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Abstract. Streamflow prediction using rainfall-runoff models has long been a special subject in hydrological sciences, and 

parameter identification is still challenging in ungauged catchments. In this study, we comparatively evaluated predictive 

performance of rainfall-runoff modelling against the flow duration curve (FDC), which is gaining attention as signature-

based parameter identification, by comparing it with conventional hydrograph-based approaches for gauged and ungauged 10 

catchments. Using a parsimonious model GR4J under a Monte-Carlo framework, we conducted rainfall-runoff modelling 

against observed hydrographs and empirical FDCs for 45 gauged catchments in South Korea. By treating each catchment as 

ungauged, the parameter calibration against regional FDCs was compared with the proximity-based parameter 

regionalisation in terms of hydrograph and flow signature reproducibility. Results showed that the FDC calibration could 

lead to noticeably weaker performance and higher uncertainty in predictions in gauged catchments due to the absence of 15 

flow timing. The calibration against regional FDCs, which were estimated by a geostatistical method, also showed weaker 

performance than the proximity-based parameter regionalisation. A relative merit of the FDC calibration was high 

performance in predicting low flows. From the evaluation of signature reproducibility, it is suggested that metrics describing 

flow dynamics such as the rising limb density should be added as complementary constraints for improving rainfall-runoff 

modelling against FDCs. 20 

1 Introduction 

The runoff hydrograph, a time series of streamflow, is the basis for practical resource management tasks such as water 

resource allocations, designing infrastructures, flood and drought forecasting, environmental impact assessment (Westerberg 

et al., 2014; Parajka et al., 2013). It is essential information for investigating physical controls of catchment functional 

behaviours because a hydrograph aggregates processes interacting within a catchment. Prediction of the runoff hydrograph 25 

has long been an important subject in hydrological sciences and is gaining increasing attention with growing concerns about 

environmental changes (Blӧschl et al., 2013). Runoff prediction in ungauged sites has already been a special topic in 

hydrological sciences, e.g., a decade-long project, Prediction in Ungauged Basins (PUB) by the International Association of 

Hydrological Sciences (see http://iahs.info/pub/biennia.php). However, predicting hydrographs is still challenging due to 
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poor data availability and inadequate knowledge about complex catchment responses (Zhang et al., 2015; Blӧschl et al., 

2013). 

A standard method for predicting daily streamflow is to employ a rainfall-runoff model that conceptualises catchment 

functional behaviours and simulates synthetic hydrographs from atmospheric forcing inputs (Blӧschl et al., 2013; Wagener 

and Wheater, 2006). A prerequisite of this conceptual modelling approach is parameter identification to enable the model to 5 

imitate actual catchment responses, and is commonly achieved via calibration against observed hydrographs (referred to as 

the hydrograph calibration hereafter). On one hand, the hydrograph calibration provides convenience to modellers because 

reproducibility of the predictand (i.e., the runoff time series), which is typically taken as a performance measure, can be 

automatically achieved. The use of the hydrograph reproducibility for parameter identification and its validity check has a 

typical approach for rainfall-runoff modelling (see Hrachowiz et al., 2013). The hydrograph calibration, on the other hand, 10 

can be challenged by epistemic errors in input and output data, sensitivity to calibration criteria, and inability of parameter 

calibration under no or poor data availability (Westerberg et al, 2011; Zhang et al., 2008). Importantly, it is difficult to know 

whether or not parameters from the hydrograph calibration are unique to represent actual catchment responses since multiple 

parameter sets would show similar hydrograph reproducibility (Beven, 2006). This low uniqueness of calibrated parameter 

sets, namely the equi-finality problem in rainfall-runoff modelling, can become a significant uncertainty source when 15 

extrapolating parameters to ungauged catchments (Oudin et al., 2008). 

To overcome or circumvent those disadvantages of the hydrograph calibration, one can identify the parameters with 

distinctive flow signatures, i.e., metrics or auxiliary data representing catchment behaviours (referred to as the signature 

calibration hereafter). The signature calibration is a good alternative to the hydrograph calibration when suitable model 

parameters are not easily obtained with observed hydrographs alone. Hingray et al. (2010), for instance, calibrated a runoff 20 

model with specific flow signatures relevant to its parameters such as snow accumulation and ablation, recession curves, and 

rising limb, and subsequently found enhanced performance in hourly runoff prediction in Alpine catchments. Yadav et al. 

