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Abstract. In Belgium, only rain gauge time-series have been used so far to study extreme precipitation
::::::
rainfall

:
at a given

location. In this paper, the potential of a 12-year quantitative precipitation estimation (QPE) from a single weather radar

is evaluated. For the period 2005-2016, independent sliding 1 h and 24 h rainfall extremes from automatic rain gauges and

collocated radar estimates are compared. The extremes
:::
peak

:::::::::
intensities are fitted to the exponential distribution using regression

in QQ-plots with a threshold rank which minimises the mean squared error. A basic radar product used as reference exhibits5

unrealistic high extremes and is not suitable for extreme value analysis. For 24 h rainfall extremes, which occur partly in winter,

the radar-based QPE needs a bias correction. A few missing events are caused by the wind drift of
:::::::::
associated

::::
with convective

cells and strong radar signal attenuation. Differences between radar and gauge
::::::
rainfall values are caused by spatial and temporal

sampling, gauge rainfall underestimations and radar errorsdue to the relation between reflectivity and rain rate. Nonetheless

the fit to the QPE data is within the confidence interval of the gauge fit, which remains large due to the short study period. A10

regional frequency analysis is performed on radar data within 20
::
for

::
1 km of

:
h

:::::::
duration

::
is

:::::::::
performed

::
at the locations of 4 rain

gauges with records from 1965 to 2008. Assuming that the extremes are correlated within the region, the fit to the two closest

rain gauge data is within the
:::::
gauges

::::
with

:::::::::
1965-2008

:::::::
records

:::::
using

::
the

::::::::
spatially

::::::::::
independent

::::
QPE

::::
data

::
in

:
a
:::::
circle

::
of

::::::
20 km.

::::
The

confidence interval of the radar fit, which is small due to the sample size
:
,
:::::::
contains

:::
the

:::::
gauge

::
fit

:::
for

:::
the

:::
two

::::::
closest

::::::
stations

:::::
from

::
the

:::::
radar. In Brussels, the extremes on the period 1965-2008 from a rain gauge are significantly lower than the extremes from15

::::
radar

::::::::
extremes

:::
are

::::::::::
significantly

::::::
higher

::::
than

:::
the

:::::
gauge

:::::::
rainfall

::::::::
extremes;

:::
but

::::::
similar

::
to
:::::

these
::::::::
observed

::
by

:
an automatic gauge

and the radar on the period 2005-2016. For 1 h duration, the location parameter varies slightly with topography and the scale

parameter exhibits some variations from region to region
:::::
during

:::
the

:::::
same

::::::
period.

:::
The

:::::::
extreme

::::::::
statistics

::::::
exhibit

::::
slight

:::::::::
variations

:::::
related

::
to
::::::::::
topography. The radar-based extreme value analysis can be extended to other durations.
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1 Introduction

Very localised precipitation
:::::::
Localised

:::::::
rainfall extremes can have a very strong impact on human activities especially in urban

areas
::::::::::::::::::
(Ootegem et al., 2016). For flood management applications (e.g. sewer system

:::
and

::::
dam design) it is needed to know the

expected maximum rainfall corresponding to a given return period. Based on the extreme value theory, a branch of statistics,

several methods to fit a distribution to precipitation extremes have been developed in the literature
::::::::
probability

::::
that

:::::::
rainfall5

::::::
exceeds

::
a

:::::
given

::::::
amount.

:::::
This

:::::::::
probability

::
is

::::
often

:::::::::
expressed

::
as

:::
the

::::::
rainfall

::::
level

::::::
which,

:::
on

:::::::
average,

:::
will

:::
be

:::::::
exceeded

:::::
once

::::
over

:
a
:::::
given

:::::
period

:::
of

:
T
:::::
years,

::::::
which

::
is

::::::
defined

::
as

:::
the

:::::
return

::::::
period. For infrastructure design application, one is more interested in

longer return periods . Therefore a fitting method focusing
::::::::
interested

::
in

::::::
return

::::::
periods

::::
from

:::
50

::
to

::::
100

:::::
years.

::::
Such

::::
long

::::::
return

::::::
periods

::::
often

:::::::
exceeds

:::
the

::::::::
available

::::::::::
observation

:::::
period

::::
and

:
a
::::::
model

:
is
:::::::
needed.

:

:::::::
Extreme

:::::
values

:::
are

:::::
often

::::::::
extracted

::::
from

:
a
::::
time

:::::
series

:::::
using

:::::
block

::::::::
maxima,

:::::::
typically

::::
over

:::
one

::::
year

:::::
(AM)

:::
for

:::::::::::::
meteorological10

::::
data.

::::
The

:::::::::::
performance

::
of

:::
the

:::::::::
statistical

:::::::::
modelling

:::::::
applied

::
to

::::
AM

::::
data

::
is
:::::::

limited
:::
by

:::
the

:::::::
number

::
of

:::::
years

:::::::::
available.

::::
The

::::::::::::::::
peak-over-threshold

::::::
(POT)

:::::::
method,

::::::
where

::::::
values

::::::::
exceeding

::
a
:::::
given

:::::::::
threshold

:::
are

::::
kept,

::::::
allows

:::
to

:::::::
increase

:::
the

:::::::
number

:::
of

:::::::
samples.

:::
The

:::::::
extreme

:::::
value

::::::
theory

::::::
showed

:::
that

:::
for

::::::::::
independent

:::::::
random

::::::::
variables,

::::
AM

:::
and

::::
POT

:::::
series

::::::::
converge

::::::::::::
asymptotically

::
to

:::
the

:::::::::::
3-parameters

:::::::::::
distributions

::::::
known

::
as

:::::
GEV

:::
and

:::::
GPD,

::::::::::
respectively.

:

:::::::
Different

::::::
fitting

:::::::
methods

::
to

:::
the

:::::::
extreme

:::::
value

::::::::::
distributions

::::
have

:::::
been

::::::::
developed

:::
in

:::
the

::::::::
literature.

:::
The

:::::::::
maximum

:::::::::
likelihood15

:::::::
estimator

:::::::
(MLE)

::
is

:::
the

::::
most

::::::
widely

::::
used

::::::
fitting

::::::
method

::::
but

::
for

:::::
small

:::::::
samples

::
it
::::
can

:::
lead

:::
to

:::::::::
unrealistic

::::::::
parameter

:::::::::
estimates.

::::
This

:::::::
problem

::
is

:::::::
partially

:::::::::
addressed

::::
with

:::
the

::::::::::
generalised

:::::
MLE

::::::::
proposed

::
by

:::::::::::::::::::::::::::
Martins and Stedinger (2000) or

:::
the

::::::::::
L-moments

::::::
method

:::::::::::::::::::
(Overeem et al., 2009).

::::
The

:::::
above

:::::::
methods

:::
do

:::
not

:::::
focus on the tail of the distributionshould be preferred (?). ,

::::::
which

:
is
:::
the

:::::
most

::::::
relevant

:::
for

::::
risk

:::::::
analysis.

:::
For

::::
this

::::
goal,

:::::::::::::::::::::::::
Willems et al. (2007) proposed

::
a
::::::
method

:::::
based

:::
on

::::::::
regression

::
in
::::
Q-Q

:::::
plots.

:

To reduce the uncertainty associated with the limited number of data at a single site, regional frequency analysis (RFA)20

methods have been proposed (?).

:::::::::::::::::::::::
(Svensson and Jones, 2010).

:::
The

::::
RFA

::
is
:::::::::::
characterised

:::
by

:::
the

:::::::
selection

::
of

:::
the

::::::
regions

::::
and

:::
the

::::::::
parameter

:::::::::
estimation

::::::::
approach

::::::
applied

::
to

:::::
each

::::::
region

:::::::::::::::
(Buishand, 1991).

:
There are numerous studies of RFA for rainfall extremes based on rain gauge

datasets. The
:::::
index

:::::
flood

::::::::
approach,

::::::
which

::::::::
considers

::::
that

::::
only

:::
the

::::::::
location

::::::::
parameter

::::::
varies

::
in

:::
the

:::::::
region,

::
is

::::
very

:::::::
popular

::::::::::::::::::::::::::::::::::::::::::::::::
(Gellens, 2000; Sveinsson et al., 2001; Rulfova et al., 2014).

:::::::::::::::::::::
Uboldi et al. (2014) used

:
a
::::::::
bootstrap

::::::::
technique

::
to

::::::::
randomly

:::::
select25

:::
data

:::::
from

:::::::::::
neighbouring

::::::::
locations

::::
with

:
a
:::::::::
probability

:::::::::
depending

:::
on

:::
the

:::::::
distance

:::
and

:::::::
altitude

::::::::
difference

::::
with

:::
the

:::::
target

::::::::
location.

:::
The

::::::::
combined

::::
use

::
of

::::
POT

:::
and

:::::
RFA

:::::::
methods

::
is

::::::::::::
recommended

::
by

:::::::::::::::
Roth et al. (2015).

:

:::
One

:::
of

:::
the

:::::::::
challenges

::
in

::::
RFA

::
is
::::

the
:::::::
intersite

::::::::::
dependence

:::::::::::::::::::::::::::
(e.g., Hosking and Wallis, 1988).

:::::
Even

:::
for

::
1 h

::::::::
duration,

:::::::
rainfall

::::::
maxima

:::::::
exhibit

::::::
spatial

:::::::::
correlation

::::::::::::::::::::::::::
(Vannitsem and Naveau, 2007).

::::::
Using

:::
the

::::
sum

::
of

:::
the

::::::
length

:::
of

::
all

:::::
sites

::
is

:::::::
common

::::
but

:::::
causes

::::::::::::::
underestimation

::
of

:::
the

::::::::
extremes

:::::::::::::::::::::
(e.g., Bardet et al., 2011).

:::::::
Several

::::::::::
approaches

::::
have

:::::
been

::::::::
proposed

::
to

::::
deal

::::
with

::::
this30

:::::::
problem

:::::::::::::::::::::::::::::::::::
(e.g., Castellarin, 2007; Weiss et al., 2014).

::
To

::::::
obtain

::
the

:::::::
rainfall

:::::::
statistics

::
at

:::
any

:::::
given

:::::
point,

::::::
spatial

::::::
models

::::
have

::::
been

:::::::::
developed

:::::
using

::::::::::
geographical

::::
and

::::::::::::
climatological

::::::::
covariates

:::::::::::::::::::::
(e.g., Cooley et al., 2007).

::
In

::::::::
Belgium,

::::::::::::::::::::::::
Van de Vyver (2012) derived

:
a
::::::
spatial

:::::
GEV

:::::
model

:::::::::
depending

::::::
linearly

:::
on

:::
the
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::::::
altitude.

:::::::::::::::::::::::
Rulfova et al. (2014) found

:::
for

:::
6 h

::::::
rainfall

::
in

:::
the

::::::
Czech

:::::::
Republic

::::
that

:::
the

::::::::::
assumption

::
of

:
a
:::::
linear

::::::
model

:::::
might

:::
be

:::
too

::::::::
restrictive,

:::::::::
especially

:::
for

:::::::::
convective

:::::::::::
precipitation.

:::
The

:
rain gauge network can perfectly capture rainfall extremes for widespread situations. However, they are unable to

catch all
:::
can

::::
only

:::::
catch

:
a
::::::

small
:::
part

:::
of

:
rainfall extremes caused by convective storms, which often exhibit strong spatial

variations over short distances. The use of high resolution gridded precipitation
::::::
rainfall

:
datasets to study rainfall extremes5

is still in its infancy. This can be explained by their unavailability, their processing requirements and their limited quality.

Currently, the
:::::::::::
Precipitation

:::::::::
estimations

::::
from

:::::::
satellite

::::
offer

::::::
global

:::
and

::::::::
relatively

::::
long

::::::
records

:::::::
suitable

::
for

:::::::
extreme

:::::
value

:::::::
analysis

:::::::::::::::::::
(Marra et al., 2017) but

:::
still

:::::
suffer

:::::
from

::::
large

:::::::::::
uncertainties

::::::::::::::::::::::
(Sapiano and Arkin, 2009).

::::
The best potential is

:::::::
currently

:
provided

by radar-based quantitative precipitation estimation (QPE) products. With such gridded data, one could characterise sub-daily

precipitationextremes on relatively short periods
:
It

::::::
should

::
be

:::::
noted

:::
that

:::
the

:::::
radar

::::::::
estimates

::::::::
represent

:::
the

:::::::
averaged

:::::::::::
precipitation10

:::
over

::
a
:::::
given

::::
area

:::::::::
(typically

:
a
::::::
square

:::
of

:::::
1 km).

::::::
While

::::
this

::::
area

::
is

:::::
much

::::::
bigger

::::
than

:::
the

::::::
gauge

::::
area,

:::
we

::::
will

:::::::
consider

::
it
:::

as

:::::::::::
representative

:::
for

:::::
small

::::
scale

::::::::::::
precipitation.

:
It

:::
has

::::
been

::::::
shown

::::
that

:::
the

::::::::
sub-pixel

::::::::
variability

::
of

:::::::
rainfall

:::::::
extremes

::
is
::::::::::
significant,

::::::::
especially

:::
for

::::
short

::::::::
durations

::::::::::::::::
(Peleg et al., 2016).

::::
The

:::::::
relatively

:::::
short

:::::
record

::
of

:::::
radar

:::::::
datasets

:
is
:::
an

::::
issue

::
if

:::
the

::::::
extreme

::::::::
statistics

::::::
depend

::::
only

::
on

:::::
time

:::
(i.e.

:::
are

::::::::::
completely

:::::::::
dependent

::::::::
spatially).

::::::
While

:::
this

::
is

:
a
::::::::::
reasonable

:::::::::
assumption

:::
for

:::::
larger

::::::::
duration

::::
(e.g.

:::::
1 day),

::
it
::
is

:::::::
difficult

::
to

:::::
prove

:::
for

::::
short

:::::::
duration

::::
(e.g.

::::
1 h).

:::
In

::::
case

::
of

:::::::::
significant

:::::::
climatic

::::::::
variations,

::
a
::::
short

::::::
record

::::
will

::
be

:::::
more15

:::::::::::
representative

::
of

:::
the

:::::::
extreme

::::::::
statistics.

In a pioneer work, ?
::::::::::::::::::
Overeem et al. (2009) showed that a 11-year radar data set is suitable to derive depth-duration-frequency

(DDF) curves for the Netherlands.
:::
But

::::
some

::::::::::
differences

::::
with

::::
rain

:::::
gauge

::::::
results

:::::
were

:::::
found

:::
for

::::
short

:::::::::
durations.

:
Based on a

unique 23-year radar data set in Israel, ?
::::::::::::::::::::
Marra and Morin (2015) found that the DDF curves were generally overestimated

but 60 % of them lay within the raingauge DDF confidence intervals. In Ontario (Canada), ?
::::::::::::::::
Paixao et al. (2015) demonstrate20

the potential to integrate radar (Digital Precipitation Array product) to raingauge
:::
rain

:::::
gauge

:
analysis, especially to identify

homogeneous regions of extreme rainfall. ?
::::::::::::::::::::::::
Saito and Matsuyama (2015) used a 26-year radar-gauge dataset (without RFA) to

study the spatial variation of hourly precipitation
::::::
rainfall

:::::::
extremes

:
in Japan. In a comprehensive study of the issues raised when

using radar-based QPE to study precipitation extremes, ?
::::
They

:::::
found

:::::::::
significant

::::::
spatial

:::::::
patterns

:::
but

:::
also

:::::
large

:::::::::::
uncertainties

::
in

::
the

:::::
radar

::::::::
datasets.

