

 

Despite the relatively low temporal and spatial resolution of the GloSea5 UK rainfall forecasts (currently: monthly time-step 

and national-scale), they can be used to provide skilful flow forecasts at a regional/national scale when combined with a 

hydrological model-simulated estimate of the hydrological initial condition. Given the high spatial heterogeneity in typical 25 

patterns of UK rainfall and evaporation, future development of higher resolution seasonal forecasts could lead to substantial 

improvements in seasonal flow forecast capability, benefitting practitioners interested in predicting flooding and water 

resources, not only in the UK, but potentially across Europe. 
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