(2007) used spatially extrapolated flow metrics for parameter identification, and found major streamflow indices related to 

catchment functional behaviours. Euser et al. (2013) proposed a framework for structuring a flexible perceptual model with 

multiple hydrograph signatures, and evaluated model plausibility. Other examples include the use of remotely-sensed 25 

geomorphological metrics (Fang et al., 2010), isotope concentrations (Son and Sivapalan, 2007), the baseflow index 

(Bulygina et al., 2009), the spectral density of streamflow observations (Winsemius et al., 2009; Montanari and Toth, 2007), 

and long-term hydrograph descriptors (Shamir et al., 2005).  

In particular, the flow duration curve (FDC) has received great attention as a calibration criterion that can fit model 

parameters to catchment functional behaviours (e.g., Westerberg et al., 2011; 2014). The FDC, the relationship between the 30 

frequency and flow magnitudes, provides a summary of temporal streamflow variations at the outlet of a catchment (Vogel 

and Fennessey (1994). It has been useful for numerous hydrological applications. Vogel and Fennessey (1995) exemplified 

potential uses of FDCs in hydrological studies including wetland inundation mapping, lake sedimentation studies, instream 

flow assessment, hydropower feasibility analysis, contaminant and waste management, water resources allocation, and flood 
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frequency analysis. FDCs have been extensively used for runoff prediction (Zhang et al., 2015; Kim and Kaluarachchi, 2014; 

Smkhtin and Masse, 2000), land use change assessment (Zhao et al., 2012), design of power plants (Liucci et al, 2014), 

water quality evaluation (Morrison and Bonta, 2008), and catchment classification (Sawicz et al., 2011) among many 

variations. Along with those applications, FDCs or metrics from FDCs (e.g., the slope of FDCs) were often used as a single 

calibration criterion (e.g., Westerberg et al., 2014, 2011; Yu and Yang, 2000) or one of constraints (e.g., Pfannerstill et al., 5 

2014; Kavetski et al., 2011; Hingray et al., 2010; Blazkova and Beven, 2009; Son and Sivapalan, 2007; Yadav et al., 2007) 

for identifying behavioural parameters. The rationale behind the model calibration against FDCs is that the catchment 

functional behaviours can be captured by the shape of FDCs (Vogel and Fennessey, 1995; Yokoo and Sivapalan, 2011). This 

hypothesis also made it possible to apply runoff models to FDC prediction (Zhang et al., 2014; Yokoo and Sivapalan, 2011) 

or investigation of physical controls of FDCs (e.g., Ye et al., 2012) in an inverse manner. 10 

For prediction in ungauged catchment, the parameter calibration against FDCs (referred to as the FDC calibration hereafter) 

provides practical advantages in comparison to conventional parameter regionalisation. The parameter regionalisation, i.e., 

transferring calibrated parameters from gauged to ungauged catchments (e.g., Kim and Kaluarachchi, 2008; Parajka et al., 

2007; Wagener and Wheater, 2006; Dunn and Lilly, 2001), has a critical concern of over-reliance on behavioural parameters 

of gauged catchments. Although a priori parameter estimates of ungauged catchments are conveniently achieved by the 15 

parameter regionalisation, they are indirectly derived from modelling results at gauged sites with the equi-finality problem. 

Thus, regionalised parameters could be insufficiently reliable and highly uncertain (Oudin et al., 2008; Zhang et al., 2008; 

Bárdossy, 2007). To circumvent those drawbacks of the parameter regionalisation, the FDC-based calibration possibly 

becomes a good alternative. A number of studies have proposed regional models for predicting FDCs at ungauged sites 

through regression analyses between quantile flows and catchment properties (e.g., Shu and Ouarda, 2012; Mohammoud, 20 

2008; Smakhtin et al., 1997), geostatistical interpolation of quantile flows (e.g., Pugliese et al., 2014; Westerberg et al., 

2014), and regionalisation of theoretical probability distributions (e.g., Atieh et al., 2017; Sadegh et al., 2016). In general, 

FDCs predicted by those regional models (referred to as the regional FDCs hereafter) well agreed with empirical FDCs; 

hence, the model calibration with regional FDCs was already applied and showed promising predictive performance for 

ungauged catchments (e.g., Westerberg et al., 2014; Yu and Yang, 2000). The parameter identification against regional 25 

FDCs was useful even for gauged catchments in the cases of observed hydrographs with poor quality or no overlap between 

climatic inputs and hydrographs. Importantly, it may be more reliable than the parameter regionalisation because flow 

information of the catchment of interest, albeit predicted, is directly used to find behavioural parameter sets.  