:::::::
Different

:::::
index

:::::
flood

::::::::::
approaches

::::
were

:::::
tested

:::
by

::::::::::::::::::::
Eldardiry et al. (2015) in

:::::::::
Louisiana,

::::
who

:::::::
defined

:
a
::::::
region25

::
as

:
a
::::::
square

:::::::
window

::
of

:::::
44 km

::::
size.

:::::
They found for Louisiana (USA) that the relatively short period (13 years) explains the high

uncertainty of the analysis, that the index flood method is recommended and that a systematic underestimation is associated

with the radar products (its spatial resolution is 4× 4km). ?
::::::::::::::::::::::::
Haberlandt and Berndt (2016) found that the operational DWD

product is only suitable for studies on longer durations after bias correction.
:::::
Using

::
a
:::::::
10-year

::::
high

::::::::
resolution

:::::
radar

:::::::
rainfall

::::::
dataset,

::::::::::::::::::::::::::
Wright et al. (2014b) performed

::
a
:::::::
regional

:::::::::
frequency

:::::::
analysis

:::::
using

::::::::
stochastic

::::::
storm

:::::::::::
transposition.

:::::
They

:::::
found

::::
that30

::
the

::::::::::
radar-based

::::
IDF

::::::::
estimates

::::::::
generally

:::::::::
reproduce

::::::::::
conventional

:::::::::::
gauge-based

::::
IDF

::::::::
estimates

:::
but

:::::::::::
overestimate

::::
these

:::
for

::::::
longer

:::::
return

::::::
periods

::::
and

::::::
shorter

::::::::
durations.

:

:::
The

::::::::
potential

::
of

:::
the

::::
radar

::::
data

:::
can

::
be

:::::
fully

:::::::
exploited

:::
by

:::::::
studying

:::
the

::::::::
extremes

::
of

:::
the

:::::
mean

::
(or

::::::::::
maximum)

::::::
rainfall

::::
over

:::::
areas.

::::
With

:::
the

::::
goal

::
of

:::::::
deriving

::::
alert

::::::::
thresholds

:::
for

:::
159

:::::::
regions

::
in

::::::::::
Switserland,

::::::::::::::::::::::::
Panziera et al. (2016) studied

::
the

:::::
areal

::::::
rainfall

:::::::
maxima
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::::
(with

::::
sizes

:::::
from

:::
the

::::
pixel

::
to

:::
the

::::::
region).

:::::
Using

:::::
RFA

::
on

:::::::
squares,

::::::::::::::::::::::::
Overeem et al. (2010) derived

::::
areal

:::::::
rainfall

::::::::::::::::::::
depth-duration-frequency

:::::
curves

:::
for

:::
the

:::::::::::
Netherlands.

:::::::::::::::::::::::
Wright et al. (2014b) applied

::
a
::::::
similar

:::::::::::
methodology

:::
but

::
on

::::::::
different

:::::::::
catchments

::
in

:::::::::
Louisiana.

:

::
In

:::
this

:::::
study,

:::
we

::::
want

::
to
:::::::::::
demonstrate

:::
the

:::::::
potential

::
of

:::::::::::::
high-resolution

::::::::::
radar-based

::::
QPE

::
to

:::::
derive

:::::::
rainfall

::::::
extreme

::::::::
statistics

::
at

:
a
:::::
given

:::::::
location.

:::
To

:::
our

:::::::::
knowledge

:::::
none

::
of

:::
the

::::::::
previous

::::::
studies

:::::::
combine

::
a

::::
high

::::::
quality

::::::::::
radar-based

::::
QPE

::::
with

:
a
:::::

high
::::::
quality

:::::::
reference

::::
rain

:::::
gauge

:::::::::::::
measurements. At the Royal Meteorological Institute of Belgium (RMIB), a high-resolution radar-based5

surface precipitation estimation is generated using all available observations
::::
QPE

:::
has

::::
been

:::::::
derived

:::::
from

:::
the

::::::::::
reprocessing

:::
of

:::
raw

:::::::::
volumetric

:::::
radar

::::::::::::
measurements. This dataset is

:::
has

::::
been

:
used for various applications such as case studies and model

verification. The methodology to derive the estimation from volumetric radar reflectivity data
:::
this

::::::
dataset

:
has been veri-

fied for the period 2005-2014 against an independent raingauge network (?). In this study, we want to demonstrate the

potential of this radar-based QPE to derive point rainfall statistics
:::
rain

::::::
gauge

:::::::
network

::::::::::::::::::::::::::::::
(Goudenhoofdt and Delobbe, 2016).10

:::::
RMIB

::::
also

:::
has

::
a
::::::
unique

::::::
40 year

:::::::
dataset

::
of

::::::
10-min

::::
rain

::::::
gauge

::::::::::::
measurements

:::::
which

::::
has

::::
been

::::
used

:::
in

:::::::
extreme

:::::
value

::::::
studies

::::::::::::::::::::::::::::::::::::::::::
(Vannitsem and Naveau, 2007; Van de Vyver, 2012).

:

:::::
Unlike

:::::::
existing

:::::
radar

::::::
studies,

:::
we

:::::
select

::::
our

::::
data

::::
using

:::
the

:::::
POT

:::::::
approach

::::
and

:::
use

:::
the

:::::
QQR

:::::
fitting

:::::::
method. Radar-based ex-

treme statistics of
:::
for 1 h precipitation accumulation are compared with the same statistics but derived from the observations by

a high-temporal resolution (10 min) rain gauge network. The radar-based extremes statistics of
:::
and

:
24 h precipitation

:::::::
duration15

are compared with
:::
the

::::
ones

::::::
derived

:::::
from rain gauge data from another more dense network (hourly data). A

:::::::
covering

:::
the

:::::
same

::::::
period.

:::
We

:::::::
propose

:
a
::::

new
:

regional frequency analysis is performed and compared to the results obtained with a networkof

45-year high resolution (10 min) records
:::::
which

::::::
makes

:::
use

::
of

:::::::::::
independent

::::
radar

::::
data

::
in

:
a
:::::::::
predefined

::::::::::::
neighborhood.

::::
The

::::::
results

::
are

:::::::::
compared

::::
with

:::::
those

::::::::
obtained

:::::
using

:::
the

::::::::
long-term

::::
rain

:::::
gauge

:::::::
network. Finally, the regional approach is applied at each

radar pixel on the whole of Belgium to study the spatial variations of the precipitation
::::::
rainfall extremes.20

2 Precipitation
::::::
Rainfall

:
data

2.1 Raingauge measurements

Over the years, Belgium (Fig. 1) has been covered by several raingauge networks for different purposes.

Since the end of the 19th century, RMIB maintains a network (CLIM) of non-recording rain gauges from which precipitation

::::::
rainfall measurements are taken at 8 am LT. The data are carefully controlled and used for climate applications (?)

:::::::::::::::::
(Journée et al., 2015).25

A Hellmann-Fuess pluviograph has been in operation in Uccle (RMIB) from 1898 to 2008 and has enabled the compilation of

a continuous time series of 10 min precipitation (?)
::::::
rainfall

:::::::::::::::::::::
(Demarée, Gaston, 2003). The 10 min precipitation

::::::
rainfall

:
values

had to be manually extracted from line graphs on papers. Starting from the fifties, additional rain gauges were installed to

constitute a network (BUL) for hydrological research. Since the rain gauges underestimate the rainfall by 5-10% due to its

mechanism, its records have been calibrated using a collocated gauge from the CLIM network.30

For weather forecast purposes, the RMIB maintains a network of automatic weather stations (AWS) in Belgium. These

stations provide precipitation measurements at very high temporal resolution ;
::::::
rainfall

::::::::::::
measurements

::
at 10 min accumulations

are available from the database
:::::::
temporal

::::::::
resolution. The tipping-bucket gauges are progressively replaced by weighted gauges

4
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Figure 1. Elevation map centered on Belgium with the Wideumont radar (black dot) covering 240 km range (
::
the

:::::
black circle is

:::::
denotes

:::
the

120 km
::::
range) with AWS (square), SPW (triangle) and BUL (circle) rain gauge networks. The gauge locations selected in this paper are in

cyan. Country borders with France, Luxembourg, Germany and the Netherlands are also displayed.

(the first one was installed in Uccle on 10 February 2009). The data are available since 2002-2004 and have been quality

controlled.

The hydrological service of the Walloon Region (SPW) maintains a dense network of hourly (every 5 min since 2012)

precipitation
::::::
rainfall measurements. The tipping bucket gauges are progressively replaced by weighting gauges since 2015.

The data have been quality controlled by RMIB since April 2004.5

It is important to know the limitations of the respective rain gauges in case of extreme precipitation
::::::
rainfall. It is known

(??)
:::::::::::::::::::::::::::::::::::
(Nystuen, 1999; Duchon and Biddle, 2010) that tipping buckets underestimate high rainfall rates. The use of weighting

gauges for extreme precipitation
:::::
rainfall

:
is discussed in ?

:::::::::::::::
Colli et al. (2012). Every 10 mm, the pluviograh

:::::::::
pluviograph

:
has to

be emptied which results in an underestimation in case of extreme precipitation
::::::
rainfall. The calibration of the pluviograph is

probably not sufficient for sub-daily extremes. Finally, the quality controls, albeit conscientious, can never be considered as10

perfect.
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2.2 Radar estimation

The quantitative precipitation estimation (QPE) available on a 1 km grid every 5 min is made using an elaborated processing

chain from the radar volumetric reflectivity measurements. The quality of the
::::
radar volume is controlled using static clutter

and beam blockage maps and
::::::
several

:::::::::
algorithms

:
:

–
:
a
:::::
static

:::::
clutter

::::
map

:
:
:::::
pixels

:::::
with

::::::::
unrealistic

::::
high

::::::::::
probability

::
of

::::::
rainfall

:::
are

::::::::
identified

::
as

::::::
clutter5

–
:
a
:::::
beam

:::::::
blockage

::::
map

:
:
:::
the

:::::::::
percentage

::
of

:::
the

:::::
beam

:::::::
blocked

::
by

:::::::::
topography

::
is
:::::::::
computed

::::
using

::
a

:::::
simple

::::::::::
propagation

::::::
model

–
:
a
:::
first

:
clutter identification based on vertical gradients, horizontal texture and satellite observations.

:::::::::
reflectivity

:::::::::
differences

:::::::
between

::::
radar

:::::
beam

:::::::::
elevations

–
:
a
::::::
second

::::::
clutter

:::::::::::
identification

:::::
based

::
on

::::::
strong

::::::::
deviations

::
of
::
a
::::
pixel

:::::
from

::
its

::::::::::::
neighborhood

:::
and

:::::::::
unrealistic

::::
lines

:
10

–
:
a
::::
third

::::::
clutter

:::::::::::
identification

:::
for

::::
radar

::::::
echoes

::
in

:::::
cloud

::::
free

::::
areas

::::::::::
determined

::
by

:::::::
satellite

:::::::::::
observations

A maximum threshold for reflectivity is set to 55 dBZ to mitigate higher reflectivity values due to hail. The rainfall rate

estimates are obtained using stratiform-convective classification, a 40 min averaged vertical profile of reflectivity (VPR), a

bright band identification and a specific transformation to rain rates for the two precipitation regimes. The detailed procedure

is described in ?
::::::::::::::::::::::::::::
Goudenhoofdt and Delobbe (2016). As a reference for the QPE product, the CAP product is defined as the15

interpolation at 800 m above the radar level. It makes use of a standard Z R relationship, which comes from the hypothesis that

the drop size distribution follows the distribution of Marshall-Palmer, as discussed in (?).
::::::::::::::::::::::::::
(Uijlenhoet and Pomeroy, 2001).

:

Consecutive rainrate estimates are integrated to obtain 10 min accumulations (5 min gaps are tolerated) to match the lowest

resolution of the rain gauge data. Hourly accumulations are combined with the SPW gauges using a mean field bias correc-

tion(MFB )
:
.
::::
This

::::::
method

::::::
applied

::
to
:::
the

::::
QPE

:::::::
product

::
is

:::::::
referred

::
to

::
as

:::
the

::::
MFB

:::::::
product

::::
from

::::
now

::
on. A more complex merging20

method (i.e. external drift Kriging) was tested but found to be unstable for some time moments.

It is important to mention the limitations of the radar products in case of extreme precipitation. The most important impact

of the QPE processing on extreme values is the 55 dBZ reflectivity threshold used to mitigate hail. This
:::::
Using

:::
the

:::::::::
convective

:::
Z R

:::::::::::
relationship,

:::
this

:
corresponds to a maximum rainfall rate of 80 mm/hourand hence 13.33 mm/10 min. Higher values of

about 100 mm/hour are possible when the standard Z R relationship is used for stratiform areas. This can only happen close25

to the radar where convective precipitation can not be identified. This thresholding underestimates very rare (if any) rainfall rate

exceeding the threshold. Even after thresholding an
::::::
Slightly

::::::
higher

::::::::
thresholds

::::
have

::::
been

::::
used

:::
by

::::::::::::::::::::::::::::::
Overeem et al. (2009) (100 mm/hour)

:::
and

:::::::::::::::::::::::::::::::
(Wright et al., 2014b) (105 mm/hour).

::
A
::::::

higher
::::::::
threshold

:::
is

::::
used

:::
by

:::::::::::::::::::::::::::::::::
Marra and Morin (2015) (150 mm/hour)

:::
but

:::
for

::
a

::::::::::::
Mediterranean

:::::::
climate.

::::
Only

::::
half

::
of

:::
the

:::::
AWS

::::::
gauges

:::::::
recorded

:::
up

::
to

:
3
:::::
times

:::::
more

:::
than

::::::::::::
100 mm/hour

::
in

::
10

:::::::
minutes.

::::::
Given

:::
the

:::::::
sub-pixel

::::::
spatial

:::::::::
variability,

:::
one

::::
can

::::::
assume

:::
that

::::
this

::::::::
threshold

:::
will

:::::
never

::
be

::::::::
exceeded

:::
for

:::
the

::::
pixel

::::::::
average.

::::
This

:::::::
threshold

::::
can30

::::
only

:::::
partly

::::::
correct

::
for

:::
the

:
overestimation due to hailis possible. The second most important error is related to signal attenuation

especially in case of well organised convective systems. This is why extremes might be underestimated the further the distance
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from the radar. In addition, the increasing radar sample volume will give lower extreme values
:::::::
produce

::
an

::::::::::::::
underestimation

::
of

::::
small

:::::
scale

::::::::
extremes.

::::
The

:::::::::
uncertainty

::
in

:::
the

::::
Z-R

::::::
relation

::
is
:::::::
another

::::::::
important

::::::
source

::
of

::::
error.

