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Abstract. This work aims to estimate soil moisture and vegetation height from Global Navigation Satellite System (GNSS) 

Signal to Noise Ratio (SNR) data using direct and reflected signals by the land surface surrounding a ground-based antenna. 

Observations are collected over a rainfed wheat field in southwestern France. Surface soil moisture is retrieved based on 

SNR phases estimated by the Least Square Estimation method, assuming the relative antenna height is constant. It is found 15 

that vegetation growth breaks up the constant relative antenna height assumption. A vegetation height retrieval algorithm is 

proposed using the SNR dominant period (the peak period in the average power spectrum derived from a wavelet analysis of 

SNR). Soil moisture and vegetation height are retrieved at different time periods (before and after vegetation significant 

growth in March, respectively). The retrievals are compared with two independent reference datasets: in situ observations of 

soil moisture and vegetation height, and numerical simulations of soil moisture, vegetation height and above-ground dry 20 

biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere) land surface model. Results show that 

changes in soil moisture mainly affect the multipath phase of the SNR data (assuming the relative antenna height is constant) 

with little change in the dominant period of the SNR data, whereas changes in vegetation height are more likely to modulate 

the SNR dominant period. Surface volumetric soil moisture can be estimated (R2 = 0.74, RMSE = 0.009 m3m-3) when the 

wheat is smaller than one wavelength (~ 19 cm). The quality of the estimates markedly decreases when the vegetation height 25 

increases. This is because the reflected GNSS signal is less affected by the soil. When vegetation replaces soil as the 

dominant reflecting surface, a wavelet analysis provides an accurate estimation of the wheat crop height (R2 = 0.98, RMSE = 

6.2 cm). The latter correlates with modeled above-ground dry biomass of the wheat from stem elongation to ripening. It is 

found that the vegetation height retrievals are sensitive to changes in plant height of at least one wavelength. A simple 

smoothing of the retrieved plant height allows an excellent matching to in situ observations, and to modeled above-ground 30 

dry biomass. 
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1 Introduction 

In situ observations of soil moisture and vegetation variables are key to validate land surface models and satellite-derived 

products. Recent international initiatives, such as the International Soil Moisture Network (Dorigo et al., 2013) or the 

Committee on Earth Observation Satellites (CEOS) Land Product Validation group (Morisette et al., 2006) have improved 

the access to such observations. However, they remain very sparse and there is a need to develop new automatic techniques 5 

to monitor land surface variables at a local scale. Global Navigation Satellite System (GNSS) reflectometry could be a 

solution. A number of studies demonstrated that GNSS multipath signals can be used to retrieve various geophysical 

parameters of the surface surrounding a GNSS receiving antenna (Motte et al., 2016). Over land, variables such as soil 

moisture, snow depth and vegetation status can be observed (Larson et al., 2008; Small et al., 2010; Larson and Nievinski, 

2013; Wan et al., 2015; Boniface et al., 2015; Larson, 2016; Roussel et al., 2016). GNSS satellites operate at the L-band 10 

microwave frequency domain (between 1.2 GHz and 1.6 GHz). At these relatively low frequencies, the microwave signal is 

less perturbed by atmospheric effects and can better penetrate clouds and heavy rains than higher frequency signals. This 

ensures continuous operations, in all weather conditions, at either daytime or nighttime. The L-band signal emitted or 

reflected by terrestrial surfaces is related to surface parameters like surface soil moisture, roughness or vegetation 

characteristics. These properties have been exploited by e.g. the Soil Moisture and Ocean Salinity (SMOS) satellite and the 15 

Soil Moisture Active Passive (SMAP) missions (Kerr et al., 2001; Chan et al., 2016) for Earth surface remote sensing 

applications. While SMOS is a radiometer and measures the Earth surface microwave emission (passive microwaves), GNSS 

satellites emit a radar signal (active microwaves). Active microwaves can present improved temporal and spatial resolutions, 

but the signal may be more sensitive to the structure of the surface, such as soil roughness or vegetation effects than for 

passive microwaves (Wigneron et al., 1999; Njoku et al., 2002). 20 

Existing geodetic-quality GNSS networks have the potential to provide a large number of in situ observations, depending on 

the receiver technology: (1) waveform acquisition with a specific receiver using two antennas (one zenith-oriented antenna 

and one surface-oriented antenna), called GNSS reflectometry (GNSS-R) technique (Zavarotny et al., 2014) or (2) GNSS 

signal strength represented by the Signal-to-Noise Ratio (SNR) acquired with a classical geodetic receiver using one 

antenna, called SNR GNSS interferometric reflectometry (GNSS-IR) technique (Larson, 2016). GNSS networks can be used 25 

to monitor small or large areas depending on the antenna height and satellite elevation (Roussel et al., 2014). Continuous 

monitoring of surface soil moisture can be made over a long period at spatial scales ranging from 100 m2 (antenna height of 

about 2 m) to 8000 m2 (antenna height of about 150 m) for classical geodetic receiver but can reach a few thousand square 

kilometers with waveform receivers embedded on satellites (e.g. TechDemoSat-1 mission, Foti et al. (2015)). 

Using the SNR GNSS-IR technique, Larson et al. (2008) showed that SNR data obtained from existing networks of single 30 

ground-based geodetic antennas can be used to infer soil moisture. Other GNSS methods (besides reflectometry) can be 

used. For example, Koch et al. (2016) used three geodetic GNSS antennas (one was installed above the soil, the other two 
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were buried at a depth of 10 cm), to measure the GNSS signal strength attenuation and to retrieve soil moisture over bare 

soil. 

A network called PBO H2O based on single GNSS antennas at Plate Boundary Observatory (PBO) sites is currently used in 

western regions of the USA to monitor surface soil moisture (Larson et al., 2013; Chew et al., 2016) and snow depth (Larson 

and Nievinski, 2013; Boniface et al., 2015). It must be noted that most of the 161 GNSS stations of this network are located 5 

in mountainous areas or in areas of California characterized by a relatively arid climate. They are surrounded by sparse 

vegetation and are therefore not adapted to vegetation growth studies.  

In the SNR GNSS-IR technique, the interference between the direct and the reflected signals is observed through temporal 

variations of the SNR data (Bilich and Larson 2007; Zavorotny et al., 2010; Chew et al., 2014). Changes in geophysical or 

biophysical parameters affect the phase, amplitude and frequency of the SNR modulation pattern. The SNR is also 10 

influenced by surface roughness and by the position of the antenna with respect to the surface and to the satellite (Larson and 

Nievinski 2013; Chew et al., 2016). The SNR modulation primarily depends on:  

• the relative height of the GNSS antenna above the reflecting surface (ground or vegetation surface),  

• satellite elevation,  

• the superposition of the direct signal and of the reflected signal, which varies along with changes in the satellite 15 

track positions,  

• Right Hand Circular Polarization (RHCP) and Left Hand Circular Polarization (LHCP) gain pattern of the receiving 

antenna, (RHCP usually increases the SNR when the satellite elevation angle increases, LHCP is related to 

imperfections of the antenna and is greater than RHCP for the reflected signal);  

• reflection coefficients for the reflecting surface, related to the water content and to the ground mineralogical content 20 

of the reflecting surface,  

• surface topography and roughness and  

• the satellite transmitted power.  