However, several questions arise when using the FDC calibration for gauged and ungauged catchments. First, the FDC is 

simplified information with flow magnitudes only; thus, the FDC calibration could worsen the equi-finality and may be more 30 

deficient in flow prediction (van Werkhoven et al., 2009). Second, one can cast concerns about uncertainty in regional FDCs 

possibly introduced by errors in streamflow data and the regional models (Westerberg et al., 2011; Yu et al., 2002). If the 

calibration with regional FDCs yields highly unreliable quantile flows due to those error sources, it may be less pragmatic 

than a simple parameter regionalisation. In truth, several studies found that a simple proximity-based parameter transfer well 
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performed in many regions (e.g., Parajka et al., 2013; Oudin et al., 2008); thus, the calibration against the regional FDCs 

may be undesirable in the case. Third, there may be additional flow signatures that can improve performance of the FDC 

calibration. If any flow signatures are found orthogonal to FDCs, additional constraining with those signatures will enable to 

alleviate the equi-finality of the FDC calibration and thus enhance predictive performance. Nevertheless, it is still an open 

question which flow signatures complement FDCs. 5 

This study explored predictive performance of the FDC calibration in rainfall-runoff modelling in comparison with the 

conventional approaches, the hydrograph calibration and the parameter regionalisation for gauged and ungauged catchments 

respectively. To answer the questions given, we (1) evaluated predictive performance of the hydrograph calibration and the 

FDC calibration as well as their uncertainty for gauged catchment, (2) assessed the calibration against regional FDCs in 

comparison with the proximity-based parameter regionalisation for ungauged catchments, and (3) gauged ability of the FDC 10 

calibration to reproduce typical flow signatures. In this work, a parsimonious 4-parameter conceptual model was used to 

simulate daily hydrographs from the lumped atmospheric forcing for 45 unregulated catchments in South Korea. To predict 

FDCs in ungauged catchment, a geostatistical regional model was adopted here. The Monte-Carlo sampling was simply used 

for parameter identification and uncertainty assessment. The following section presents the study area and data used in our 

comparative study. 15 

2 The study area and data 

The study areas are 45 gauged catchments located across South Korea with no or negligible human-made alterations (e.g., 

river diversions and dam operations) in flow variations (Figure 1). South Korea is characterized as a temperate and semi-

humid climate region with rainy summer seasons. The North Pacific high-pressure brings monsoon rainfall with high 

temperatures in summer seasons, while dry and cold weather prevails in winter seasons due to the Siberian high-pressure. 20 

Typical ranges of annual precipitation are 1200-1500 and 1000-1800 mm in the northern and the southern areas respectively 

(Rhee and Cho, 2016). Approximately, 60-70 percent of precipitation falls in summer seasons from June to September (Bae 

et al., 2008). Streamflow usually peaks in the middle of summer seasons because of heavy rainfall or typhoons, and hence 

information of catchment responses is largely concentrated on summer-season hydrographs. Snow accumulation and ablation 

are observed at high elevations, but their effects on temporal flow variations are minor due to the limited amount of winter 25 

precipitation (Bae et al., 2008). Annual temperatures range between 10 and 15 °C (Korea Meteorological Administration, 

2011). 

The study catchments shown in Figure 1 were selected based on availability of streamflow data. Although long streamflow 

data are available at a few river gauging stations, high-quality streamflow data across the South Korea have been produced 

since establishment of the Hydrological Survey Center in 2007 (Jung et al., 2010). We collected streamflow data at 29 river 30 

gauging stations from 2007 to 2015 together with inflow data of 16 multi-purpose dams for the same data period from the 

Water Resources Management Information System operated by the Mistry of Land, Infrastructure, and Transport of the 
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Korean government (available at http://www.wamis.go.kr/). The selected catchments are listed in Table 1 together with their 

climatological features. 