2.3 Comparison framework

In this study, we will only consider validated rain gauge data. Given that the SPW network is used for merging, the radar

dataset for 2005-2016 is used. To perform a direct comparison, the gauge data of AWS and SPW for the same period are used.5

For comparison against the reference BUL network, the gauge data for the period 1965-2010 are used. The timeseries of the

BUL and CLIM networks have been tested for homogeneity by ?
:::::::::::::::::
Van de Vyver (2012) and a selection of useful stations has

been made. ? and ?
:::::::::::::::
Gellens (2000) and

:::::::::::::::::::::::::
Vannitsem and Naveau (2007) found that the vast majority of the CLIM and BUL time

series are stationary for summer precipitation
::::::
rainfall. However, the existence of a multi-decadal oscillation in precipitation

::::::
rainfall extremes has been found in the Uccle time series (?)

::::::::::::::::::::::::::::::::::::
(Ntegeka and Willems, 2008; Willems, 2013).10

The 10 min precipitation
::::::
rainfall

:
accumulation from the gauge networks (AWS, BUL) and radar products (QPE, CAP

::::
CAP,

::::
QPE) are summed to obtain sliding 1 h precipitation

::::::
rainfall

:
accumulations. Such duration is associated with convective storms,

which can only be properly seen on radar images. The hourly bias obtained by the MFB method could be applied to the 10 min

accumulations. However, it will not be used due to the possible risk of representativity errors related to convective storms
:::
and

::
the

:::::
small

:::::::
benefits

::::::::
expected.15

The hourly precipitation from the
::::
The

:::::
hourly

:::::::
rainfall

::::
from

:::
the

:::::
SPW

:::::::
network

:::
and

:::
the

:
radar products (CAP, QPE, MFB) are

summed to obtain sliding 24 h precipitation accumulations.
::::::
rainfall

::::::::::::
accumulations.

::::
The

::::
SPW

:::::::
network

::
is
::::::::
preferred

::
to

:::
the

:::::
AWS

:::::::
network

:::::::
because

:
it
::
is
::::::
denser

::::
and

:::::
more

::::::::::::
homogeneous. Such duration is mainly associated with widespread precipitation for

which the benefit of merging methods is clear.
:::
The

:::
risk

:::
of

::::::::
instability

::::
with

:::::
MFB

::::
(e.g.,

:::
in

::::
case

::
of

:::::
strong

::::::
spatial

::::::::
variation

::
of

:::
the

::::
bias)

::
is

:::::::
tolerated

:::::
given

:::
the

:::::::::
significant

:::::::
expected

::::::
benefit

:::
for

::::::::::
widespread

::::::::::
precipitation

::::::
events.

:
20

It should be noted that using the lowest available duration for each network would result in an underestimation of the

extremes due to the discrete time sampling
::::::::::::::::::::
(Marra and Morin, 2015). Additionally, random errors and time sampling difference

can be compensated by performing the sum. For both the radar and the gauge, no missing data is tolerated in the sum to avoid

underestimation. Furthermore, only timestamps with both radar and gauge data are kept.

Due to the amount of stations, it is not possible to analyse in details the results at each station. Therefore a few stations are25

picked at different distances from the radar (see Tab. 1 and Fig. 1). The Uccle station is chosen because it is included in the 3

networks, which makes intercomparison
:::
inter

::::::::::
comparison

:
possible. The availability of the 1 h accumulation data is about 95 %

for the radar products and close to 100 % for the AWS gauges. The radar availability of the 24h accumulation is lower than the

1 h accumulation because a significant part of the intervals without data are short. The availability of the SPW gauges is around

90 % but this is mainly due to the removal of snow events, when no extreme rainfall
::::::::::
precipitation is expected. The availability30

of the BUL stations for the period 1965-2010 is highest at Uccle with 96.3 %, then about 86 % at Deurne and Gosselies. The

station of Nadrin has only 60 % of availability (for the period 1965-2010) because it was started in 1978.
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3 At-site frequency analysis

3.1 Methodology

Extremes are often extracted using block maxima of one year but it is not recommended for small sample size. The peak-over-threshold

(POT) method, where values exceeding a given threshold are kept, is prefered here. It has been shown by ?
::::::::::::::::
Pickands III (1975) that

the extreme values converge asymptotically to a generalized Pareto Distribution (GPD) :5

F(ξ,µ,σ)(x) =

1−
(
1+ ξ(x−µ)

σ

)−1/ξ

for ξ 6= 0,

1− exp
(
−x−µσ

)
for ξ = 0.

(1)

with ξ, µ and σ commonly defined as the shape, location and scale parameters. The special case when the shape parameter

is equal to zero is defined as the Exponential disbritution
:::::::::
distribution

:
(EXP).

The choice of the threshold has an important impact on the estimation of the distribution parameters. When the number

of selected values increases, the variance naturally decreases but the bias increases (due to the deviation from the theoretical10

distribution). It is more practical to use a threshold rank instead of a threshold value to control the sample size.

To apply the extreme value theory, the quantiles
::::::
extreme

::::::
values

:
have to be independent (i.e. not in a cluster). The

:::
but

::::::::
successive

:::::
peaks

::::::
within

:::
the

:::::
same

::::
time

:::::::
window

:::
can

::
be

::::::::
observed

:::
due

::
to

:::
the

::::::
nature

::
of

:::::::::::
precipitation.

:::
For

:
1 h extremes are caused

by convective storms, which have been analysed based on radar volume data in ?. Mesoscale convective systems can last more

than one day, but due to their motion, they affect a particular region for several hours only. Therefore an interval of
:::::::
duration,15

:::
two

:::::
peaks

:::
are

::::::::::
considered

:::::::::
dependent

::
if

:::
the

::::
time

:::::::
interval

::
is

::::
less

::::
than 12 h, as in ?, is chosen to consider that two valuesare

independent. In practice, the maxima in a sliding window of
:
h
:::

as
::::::::
proposed

::
by

:::::::::::::::::::::::::
Ntegeka and Willems (2008).

::::
This

::::::
choice

::
is

::::::::
consistent

::::
with

:::
the

::::::::::::
characteristics

::
of

::::::::
convective

::::::
storms

::::::::
analysed

::
in

::::::::::::::::::::::::::::
Goudenhoofdt and Delobbe (2013).

::::::::::::::::::::
Jakob et al. (2011) used

:
a
:::::::::
separation

::::
time

::
of

:
24 h are selected. For 24-h durations

::
but

:::::
found

:::::
little

:::::::::
sensitivity

::::
when

::::::
taking

:::::
lower

:::
or

:::::
higher

::::::
values.

::::
We

:::
also

::::::
found

:::
that

:::::
using

::
3

::::
days

::::::
hardly

::::::
affects

:::
the

:::::::
selection

:::
of

:::
the

:::
1 h

::::::::
extremes.

::::
For

:::
24 h

::::::::
duration, we use an

:
a

::::
time interval of20

3 days which corresponds to the synoptic scale .
::
is

:::
the

::::::
typical

:::::
scale

::
of

:::::::
synoptic

::::::::
regimes.

:::::
These

:::::::
choices

:::
are

:::::::::
consistent

::::
with

::::::::::::::::::
Roth et al. (2014) who

:::::
found

::::::::::
empirically

::
a
::::::::
temporal

::::::::::
dependence

::
of

::
1

:::
day

::::
and

::
2

::::
days

:::
for

::::::
winter

:::
and

:::::::
summer

::::::::::::
precipitation,

::::::::::
respectively.

::
In

:::::::
practice,

::
a
::::
peak

::
is

::::
kept

::
if

:
it
::
is

:::
the

:::::::::
maximum

::::::::
compared

::
to

::
its

:::::::::
dependent

:::::
peaks

:::
(if

::::
any).

:

The maximum likelihood is the most widely used fitting method but for small samples it can lead to unrealistic parameter

estimates. This problem is partially addressed with the generalised MLE proposed by ?. The popular method of L-moments is25

preferred in case of small samples (?). However, all those methods do not focus on
:::
The

::::
type

::
of

:::
the

::::::::::
distribution

:::
can

::
be

:::::::
derived

::
by

:::::::
looking

::
for

:::
the

:::::::
QQ-plot

::::::
where

:::
the

:::::::
extremes

::::::
behave

::
in
:::
an

:::::::::
asymptotic

:::::
linear

::::
way.

:::::::::::::::::::
(Willems, 2000) found

:::
for

:::
the

:::::
Uccle

:::::
series

:::
that

:
the tail of the distribution , which is the most relevant for risk analysis. Therefore in

::
has

:::
an

::::::::::
exponential

:::::::
behavior

:::
for

:::
all

::::::::
durations.

::
In

:::
the

:::::
gauge

:::::::
datasets

::::
used

::
in
::::
this

:::::
study,

:::
we

::::
also

:::::
found

:
a
::::::::
tendency

:::
for

:::
the

::::
EXP

::::::::::
distribution.

::::
The

::::
EXP

::::::::::
distribution

::
is

:::::::
preferred

:::
for

:::::
short

::::::
period

::::
since

:::::::::
estimating

:::
the

:::::
shape

:::::::::
parameter

::
is

::::
very

::::::::
uncertain.

::::::::::::::::::::::::
Blanchet et al. (2015) found

:::
that

:::::
GPD

::::
fails30

::
to

:::::::
robustly

:::::::
estimate

:::
the

:::
tail

::
of

:::
the

::::::::::
distribution

::::::
because

:::
of

:::
lack

:::
of

:::
data

::::
and

:::::::::
unrealistic

:::::
return

:::::
levels

:::
for

::::
very

::::
long

:::::
return

:::::::
periods
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:::::
(when

:::
the

:::::
shape

:::::::::
parameter

::
is

::::::::
positive).

:::
An

::::::::
additional

::::::::
argument

:::
for

:::
the

:::::
EXP

:::::
model

::
is

::::
that

:
it
::
is
::::
less

:::::::
affected

::
by

::::::::::::
observational

:::::
errors,

::::::
which

::::
plays

:::
an

::::::::
important

::::
role

::::
here.

::
In this study we use a

:::::
fitting method based on regression in Q-Q plots (QQR) proposed by ?. In this method the

:::::::::::::::::
Willems et al. (2007).

:::
The

::::::::::
Exponential

:::::
Q–Q

:::
plot

::
is
:::
the

::::::::
extremes

::
x

::::::
versus

:::::
minus

:::
the

:::::::::::::
logarithmically

::::::::::
transformed

::::::::::
exceedance

:::::::::
probability

:::::::::
1−G(x).

:::
The

::::
EXP

::::::::::
distribution

:::::::
appears

::
as

:
a
::::
line

::
in

:::
this

::::
plot,

::::
with

:::::
slope

:::::
equal

::
to

:::
the

::::
scale

:::::::::
parameter

::
σ:

:
5

x= xt−σln(1−G(x))
:::::::::::::::::::

(2)

:::::
where

::
xt::

is
:::
the

::::::::
threshold

:::::
level.

::::
The

::::
same

:::::::::
properties

::::
hold

:::
for

:::
the

::::
plot

::
of

:::
the

:::::
return

:::::
level

:::
xT ::::::

against
:::
the

:::::
return

::::::
period

::
T

:::::
when

::
the

:::::
latter

::
is

::::::
plotted

::
on

::
a
::::::::::
logarithmic

::::
scale

:
:
:

xT = xt+σln(T ∗M/n)
::::::::::::::::::::

(3)

:::::
where

:::
M

:
is
:::
the

:::::::
number

::
of

::::::::
extremes

:::
and

::
n

:::
the

:::::
length

::
of
:::
the

::::::::::
timeseries.10

:::
The

:::::::::
estimators

:::
for

:::
the

:::::
slope

:::
are

:::::
based

::
on

:::::
linear

:::::::::
regression

::
in

:::
the

:::::
Q–Q

::::
plot

:::::
above

:::
the

:::::::
specific

::::::::
threshold

::::
level

:::
xt.::::::::

Amongst

::
the

::::::::
available

:::::::::
estimators

:::
for

:
σ
:::
we

::::
used

:::
an

:::::::::::
unconstrained

::::
and

::::::::::
unweighted

:::::
linear

:::::::::
regression.

:::
The

:
optimal threshold rank

:
t is found by minimization of the mean squared error (MSE) of the calibration. With our datasets,

this rank is chosen between 18 and 30 considering the uncertainties and the relatively short period, respectively. The EXP

distribution is preferred since estimating the shape parameter is very uncertain due to the short period. Morover, earlier research15

has shown that the shape parameter for rainfall extreme in Belgium does not significantly differ from zero (?).

Confidence intervals for the scale parameter are computed using a parametric bootstrap technique. Practically the fitting

is reproduced
:::
The

:::::
fitted

:::::::::
distribution

:::
is

::::
used

::
to

::::::::
generate 1000 times on randomly generated values up to the corresponding

::::::
extreme

::::::
values

:::::
series

::::
with

:
a
::::
size

::::::::::::
corresponding

::
to

:::
the

:
optimal rank. The

:::::
fitting

:::::::::
procedure

:
is
:::::::
applied

::
to

::::
each

::
of

:::
the

:::::
1000

:::::
series

::
to

:::::
obtain

:::::
1000

::::::::
simulated

::::
scale

::::::::::
parameters.

::::
The 10 and 90 percentiles of the scales obtained

:::::::
simulated

::::::::::
parameters are taken as20

confidence intervals
::
the

:::::
10 %

:::
and

:::::
90 %

:::::::::
confidence

:::::::
interval

::::::
bounds

:::
for

:::
the

:::
true

:::::
scale

::::::::
parameter.

3.2 Comparison with AWS gauges -
::
of 1h

:::::::
extremes

The 10 highest extremes are compared between
:::
The

:::::::
extreme

::::::
events

::
as

::::
seen

:::
by

::::
both

:
the radar and the gauges (table 2)

:::::
gauge

::
are

:::::::::
compared

::
in

:::::
table

:
2. For problematic

::::
Since

:::
the

:::::
focus

::
is
:::
on

:::
the

:::
tail

:::
of

:::
the

::::::::::
distribution,

::::
only

:::
the

:::
10

::::::
highest

::::::
values

:::::
from

:::::
either

:::
the

:::::
gauge

::
or

::::
the

::::
radar

::::
data

:::
are

::::::::
selected.

::::
The

:::::
events

:::
for

::::::
which

:::
the

::::::::::
probability

::
of

::::
hail

::
is

::::
high

::::
(i.e.

:::::
when

:::
the

::::::::
threshold25

:::
was

:::::::
applied)

:::
are

::::::::::
highlighted.

:::
An

:::::
event

::
is

:::::::::
considered

::
as

::::::::::
problematic

::
if

:::
the

::::::::::::
corresponding

::::
radar

::
or

::::::
gauge

:::::::
extreme

::::
rank

:
is
::::::
below

:::
30.

:::
For

:::::
these events, the underlying precipitation patterns are analysed using the radar images. This also allows to identify

:::::::::
comparison

::::::
allows

:::::::::
identifying

:
the weaknesses of the gauge and radar datasets.