A soil moisture retrieval algorithm from SNR data was derived by Chew et al. (2014) over bare soil. In subsequent modeling 

studies Chew et al. (2015) showed that the vegetation canopies affected the SNR modulation pattern. They showed that 25 

vegetation growth tended to trigger a decrease of the SNR amplitude. Because the vegetation effects tended to perturb the 

soil moisture retrieval, Chew et al. (2016) proposed an improved algorithm for soil moisture retrieval in vegetated 

environments, which used the amplitude decrease extent to decide when vegetation influence was too large. They used a 

model database for the SNR of L2C signal to remove most significant vegetation effects for the sites they considered in 

Western USA. Small et al. (2016) further compared different algorithms of GNSS-IR soil moisture retrieval in the presence 30 

of vegetation. Roussel et al. (2016) integrated both GPS and GLONASS SNR data to retrieve soil moisture over bare soil. 

Using data from a field study, Wan et al. (2015) showed that the amplitude of the SNR data presented a good linear 

relationship with the vegetation water content (VWC), but it was restricted to VWC values of less than ~1 kg m-2. In addition 
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to the amplitude of the SNR data, it was also possible to infer VWC by the MP1rms index, which is a linear combination of 

L1 and L2 carrier phase data and L1 pseudorange data (Small et al., 2010), and by the NMRI (Normalized Microwave 

Reflection Index) which is derived from the MP1rms (Small et al., 2014; Larson and Small 2014). 

In this study, the SNR GNSS-IR technique was used to analyze GNSS SNR data obtained with a single classical geodetic 

antenna receiver over an intensively cultivated wheat field in southwestern France. The data were used to retrieve either soil 5 

moisture or relative vegetation height during the growing period of the wheat crop. The method proposed by Chew et al. 

(2016) (hereafter referred to as CH16) was used to retrieve soil moisture. Moreover, we performed a wavelet analysis in 

order to extract the dominant period of the SNR. We investigated to what extent vegetation height influenced the dominant 

period resulting from the wavelet analysis. The main justification for investigating the impact of vegetation height was that it 

impacted the relative antenna height (the distance from the antenna to the reflecting surface). Vegetation growth tended to 10 

decrease the relative antenna height and broke up the constant height assumption used in soil moisture retrieval algorithms. 

In this context, key objectives of this study were to (1) assess the soil moisture retrieval technique in either low or tall 

vegetation conditions, and (2) retrieve vegetation height along the wheat growth cycle.  

2 Materials and methods 

2.1. SNR data and pre-processing 15 

The GNSS SNR data were acquired from an antenna at 2.51 m above the soil surface over an experimental field covered by 

rainfed winter wheat in Lamasquère, France (4329'10''N, 113'57''E, see Fig. S1 in the Supplement). These GNSS data were 

collected by GET (Géosciences Environnement Toulouse) for a whole growing season, from January to July 2015. A Leica 

GR25 receiver equipped with an AS10 antenna was used and data were acquired at a sample frequency rate of 1 Hz. Only 

the S1C SNR signal strength on the civilian L1 C/A channel of the GPS constellation was used in this study because the used 20 

receiver could not track the L2C signal. The latter is only transmitted by the recent Block IIR-M ("Replenishment 

Modernized") and IIF ("Follow-on") GPS satellites. Vey et al. (2016) showed that soil moisture root mean square difference 

between L2C and L1 was 0.03 m3m-3. The quality of the more recently available L2C signal (used by PBO H2O (CH16)) is 

higher than either L1 C/A or L2P from non-code tracking receivers. However, a number of studies (e.g. Vey et al., 2016) 

showed that the SNR of the L1 C/A signal can be used to provide reliable soil moisture estimates over sparse vegetation and 25 

bare soil surface, although it is less precise than the L2C signal. Although data from other constellations were also acquired 

(e.g., GLONASS, GALILEO), their orbital parameters such as satellite track positions or satellite altitude were not the same. 

In order to be consistent with the GPS-only studies of Larson et al. (2008), CH16, and Small et al. (2016), we only used GPS 

SNR data. For our site, four GPS satellites out of 32 were excluded from the analysis because their data were incomplete 

(GPS03, 20, 26, these numbers corresponding to their Pseudo-Random Noise (PRN) numbers) or not received (GPS08). 30 

Finally, GPS SNR data were missing for only nine days: 8 and 9 February, 3 April and from 13 to 18 May 2015. 
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Following the method proposed by Larson et al. (2010), a low-order polynomial was fit to the SNR data, and the modulation 

pattern was then derived from the SNR by subtracting this polynomial from the SNR data. The logarithmic dB-Hz units were 

converted to a linear scale in V V-1 using the following conversion equation: 2010

SNR

linearSNR   (Vey et al., 2016). Figure 

1a shows an example of the detrended multipath SNR data for the ascending track of GPS01 on 21 January 2015. The 

periodic signature of the multipath SNR data is visible. We only analyzed the modulation patterns in a valid segment for 5 

satellite configurations corresponding to low elevation angles, ranging from 5 to 20 degrees. This corresponded to a valid 

segment data recording of less than one hour (40 to 50 minutes). We excluded very low elevation angles (less than 5 

degrees) in order to avoid spurious effects from trees and artificial surfaces surrounding the field. Because the SNR signal 

amplitude was much reduced and the wave pattern was not visible at high elevations for our field observations, we excluded 

elevation angles larger than 20 degrees.  10 

2.2. Soil moisture and vegetation characteristics 

The field campaign was part of a coordinated effort led by CESBIO (Centre d'Etudes Spatiales de la BIOsphère) to monitor 

crops in southwestern France using both in situ and satellite Earth Observation data. Independent in situ observations of soil 

moisture and vegetation height were made together with model simulations of these quantities. Both observations and 

simulations were used to validate soil moisture and vegetation height retrievals.  15 

Since the whole wheat growing cycle was examined, both soil moisture and vegetation modulated the multipath SNR 

pattern. Soil roughness was considered as stable in time from sowing to harvest. Soil in the close vicinity of the antenna 

consisted of 18% of sand, 41% of clay, and 41% of silt. The row spacing of the wheat crop was 15 cm. 

The wheat was sown during the autumn, on 1 October 2014 and was harvested from 26 to 30 June 2015. Volumetric soil 

moisture (VSM) was measured by FDR (Frequency Domain Reflectometry) ML2 Thetaprobes and was continuously 20 

monitored at a depth of 5 cm from 16 January to 10 March 2015 and from 30 March to 26 May 2015. Measurements of crop 

height were performed at seven dates during the plant growing cycle. The canopy height did not exceed 0.1 m at wintertime 

and rapidly increased at springtime: it reached 0.2 m on 10 March 2015 and 1 m on 29 May. It dropped to 0.39 m on 18 June 

because of a lodging event. The exact date of lodging could not be precisely determined. It could be inferred that lodging 

happened between 29 May and 18 June. 25 

In addition to in situ observations, simulations of surface soil moisture (0-10 cm top soil layer), plant height and above-

ground dry biomass were performed for this site by CNRM (Centre National de Recherches Météorologiques) using the 

ISBA (Interactions between Soil, Biosphere, and Atmosphere) land surface model within the SURFEX (version 8.0) 

modeling platform (Masson et al., 2013). The ISBA configuration and the atmospheric analysis used to force the model are 

described in Lafont et al. (2012). The C3 crop plant functioning type and a multilayer representation of the soil hydrology 30 

are considered. The model soil depth is 12 meters, with 15 layers and the layer thickness increases from the top surface layer 
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to the deepest layers (Decharme et al., 2011). These simulations were used as an independent benchmark for soil moisture 

and vegetation variables. 