As the climatic inputs for rainfall-runoff modelling, we used gridded daily precipitation, and maximum and minimum 

temperatures at a 3-km grid resolution produced by spatial interpolation between 60 stations of the automated surface 

observing system maintained by the Korea Meteorological Administration. Jung and Eum (2015) combined the Parameter-5 

elevation Regression on Independent Slope Model (Daly et al., 2008) with the inverse distance method for the spatial 

interpolation, and found improved performance for producing grid precipitation and temperature datasets across South 

Korea. For simulating streamflow at outlets of the study catchments, we collected the grid climatic data from 2005 to 2015. 

The ranges of annual mean precipitation and temperature of the selected catchments are 1145–1997 mm and 8.0–13.8 °C 

respectively for the climatic data period. Processing the climatic data for rainfall-runoff modelling will appear later in the 10 

methodology section. 

3 Methodology 

In this work, a conceptual rainfall-runoff model, GR4J (Perrin et al., 2003), was adopted to simulate daily hydrographs of the 

45 catchments. GR4J conceptualises the functional catchment response to rainfall with four free parameters that regulate the 

water balance and water transfer functions, and is schematized in Figure 2. The four parameters (X1 to X4) conceptualises 15 

soil water storage, groundwater exchange, routing storage, and the base time of unit hydrograph respectively. GR4J is 

classified as a soil moisture accounting model, and computation details are found in Perrin et al. (2003). Since its 

parsimonious and efficient structure enables robust calibration and reliable regionalisation of model parameters, GR4J has 

been frequently used for modelling daily hydrographs with various purposes (e.g., Nepal et al., 2016; Tian et al., 2013). The 

potential evapotranspiration (PE in Figure 1) in this study was estimated by the temperature-based model of Oudin et al. 20 

(2005) proposed for lumped rainfall-runoff modelling. 

3.1 Preliminary data processing 

Before rainfall-runoff modelling with GR4J, we preliminarily processed the gridded climatic data to convert precipitation 

data to liquid water depths forcing catchments (i.e., rainfall and snowmelt depths) using a physics-based snowmelt model 

proposed by Walter et al. (2005). The preliminary processing was mainly for reducing systematic errors or bias from no 25 

snow component in GR4J, which may affect model efficiencies in catchments at high elevations. Though combining a 

temperature index snowmelt model with GR4J can be an alternative approach, it increases the number of parameters (i.e., 

higher equi-finality) and thus model uncertainty. Since contribution of snowmelt to temporal flow variation is insignificant 

in South Korea as described, maintaining the parsimonious structure of GR4J was considered more importantly for 

parameter calibration and regionalisation in this work. The error sources in the snowmelt model were assumed to yield minor 30 

impacts on runoff prediction. The snowmelt model has the same input requirement as GR4J, thus no additional data are 
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necessary for the processing. It simulates point-scale snow accumulation and ablation processes using empirical methods that 

estimate physical parameters required for the energy balance in snowpack, and produces the liquid water depths and snow 

water equivalent as outputs. After the snowmelt modelling, we took spatially averaged pixel values of the liquid water depths 

and maximum and minimum temperatures within the boundary of each catchment as lumped inputs to GR4J. 

Besides, consistency between the spatially-averaged liquid water depths and observed hydrographs was checked using the 5 

current precipitation index (CPI; Smakhtin and Masse, 2000) defined as: 

It = It−1 ∙ K + Rt            (1) 

where It is the CPI (mm) at day t, K is a decay coefficient (0.85 d
-1

), and Rt is the liquid water depth (mm d
-1

) at day t that 

forces the catchment (i.e., rainfall or snowmelt). CPI mimics temporal variations in typical streamflow data by converting 

intermittent rainfall data to a continuous time series with an assumption of the linear reservoir. The consistency between 10 

model input and output was checked for each catchment using correlation between CPI and observed streamflow as in 

Westerberg et al. (2014) and Kim and Kaluarachchi (2014). The correlation coefficients of the 45 catchments had an average 

of 0.67 with a range of 0.43-0.79, and no outliers were found in the box plot of correlation coefficients. Hence, we 

hypothesised that acceptable consistency existed between the climatic forcing and the observed hydrographs for parameter 

calibration. 15 

3.2 Rainfall-runoff modelling for gauged catchments 

To search behavioural parameter sets of GR4J using observed runoff time series (i.e., the hydrograph calibration), the 