The maximum at Humain has been observed by both the radar and the gauge on 7 June 2016. This relatively high value

can be due to randomness and the short period of records. But it is also possible that the other quantiles are underestimated30

(the maximum was recorded by the new weighted gauge). There is generally a good match between the radar and the gauge

quantiles except for the following events :
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– event 2 : the radar underestimates globally

– event 6
:
7
:
: the gauge is located at the boundary of a convective cell (most probably with hail)

::
the

:::::::::
convective

::::
cell

– event 11 : the radar signal is strongly attenuated by a mesoscale convective system.

– event 13 : there was probably snow in the gauge

– event 14 : the gauge is located at the boundary of a convective cell.5

The second highest quantile at Uccle has been observed by both the radar and the gauge on the 7th of October 2009. There

is generally a good match between the two datasets. A few events are problematic :

– event 1,4 : the gauge is at the boundary of a cell (most probably with hail)

– event 9 : there is a stationary storm underestimated by the gauge

– event 10 : the gauge is at the boundary of a cell and the radar is attenuated (same as event 2 in Humain)10

– event 11 : the radar signal is strongly attenuated (same as event 11 in Humain)

– event 13 : the radar is attenuated

Missing events at cell boundaries can be explained by the fact that precipitation, which is estimated

:::
The

::::::::
problems

::::
with

::::
cell

:::::::::
boundaries

:::
are

:::::
easily

:::::::::
explained

:
:
:::
the

::::
radar

:::::::::
estimation

::
is

:::::
taken at a given height by the radar,

:::::
above

::::::
ground

:::
and

:::
the

::::
rain is subject to wind drift

:::::
before

::::::::
reaching

:::
the

::::::
ground. This effect increases with the distance to the radar.

::::
Due15

::
to

::
its

:::::::::::
randomness,

:
it
::::::
should

:::
not

:::::
affect

:::
the

::::::::
statistics.

::::
The

::::
other

::::::::::
problematic

::::::
events

:::
can

::
be

::::::::::
considered

::
as

::::::
missing

:::::
data.

:::::
Since

:::
the

::::
level

::
of

::::::::::
missingness

::
is

:::::::
limited,

:::
the

::::::
impact

::
on

:::
the

:::::::
statistics

::
is
::::::::
expected

::
to

::
be

::::::
small.

Figure 2 shows the results of the extreme value analysis for 1 h precipitation accumulation. Numerical values
::::::
rainfall

:::::::::::
accumulation.

::::
The

:::::
return

:::::
levels

:::
are

:::::::
obtained

:::::
using

:::::::
formulas

:::::
from

::::::::::::::::::::::
Willems et al. (2007) which

:::
are

:::::
based

:::
on

::
the

:::::::
Weibull

:::::::
plotting

:::::::
position.

:::::::::
Numerical

:::::
values

:::
of

::
the

::::::::
temporal

::::::::::::
independence,

:::
the

::::::
optimal

:::::
rank,

:::
the

:::::::
location

::::::::
parameter

::::
and

:::
the

::::
scale

::::::::
parameter

:
can20

be found in table 3. The percentage of independent peaks (amongst
:::::
among

:
peaks exceeding the threshold) is around 20 % for

both the radar and the gauges at the two locations. This is what we expect from 1 h accumulation available every
:::
This

::::
low

::::
value

::
is

::::::
mainly

::::
due

::
to

:::
the

:::
fact

::::
that

:
5
::::::::::
consecutive

:::::
values

::
at
:
10 min

::::::::
resolution

:::
are

::::::::
correlated.

The empirical quantiles of the QPE product are systematically slightly lower than those for the AWS gauges. This may be

expected as we compare point rainfall observations with rainfall averaged on a 1 km square. However, the underestimation of25

very high rainfall rate by tipping-bucket gauges can compensate for this effect. One also notes small groups of similar values

for both the radar and the gauge,
::::::
which

:::
are

::::::
mainly

::::::::
associated

:::::
with

:::
hail

::::::
events. This can be explained by the hail thresholding

:::::
effect

::
of

:::
hail

:::::::::
threshold and the rainfall rate limit, respectively.

::::
The

:::::::
extremes

::::
tend

:::
to

::
be

::::::
heavy

:::::
tailed

:::
but

:::
this

::::
can

::
be

::
at
:::::

least

:::::::
partially

::::::::
explained

::
by

:::
the

::::::::::
observation

::::::
biases

::::::::
described

:::::
above.

:
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The fit of the EXP distribution is relatively good for the two locations with a relatively low MSE (not shown). Except for

the AWS in Uccle, the extremes tend to be heavy tailed but this can be at least partially explained by the observation biases

described above. The scale parameter tends to be higher for the gauge data than the radar data. In general, the uncertainty for

the scale parameter remains high and this results in wide confidence intervals for higher return periods.

When using the CAP product, the higher quantiles are overestimated especially for Uccle. This can be mainly attributed to5

the effect of hail. This results in an overestimation of the scale parameter.

3.3 Comparison with SPW gauges -
::
of 24h

::::::::
extremes

The
:::
The

:::::::::
comparison

:::
of

::
the

:
10 highest extremes for

::::
from

:::::
either the radar (MFB) and

::
or the gauge (SPW) can be seen in table 4.

For Uccle, most extreme values occured
:::::::
occurred

:
during summer and are therefore associated with convective storms. There

is a good match between the gauge and the radar except for a few events:10

– event 8, 11 : the gauge is at the boundary of a convective cell

– event 13 : strong radar attenuation by a mesoscale convective system

– event 14 : snow episode probably underestimated by the radar

For Saint-Vith, the extreme values occured
:::::::
occurred

:
either in summer or in winter with therefore a mix of convective and

widespread precipitation episodes. The match is very good except for the following events :15

– event 2 : at the boundary of a cell (probably with hail)

– event 3 : might be a radar
::::
slight

:
overestimation due to snow melting

:::::
(QPE)

:
;
::::::::::::
overestimation

::::
due

::
to

:::::::::::
non-uniform

::::
bias

::::::
(MFB)

– event 13 : at the boundary of a cell

:::
The

::::::::::
problematic

::::::
events

:::
not

::::::
related

::
to

::::::::
boundary

::::::
effects

:::
can

::
be

:::::::::
considered

:::
as

::::::
missing

:::::
data.

:::::
Since

::::
they

:::
are

::::::
limited

:
it
::
is
::::::::
expected20

:::
that

::::
they

::::
only

::::::
slightly

:::::
affect

:::
the

::::::::
statistics.

:

Figure 3 shows the results of the extreme value analysis for the 24 h precipitation
::::::
rainfall

:
accumulation. Numerical values

can be found in table 5. The percentage of independent peaks (amongst peaks exceeding the threshold) is between 6 % and 9 %

for the two locations and for all datasets. This is what we expect from 24 h accumulation available every hour.

For Uccle there are not many differences between QPE and MFB because most events are associated with convective25

storms. Compared to the gauge quantiles, the radar quantiles are lower below 1-year and higher between 1-year and 5-year

return periods. This can be attributed mainly to hail overestimation by the radar and gauge losses. It results in a higher scale

for the radar, which is close the upper bound of the gauge confidence interval.

For Saint-Vith, there is a clear effect of the bias correction (MFB) to remove the underestimation of the QPE product. As

for Uccle, the radar quantiles are higher for return periods higher than 2 years but the effect is limited because less convective30

storms are involved. The final result is a good match of the two distributions for this station.
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:::
For

:::
the

:::
two

:::::::
stations,

:::
no

:::::::::
significant

::::::::
instability

::
in

:::
the

:::::
MFB

:::::
values

:::::
have

::::
been

::::::
found.

For Uccle, the CAP product overestimates the scale parameter and underestimates the location parameter due to hail and VPR

errors, respectively. For Saint-Vith, the quantiles (not shown) are similar to QPE except for a very high unrealistic maximum.

4 Regional frequency analysis

4.1 Methodology5

One possibility to decrease the uncertainty of at-site analysis is to perform a regional frequency analysis (RFA). The RFA

is characterised by the selection of the regions and the parameter estimation approach applied to each region (?). The index

flood approach, which consider that only the location parameter varies in the region, is very popular (??). ? used a bootstrap

technique to randomly select data from neighbouring locations with a probability depending on the distance and altitude

variation to the target location. Different RFA approaches for radar datasets are tested in ?, who defines a region as a square10

window of 44 km size. ? applied the index flood method for the whole of the Netherlands. In this study, we consider that

the distribution parameters are the same within a
::
As

::
in

::::::::::::::::::::::
Overeem et al. (2009) and

::::::::::::::::::::
Wright et al. (2014b) we

::::::::
consider

::::
that

::
the

::::::::
extreme

:::::::
statistics

::::
are

:::
the

:::::
same

::::::
within

:::
the

::::::
region.

::::
The

::::::
region

::::::
should

:::
be

:::::::::
sufficiently

:::::
large

::
to
:::::

have
::
a

::::
large

:::::::
sample

::::
size

:::::
(many

:::::::::
extremes)

:::
and

::::::
small

::::::
enough

:::
to

::::::
neglect

:::::::
extreme

::::::::
statistics

::::::::::
variability.

:::
No

::::::
strong

:::::::::
variability

::
is

::::::::
expected

::
in

::::::::
Belgium

::::::
because

::
it
::

is
::

a
::::::::

relatively
::::

flat
:::::::
country.

:::::::::
Therefore

:::
we

::::::
define

:::
our

::::::
region

:::
as

:::
the

:
radius of 20 km around the target location.15

This choice of a neighborhood provides a sufficiently large data sample
:
A
:::::::

similar
:::
size

::::
has

::::
been

:::::
used

::
in

:::::
other

::::
radar

:::::::
studies

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Overeem et al., 2009; Wright et al., 2014b; Eldardiry et al., 2015).

Even for 1
:::
We

::::
also

::::::::
consider

:::
that

:::
the

::::::::
extremes

::::::::
observed

::::::
within

:::
the

:::
20 h duration, precipitation maxima exhibit spatial

correlation (?). ? propose a technique to deal with spatially correlated data. Here we remove the dependent values by taking the

maximum within a certain distance. A time window of
:::
km

:::::
radius

::::::
during

:
a
::::
time

:::::::
window

::
of 12 h is used as in the at-site frequency20

analysis. A first distance of
:
h

::
are

::::::::::
dependent.

::
As

::
in

::::::::::::::::::
Wright et al. (2014b),

:::
we

::::
keep

::::
only

:::
the

::::::::
maximum

:::::::
amongst

:::::::::
dependent

::::::
values.

:::
We

:::::::
therefore

::::::::::
implicitely

::::::
assume

::::
that

:::
the

:::::::
regional

::::::::
maximum

:::::::
follows

:::
the

::::
same

::::::::::
distribution

::
as

:::
the

:::::
local

::::::::
extremes.

::::
The

:::::::
possible

:::::
benefit

:::
of

:::::
taking

:::
one

:::::::
extreme

:::::
value

::
at

::::::
random

::
is

::
an

:::::
open

:::::::
question.

::
It

::
is

::::::::
important

::
to

::::::
remind

:::
that

:::
we

:::
are

::::::::
interested

::
in

:::
the

:::::::
extreme

:::::::
statistics

::
of

:::
any

:::::
given

:::::
pixel

::
in

::
the

::::::
region.

::::
This

::
is
:::::::
different

:::::
from

:::::::
studying

:::
the

:::::::
extreme

:::::::
statistics

::
of

:::
the

:::::::::
maximum

::::::
rainfall

::::
over

:::
the

:::::
region

::
as

::
in
:::::::::::::::::::
Panziera et al. (2016).

:::
We

:::
also

::::::
tested

:::
the

:::::::::
hypothesis

:::
that

::::::
1 hour

::::::::
extremes

:::
are

::::::::::
independent

::::
after

::
a

::::::
certain

:::::::
distance25

:::::
which

::
is

:::
set

::
to 10 kmis tested, which

:
.
::::
This

:::::::
distance

:
corresponds to the maximum expected size of a convective cell (?). We

also test the hypothesis that convection is always organised at the meso-scale and hence consider that all values are dependent

within 50 km
:::::::::::::::::::::::::::::
(Goudenhoofdt and Delobbe, 2013).

::
If

:::
this

::
is

::::
true

:
it
::::::
allows

::
to

::::::
reduce

:::
the

::::::::::
uncertainty

::
of

:::
the

:::::::
analysis. In the text,

we will refer to these two datasets by the names R10 and R50. The time span
::::
RFA

:::
and

:::::
R10,

::::::::::
respectively.

:

:::
Due

:::
to

:::
the

::::::
spatial

:::::::::::
dependence,

:::
the

::::::::
effective

::::::
length

::::
neff:of the pooled dataset is reduced according to the percentage30

:::::::::
time-series

::
is

::::::
smaller

:::::
than

:::
the

::::
total

::::::
length

::
of

:::
the

:::::::
records.

::::
The

::::
total

::::::
length

::
is

::::::::
obtained

::
by

::::::::::
multiplying

::::
the

::::::
number

:::
of

:::::
years
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:
n
:::
by

:::
the

::::::
number

::
of

::::::
pixels

::
N

:
:
:

nmax = n×N.
::::::::::::

(4)

::
In

:::
this

:::::
study

::::
neff::

is
:::::::::
computed

::
by

::::::::::
multiplying

:::::
nmax:::

by
:::
the

::::::
fraction

:
of spatially independent peaks, amongst peaks exceeding

the threshold. The
::::
latter

::
is

:::::::
obtained

:::
by

:::::::
dividing

::
the

:::::::
number

::
of

::::::::::
independent

:::::
peaks

:::
by

:::
the

::::
total

::::::
number

::
of

::::::
peaks.

::
It

:::
can

::
be

::::::
shown

:::
that

::::
this

::
is

:::
the

:::::
same

::
as

:::
the

:::::::
method

:::::
based

:::
on

:::
the

::::::::
averaged

::::::::::
exceedence

:::
rate

::::::
found

::
in

:::::::::::::::::::::
Wright et al. (2014b) and

::::::::
explained

:::
in5

:::::
details

:::
by

::::::::::::::::
Weiss et al. (2014).

:::
The

:
large number of peaks available from the radar data allows us to choose a higher threshold

rank. This increase in sample size leads to a more reliable extreme value analysis, which is the final goal of this radar-based

RFA. Applying
::::::::::
Accordingly

:
the QQR method on the pooled dataset, one can safely choose a rank

:
is

:::::::
applied

:::
for

::::::::
threshold

::::
ranks

:
between 30 and 100.

:::
100

:::
and

:::
the

:::::::
optimal

::::
rank

::
is

:::::
found.

:

4.2 Comparison with rain gauges10

Figure 4 and 5 shows the results of the regional frequency analysis for 1 h precipitation
:::::
rainfall

:
accumulation at the 4 locations

selected from the BUL network. The results of the at-site frequency analysis for the gauge and collocated radar pixels are

showed as reference. Numerical values can be found in table 6. The percentage of temporally independent extremes for the

gauge is close to 30 % for Deurne and Uccle while it is slightly above 20 % for the two others stations. This suggests that there

are larger clusters which might be related to altitude. Above the threshold, the percentage of spatially independent extremes15

(50 km
:::
RFA) ranges from 1.1 % (Uccle) to 2.6 % (Nadrin). The corresponding period for

:::::::
effective

::::::
period

::::::
length

::
of the pooled

dataset is
:::
then

:
between 200 and 500 years. Using a decorrelation distance of 10 km results in twice more datasuggesting that

convection is often organised ,
::::::
which

::
is

::::
more

::::
than

::::
one

::::::
expects

:::::
from

::::::::::
randomness.