2.3. Multipath SNR characteristics 

Due to the motion of the GPS satellites, the path delay between the direct and reflected signals causes an interference pattern 

in the signal power of SNR data. The distance from the antenna to the dominant reflecting surface directly affects the SNR 5 

frequency/period.  

As noted by Georgiadou and Kleusberg (1988) and Bilich and Larson (2007), assuming the ground surface is horizontal, the 

additional distance (δ) travelled by a reflected signal relative to the direct signal is 

)sin(2  h             (1) 

where h is the relative antenna height, and  is the satellite elevation angle. This path delay δ can also be expressed in terms 10 

of the multipath relative phase   : 




 2             (2) 

where  represents the L1 wavelength (0.1903 m). 

Thus the multipath frequency (f) and period (T) can be written as:  

dt

d
h

dt

d
f







 )cos(

4
2           (3) 15 

dt

dh
f

T





 )cos(21
           (4) 

This means that the relative antenna height (h) directly affects multipath frequency f and period T. Antennas far above the 

reflecting surface have higher multipath frequencies (smaller multipath periods) than antennas closer to the reflecting 

surface. Furthermore, satellite geometric information and motion substantially influences T due to the )cos(  and dtd /  

terms in equation (4). When satellite passes reach high elevation angles dtd /  becomes larger (Bilich and Larson, 2007). 20 

Conversely, satellites with passes presenting small maximum elevations  present smaller dtd /  values than satellites 

orbiting overhead. Contrasting configurations are illustrated in the Supplement (Fig. S2). In order to limit the impact of these 

differences from satellite motion, only the full-track data with at least 40 degree maximum elevation angle were selected. 

Among the remaining tracks we removed the slowly moving tracks whose maximum dtd cos  was less than 

5105.9  rad s-1 (threshold value based on our field observations) of the valid segment (elevation angles ranging between 5 25 

and 20 degrees). This specific data sorting was only made for vegetation height retrieval (Sect. 2.5). After this selection, the 

number of available satellite tracks was 37 per day. 
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Provided the reflecting surface is stable, the a priori antenna height can be used to estimate the SNR frequency. The SNR 

frequency is used to calculate the multipath SNR phase, and then the SNR phase is used to estimate VSM (Sect. 2.4). If the 

reflecting surface is changing in response to vegetation growth, relative vegetation height can be retrieved instead of VSM 

by directly estimating the dynamic SNR frequency/period with a wavelet analysis (Sect. 2.5). 

2.4. Soil moisture retrieval 5 

As the SNR frequency is known (Eq. (4)), it is possible to estimate the SNR amplitude and phase. Larson et al. (2008) and 

Larson et al. (2010) showed that phase varies linearly with VSM in m3m-3 (R2 = 0.76 to 0.90). Retrieving absolute VSM 

values in m3m-3 is possible after a calibration phase. This result was used by Chew et al. (2014) to develop an algorithm to 

estimate surface soil moisture (top 5 cm) over bare soil.  

For bare soil, changes in surface soil moisture affect the signal penetration depth. The latter can be very small in wet 10 

conditions and tends to increase in dry conditions, up to a few centimeters (Chew et al., 2014; Roussel et al., 2016). This is a 

small change with respect to the antenna height (2.51 m in this study). Consequently, the relative antenna height (h) is 

considered as a constant (hc = 2.51m) in this Section. Using sine of the elevation angle ( )sin( ) as the independent 

variable, the modulation frequency becomes proportional to hc. Then the multipath SNR can be expressed as (Larson et al., 

2008):  15 

))sin(
4

cos( mpi
c

mpi

h
ASNR 




          (5) 

The least square estimation (LSE) method proposed by Larson et al. (2008) is used to estimate the multipath amplitude (A) 

and multipath phase ( mpi ) from the multipath SNR data. Then, mpi  can be used to estimate the soil moisture changes 

(CH16),  

residtt VSMSVSM             (6) 20 

Phase changes 0  tt  are calculated with respect to 0 , the reference phase. We used the method proposed by 

CH16 consisting in estimating 0  as the mean of the lowest 15% of the mpi  data for each track during the retrieval period. 

The same condition was used to estimate the VSMresid residual soil moisture from the in situ VSM observations. The VSMresid 

was taken as the minimum soil moisture observation, which presented a value of 0.252 m3m-3 during the retrieval period. 

The S parameter (in m3m-3degree-1) is the slope of the linear relationship between phase changes and soil moisture. For time 25 

series with no significant vegetation effects, S = 0.0148 m3m-3degree-1 for L2C signal (CH16). Following CH16, the median 

soil moisture estimate from all available satellite tracks (66 per day) that passed at different times during the day was used as 

the final soil moisture estimate. 



8 

 

We also used the in situ VSMt, t and VSMresid to fit a locally adjusted slope. The retrieval of the S parameter requires at 

least one or two months of VSM in situ observations because soil moisture conditions ranging from dry to wet need to be 

sampled. However, if a scaled soil wetness index is used instead of soil moisture, no in situ VSM observations are needed. 

Alternatively, the phase time series can be normalized for each satellite track, and using S is not needed. We considered the 

median value of the normalized phases from all available satellite tracks (66 per day) as the final scaled soil wetness index 5 

(φindex) for each day:  

 

minmax

min









index            (7) 

 

VSM could then be estimated from φindex:  10 

 

)( min_max_min_ obsobsindexobs VSMVSMVSMVSM         (8) 

 

VSMobs_min and VSMobs_max are the minimum and maximum in situ VSM observations during the experimental time period, 

respectively.  15 

CH16 defined the normalized amplitude (Anorm) as the ratio of amplitude to the average of the top 20 % amplitude values. 

The Anorm time series can be used to assess whether or not vegetation effects are significant. Values of Anorm above 0.78 

(dimensionless) indicate that vegetation effects are small (CH16). In conditions of significant vegetation effects CH16 used 

an algorithm able to correct the phase for vegetation effects. This algorithm is based on an unpublished lookup table. Since 

we were not able to correct for vegetation effects, we retrieved surface soil moisture during a period with rather sparse 20 

vegetation, from 16 January to 5 March. During this time span, Anorm was above 0.78 as shown in Fig. 2 (black dots).  

2.5. Vegetation height retrieval using a wavelet analysis 

While vegetation grows, the vegetation surface gradually replaces the bare soil surface as the dominant reflecting surface. As 

a consequence, the height (h) of the antenna above the reflecting surface decreases. Equation (4) shows that changes in h 

impact T. This property allows the use of changes in T values to infer changes in h, and further estimate relative vegetation 25 

height. To retrieve relative vegetation height we propose a new approach based on wavelet analysis. Wavelets have been 

used for many years in signal processing studies in geosciences (Ouillon et al., 1995; Darrozes et al., 1997; Gaillot et al., 

1999), astrophysics (Escalera and MacGillivray, 1995), meteorology (e.g. Hagelberg and Helland, 1995; Torrence and 

Compo, 1998), hydrology (Labat, 2005) and in many other fields. The wavelet analysis is well suited for analyzing time 

series with non-stationary power and frequency changes across time as illustrated by Fig. 1. Our wavelet analysis 30 

methodology is based on the WaveletComp R-package (Roesch et al., 2014). To analyze the period structure, we used a 
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well-known Morlet mother function which comes from a combination of a Gaussian function and a sinusoidal function (Fig. 