Monte-Carlo random sampling was used within the parameter ranges given by Demirel et al. (2013). The objective function 

in Zhang et al. (2015) was chosen as the calibration criterion that considers together the Nash Sutcliffe Efficiency (NSE) and 

the Water Balance Error (WBE) between observed and modelled hydrographs as: 20 

OBJ = (1 − NSE) + 5|ln(1 + WBE)|2.5         (2a) 

NSE = 1 −
∑ (Qobs,i−Qsim,i)

2N
i=1

∑ (Qobs,i−Qobs̅̅ ̅̅ ̅̅ ̅)
2N

i=1

          (2b) 

WBE =
∑ (Qobs,i−Qsim,i)N

i=1

∑ Qobs,i
N
i=1

           (2c) 

where Qobs and Qsim are the observed and simulated flows respectively, Qobs
̅̅ ̅̅ ̅̅  is the arithmetic mean of Qobs, and N is the total 

number of flow observations. The best parameter sets for each study catchment was obtained from minimisation of the OBJ 25 

using the Monte-Carlo simulations described below. 

To determine sufficient runs for the random simulations, we calibrated GR4J parameters using the shuffled complex 

evolution (SCE) algorithm (Duan et al., 1992) for one catchment with high input-output consistency. Then, the total number 

of random simulations was iteratively determined by adjusting the number of runs until the minimum OBJ of the random 
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simulations became adequately close to the OBJ value from the SCE algorithm. We found that approximately 20,000 runs 

could provide the minimum OBJ value equivalent to one from the SCE algorithm. Subsequently, GR4J was calibrated by 

20,000 runs of the Monte-Carlo simulations for remaining 44 catchments, and the parameter sets with the minimum OBJ 

values were taken for runoff predictions. In addition, we sorted the 20,000 parameter sets in terms of corresponding OBJ 

values in ascending order and first 50 sets were taken for uncertainty assessment (i.e., 0.25% of the rejection threshold). For 5 

the parameter identification, the 9-year streamflow data were divided into two parts for calibration (2011-2015) and for 

validity check (2007-2010) respectively. A two-year warm-up period was used for initializing all runoff simulations in this 

study. 

The FDC calibration was also conducted by the same Monte-Carlo sampling but towards minimising OBJ between the 

observed and modelled quantile flows. We used quantile flows at 103 exceedance probabilities (p of 0.001, 0.005, 99 points 10 

between 0.01 and 0.99 at an interval of 0.01, 0.995, and 0.999) to evaluate agreement between the observed and simulated 

FDCs. As conducted in the hydrograph calibration, the best parameter set was found by 20,000 random simulations and 50 

behavioural parameter sets were taken. 

3.3 Rainfall-runoff modelling for ungauged catchments 

Synthetic runoff time series were generated by GR4J for the same 45 catchments by treating each catchment as ungauged. 15 

The parameters of ungauged catchments were identified by (a) local calibration against regional FDCs and by (b) 

transferring the calibrated sets of nearby gauged catchments (i.e., proximity-based parameter regionalisation). Following are 

descriptions of both approaches. 

3.3.1 Parameter identification against regional flow duration curves 

The geostatistical method recently proposed by Pugliese et al. (2014) was used to regionalise the observed FDCs. Pugliese et 20 

al. (2014) employed the top-kriging method (Skøien et al., 2006) to spatially interpolate the total negative deviation (TND), 

which indicates an area between the mean annual flow and below-mean flows in a normalized FDC. The top-kriging weights 

that interpolate TND values were used as weights to estimate the flow quantiles of ungauged catchments from empirical 

FDCs of neighbouring gauged catchments. Since the top-kriging weights are obtained from topological proximity between 

catchments, the two methods for ungauged catchments in this study are categorised as proximity-based approaches and thus 25 

of consistency. The FDC of an ungauged catchment in Pugliese et al. (2014) is estimated from the normalised FDCs of 

neighbouring gauged catchments as: 

Φ̂(w0, p) = ϕ̂(w0, p) ∙ Q̅(𝑤0)          (3a) 