::
It

:::::::
suggests

::::
that

:::::::::
convection

:::
can

::
be

:::::::::
organised

:
at
:::::
large

::::::
spatial

:::::
scales.

The radar images associated with each maximum of the radar-based RFA is analysed :20

– Deurne and Uccle (28 July 2006) : several supercells on the whole of Belgium

– Gosselies (22 August 2011) : a squall line moving parallel to the flow

– Nadrin (26 July 2008) : a stationary convective cell

The highest extremes exhibit abrupt variations in the form of steps for both the gauge and radar. This could be explained by

the siphonage of the gauge and hail thresholding
:::::::
threshold, respectively. Since Nadrin is close to the radar, the standard Z-R25

relationship is used and allows for
::::::
instead

::
of

:::
the

:::::::::
convective

::::
Z-R

::::::::::
relationship.

::::
This

:::::::
permits higher rain rates (i.e. 100 mm/hour).

The gauge extremes are relatively low at Deurne and Uccle compared to Nadrin and Gosselies. The radar extremes are lower

at Deurne compared to the other stations. This can be at least partially attibuted
::::::::
attributed to the large sample volume at this

range. The match between the gauge and the radar (R10 and R50
::::
RFA

:::
and

::::
R10) is good except at Uccle with much higher radar

extremes.
:::
The

:::::
RFA

:::::::
exhibits

:::::
higher

::::::::
extremes

::::
than

::::
R10

:::::::::
suggesting

:::::
some

::::::::::
dependence

::::::
beyond

::::::
10 km.

::::::
Indeed

:::
the

::::::
results

::::::
should30

::
be

::::::
similar

::
if

:::
the

:::::::::
hypothesis

::
of

:::::::::::
independence

::::
after

::::::
10 km

:::
was

:::::
valid.

:
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This can be partially attributed to hail but the similar 4 highest extremes suggest a gauge limitation. It is also striking that

half of the 20 highest gauge extremes occured
:::::::
occurred during the period 1999-2008 (not shown). This positive trend for Uccle

is possibly related to the urban heat island effect (?).

:::::::::::::::::::::::::::
(Hamdi and Van de Vyver, 2011).

:
The uncertainty of the radar fit is low because of the larger sample size, due to which a

higher rank can be chosen. Furthermore, the fit is less impacted by the potentially large errors of the highest extremes. The5

location parameter (corresponding to the threshold) increases for the successive products due to the increased sample size
::::
with

::
the

:::::::
sample

:::
size

::
of

:::
the

::::::::
products.

Except for the Uccle station, the scale parameter is the lowest for the QPE dataset due to the bias as a result of the small

sample size. The scale parameter of the pooled radar datasets is slightly higher at Deurne and significantly higher in Uccle. For

Gosselies and Nadrin, the R10 and BUL data have similar scales while it is slighltly
::::::
slightly

:
higher for the R50

::::
RFA data. The10

fit to the R10 and R50
::::
RFA

:::
and

::::
R10

:
data is within the uncertainty bound of the fit to the BUL data. For those two stations, the

fit to the BUL data is even in the small uncertainty bound of the fit to the R50
::::
RFA

:
data.

4.3 Spatial maps

QQR estimator of the scale parameter of the Exponential distribution fitted for each pixel to 2005-2016 QPE data in a radius

of 10 km.15

In Belgium, ? derived a spatial GEV model depending linearly on the altitude. ? found for 6-hourly precipitation in the

Czech Republic that the assumption of a linear model might be too restrictive, especially for convective precipitation. Here we

are able to use the radar data to study directly the spatial variations of the extremes. It also allows to verify our hypothesis that

the distribution parameters do not vary on a 40 km scale.

In practice, we performed
:::
We

:::::
apply

:
the regional frequency analysis at

::::::::
described

::::::
above

:::
for

:::::
1 hour

::::::::
duration

::
to

:
all pixel20

locations but using a
:
in

::::::::
Belgium

::::
with

:::::
some

::::::::::::
modifications.

:::
We

:::
use

::
a
::::::
smaller

:
radius of 10 km (with a decorrelation distance

of 50 km). Besides the reduced computation cost , it
::
to

:::::
reduce

:::
the

:::::::::::
computation

::::
cost

:::
and

::::::::
consider

:::
that

:::
all

:::::
pixels

:::
are

::::::::
spatially

:::::::::
dependent.

::::
This

::::::
smaller

:::::
radius

:
improves the resolution of the maps . A few pixels having too much (50) peaks over the threshold

(
:
at

:::
the

:::::::
expense

::
of

:
a
::::::
higher

::::::::::
uncertainty.

::::::
Several

:::::
pixels

::
in

:::
the

::::
radar

::::::
dataset

:::
are

:::::::
affected

::
by

:::::::::
permanent

::::::::::::::::
non-meteorological

:::::::
echoes.

::::
They

:::
can

:::
be

::::::::
identified

::
by

:::
an

:::::::::
unrealistic

::::
high

::::::::
frequency

::
of
:::::::::

extremes.
::
In

:::::::
practice

:::
one

:::::
looks

::
at

:::
the

::::::::::
distribution

::
of

:::
the

:::::::
number

::
of25

:::::
values

:::::::::
exceeding 12 mm/hour) are considered as residual clutter .

::::
The

:::::
pixels

::::
with

:::::
more

::::
than

:::
50

::::::::::
exceedances

::::
have

:::::
been

:::::
found

::
as

::::::
outliers

:
and removed. To make the comparison easier, we choose a fixed threshold rank (60)

::
of

:::
60.

::
No

::::::
larger

::::
ranks

:::::
have

::::
been

:::::::::
considered

:::
due

::
to

::::::::::::
computational

:::::::::
limitations.

Figure 6 and ?? show respectively for Belgium the location (i.e. the 60th highest extreme) and scale parameters. There are

no values
::::::
Figure

:
6
::::::

shows
:::
the

::::::
results

::
of

::::
the

:::::::
regional

::::::::
frequency

::::::::
analysis

::::::
applied

::
to

::::::::
Belgium.

::::
The

:::::::::
provinces

::
of

::::::::
Belgium

:::
are30

:::
also

:::::::::
displayed

::
to

::::
help

::::::::::
comparison

:::::::
between

:::
the

:::::
maps.

::::
No

:::::
values

:::
are

::::::
shown

:
beyond the 180 km range because the quality of

the radar QPE tends to decrease. For the location parameter , there is some correlation with topography and the mean annual

rainfall (?) but the variations are small. The scale parameter exhibits higher variations which are partially correlated with the

location parameter
:
is
:::::::::::

significantly
::::::::
reduced.

:::
The

::::::
return

::::::
periods

:::
are

:::::::::
computed

:::::
using

::::::::
equation

:
3
::::
and

::::::::
therefore

:::::::
depends

:::
on

:::
the
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::::
scale

:::::::::
parameter

:::
and

::::
the

:::::::
effective

::::::
length.

::::
The

::::::
higher

:::
the

:::::
scale

:::
the

::::::
higher

:::
the

:::::::::
difference

:::::::
between

:::
the

:::::::
10-year

::::
and

::::::::
100-year

:::::
return

:::::
levels.

:

:::::
Some

::::::
artifacts

::::
due

::
to

::
the

:::::
radar

:::
and

:::
the

:::::::
regional

::::::::
approach

:::
can

::
be

::::
seen

::
on

:::
the

:::::
maps.

::::
The

:::::::
effective

:::::
length

::::::::
decreases

:::::::::::
significantly

::::::
beyond

::::::
100 km

::::::::
meaning

:::
that

:::
the

::::::
spatial

::::::::::
dependence

::::::::
increases.

::::
This

::
is

:::
due

::
to

:::
the

::::
fact

:::
that

:::
the

:::::
actual

:::::
radar

::::::
sample

::
is

:::::
larger

::::
than

::
the

:::::
1 km

::::
pixel

::
at
:::::
those

::::::
ranges.

::::::::
Circular

::::::
patterns

::::::
appear

:::
on

:::
the

:::::
maps

:::
due

::
to

:::
the

::::::::
influence

::
of

:::
the

:::::
pixels

:::::::
located

::
at

::::
their

:::::::
centers.5

:::
The

::::
high

::::::
values

:::
are

::::::
caused

:::
by

::::::
pixels

:::::::::::
contaminated

:::
by

::::::::::::::::
non-meteorological

::::::
echoes

:::::
(e.g.

::
at

:::
the

:::::::
German

:::::::
border)

:::
and

:::::
hail.

::
A

:::::::
stronger

::::
filter

:::
for

::::::::::::::::
non-meteorological

::::::
echoes

:
is
:::
not

:::::
used

::::::
because

::
it
:::::
could

::::::
remove

::::::
actual

::::::::::
precipitation

:::::::::::
information.

:::
The

:::::::
circular

:::::
effect

:::::
might

::
be

:::::::
reduced

::
by

:::::
using

::
a

:::::
larger

:::::
radius

::
or

::
a
:::::
higher

::::::::
threshold

::::
rank

:::
but

::::
this

::
is

:::::::::::::
computationally

:::::::::
expensive.

:::::
Areas

::::
with

::
a

::::::
10-year

:::::
return

:::::
level

::::::::
exceeding

::::::
30 mm

:::
are

::::::
mainly

:::::::
located

::::::
beyond

:::::::
100 km.

::::
This

::
is

::::::::
probably

:::
due

::
to

:::
an

::::::::
increased

::::::::::::
contamination

::
by

:::
hail

:::::
with

::
the

::::::::
distance

::
to

:::
the

::::
radar

::::
(and

:::
the

::::::
height

::
of

:::
the

::::::::::::
measurements). The small scale variability in the study area can be10

explained by uncertainties due to the sample size.

:::::
There

::
is

::::
some

::::::::::
correlation

:::::::
between

:::
the

:::::::
10-year

:::::
return

::::
level

::::
and

:::
the

::::
scale

:::::::::
parameter.

:::::::::
Therefore

:::
the

::::::
spatial

::::::
patterns

::::::::
between

::
the

::::
two

:::::
return

:::::::
periods

:::
are

::::::
similar.

::::::
Within

:::
the

:::::::
100 km

::::::
radius,

:::
the

::::
maps

:::
are

:::::
only

::::::
slightly

:::::::::
influenced

:::
by

:::
the

:::::::::
topography

::::
and

:::
the

::::
mean

::::::
annual

::::::
rainfall

::::::::::::::::::
(Journée et al., 2015).

::::
This

::::::::
suggests

:::
that

::::::::
applying

:::
our

:::::::
regional

::::::::
approach

:
is
:::::
valid,

::
at
::::
least

:::
for

:::
1 h

::::::::
duration.

::::::::::::::::::::::::
Van de Vyver (2012) obtained

:::::::
slightly

:::::
lower

::::::
values

:::
for

:::
the

::::::
10-year

::::::
return

::::
level

:::
but

:::::::
slightly

::::::
higher

:::::::
100-year

::::::
return

::::
level

::::
due15

::
to

:::
the

:::::::
positive

:::::
shape

:::::::::
parameter. One notes that the scale is very high around the Brussels region where the Uccle station is

located. The highest values might be affected by overestimation due to hail. The circles of 10 km with very high values (e.g. at

the German border) are probably an artefact caused by exceptional clutter.

These results suggest that considering constant extreme statistics over small regions is valid for the 1-hour duration.

5 Conclusions20

5.1
::::::

Results

The potential of a radar-based precipitation dataset
:::::::
datasets to study extreme precipitation

:::::
rainfall

:
at a given location is evalu-

ated. The quantitative precipitation estimate
:::::::::
estimation (QPE) is obtained by a careful processing of the volumetric reflectivity

measurements from a single weather radar in Belgium. The radar dataset covers the period 2005-2016, has a resolution of 1 km,

and is available every 5 minutes.25

The first evaluation is based on a comparison of the extreme statistics between the radar dataset and two automatic raingauge

networks with 10 min and 1 h resolution, respectively. For each network, two locations are chosen to study sliding 1 h and 24 h

extremes using the collocated radar estimation. A regression method in Q-Q plots is used to fit an exponential distribution to

independent peaks.
::::
This

::::::
method

:::
has

:::
the

::::::::
property

::
to

:::::
focus

::
on

:::
tail

:::
of

:::
the

:::::::
extreme

:::::
value

::::::::::
distribution,

:::::
which

::
is

::
of

:::::::
interest

:::::
when

:::::::
studying

::::::::
extremes.

:
An optimal threshold rank is selected by minimising the MSE of the regression.30

The 10 highest 1 h extremes occurred in summer and are well captured by both the radar and the gauge. A few exceptions

::::::::::
problematic

:::::
events

:
are caused by wind drift or severe radar signal attenuation . There are some differences

:::
and

::::::
should

:::
be

:::::::::
considered

::
as

:::::::
missing

::::
data.

::::::::::
Differences

:
up to 30 % between the gauge and radar values which

::
are

::::::::
observed

::::
and can be ex-
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plained by
:::::
spatial

:
sampling and estimation errors.

:::
The

:::::
radar

:::::::
extremes

::::
tend

::
to

:::
be

:::::
lower

::::
than

::
the

::::::
gauge

:::::::
extremes

:::::::::
especially

:::
for

::::
short

:::::
return

:::::::
periods.

:::::
This

::
is

::::::::
consistent

::::
with

:::
the

::::::
results

::
of

::::::::::::::::::
Peleg et al. (2016) on

:::
the

:::::
small

:::::
scale

::::::
spatial

::::::::
variability

:::
of

:::::::
extreme

::::::
rainfall.

:
In particular, tipping bucket gauges underestimate heavy rainfall rate and can be blocked by accumulated snow. The

radar underestimates due to signal attenuation and overestimates in case of hail. Additional radar uncertainties come from time

sampling and the Z-R relationship. Nonetheless
::::::
Despite

:::
the

:::::::::::
uncertainties

::
in

:::
the

:::::::
datasets, the fitting of the exponential distribu-5

tion to the QPE product is within the large uncertainty bound of the AWS one.
::::
This

:::::
result

::
is

::
in

::::::::::
accordance

::::
with

:::
the

:::
fact

::::
that

::
the

::::::::
temporal

:::::::::
variability

::::::
(related

::
to
:::
the

::::::
sample

:::::
size)

::
is

:::::
higher

::::
than

:::
the

::::::
spatial

:::::::::
variability

::::::::::::::::
(Peleg et al., 2017).

For 24 h accumulation there is a mix of summer and winter events, with more of the latter for stations with higher altitude.

There is a clear benefit of bias correction for the highest station, making the distribution fits similar for both stations. For both

1 h and 24 h accumulations, the basic radar product exhibits unrealistic high extremes, which results in an overestimated scale10

parameter. Such product is therefore not suitable for an extreme value analysis.