S3 in the Supplement). Due to its shape, Morlet daughters allow detection of singularities in all scales/periods of the 

spectrum. Morlet wavelet is also well suited for environmental analysis (Grinsted et al., 2004). We calculate the Morlet 

wavelet transform of the multipath SNR and evaluate the power spectrum of the multipath SNR signal (see Eqs. S1-S4 in the 

Supplement).  5 

Vegetation height can be retrieved using the dominant SNR period (Td), which is the peak period of the average power 

spectrum derived from a wavelet analysis of SNR, from the multipath SNR segment at elevation angles from 5 to 20 degrees. 

After obtaining Td time series, the relative antenna height (h) can be derived from Eq. (4) as: 

d
E

E T
dt

d
h




9

9cos2





          (9) 

The Td value is used to represent the multipath SNR data in order to estimate h. Also, changes in the elevation angle () and 10 

in dtd /  have to be accounted for. In this study, changes in h were surveyed across dates at an elevation angle of 9 degree 

(See Sect. 3.2). 

Changes in relative antenna height (h) during vegetation growth are directly related to vegetation height increase: 

hhH  0             (10) 

Similarly to the phase change estimates (t in Sect. 2.4), h0 is the median value of the top 15% h data during the whole 15 

wheat growth cycle for each track.  

The final retrieved vegetation height (H) is based on the mean relative antenna height change from all available satellite 

tracks (N = 37), plus one wavelength: 








N

H

H N            (11)  

The minimum value of H is one wavelength. Therefore Eq. (11) can only be applied when the wheat height is higher than 20 

one wavelength (0.19 m for L1).  

It must be noted that it is not necessary to retrieve soil moisture before retrieving vegetation height. 

2.6. GDD (growing degree days) model 

Because of the lack of in situ records of the field wheat growth stages, we built a reference GDD model based on the wheat 

growth stage dates observed at the same location in 2010 (Duveiller et al., 2011; Fieuzal et al., 2013, Betbeder et al., 2016). 25 

The GDD model is described in the Supplement (Eqs. S5-S6 and Fig. S4).  
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3. Results 

3.1 Soil moisture retrieval  

Figure 3 presents the surface soil moisture retrievals from 16 January to 5 March 2015, together with independent in situ 

VSM observations and ISBA simulations. The VSM retrievals are derived from GPS SNR observations using Eq. (6) in 

sparse vegetation conditions, when Anorm is above 0.78, with the a priori S value of 0.0148 m3m-3degree-1 (Fig. 3a) and the 5 

adjusted local slope S = 0.0033 m3m-3degree-1 (Fig. 3b). This adjusted S value is the mean of slope values obtained for 

satellite tracks whose phase presented a linear correlation with in situ soil moisture higher than 0.9. This occurred for the 

ascending tracks of GPS 13, 21, 24 and 30 and for the descending tracks of GPS 05, 09, 10, 15, and 23. Figure 3c shows the 

VSM retrievals from the scaled soil wetness index (Eq. (8)).  

The GPS and ISBA scores are given in Table 1. The mean soil moisture values during the experimental period are 0.27, 0.28, 10 

0.31, 0.26, and 0.28 m3m-3 for in situ VSM measurements, ISBA simulations, GPS retrievals with S = 0.0148 m3m-3degree-1, 

GPS retrievals with S = 0.0033 m3m-3degree-1, and GPS retrievals from the scaled soil wetness index, respectively. 

In Fig. 3, the sub-daily statistical distribution of the VSM retrievals is indicated by box plots. The range of daily standard 

deviation value of the various VSM estimates is shown in Table 2. The in situ VSM measurements present the smallest sub-

daily variability, with a mean standard deviation value of 0.002 m3m-3. The largest variability is obtained for the GPS 15 

retrievals based on the a priori slope value S = 0.0148 m3m-3degree-1, with a mean standard deviation value of 0.036 m3m-3. 

GPS retrievals based on the adjusted slope value S = 0.0033 m3m-3degree-1 presents intermediate values (0.008 m3m-3), 

together with those based on the scaled soil wetness index (0.009 m3m-3) and with the ISBA simulations (0.005 m3m-3). 

Figure 3 shows that the sub-daily variability of GPS VSM retrievals tends to increase during the last 10 days of the retrieval 

period. 20 

It must be noted that GPS data are missing on 8 and 9 February, and that the ISBA simulations indicate soil freezing (i.e. the 

presence of ice in the top soil layer) from 4 to 9 February. This period was excluded from the comparison. In the end, there 

were 47 valid observation days for the statistical analysis of the retrieved surface VSM, among which 43 days could be 

compared with model simulations. 

The GPS VSM daily mean retrievals based on the CH16 method present a good agreement with both in situ observations and 25 

ISBA simulations: MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) are lower than 0.05 m3m-3, and SDD 

(Standard Deviation of Differences) does not exceed 0.04 m3m-3 (Table 1). The errors are reduced by at least 50 % when the 

local adjusted slope is used. When the scaled soil wetness index is used, the errors are further reduced. 

Figure 4a and 4b show the retrieved soil moisture as a function of the in situ observations for a priori and adjusted slopes (S 

= 0.0148 m3m-3degree-1 and S = 0.0033 m3m-3degree-1, respectively) from all available satellite tracks (66 per day), not only 30 

those tracks used for fitting the slope (see Supplement Fig. S5). The corresponding improvements in score values are given 

in Table 1: the MAE decreases from 0.036 to 0.011 m3m-3, the RMSE decreases from 0.046 to 0.014 m3m-3, the SDD 
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decreases from 0.036 to 0.009 m3m-3. The retrievals based on the a priori slope markedly overestimate VSM in wet 

conditions. On the other hand, the retrievals based on the adjusted slope only slightly underestimate VSM. This shows that 

adjusting the slope is critical and has a major impact on the retrieval accuracy. Furthermore, Figure 4c gives the retrievals 

based on the scaled soil wetness index. Scores are further improved: the MAE decreases to 0.007 m3m-3, RMSE to 0.009 

m3m-3, and SDD to 0.008 m3m-3. 5 

We also compared the retrievals with the independent ISBA simulations. The ISBA model VSM simulations present a better 

agreement with the in situ VSM observations than the GPS retrievals, for all the scores, as shown by Table 1 (last column) 

and Fig. 3. In particular, R2 = 0.88 for ISBA simulations, against R2 = 0.74 for GPS retrievals. This shows that the ISBA 

simulations can be used as a reference to assess local GPS retrievals for this site. The statistical scores resulting from the 

comparison between the GPS retrievals and the simulations are similar to those based on in situ observations.  10 

After 5 March, Anorm drops below 0.78 (Fig. 2), and the VSM retrievals are not valid. We made an attempt to retrieve VSM 

from 6 to 15 March. We obtained 10 VSM retrieved values and we compared them with ISBA VSM simulations, because in 

situ observations were lacking. The R2 score decreased from 0.63 before 6 March (Table 1) to only 0.21 from 6 to 15 March. 