In the second evaluation a regional frequency analysis is applied to 1 h radar data at the location of 4 pluviographs with

recordings from 1965 to 2010. Spatially independent extremes within a circle of 20 km are selected and
::::
using

::
a

::::
novel

:::::::::
approach.

::::
They

:::
are

:
fitted with a maximum threshold rank extended from 30 to 100 thanks to the increased sample size. There is a good

agreement between the radar and the gauge for the two closest stations. The extremes are slightly higher
::::
most

::::::::
important

:::::
result

::
is15

:::
that

:::
the

:::::::::
uncertainty

::
is
:::::::::::
significantly

:::::
lower

:::::
using

::
the

::::::::
available

:::::
radar

::::
data.

::::
The

:::::::
extremes

:::
are

:::::
lower

:
when a decorrelation distance

of 50 km is used instead of 10 km
::
is

:::::::
assumed

::::::::::
suggesting

:::
that

::::
this

:::::::::
hypothesis

::
is

:::
not

:::::
valid. In Uccle, the radar extremes and

therefore the scale parameter are significantly higher. This can be attributed partially to radar overestimation due to hail and

gauge underestimations, but the increasing urban heat island effect should not be ruled out. The decreasing tail of the radar

extremes is at least partially caused by hail thresholding
::::::::
threshold but a physical limit for the Belgium climate could play a20

role. Based on

:::
For

::::
each

::
of

:::
the

::::
rain

::::::
gauge

::::::::
networks,

::::
only

::
a

:::
few

:::::::
stations

::::
have

:::::
been

:::::::
selected

:::
and

:::::::::
presented

::
in

:::
this

::::::
paper.

:::
The

::::::
results

:::::
from

::::
these

:::::::
stations

:::
are

:::::::::::
representative

::
of
:::
the

:::::::::
variability

::
of

:::
the

::::::
results

:::::::
obtained

:::::
from

:::
the

::::
other

:::::::
stations.

:

:::
The

:::::::
regional

::::::::
approach

:::
has

:::::
been

::::::
applied

:::
all

::::
over

:::
the

:::::
study

::::
area

:::::
using

:
a
::::::
10 km

:::::
radius

::::
and

:
a
:::::
fixed

::::::::
threshold

::::
rank

::
of

:::
60.

::::
The

::::::
extreme

::::::::
statistics

:::
for

:
1 h radar data, the location parameter remains relatively constant over Belgium with a slight effect of25

the topography (a similar result has been obtained by ?). The scale parameter exhibits higher variations between regions of

about 40
:
h
:::::::
duration

:::
are

:::::::
slightly

:::::::::
influenced

::
by

:::
the

::::::::::
topography.

::::
The

::::::::
reliability

::
of

:::
the

:::::
radar

::::::
results

::::::
beyond

:::
the

::::
100 km size

:::::
range

:
is
:::::::::::
questionable.

5.2
::::::::

Prospects

There is still some room to improve the quality of the radar and gauge datasets. The recently installed weighting gauges are30

able to cope with intense rainfall and snowfall. One will have to wait a few decades before it can produce reliable statistics.

Radar calibration errors can be mitigated by computing a monthly bias using rain gauges. The attenuation can be solved

easily by using other radars when available. An
::
To

:::::
avoid

::::::::::::
overestimation

:::
of

:::
the

::::::::
extremes,

:::
an

:
advection correction can be

used for the time sampling error. Dual-polarization radars can potentially provide better estimation for high rainfall rates
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(?)
:::::::::::::::::::::::::::::::
(Figueras i Ventura and Tabary, 2013). However uncertainties related to relation between the radar measurements and the

rainfall rate remain, especially in case of hail. In this study , all kind of precipitation including hail is considered
:::
we

:::::::::
considered

::
all

::::
data

::
as

:::
the

:::::::
amount

::
of

:::::
liquid

:::::
water

::
at

:::
the

::::::
ground. For some applications , it could be necessary to remove the precipitation

associated with hail
:::
take

:::
the

:::::::
melting

:::
of

:::::
snow

:::
and

::::
hail

::::
into

:::::::
account. Identification of hail at ground level is a challenging

problem using radar and ground station networks (?).5

For each of the rain gauge networks, only a few stations have been selected and presented in this paper. The results from

these stations are representative of the variability of the results obtained from the other stations
:::::::::::::::::
(Lukach et al., 2017).

Since the paper focuses on comparison against
::::::
between

:::::
radar

:::
and

:
rain gauges, an at-site

:::
the extreme value analysis has been

conducted, assuming an EXP distribution . In future works one should consider
:::
kept

:::::::
simple.

:::::
While

:::
the

::::
EXP

::::::::::
distribution

::::
was

:::::
found

::
to

::
fit

::::::::
generally

::::
well

::::
with

::
the

::::::::
empirical

:::::
data, the generalised Pareto distribution and perform the necessary bias correction10

related to
:::::
should

:::
be

:::::::::
considered

::
as

::::
well

:::
for

:::
the

:::::::
regional

:::::::::
frequency

:::::::
analysis.

::::
The

:::::::
analysis

::
of

:::::
longer

::::::::
durations

::::
can

::
be

::::::
refined

:::
by

:::::
taking

::::
into

:::::::::::
consideration

:::
the

:::::
effect

:::
of

:::
the

::::
type

::
of

:::::::
rainfall

:::::::::::::::::::::::::::::::::::::::
(e.g., Rulfova et al., 2014; Panziera et al., 2016).

::
A

::::
bias

:::::::::
correction

:::::
should

::::
also

::
be

::::::::::
considered

::
for

::
a
::::::
proper

:::::::
handling

::
of

:
the asymptotic behavior of the distribution .

::::::::::::::::::
(Willems et al., 2007).

:

The extreme value theory was applied to the radar datasets by removing the spatially dependent extremes in the region of

analysis. The recent theory of spatial extremes can offer a more elegant approach to this problem (?)
::::
This

::
is

:::::::::
performed

:::::
using15

:
a
::::::
simple

::::::::
technique

:::::
based

:::
on

:
a
:::::::::::
decorellation

:::::::
distance.

::::::::::::::::::::::
Evin et al. (2016) decided

:::
not

::
to

:::
use

::::
such

:::::::
method

:::::::
because

:
it
:::::::
reduces

:::
the

::::::
sample

::::
size.

:::::
Better

::::::::::
performance

:::
are

::::::::
expected

::::
using

:::::::
recently

::::::::
proposed

::::::::
statistical

::::::
models

::::::::::::::::::::::::::::::::::::
(Buishand et al., 2008; Davison et al., 2012).

The radar-based regional frequency analysis can be extended to other durations to derive IDF curves. Note that the hypothesis

of constant parameter over the region might not be valid for longer durations. In many applications in hydrology, it is the aver-

aged rainfall over a given area which is relevant. A popular technique is to apply areal reduction factors to point-based statistics.20

The radar dataset can be used directly to derive areal rainfall statistics
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Durrans et al., 2002; Overeem et al., 2010; Wright et al., 2014a).

6 Code availability

The code used in this study is part of the RMIB radar library.

7 Data availability

The rain gauge and radar precipitation estimation data
::::::
rainfall

::::::::::::
measurements

::::
and

::::::::::
radar-based

:::::::::::
precipitation

::::::::
estimates

:
are25

archived at the RMIB.
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Figure 2. Extreme
:::::
Return

::::
levels

:::
for 1-hour precipitation quantiles

::::::
duration

:
at location Humain (top) and Uccle (bottom) of the AWS gauge

(red stars) compared to CAP (blue triangles) and QPE (magenta squares) radar products. The extreme value distribution (solid line) fitted to

the extremes and its confidence intervals (dashed line) are also displayed.
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Figure 3. Extreme
:::::
Return

:::::
levels

:::
for 24-hour precipitation quantiles

::::::
duration

:
at location Uccle (top) and Saint-Vith (bottom) of the SPW

gauge (red stars) compared to QPE (blue triangles) and MFB (magenta squares) radar products. The extreme value distribution (solid line)

fitted to the extremes and its confidence intervals (dashed line) are also displayed.
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Figure 4. Extreme 1-hour precipitation quantiles
:::::
Return

:::::
levels

::
for

:::::
1 hour

::::::
duration

:
at location Deurne (top) and Uccle (bottom) from the BUL

gauge data (red stars) compared to the at-site QPE (blue triangle), R10
:::
REG

:
(purple square) and R50

:::
R10 (green diamond) radar data. The

extreme value distribution (solid line) fitted to the extremes and its confidence intervals (dashed line) are also displayed.
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Figure 5. Extreme 1-hour precipitation quantiles
:::::
Return

::::
levels

:::
for

:::::
1 hour

::::::
duration

:
at location Gosselies (top) and Nadrin (bottom) from the

BUL gauge data (red stars) compared to the QPE (blue triangle), R10
::::
REG (purple square) and R50

:::
R10 (green diamond) radar data. The

extreme value distribution (solid line) fitted to the extremes and its confidence intervals (dashed line) are also displayed.
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Figure 6. QQR estimator
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Results
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:
to 2005-2016 QPE data

:
a
::::::
10-year

:::
and

:::::::
100-year

:::::
return

::::::
periods

::
are

::::::
shown in

::
the

::::::
bottom

:::::
panel.

:
A
:::::
circle

::::
with a radius of

10
:::
100 km

:::::
centred

::
at

::
the

::::
radar

::
is
:::
also

:::::
drawn.

26



Table 1. Rain gauge stations used for comparison
:::
and

::::::::
availability

::
of

:::
the

::::::
extreme

::::::
rainfall

::::::
datasets.

::::
The

:::
last

::::::
column

:
is
:::
the

::::::::
percentage

::
of

::::
time

::::
when

::::
both

::::
radar

:::
and

::::
gauge

::::
data

:::
are

::::::
available

Station Altitude (DNG) Distance to radar (km) Duration Avail. Gauge (%) Avail. Radar (%) Avail. All
:::
Both

:
(%)

Humain (AWS) 296 36 1h 98.5 94.8 93.5

Uccle (AWS) 100 128 1h 99.9 94.8 94.7

Uccle (SPW) 100 128 24h 90.6 86.0 78.2

St-Vith (SPW) 456 61 24h 89.2 86.0 76.7

Deurne (BUL) 12 161 1h 86.0 – –

Uccle (BUL) 100 128 1h 96.3 – –

Gosselies (BUL) 187 97 1h 85.7 – –

Nadrin (BUL) 403 30 1h 59.3 – –
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Table 2. Comparison of the 10 highest 1-hour precipitation
::::::
rainfall extremes from the gauge (AWS) and radar (QPE) at Humain and Uccle

stations.
:::
The

:::::
events

::::
with

:
a
::::
high

::::::::
probability

::
of

:::
hail

::::
have

:::
their

::::::
number

::
in

::::
bold.

:::
The

:::::
events

:::
are

::::::
ordered

::
by

:::
the

:::::::
maximum

::
of

:::
the

:::::
gauge

:::
and

::::
radar

:::::
values.

Humain

Event Date Time (end) Gauge [mm/hour] Radar[mm/hour]

1 1 2016-06-07 18:50:00 57.65 45.25

2 2005-07-30 00:40:00 28.60 11.62

3 3 2014-04-24 15:40:00 27.00 20.35

4 2014-06-10 21:40:00 15.60 26.40

5 2007-06-14 01:20:00 25.80 16.32

6 2008-05-14
::::::::
2009-05-25

:
17:40

::::
13:10:00 13.10

::::
24.10 24.35

::::
25.17

:

7 7 2009-05-25
::::::::
2008-05-14

:
13:10

::::
17:40:00 24.10

::::
13.10 25.17

::::
24.35

:

8 2015-07-19 01:00:00 22.87 15.47

9 2009-06-27 14:30:00 20.40 19.83

10 2009-07-22 21:20:00 19.80 12.08

11 2010-07-14 15:40:00 19.80 —–

12 2012-06-12 22:20:00 18.30 15.61

13 2013-03-23 07:40:00 —– 17.30

14
::
14 2005-06-28 22:20:00 —– 16.74

Uccle

Event Date Time (end) Gauge [mm/hour] Radar [mm/hour]

1 1 2016-06-07 15:20:00 18.08 38.21

2 2 2011-08-23 08:40:00 35.50 23.22

3 3 2009-10-07 18:40:00 30.79 33.32

4 4 2012-05-20 16:30:00 12.37 29.79

5 2005-09-10 19:40:00 29.10 17.54

6 6 2011-08-18 15:50:00 28.98 14.77

7 2007-06-14 14:50:00 21.90 25.88

8 2011-09-03 22:40:00 25.34 18.46

9 2016-06-11 18:50:00 —– 24.88

10 2005-07-29 19:10:00 24.29 —–

11 2010-07-14 15:20:00 24.15 —–

12 2014-07-29 16:10:00 20.10 18.17

13 2013-07-27 22:20:00 20.07 —–

14 2008-07-26 10:40:00 16.60 18.30
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Table 3. Results of the extreme value distribution fitting at two locations of the AWS network. The tables shows successively the temporal

independence, optimal rank, the location parameter and the scale parameter.
::
A

::::
value

::
is

:::::::
indicated

::
as

::::::
missing

::::
when

::
its

:::::::
extreme

:::
rank

::
is

:::::
below

::
30

temporal independence [%]

Station Gauge CAP QPE MFB

Humain 25.6 20.7 22.6 –

Uccle 20.8 19.4 21.0 –

optimal rank

Station Gauge CAP QPE MFB

Humain 30 30 28 –

Uccle 29 23 30 –

location parameter [mm/hour]

Station Gauge CAP QPE MFB

Humain 12.2 11.0 10.7 –

Uccle 12.3 13.9 12.3 –

scale parameter

Station Gauge CAP QPE MFB

Humain 7.5 8.9 6.6 –

Uccle 6.8 10.8 6.4 –
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Table 4. Comparison of the 10 highest 24-hour precipitation
::::::
rainfall extremes from the gauge (SPW) and radar (MFB) at Uccle and Saint-

Vith stations
:
.
:
A
:::::
value

:
is
:::::::
indicated

::
as
:::::::

missing
::::
when

::
its

::::::
extreme

::::
rank

::
is

:::::
below

::
30.

::::
The

:::::
events

::
are

::::::
ordered

:::
by

::
the

::::::::
maximum

::
of

:::
the

:::::
gauge

:::
and

::::
radar

:::::
values.