This result confirms that the empirical Anorm threshold (0.78) is a good way to assess the VSM retrieval feasibility over 

vegetated areas. Additionally, we found that adjusting the Anorm threshold from 0.78 to 0.88 permitted making a distinction 15 

between harvest and post-harvest (after 30 June) Anorm values in Fig. 2. Four more days (2-5 March) are excluded. Figure 3 

shows that the 25-75% percentile intervals for these days are larger, but the maximum retrieval differences for these days are 

acceptable, around 0.03 m3m-3. 

3.2 Dominant SNR period analysis during the wheat growth cycle 

Figure 1 shows an example of the multipath SNR data from the ascending track of GPS01 on 21 January 2015. Its average 20 

power spectrum (Fig. 1b) derived from a wavelet analysis is also shown, together with the power spectrum (Fig. 1c) for 

periods ranging from 128 to 1024 s. The average power spectrum presents a single peak and the corresponding peak period 

is 362 s. The SNR data is reconstructed well (red line in Fig. 1a), using this peak period. Both phases and amplitudes match 

very well. This shows that the peak period from the average power spectrum can be used to represent the multipath SNR 

data. Limiting elevation angle values from 5 to 20 degrees (Sect. 2.1) ensures a relatively stable value of the peak period. 25 

The peak period is considered as the dominant period (Td) of the multipath SNR data.  

Additionally, the major part of the signal power is concentrated on elevation angles ranging from 7 to 11 degrees (see Fig. 

1). A preliminary analysis for the entire wheat growing cycle showed that, more often than not, the best elevation angle 

corresponding to the peak power was around 9 degrees. In this study, elevation and its change rate at 9 degree are used to 

represent the SNR data for all available satellite tracks (37 per day). It must be noted that this reference elevation angle is 30 

specific to the gain pattern and height of the antenna encountered in this experiment. It could present different values in other 

antenna configurations. 
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During the wheat growth cycle, preliminary tests showed that the average power spectrum could present multiple peaks 

together with a reduced maximum average power. This made Td unsuitable for the representation of the multipath SNR data. 

Under this situation the quality of the Td value was considered as poor and the data were not used. An example of Td time 

series is shown in Fig. 5 for GPS01 ascending tracks. Poor quality data (e.g. on 17-20 March, and 12-16 June) are indicated. 

We sorted out the data acquired in two situations: (1) track data presenting more than one peak in the highest 80% percentile 5 

of the power spectrum, (2) Td value smaller by 10 seconds than the mean value of the lowest 10% of the dominant periods 

(e.g., Td < 352 s for GPS01). This is further illustrated in Fig. 6, comparing a usable track and an unusable track. On 1 May, 

there is one peak in the average power spectrum (Fig. 6b), and the dominant period (456 s) obtained can be used to fit the 

SNR data in Fig. 6a. While on 15 June, there are two peaks in the average power spectrum as shown in Fig. 6d. Furthermore, 

the maximum average power is only 0.54 which is significantly smaller than the maximum average power of 1.0 observed 10 

on 1 May 2015 (Fig. 6b). In Fig. 6c, the SNR pattern is clearly noisier, with smaller amplitudes and a less clear pattern than 

in Figs. 1a and Fig. 6a. This data set is unusable. A possible cause is the more inhomogeneous reflecting surface after the 

lodging event. The probability distribution (grey bars) of bad quality tracks among all available 37 satellite tracks is shown 

in Fig. 2 on a daily basis from 16 January to 15 July 2015. Most unsuitable tracks are observed during two time periods: (1) 

at the beginning of spring, from 10 to 20 March, and (2) at the beginning of summer, from 12 to 26 June. The latter 15 

corresponded to lodging of vegetation, which occurred during a strong wind event and affected the reflecting surface height. 

The in situ observation of wheat height was only 39 cm on 18 June.  

As shown in Sect. 2.4, vegetation effects on the SNR signal became significant after 5 March. After this date, Anorm (black 

dots in Fig. 2) decreased drastically, in relation to plant growth. After 10 March, wheat height exceeded one wavelength (> 

0.19 m). In addition to lower Anorm values, an increasing number of unsuitable tracks was observed till 20 March, together 20 

with low values of the peak power (Fig. 5). During this time period, the vegetation gradually decreased the strength of the 

signal reflected from the soil surface and more signal was reflected by the vegetation. This triggered multiple peaks for some 

tracks. Such tracks were not used. When the vegetation surface completely replaced the soil surface as the dominant 

reflecting surface of the GNSS signal, a single peak period was observed again and its value increased in response to the rise 

of the reflecting surface. For example, Td increased from 362 s (7 March) to 397 s (22 March) for GPS01 ascending tracks. 25 

Figure 5 shows that Td is not sensitive to vegetation height when vegetation height is smaller than one wavelength. 

Therefore, it can be concluded that this relative vegetation height (at satellite elevation of 9 degrees) retrieval technique does 

not work for vegetation height below one  (~ 0.19 m for L1) and when multiple peaks are observed in the average power 

spectrum. 

3.3 Vegetation height retrieval 30 

Figure 7 shows the retrieved vegetation height from 16 January to 15 July 2015, together with seven in situ vegetation height 

measurements and daily vegetation height simulations by ISBA. Since the original H retrievals present a marked levelling 



13 

 

effect, the moving average of the GPS height retrievals computed using a centred gliding window of 21 days is shown. The 

relative vegetation height retrievals are compared with ISBA height simulations and in situ height observations in Table 3. 

The differences between the seven in situ observations and the original H retrievals are -8 cm, +4 cm, -5 cm, -10 cm, -6 cm, -

2 cm and -2 cm. Most of them exhibit a negative bias. In comparison with the errors between the in situ observations and the 

ISBA simulations (-5 cm, +6 cm, +10 cm, -15 cm, -3 cm, 0 cm and -61 cm), the GPS retrievals are closer to the observations 5 

on 30 March and 24 April (the third and forth in situ observations). On 18 June, the last height in situ observation before 

harvest is 39 cm, in relation to lodging. The GPS retrieval is very close to this value with only -2 cm error. On the other 

hand, the ISBA simulation on 18 June is still at 1 m with an error of -61 cm, because the wheat height was simulated without 

accounting for lodging. This result shows that the in situ GPS height retrievals are able to detect local changes in vegetation 

height. Figure 7 and the scores given in Table 4 show that the GPS retrievals are closer to the observed growing trend than 10 

the ISBA simulations. Additionally, the moving average height presents a much better fit to the in situ measurements than 

the raw GPS retrievals. We also compared the GPS retrievals with the ISBA model simulations. We obtained the following 

score values from 10 March to 11 June 2015: MAE = 8.9 cm, RMSE = 12.4 cm and R2 = 0.89. Similar values were obtained 

for the comparison between the moving average height and ISBA simulations: MAE = 9.0 cm, RMSE = 11.6 cm and R2 = 

0.91. 15 

3.4 Vegetation height vs. above-ground dry biomass 

Figure 7 also shows that the retrieved vegetation height is related to the simulated above-ground dry biomass of the wheat 

(brown line). We found a linear relationship between the moving average height from GPS retrievals and the above-ground 

dry biomass simulated by the ISBA model from 10 March to 29 May 2015 (when the maximum vegetation height, 1 m, was 

measured), during the time period from tillering to flowering. The correlation coefficient between the moving average height 20 

and the above-ground dry biomass, with 81 observations, was 0.996.  