Uccle

Event Date Time (end) Gauge [mm/24h] Radar [mm/24h]

1 2010-08-16 23:00:00 63.30 48.99

2 2009-10-07 23:00:00 52.50 61.83

3 2011-08-23 15:00:00 59.31 61.00

4 2006-08-03 23:00:00 43.00 58.44

5 2016-05-30 23:00:00 35.30 53.34

6 2014-08-26 15:00:00 45.30 48.51

7 2012-10-04 08:00:00 34.60 45.63

8 2012-06-12 11:00:00 —– 44.87

9 2016-06-12 17:00:00 31.30 39.45

10 2011-09-04 21:00:00 38.70 26.10

11 2015-08-16 03:00:00 —– 37.75

12 2007-06-15 11:00:00 36.99 33.91

13 2014-07-10 04:00:00 36.90 —–

14 2016-01-16 02:00:00 36.30 —–

Saint-Vith

Event Date Time (end) Gauge [mm/24h] Radar[mm/24h]

1 2007-01-18 16:00:00 74.60 56.88

2 2009-07-03 16:00:00 37.90 61.68

3 2011-12-16 23:00:00 —– 56.62

4 2012-07-28 21:00:00 53.60 46.72

5 2012-10-04 12:00:00 49.70 39.86

6 2007-08-22 19:00:00 47.50 48.73

7 2010-08-16 03:00:00 45.80 55.50

8 2006-08-05 06:00:00 43.70 41.10

9 2007-12-03 08:00:00 43.40 46.09

10 2007-09-28 08:00:00 42.40 38.87

11 2014-09-21 14:00:00 34.00 40.71

12 2016-05-31 02:00:00 40.01 33.44

12 2016-07-23 21:00:00 40.00 —–
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Table 5. Results of the extreme value distribution fitting at two locations of the SPW network. The tables shows successively the temporal

independence, optimal rank, the location parameter and the scale parameter.

temporal independence [%]

Station Gauge CAP QPE MFB

Uccle 7.1 6.0 6.6 6.7

St-Vith 7.4 8.4 9.0 8.4

optimal rank

Station Gauge CAP QPE MFB

Uccle 30 26 19 23

St-Vith 30 30 30 28

location parameter [mm/24h]

Station Gauge CAP QPE MFB

Uccle 27.2 25.0 27.2 27.5

St-Vith 30.2 25.8 26.3 31.5

scale parameter [mm/24h]

Station Gauge CAP QPE MFB

Uccle 9.0 13.5 12.7 12.9

St-Vith 8.9 8.2 6.9 9.1
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Table 6. Results of the extreme value distribution fitting for the regional frequency analysis. The tables shows successively the independence

(temporal or spatial), the optimal rank, the location parameter and the scale parameter.

independence [%]

Station QPE BUL R50 R10

Deurne – 27.5 1.4 2.6

Uccle – 28.0 1.1 2.6

Gosselies – 22.2 1.7 3.9

Nadrin – 19.9 2.6 7.0

optimal rank [%]

Station QPE BUL R50 R10

Deurne 28 22 100 99

Uccle 30 30 70 88

Gosselies 29 30 96 90

Nadrin 23 30 100 91

location parameter [mm/hour]

Station QPE BUL R50 R10

Deurne 10.8 16.7 16.5 20.0

Uccle 11.5 17.5 21.1 24.2

Gosselies 11.9 15.2 20.4 26.5

Nadrin 12.2 12.9 21.0 29.0

scale parameter [mm/hour]

Station QPE BUL R50 R10

Deurne 4.7 5.7 8.0 7.3

Uccle 6.4 4.4 11.7 10.7

Gosselies 6.4 8.7 10.1 8.6

Nadrin 6.1 9.3 11.7 9.5
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Authors response to Referee 1 comments

The manuscript presents the use of different methods to perform rainfall frequency analysis from weather radar data. The topic

is of increasing interest for the community given the growth of radar and remote sensing archives worldwide. Studies proposing

methods, testing approaches and evaluating the accuracy of such products are greatly welcome and definitely of interest for the

readers of HESS.5

This study focuses on a region in Belgium and derives at-site and ‘regional’ frequency analyses for 1h and 24h durations

and provides new contributions (not clearly evident from the text) to the field, such as the use of new (i) methods (i.e. a peak

over threshold approach, QQ plot regression) and (ii) regionalization approaches for rainfall frequency analyses from remote

sensing data sets.

This study will provide new, interesting information to the field and deserves publication. However, a number of issues are10

currently preventing it from being published in its present form: literature review is missing key papers that need to be men-

tioned and, in some cases, discussed; methods are not sufficiently described, motivated and supported by literature; some of

the results need to be re-considered and discussed, also in light of the new literature review; presentation and language need

some improvement. Below a list of major and minor comments.

15

We would like to thank Francesco Marra for summarising the value of the paper and his in-depth analysis of our work. It

allowed us to improve the paper and to put some results in perspective.

Major comments

Literature review

Literature review is missing some key papers of the field.20

– Panziera et al., 2016 developed regional rainfall frequency analysis and implemented (and tested) them in an early-

warning system for Switzerland – this is probably the first study deriving rainfall frequency analysis from remote sensing

data and providing an actual operational, quantitative product;

This paper focusing on areal maximum extremes has been added in the introduction. Please see page 3, line 33.25

– Peleg et al., 2017 analyzed the impact of small scale rainfall variability on frequency analysis from point (rain gauges)

and areal (radar) estimates – they found that, due to the relatively short record length, point and areal estimates, are ex-

pected to differ (even if both measurements are ‘true’), and observed large differences between frequency analyses from

rain gauges located within a 1 km 2 pixel. This means that no exact match between point and areal results should be

expected (not only because of the areal reduction factors issue). This contribution needs to be mentioned by the literature30

review, in light of the contribution it provides to the interpretation of the results of this study (also the conclusions [page
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11, lines 18-19] could be updated accordingly);

The sub-pixel rainfall spatial variability explains partly the different frequencies. This reference and a related paper

are now used in the text. Please see page 3, line 12 ; page 16, line 1 and page 16, line 6. I understand that there are

spatial dependence within the pixel and that for higher return periods the higher ’climatic’ variability is dominant. It is5

unclear however if one can extrapolate this result for a larger region. In our study we make the assumption that the 1 hour

extremes occurring in the 20 km region on different days are independent.

– Wright et al., 2013 proposed the use of stochastic storm transposition for radar rainfall frequency analysis in order to

overcome the limitations due to the short radar records.

10

This study focusing on catchment-averaged precipitation contains very interesting results for single radar pixel. Their

methodology is very similar to our work so it is now referenced in the text. Please see page 3, line 29 ; page 12, line 12 ;

page 12, line 18 and page 13, line 4.

Methods

Methods are sometimes insufficiently described and apparently subjective choices are made without providing the reader with15

rationale, supporting references, and discussion of the implications.

Frequency analysis

– the use of PoT approach for the frequency analysis of short records is highly desirable, however the choice of the expo-

nential distribution (a special case in which the shape parameter – driving the long return period tail of the distribution

– is assumed uniform in space and equal to 0) is very strong and goes against some literature on the topic. This choice20

needs to be motivated and supported;

Please see from page 8, line 26.

– page 6, lines 13-18: how is the return period used in the QQ-plots derived? Is it is done following Willems et al, 2007?

This is a key aspect in the methods and in the shaping of the results and needs to be explained and discussed; [7, 12]25

how is figure 2 created? from Willems et al, 2007, I imagine that the figure shows on the x-axis the return period derived

from the exponential distribution that maximizes the linearity of the relation – how is the maximization done?;

It is unclear what the referee means by the "usage" of return periods in QQ-plots. The text related to Figure 2 has been

improved. Please see page 10, line 18. The optimisation procedure is explained on page 9, line 13.

– This is not clear for the reader unfamiliar with Willems et at., 2007, please provide more information;30

The QQR method is now briefly described in the text. Please see from page 9, line 3.
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– 7, 20: what do the authors mean with “heavy tailed” (the exponential distribution has no shape parameter)?

The comment refers to the empirical quantiles and has therefore been moved to the corresponding paragraph. Please see

page 10, line 28.

– 9, 7-8: this sentence should be somehow supported/motivated;

This is a consequence of the previous sentences. The text has been adapted on page 13, line 8.5

– 10, 14: why is 60 chosen?

Please see page 14, line 27.

Radar QPE

– 9, 22-23: what do the authors mean with “standard Z-R”? In what cases is a non-standard Z-R used?

The text has been clarified. Please see page 13, line 25.10

– Previous studies found important instability of the MFB factor for short periods (1 h), especially in convective conditions.

The use of hourly mean field bias adjustment needs to be supported by sensitivity analyses or references. Please discuss

this and provide information on the stability of the factors;

As stated, the bias corrected hourly accumulations are only used to study 24 hours precipitation extremes. We added

some discussions on page 7, line 19 and page 12, line 1.15

– Is there any motivation for the choice of the hail threshold (80 mm/h looks low for some climates)? Are there cases

in which the rain gauges did measure heavier rain intensities? [7, 18] is it possible to check how often the hail filter is

activated? Is it possible to check what reported in [7, 23-24]?

The choice of the hail threshold is more discussed starting from page 6, line 22. The probable hail events are now

indicated and discussed starting from page 9, line 25.20

– 8, 5: is it possible to check if bright band was contributing to this observation? This would be interesting since VPR

impact was rarely discussed in previous studies on radar-based frequency analyses;

It appears that it is the bias correction which contributes the most to the overestimation. Please see page 11, line 16.

Interpretation of some results

– Section 4.1: The authors select the maximum within 20 km range windows around each analyzed pixel in order to better25

capture the maximal intensities (see [8, 31]). The motivation for doing this is clear to me and it is a good direction to

take to exploit the distributed information provided by the radar (and other gridded datasets). However, I am wondering

whether the interpretation one should give to the obtained results still holds: will we still be dealing with the estimation

of the frequency of occurrence of a given rain intensity-duration combination at a given location? Especially since the
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conclusions open with: “... to study extreme precipitation at a given location...”. I’m not sure this is the case. I recom-

mend the authors carefully examine and discuss this issue. At this regard, the stochastic storm transposition approach

adopted by Wright et al., 2013, even though much more complicated, provides similar advantages while preserving the

interpretation;

We are not interested in the regional maximum extreme but in the extreme at a given location, hence the comparison5

against gauge data. If we understood correctly, Wright et al. (2014b) (section 3.2) also take the maximum values in the

region within a 24 h window. This is now better discussed from page 12, line 18.

– Figure 6, 7: Can the circular patterns be caused by the regionalization method (in case problematic pixels are still there,

one will choose them when selecting the max value within the circular area – see also [10, 20-21])? Can this represent a

weakness of this method?10

This is now further discussed in the text. Please see from page 15, line 5.

Presentation is sometimes difficult to follow

– new contributions brought by this study are not clearly stated in abstract, introduction and conclusions. Reading the

manuscript, the main results appear to be: raw radar QPE provides unreliable analyses and bias adjustment is needed;

differences are observed between at-site analyses from radar and gauges, but radar analyses lie within the gauge confi-15

dence intervals; regionalization approaches provide improved analyses. These results were already reported in literature

(see for example Overeem et al, 2009; Marra and Morin, 2015; Panziera et al, 2016; Peleg et al 2017; Marra et al.,

2017). In my opinion the study brings a lot of new to the field, in particular the use of (i) new methods (i.e. a peak over

threshold approach, QQ plot regression) and (ii) new regionalization approaches for rainfall frequency analyses from

remote sensing data sets. Abstract, introduction and conclusions need to be reorganized in these terms, even though the20

results reported by the authors definitely deserve to be mentioned;

We think that the quality of our datasets can be seen as an improvement compared to previous studies. Thank you for

pointing out clearly the originality of our methods in the study. We agree that this originality did not appear explicitly.

The text has been substantially improved.

– the presentation of the gauge networks in [2, 20-25] and in section 2.1 is difficult to follow, I recommend reorganizing25

and rephrasing these parts (how many networks are used?, why are they considered separately?, what are the differences?

What the advantages of including each of them? Why not using them together?);

The gauge networks used in the study are presented in section 2.1. The rationale for using them is presented in section

2.2. Additional information have been added on page 7, line 16.

– 4, 8-9: please provide information about these methods and move the reference to Goudenhoofdt and Delobbe, 201630

earlier in the text;

Please see from page 6, line 3.
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– organization of the radar datasets (QPE, CAP,...) need to be made clearer (sections 2.2, 2.3);

These sections have been clarified.

– section 3.1: is difficult to follow; in particular [6, 4-9] and [6, 19-21] are not clear to me;

Those parts have been rewritten (from page 8, line 12 and from page 9, line 17 ).

– section 3.2: what does “problematic events” mean? How are they identified?; why did the authors focus on 10 extremes?5

This has been clarified in the text. Please see from page 9, line 24.

– 8, 21-22: why mentioning the index flood approach? Here the shape is actually assumed uniform (by the use of the

exponential distribution), but I guess this is not what the authors mean with ‘regionalization’;

We are only reviewing the literature on regionalization. Furthermore the index flood method was proposed with the

Gumbel model (Sveinsson et al., 2001).10

– how does the 20 km regionalization of the parameters relate to the 10 km and 50 km used in the following parts of the

study? how did the authors check/motivate that 20 km “provides a sufficiently large data sample”?

The decorellation distance (50 km) and the size of the region (20 km) are two different concepts. To avoid confusion the

text has been modified from page 12, line 18. The results suggest that the sample is large enough.

– it is not clear whether the method by Reed et al., 1999 is the one the authors used in this paper;15

The reference has been dropped.

– 9, 28-29: did the authors check for non-stationarity in the data (e.g. changes in the instrumentation, or other)?

As stated in the text, there are no instrumentation changes. The annual maxima have been found stationary (Vannitsem

and Naveau, 2007). No statistical test for the stationarity of peaks over threshold timeseries have been done since it is

beyond the scope of this study.20

– 11, 14-15: is this expected?

Not necessarily. Important implications have been derived, thank you. Please see from page 13, line 30.

– 11, 24-25: this problem should be solved by the adopted regionalization (20 km);

No, it shouldn’t. Consider a very intense but super fast storm. The 1-hour accumulation extreme will be overestimated.

Please see page 16, line 33.25

– 1, 11-13; 4, 8; 4, 20-24; 6, 19-21; 7, 10-11; 9, 1-5; 9, 11-16; 9, 31-32: please rephrase;

See previous responses. See also page 1, line 13; page 10, line 14; page 13, line 17; and page 14, line 5
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Minor comments

– abstract: the text of the abstract needs to be better organized;

The abstract has been modified and we think the structure is now more clear.

– page 1, line 3: “independent sliding 1h and 24h rainfall”: this is not clear;

Made clearer.5

– 1, 9: natural rainfall variability in combination with short record lengths is also to be mentioned as a cause of the

mismatch between point and areal frequency analyses (see Peleg et al., 2017 and major comment above);

Please see response above.

– 1, 11: “assuming that the extremes are correlated”: this is not clear to me, I guess it is related to the regionalization, but

needs to be better written;10

It has been removed.

– 1, 18: please remove “very” and “very”; please add a comma after “activities”; please provide a reference for this

sentence;

A reference has been added. Please see page 2, line 2.

– 1, 19: sewer systems are an example, but I’d insert an example from other applications, such as dams design/management;15

[1, 21] sewer systems are usually designed for relatively short return periods, applications requiring long return periods

are dams, bridges, etc.;

Done.

– 1, 20: no need to specify “a branch of statistics”;

Indeed.20

– 2, 3: an example of what the authors mean with “high-resolution” would be helpful for the reader;

This is now specified in the paragraph.