A similar result was obtained using the in situ height and above-ground dry biomass measurements in Wigneron et al. (2002) 

over another wheat crop site (Triticum durum, cultivar prinqual) in spring 1993 (See Eqs. S7-S8 and Fig. S6 in the 

supplement).  

4. Discussion 25 

4.1. Can soil moisture be retrieved under significant vegetation effects? 

Our results show that over a wheat field the vegetation gradually replaces the soil as the dominant reflecting surface when 

plant height becomes comparable to, or larger than one wavelength. 

We tested the relationship between the multipath phase in Eq. (5) and soil moisture for the whole wheat growing cycle (Fig. 

8). We found that when the vegetation effects are not significant (Anorm > 0.78), the multipath phase correlates well (R = 30 
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0.92, N = 47, for the GPS10 descending tracks) with the in situ soil moisture observations (Fig. 8a). During this time period, 

the variation of multipath phase is about 12 degrees, for in situ VSM values ranging from 0.25 m3m-3 to 0.30 m3m-3. But 

when the vegetation effects are significant (Anorm < 0.78), the multipath phase (without or with unwrapping, Fig. 8b and 8c) 

is no longer linearly related to soil moisture. For example, when vegetation height starts exceeding one wavelength, 

multipath phase rapidly decreases from 207 degrees to 43 degrees (between 10 and 20 March). Changes in multipath phase 5 

are disconnected from ISBA VSM simulations. This is consistent with CH16, who showed that soil moisture cannot be 

retrieved unless vegetation effects are corrected for. 

4.2. Why does the locally adjusted S parameter differ from CH16? 

In our experiment, the possible VSM retrieval duration was less than two months, in relatively wet conditions and VSM 

varied little: 0.25 m3m-3 < VSM < 0.30 m3m-3. This is probably not enough to represent the full yearly range of soil moisture. 10 

This might affect the representativeness of the S parameter (Sect. 2.4) we derived from our field observations. Furthermore, 

the different signal wavelength (L1 = 19.03 cm, L2 = 24.45 cm) and the different antenna gain pattern also affect the S 

parameter. Many local environment factors such as vegetation effects, precipitation, changes in soil roughness and soil 

composition, can perturb the GPS VSM estimates. All these factors contribute to changes in S, and further affect the retrieval 

accuracy and the sub-daily variability of VSM estimates. That is why we used a scaled soil wetness index based on the 15 

normalized multipath phase for each track, without a priori knowledge of S parameter. This approach also gives more 

accurate results. 

4.3. Can vegetation water content be inferred from the wavelet analysis? 

We found that VWC impacts the peak power but we were not able to retrieve VWC at this stage. 

Figure 7 shows that the retrieved vegetation height is consistent with independent height measurements. However, 20 

vegetation height is not the only factor affecting the reflected GPS signal. Vegetation water content (VWC, in kg m-2) may 

also play a role on the reflected GPS signal. In situ observations indicate that VWC increased together with H during the 

growing period, from March to mid-May. From mid-May to harvest, VWC tended to decrease but H also decreased in 

relation to lodging. Can this specific behavior of VWC be detected from the results of the wavelet analysis? The latter 

provides three quantities: the dominant period (Sect. 2.5), Anorm, and the peak power.  25 

The amplitude (Anorm) is related to some extent to VWC (see Sect. 1). However, Anorm is calculated assuming the relative 

antenna height is constant. Because the wheat height increased from 10 cm to 100 cm, the relative antenna height was 

reduced, and this assumption was not satisfied. This affected the estimates of the amplitude of the multipath SNR data, 

especially when the wheat was tall. Comparing Fig. 6a and Fig. 6c, it can be observed that the signal amplitude is larger on 1 

May than that on 15 June. But Anorm (0.15) on 1 May is even smaller than the Anorm (0.33) on 15 June (Fig. 2). It is likely that 30 

Anorm was underestimated on 1 May. Therefore, it is difficult to unequivocally relate Anorm to vegetation characteristics, as 
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illustrated in Fig. 2. However, the drop in Anorm observed at the beginning of June (Fig. 2) could be related to the drop in 

VWC. 

From the wavelet analysis, we also obtained the peak power when we searched for the peak period from the average power 

spectrum. Peak power can represent changes in the multipath SNR strength. Figure 9 shows daily box plots of the peak 

power for all available satellite tracks from 16 January to 15 July 2015, together with the distribution of bad quality tracks 5 

(as in Fig. 2), and rainfall. There are two major possible causes for a sudden reduction of the strength of the SNR signal: (1) 

the attenuation of the signal by the rain intercepted by vegetation or in the troposphere and (2) the occurrence of more than 

one dominant reflecting surface at different heights, and this two causes can occur at the same time.  

Three events of rapid reduction of the peak power can be observed in Fig. 9a. These events are related to larger daily 

standard deviation (STD) values of vegetation height retrievals (see Fig. 9b). The last event in June could be related to 10 

lodging. However, whether maximum STD is an indicator of lodging or not is unclear. It seems that these events are not 

related to rainfall events, and that the attenuation by intercepted water content is not a major cause of peak power drops. On 

the other hand, the emergence of multiple peaks and of bad quality tracks is consistent with the rapid power reduction in 

March and June. Multiple peaks may indicate that the reflected signal originates from surfaces at different heights. A 

possible cause of multiple peaks is a more heterogeneous wheat canopy density during the first stage of the growing period 15 

and after lodging. In such sparse or mixed vegetation conditions, VWC is not uniformly distributed and the soil surface may 

significantly contribute to the SNR. In the middle of April, there is no such effect but STD score increases (Fig. 9b). It is  

interesting to note that the peak power drops in Fig. 9a correspond to rapid changes in the retrieved vegetation height in Fig. 

9c at multiples of  or 0.5. It must be noted that absolute daily changes in H (and h), of about 1.1 cm d-1 are fairly uniform 

throughout the growing period. Since h decreases when plants grow, relative changes in h tend to increase. According to Eq. 20 

(4), T behaves similarly. This means that the sensitivity of the retrieval method to changes in H is larger at the end of the 

growing period. This is probably why leveling is more pronounced between mid-March and mid-April than at the end of 

April (see Fig. 9c). Leveling is less noticeable in May. 

 

4.4. Can unwrapped multipath phase be used to retrieve vegetation height? 25 

Our results indicate that using the dominant period to retrieve vegetation height is more relevant than using the multipath 

phase.  

The relationship between the multipath phase (Fig. 8) in Eq. (5) and vegetation height was investigated. Because changes in 

relative antenna height exceeded  during vegetation growth, the multipath phase had to be unwrapped. When the vegetation 

height was smaller than  (before 10 March), multipath phase (around 200 degrees) presented little changes (about 12 30 

degrees). From 21 March to 18 April, multipath phase was much smaller (around 10 degrees) and relatively stable. On the 

other hand, the variability increased from 19 April to 11 June (Fig. 8c), and no relationship with plant growth could be 
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found. It can be noted that multipath phase and dominant period are relatively stable when the vegetation height is smaller 

than . Both tend to aggregate at several value levels. 