– 2, 5-6: “the best potential is provided by radar QPE”. Satellite products are fruitfully being used too and are, often,

characterized by longer records. This sentence should be motivated and supported by references;

Please see page 3, line 7.25

– 2, 11-12: the reference to Saito and Matsuyama, 2015 looks unrelated to the rest of the text, can you provide some

information on its relevant parts;

Done.
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– Figure 1: what do the areas in the figure represent? Are they catchments? Are they used in the manuscript?

These are the provinces of Belgium. They are not used but are of interest for climatological purposes.

– 5, 5-6: “The hourly bias obtained... convective storms” can be removed;

We think it is relevant.

– 5, 6-10: is this done with a moving window? Or on 24 h blocks?5

The term "sliding" means that we are using a moving window.

– 5, 10-11: Marra and Morin, 2015 quantified this uncertainty;

The reference has been added.

– Table 1: what is the meaning of the “Avail. All” column? Does it mean that “Both” were available?

Yes. This has been clarified.10

– 6, 22 and 7, 25: I’d suggest to change these titles to something focusing on the tested product rather than on the rain

gauges against which it is compared;

Good idea. The titles have been changed.

– 11, 18-19: the authors may want to check Avanzi et al., 2015 for additional inputs;

Thank you for the suggestion.15

– 12, 6: since the work by Frederick et al., 1977, a number of papers are available on the derivation of ARFs from radar

data (e.g. Durrans et al., 2002; Overeem et al., 2010; Wright et al., 2014, among others).

The references have been added.
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Authors response to Referee 2 comments

In this paper a peak-over-threshold method is used to perform an extreme rainfall analysis and to derive return levels from

weather radar and rain gauges in Belgium. The importance of this work is high, as radar archives are nowadays long enough

to permit the development of extreme rainfall analyses which are of fundamental importance for many applications, but the

common annual maxima approach needs even longer time series. However, some important explanations and discussions, in5

addition to those already highlighted by the first review by F. Marra, are missing in the manuscript, and need to be provided

before the article can be accepted for publication.

We would like to thank Luca Panziera for underlying the importance of our work. The detailed comments allowed us to

improve the presentation and the discussion of our results.

Major comments10

What is new?

It is somehow difficult to understand which new contribution this paper brings with respect to previous studies, and I think that

this should be better highlighted in the text. To my understanding, the main novelty of this paper is the use of a POT method

for an extreme rainfall analysis for weather radar data.

As pointed out by the first reviewer, the originality of our work did not appear clearly. The use of the POT method together15

with the other novelties of our approach are now highlighted in the text. Please see page 4, line 3.

Temporal Declustering

As rainfall data need to be declustered in order to remove the temporal correlation in the time series before GPD parameters

estimation, the authors choose an interval of 12 hours (for 1-hour rainfall) and 3 days (for daily rainfall) in order for two

threshold exceedances to be considered as independent. The choice of these intervals, which should be referred to as run20

length or run parameters according to the literature, seems reasonable, but it could potentially have a big impact on the derived

return levels, as it shapes the exceedances time series whose maxima are used for the parameters estimation. If the data are

temporally clustered, such temporal lags could not be long enough to remove dependency, but if the temporal clustering occurs

rarely, they could actually lead to a significant bias of the return levels estimates. What do the authors mean as temporal

independence? How did the authors choose such temporal lags? Did the authors investigate the effect of changing these values25

on the parameters estimation and final return levels? The subjective choice of these values should be motivated and discussed

in the text.

How to deal with declustering is indeed a crucial point to address in extreme rainfall analysis. It is now properly discussed

from page 8, line 12.
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Exponential distribution

As the choice of a null shape parameter is fundamental for this work, I think that it should be motivated more in the text.

Therefore, I suggest to briefly report and discuss the main results of Willems (2000), in order to better understand the motivation

of this choice The text states also that this choice was taken because of the short period. However, with a POT approach the

shortness of the period should not be a limiting factor, as many events are considered. It should also be discussed if this is the5

best choice for both 1-hour and 24-hours accumulations. Did the authors try to estimate also the shape parameters, to see if

from the data a value different from 0 could be derived?

The short period remains a limiting factor to model the tail of the GPD. The choice of the Exponential distribution is further

justified from page 8, line 26. We therefore did not try to estimate the shape parameter.

Radar and gauge comparison10

The authors present an interesting comparison between the radar and gauges extremes, for 1-hour and 24-hours accumulations.

Despite this being very interesting and instructive, the implications for this study are not very clear. I suggest the authors

discuss at least qualitatively the influence of this investigations on the overall results of the study. The implications of the radar

and gauge comparisons have been added from page 10, line 15 and from page 11, line 20.

Regional frequency analysis15

The regional frequency analysis needs also to be better explained and the choices which were taken need to be motivated and

discussed. How did the authors choose the 20-km radius for the analysis? How the resulting return levels at a given pixel should

be interpreted, as they stem from exceedances in rainfall values which were observed all around it? Does it still make sense to

speak about point measurement? How are the maps of GPD parameters affected by the choice of the 20-km radius circles?

Our methodology should be better explained indeed. An extended literature review is given from page 2, line 28. Our20

methodology is discussed from page 12, line 12. We think this explains why we can still speak about point measurements. For

the derivation of spatial maps, please see from page 14, line 20.

Return levels maps

I guess the final goal of the study is to derive maps of return levels with relative uncertainty for Belgium. Despite the return

levels are shown for given rain gauge locations, it would be desirable to show also maps of return levels for selected return25

periods. Would it be possible to insert a map or two of the return levels? How would those maps be affected by the 20-km

radius selected for the regional frequency analysis? How these maps should be interpreted? Since you are using a constant

shape parameter (equal to 0), and the longest return levels are shaped by it, long return periods map will tend to produce maps

less variable in space with respect to short return periods. This should be discussed in the text.

Two return level maps have been added and discussed. Please see page 14, line 30.30
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Minor comments

1. The title is rater general, and you might want to consider adding the name of the region for which this study was

performed (Belgium)

Good suggestion.

2. In the introduction some relevant papers are missing. I strongly encourage the authors to discuss also the papers refer-5

enced by F. Marra in his review.

The papers are now discussed in the text.

3. Pag.2, line22.”in this study, we want to demonstrate the potential of this radar-based QPE to derive point rainfall statis-

tics”. I don’t think that the aim of this study is this, as the radar pixel does not represent point rainfall statistics. As the

authors know, the radar rainfall estimate comes from the reflectivity measured within the sample volume, representing an10

area- not a point- measurement. The intrinsic difference among radar and gauges measurements should be at discussed

in the paper, since a comparison between rain gauges and radar return levels is performed (see also major comment 1 by

F. Marra).

The text has been adapted to reflect this important fact. Please see page 3, line 10.

4. Pag.3, line 4: is there a reference for the 5-10% rain gauges underestimation?15

The reference is the one mentioned above in the text.

5. Pag.3, line 7: improve English. I propose to change “very high” with “10-min” temporal resolution (and delete “10-min

accumulations are available from the database”)

Done.

6. Pag. 4, line 25: please clarify the last sentence of section 2.2 which, in its present form, it is not correct. Could change20

“ In addition, the increasing radar sample volume will give lower extreme values” to “In addition, the increasing radar

sample volume will produce an underestimation of local small-scale extremes”.

Your suggestion has been integrated.

7. Pag. 5, line 24. First two sentences of section 3.1 need to be reformulated as they are very colloquial.

The sentences have been reformulated in the introduction.25

8. Page 6, line 14. With this method of regression in QQ plots, is there a risk of over fitting? Could you please comment on

that?

We don’t think there is a risk of overfitting since we are using a simple exponential model.
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9. pag.7, line 13-14 and pag.8 lines 9-10. How this percentage would vary by changing the temporal lags considered for

independence? (see major comment 2). “This is what we expect from ....”. According to which theory/observations?

Please clarify and give references.

Please see the response to major comment 2. The sentence has been reformulated on page 10, line 22.

10. Pag. 8, lines 21-28. It would be more appropriate move the literature review to the Introduction, instead of leaving it in5

this Methodology section.

This part has been moved to the Introduction.

11. Pag. 8, second paragraph of section 4.1: please clarify the explanation of the regional frequency analysis. Given that your

circle has a radius of 20 km, what is the aim of considering all the events within a 50 km radius dependent? Isn’t this the

same as taking just the max value within the 20-km radius? In case it is, wouldn’t be easier just say that you take this10

maximum within the 20-km radius circle?

The decorrelation distance (50 km) and the size of the region (20 km) are not directly related. But the former implies that

all extremes observed within the region are independent. We acknowledge that the explanation was a bit confusing. It

has been reformulated from page 12, line 18.

12. Pag.10, lines 6-9. Also here I suggest to move the references to other studies in the Introduction.15

This part has been moved to the Introduction.

13. Pag. 10, line 13: “a few pixels having too much (50) .... removed” . This sentence is rather unclear, and this seems a

rather subjective choice which can hardly be motivated.

This part has been reformulated from page 14, line 24.

14. Figure 2. I suggest to rename “Extreme 1-hour precipitation quantiles” to “1-hour return levels”, to be consistent with20

theory and common nomenclature in the field.

The figures legends have been modified.

15. Tables 2 and 4. I actually miss how the events in the tables are ordered, if there is a logic.

This is now explained in the table description.

16. Figures 1, 6 and 7: a scale in km would help the interpretation of the figure, for those who are not familiar with Belgium25

We added a 100 km circle to the maps.
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Authors response to Referee 3 comments

General comments

The authors apply local and regional frequency analysis (RFA) for extreme rainfall on two radar data products (advanced

QPE and basic CAP) for Belgium and compare the results with station based extreme value statistics. They find that the basic

radar product shows unrealistic high extremes, the 24h extremes need bias correction and that the fit of the QPE probability5

distribution is within the confidence interval of the point distribution. The results for RFA are more complex. The topic of

the paper is very important and of high relevance for the community. The results are interesting. However, the description of

methodology is not clear enough to follow the procedures and understand all the results. This concerns especially the sampling

strategy for RFA. Also the presentation of results could be more distinct. Details are given below. However, the research is

worth of publication after the authors have the opportunity to make some revisions.10

The authors would like to thank Referee 3 for his encouraging comments and suggestions to improve the paper.

Minor comments

1. Abstract, lines 10-15: I cannot really understand these sentences: RFA within 20 km?, which region(s)?, rain gauge vs.

automatic gauge?, which radar product?, etc.

The sentences have been reformulated. Please see from page 1, line 10.15

2. Page 6, lines 23ff: It is not fully clear if the 10 highest gauge extremes or the 10 highest radar extremes are selected.

In the abstract “rain gauges and collocated radar estimates” is mentioned, so I assume the highest gauge values with

collocated radar data are used. This should be stated clearly here in the text as well. The rational for this choice should

also be discussed.

This has been reformulated from page 9, line 23.20

3. Page 7, lines 26ff: see comment 2

This has been reformulated from page 11, line 8.

4. Page 8, section 4.1: The sampling for RFA is not clear to me. Do you do a separate RFA for each 20 km radius? How

can you apply a minimum distance of 50 km to secure independence with a 20 km radius? If you apply RFA for each

radar pixel and consider a minimum distance of e.g. 10 km, then the (collocated) sample is different for each estimate?25

What about the “index rainfall”? How did you regionalise it? etc.

The decorrelation distance (50 km) and the size of the region (20 km) are not directly related. But the former implies

that all extremes observed within the region are independent. The sample is indeed different for each target location.

Since we consider that the extreme statistics are the same for the region, no "index rainfall" is used. The section has been

rewritten for the sake of clarity.30
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5. Page 10, lines 11-12: “.. using a radius of 10 km (with a decorrelation distance of 50 km)” I don’t understand this.

This means that all pixels in the region are considered spatially dependent. To avoid confusion, the reference to the

theoretical decorrelation distance (50 km) has been dropped. Please see page 14, line 21.

6. Fig. 2-5: The many lines in in these figures are hardly to disentangle visually. I have not really a good idea what to do

here, may be showing only two distributions with confidence limits or excluding the confidence limits of the radar data,5

or showing additionally bar plots with a comparison of selected quantiles, etc.?

We acknowledge that these figures contain a lot of lines but we don’t see directly how to simplify them while keeping

the essential information.
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Authors response to Referee 1 comments

As pointed out by the reviewer there is fundamental difference between the probability that a given value is exceeded in any of

the 1-km pixels within the 20-km radius area (statistics of regional maximum extremes) and the probability that a given value is

exceeded at a given location within that area (statistics of extremes at a given location). In this study we are using the regional

maximum peaks to derive statistics of extremes at a given location. If the goal was to obtain statistics on regional maximum5

extremes, we would have taken 10 years as the effective length of the timeseries (i.e. the length of the radar dataset). Our goal

is to obtain the probability of exceeding a value for a given location in the region and, therefore, we use an effective length

based on the number of pixels within the area and the number of independent peaks. This length is much larger than 10 years

and gives realistic return period estimates. It is directly related to the average over all pixels of the mean number of exceedance

per year. That ’s why our approach is similar to the one of Wright et al., 2013. More advanced approaches to spatio-temporal10

extremes can be considered but these are beyond the scope of the present study.

46



Authors response to Referee 2 comments

Thank you for considering our response and your additional comments on the revised manuscript.

Temporal Declustering

Choosing 3 days instead of 12 hours for the temporal lag removes rank 30 (radar) and rank 14 (gauge) at station Humain ; it

removes rank 27 (gauge) at station Uccle. This changes very slightly the scale parameter but only for the gauge : from 7.5 to5

7.6 and from 6.8 to 6.9, respectively. Using 6 hours instead of 12 hours does not change the extremes up to rank 30 for the

radar and the gauge at the two stations.

Radar and gauge comparison

The text has been clarified as followed : "Since the level of missingness is limited, the impact on the statistics is expected to be

small".10

Return levels maps

There is indeed an impact of the circle from the RFA but it is relatively limited in most of the study area. Since this is mainly

due to radar artifacts we don’t consider it as a drawback of the proposed RFA method. The discussion has been improved

as follows : "Circular patterns appear on the maps due to the influence of the pixels located at their centers. The high values

are caused by pixels contaminated by non-meteorological echoes (e.g. at the German border) and hail. A stronger filter for15

non-meteorological echoes is not used because it could remove actual precipitation information. The circular effect might be

reduced by using a larger radius or a higher threshold rank but this is computationally expensive." The RFA has been limited

to 1 hour extremes in this paper since it has the best potential for radar data. Extending the approach to other durations is

interesting for future research.

Other comments20

1. Done.

2. Done.

3. Done.

4. We do not refer to radar and gauge merging. We mean a quality similar to our datasets : reanalysed and verified radar-

based QPE (with or without gauge merging) and as reference 10 min quality-controlled rain gauge data with 40 years of25

records.

5. Since the GPD has one more parameter than the EXP, it will react more to individual errors in the data.

6. This has been corrected.
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7. The reference has been dropped.

8. Due to the significantly higher reflectivity of hail, the averaged value from a large sample volume should still exceed

the hail threshold of 55 dBZ. The probability of very high reflectivity is believed to increase with altitude due to the

dynamics of convective storms and hail processes.

9. The Conclusions have been organised in two sections : "Results" and "Prospects". We think it is relevant to combine the5

methodological information and the results in the Conclusions.
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