4.5. Can wheat phenological stages be inferred? 

Figure 9 shows that the occurrence of multiple peaks together with a drop of the peak power can be used as an indicator of 

the start of the most active part of the growing season, and of the end of the senescence period preceding the harvest.  5 

We applied the GDD model (see Sect. 2.6) to year 2015 and we obtained the following dates for tillering, flowering, and 

ripening: 12 March, 31 May, and 3 June, respectively (see Fig. S3 in the Supplement). The obtained tillering date (12 March) 

is close to the start date (10 March) of the multiple peaks (see Section 3.2). Tillering in wheat triggers nitrogen uptake and 

the accumulation of biomass (Gastal and Lemaire, 2002). This is consistent with the rapid changes in the indicators derived 

from the wavelet analysis: drop in Anorm values and high rate of multiple peaks (Fig. 2), rise in the retrieved H (Fig. 7), and 10 

drop in peak power (Fig. 9). For our site, the tillering date also corresponded to the period when H reached a value of about 

0.2 m. This was the case in 2015 and also in 2010 at the same site (Betbeder et al., 2016).  

Flowering and ripening did not trigger abrupt changes in the GPS retrievals. However, these stages corresponded to a change 

in H trend. This is illustrated in Supplement Fig. S7, which shows the difference between retrieved vegetation height at a 

given date and retrieved vegetation height 15 days before. Flowering and ripening occur towards the end of the growing 15 

period when the vegetation height is no longer increased compared with 15 days before but slightly declines due to wheat 

heads tipping down (Wigneron et al., 2002). In order to confirm these findings, it could be recommended to perform GNSS-

IR measurements over other wheat fields and other crops, together with phenological stage observations combined with in 

situ height measurements. 

4.6 Potential future applicability and transferability of the retrieval method 20 

In situ VSM observations are not widespread in France and in situ vegetation height observations are generally not available. 

Therefore, ISBA simulations are key for water resource monitoring at the country scale. It must be noted that the ISBA 

model is forced by the SAFRAN atmospheric analysis (Durand et al., 1993; Durand et al., 1999) and that SAFRAN is able to 

integrate thousands of in situ raingage observations. ISBA is also able to simulate vegetation characteristics such as 

vegetation height, leaf area index and above-ground dry biomass. However, in situ VSM observations are needed to validate 25 

the model simulations (e.g. Albergel et al., 2010). From this point of view, the spatial resolution of GNSS retrievals is an 

asset. The area sampled by GNSS retrievals is much larger than what can be achieved using individual soil moisture probes 

and much smaller than pixel size of satellite-derived products. Longer continuous time periods of GNSS retrievals should be 

envisaged to serve as independent validation data sources in statistical methods such as Triple Collocation (Dorigo et al., 

2010). 30 
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We successfully assessed the surface soil moisture retrieval technique over a wheat crop field, during the start of the growing 

period. However, the rather narrow range of surface soil moisture values during the corresponding experiment time period 

limited the representativeness of the obtained retrieval accuracy. Furthermore, our dataset did not include GNSS data and in 

situ VSM measurements for periods of bare soil. Longer periods presenting a bare soil surface should be investigated in 

future studies. At the same time, more in situ vegetation measurements should be carried out.  5 

The retrieved vegetation height was based on the dominant period of the average power spectrum. The latter was derived 

from GPS multipath SNR data for elevation angles between 5 and 20 degrees. We only considered the dominant period 

variations, without accounting for instantaneous phase changes. The accuracy of the retrieved vegetation height could 

probably be improved considering changes in both period and phase of the multipath SNR oscillations.  

In this study, only the SNR data of L1 C/A signal is used, SNR data from different wavelength (e.g., L1 C/A, L2C and L5) 10 

should also be compared or combined to survey canopy characteristics. 

A linear relationship between wheat height and dry biomass was observed during the period from wheat tillering to ripening. 

Retrieving dry biomass is a motivation for further research because most current satellite vegetation products focus on 

retrieving vegetation indexes or leaf area index. The dry biomass is directly related to the wheat yield, and retrieving wheat 

height could have applications in crop monitoring. In this study, only wheat is considered. Other crops should be 15 

investigated in the future.  

5. Conclusions 

GNSS SNR data were obtained using the SNR GNSS-IR technique over an intensively cultivated wheat field in 

southwestern France. The data were used to retrieve either soil moisture or relative vegetation height during the growing 

period of wheat. Vegetation growth tended to decrease the relative antenna height and broke up the constant height 20 

assumption used in soil moisture retrieval algorithms. Soil moisture could not be retrieved after wheat tillering. A new 

algorithm based on a wavelet analysis was implemented and used to extract the dominant period of the SNR and to retrieve 

vegetation height. The dominant period was derived from the peak period of the average power spectrum derived from a 

wavelet analysis of SNR. The method proposed by CH16 was used to retrieve soil moisture under sparse vegetation 

conditions, before wheat tillering. Soil moisture was retrieved on a daily basis with a precision (SDD) of 0.008 m3m-3. 25 

Before tillering, only one stable peak was observed in the average power spectrum, because the soil surface was the 

dominant GNSS reflecting surface. During and after tillering (10-20 March), the reflected GNSS signal included 

contributions from both soil and vegetation. More than one peak was observed in the average power spectrum together with 

low values of peak power, showing that there were no clear dominant reflecting surface. Wheat growth gradually raised the 

reflecting surface of the GNSS signal, from the soil surface to the vegetation surface, which significantly modulated the 30 

dominant period of the multipath SNR data. In these conditions, vegetation effects could not be ignored and soil moisture 

could not be retrieved. The retrieved vegetation height was in good agreement with the in situ observations, and was 
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consistent with a lodging event. However, the retrieved height consisted of several levels. Using a moving average on the 

retrieved height permitted a better match with the in situ height measurements: a precision of 3.8 cm could be achieved, 

against 5.5 cm for the original retrievals. Furthermore, several indicators derived from the wavelet analysis could be used to 

detect tillering. We also found that VWC impacts the peak power but the latter cannot be used to retrieve VWC at this stage. 

 5 
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Table 1. Soil moisture scores from 16 January to 5 March 2015. 

 
GPS vs. 

in situ 

GPS vs. 

ISBA 

GPS vs. in 

situ 

GPS vs. 

ISBA 

GPS 

(φindex) vs. 

in situ 

GPS 

(φindex) vs. 

ISBA 

ISBA vs. 

in situ 

S (m3m-3deg-1) 0.0148 0.0033 - - - 

N 47 43 47 43 47 43 43 

MAE (m3m-3) 0.036 0.034 0.011 0.018 0.007 0.009 0.009 

RMSE (m3m-3) 0.046 0.041 0.014 0.022 0.009 0.012 0.010 

SDD (m3m-3) 0.036 0.037 0.009 0.012 0.008 0.011 0.006 

Mean bias (m3m-3) 0.029 0.019 -0.010 -0.018 0.003 -0.005 0.008 

R2 0.73 0.63 0.73 0.63 0.74 0.65 0.88 

 

 

 

Table 2. Sub-daily variability (standard deviation, in m3m-3) of VSM estimates. 5 

 Minimum Maximum Average value 

In situ observations 0.000 0.009 0.002 

ISBA simulations 0.000 0.021 0.005 

GPS retrievals with S = 0.0148 m3m-3deg-1 0.012 0.090 0.036 

GPS retrievals with S = 0.0033 m3m-3deg-1 0.003 0.020 0.008 

GPS retrievals from scaled soil wetness indexes 0.005 0.017 0.009 

 

 

 

 

 10 

 

 

 

 

 15 
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Table 3. Vegetation height retrievals from GPS and simulations from ISBA, and their relative deviations for each in situ 

height observation. The phenological statuses are derived from the GDD model. 

Dates 

(Year 2015) 

Phenological 

status 

in situ 

height (cm) 

GPS 

height (cm) 

ISBA 

height (cm) 

in situ - GPS 

(cm) 

in situ - ISBA 

(cm) 

20 January - 10 18.4 15.4 -8.4 -5.4 

10 March - 20 15.7 14.5 4.3 5.5 

12 March Tillering - 15.5 15.6 - - 

30 March - 35 40.4 24.6 -5.4 10.4 

24 April - 55 65.3 70.0 -10.3 -15.0 

19 May - 97 102.9 100.0 -5.9 -3.0 

29 May - 100 101.7 100.0 -1.7 0.0 

31 May Flowering - 102.4 100.0 - - 

3 June Ripening - 101.9 100.0 - - 

18 June - 39 40.5 100.0 -1.5 -61.0 

 

 5 

 

 

 

 

Table 4. Vegetation height scores from 10 March to 11 June 2015. 10 

 GPS vs. in 

situ 

Moving average (21 

days) GPS vs. in situ 

GPS vs. 

ISBA 

Moving average (21 

days) GPS vs. ISBA 

ISBA vs. 

in situ 

N 5 5 87 94 5 

MAE (cm) 5.5 3.7 8.9 9.0 6.8 

RMSE (cm) 6.2 5.0 12.4 11.6 8.6 

SDD (cm) 5.5 3.8 12.5 11.6 9.6 

Mean bias (cm) 3.8 3.7 -0.6 -0.8 0.4 

R2 0.98 0.99 0.89 0.91 0.95 
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Figure 1. Example of a usable GPS01 ascending track SNR data set from 04:50 UTC to 05:38 UTC on 21 January 2015: (a) 

Multipath SNR data (in V V-1), (b) average power spectrum with its maximum value (red dot), and (c) power spectrum for periods 

from 128 to 1024 s. The red line in (a) is the reconstructed SNR data by the daughter wavelet corresponding to the peak period 5 
(362 s) indicated in (b). The power at the peak period across elevation angles (d) presents a maximum value at an elevation angle 

of about 9 degrees. 
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Figure 2. Normalized amplitude (Anorm) time series (black dots) and probability distribution (grey bars) of low quality tracks 5 
among all available satellite tracks on a daily basis from 16 January to 15 July 2015. The empirical Anorm threshold (0.78) is shown 

by the grey dashed line, and the soil moisture can be retrieved from 16 January to 5 March 2015 depending on it. Our field 

intuitive estimated Anorm threshold (0.88) depending on the Anorm in post-harvest (after 30 June) is shown by the red dashed line, 

and it indicates the soil moisture can be retrieved from 16 January to 1 March 2015. 

 10 
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Figure 3. In situ surface volumetric soil moisture (VSM) observations at 5 cm depth (green line), ISBA simulations (blue line), 

median of the daily GPS retrievals (a) with the a priori slope (S = 0.0148 m3m-3degree-1) (red line), (b) with a locally adjusted slope 

(S = 0.0033 m3m-3degree-1) (red line) and (c) from scaled soil wetness index (red line), and their daily statistical distribution (black 5 
box plots) for all available satellite tracks from 16 January to 5 March 2015. Boxes: 25-75% percentiles; bars: maximum 

(minimum) values below (above) 1.5 IQR (Inter Quartile Range, corresponding to the 25-75% percentile interval); dots: data 

outside the 1.5 IQR interval. The ISBA simulations indicate soil freezing (i.e. the presence of ice in the top soil layer) from 4 to 9 

February. 

 10 
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Figure 4. VSM GPS retrievals (N = 47) versus daily mean in situ VSM observations (m3m-3) at 5 cm from 16 January to 5 March 

2015, (a) with the a priori slope S = 0.0148 m3m-3degree-1, VSM = 0.0148Δφ + 0.252, (b) with the locally adjusted slope S = 0.0033 

m3m-3degree-1, VSM = 0.0033Δφ + 0.252, and (c) from scaled soil wetness indexes, VSM = 0.055φindex + 0.247. More scores can be 5 
referred from Table 1.  
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Figure 5. SNR dominant period (Td) time series (black dots in the bottom sub-figure) derived from the GPS01 ascending tracks, 

with the green crosses indicate more than one peak are recognized as bad quality data, from 16 January to 15 July 2015. And (top) 

the average power spectrums with their maximum values (red dots), and (middle) power spectrums on the selected days (red dots 5 
in the bottom sub-figure) are also shown. 
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Figure 6. Examples of (a) usable and (c) unusable track data sets from the ascending tracks of GPS01 on1 May 2015 and 15 June 

2015, respectively: (a, c) multipath SNR data, and (b, d) average power spectrums. The red lines in (a, c) are the reconstructed 5 
SNR data by the daughter wavelet corresponding to the maximum peak periods in (b, d), respectively. The green cross in (d) 

shows there is more than one peak in this track data, indicating bad quality, unusable data. 
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 5 

Figure 7. Wheat canopy height from 16 January to 15 July 2015 derived from GPS SNR data (black dots), from in situ 

observations (red squares), and from ISBA simulations (blue crosses). The green line represents the moving average of the GPS 

retrievals, computed using a centred gliding window of 21 days. Wheat above-ground dry biomass simulated by the ISBA model is 

indicated by brown dots. 

 10 
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Figure 8. Example of a track data set (descending tracks from GPS10): (a) from 16 January to 5 March, with no significant 

vegetation effects; (b) and (c) from 6 March to 15 July, with significant vegetation effects. In (a) and (b), multipath phases (black 

dots) are compared with in situ VSM measurements at 5 cm (blue line) and ISBA simulations (red line). In (c), unwrapped 5 
multipath phases (black dots) are used to compare with in situ and simulated VSM. 
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Figure 9. The box plots of (a) the peak power from a wavelet analysis, (b) standard deviation (STD) score of the retrieved 

vegetation height and (c) the retrieved vegetation height (rescaled in  units) for all available satellite tracks from 16 January to 15 5 
July 2015. The mean value of the peak power in (a) and of the retrievals in (c) are shown by red lines. In (a), the grey line shows 

the statistical distribution of bad quality tracks (the number of the bad quality tracks can be obtained multiplying by 37), the 

green line represents the rainfall (daily precipitation in mm d-1 can be obtained multiplying by 50). In (c), the rescaled in situ 

observations are shown by green squares. 
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