ϕ̂(w0, p) = ∑ λi ∙ ϕi(wi, p)n
i=1 ,    pϵ(0,1)         (3b) 
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where Φ̂(w0, p) is the estimated quantile flow (m
3
 s

-1
) at an exceedance probability p (unitless) for an ungauged catchment 

w0, ϕ̂(w0, p) is the estimated normalized quantile flow (unitless), Q̅(𝑤0) is the annual mean streamflow (m
3
 s

-1
) of the 

ungauged catchment, and ϕi(wi, p)  and λi  are the normalized quantile flows (unitless) and corresponding top-kriging 

weights (unitless) of gauged catchment wi respectively. The unknown mean annual flow of an ungauged catchment, Q̅(𝑤0), 

can be estimated with a rescaled mean annual precipitation defined as: 5 

MAP∗ = 3.171 × 10−5 ∙ MAP ∙ A          (4) 

where MAP* is the rescaled mean annual precipitation (m
3
 s

-1
), MAP is mean annual precipitation (mm yr

-1
) and A is 

drainage area (km
2
) of the ungauged catchment, and the constant of 3.171×10

-5
 is to convert the unit of MAP* from mm yr

-1 

km
2
 to m

3
 s

-1
. 

A distinct advantage of the geostatistical method is that it enables to estimate the entire flow quantiles in a FDC with a single 10 

set of top-kriging weights. Since a parametric regional FDC (e.g., Mohamoud, 2008; Yu et al., 2002) is obtained from 

independent models for each flow quantile in many cases, e.g., multiple regressions between selected quantile flows and 

catchment properties, fundamental characteristics in a FDC continuum would be entirely or partly lost. The geostatistical 

method, on the other hand, treats all flow quantiles as a single object; thereby, features in a FDC continuum can be preserved. 

It showed promising performance to reproduce empirical FDCs using topological proximity only, and further details and 15 

discussion are available in Pugliese et al. (2014). 

For regionalising empirical FDCs of the 45 catchments, we followed the same procedure of Pugliese et al. (2014). We 

obtained top-kriging weights (λi) by the geostatistical interpolation of TND values from empirical FDCs for the calibration 

period (2011-2015). Then, the top-kriging weights were used to regionalise flow quantiles. The number of neighbours for the 

TND interpolation was iteratively determined as five at which additional neighbouring TNDs are unlikely to provide better 20 

agreement between the estimated and empirical TNDs. FDCs for the calibration period were regionalised with the top-

kriging weights of the TND interpolation at the 103 exceedance probabilities. Against the regional FDCs, parameters of 

GR4J were directly calibrated for each catchment. The parameters were identified in the same manner of 20,000 runs of the 

Monte Carlo simulations, but towards minimisation of the OBJ value between regional and modelled FDCs. 

3.3.2 Proximity-based parameter regionalization 25 

As a counterpart of the calibration against regional FDCs, the proximity-based parameter transfer was used. The parameter 

regionalisation can be classified into three typical categories: (a) proximity-based parameter transfer (e.g., Oudin et al., 

2008); (b) similarity-based parameter transfer (e.g., McIntyre et al., 2005); and (c) regression between parameters and 

physical properties of gauged catchments (e.g., Kim and Kaluarachchi, 2008). Based on its competitive performance and 

simplicity (Parajka et al., 2013; Oudin et al., 2008), we chose the proximity-based parameter regionalisation. 30 

For prediction in ungauged catchment, five donor catchments chosen for the FDC regionalisation were again used for 

transferring their parameter sets to each catchment of interest. To be consistent between the two proximity-based approaches, 
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we synchronised donor catchments. The five runoff simulations were averaged for representing modelled hydrographs for 

each catchment.  

3.4 Evaluation of predictive performance and uncertainty 

Two performance measures were used to evaluate the model predictive performance. One is NSE in Eq. 2b between the 

observed and modelled flows and the other is the logarithmic Nash-Sutcliffe Efficiency (LNSE) between the observed and 5 

simulated flows. These conventional measures evaluate the reproducibility of high and medium flows (NSE) and low flows 

(LNSE) respectively. LNSE is defined as: 

LNSE = 1 −
∑ [ln Qobs,i−ln Qsim,i]

2N
i=1

∑ [ln Qobs,i−ln(Qobs̅̅ ̅̅ ̅̅ ̅)]
2N

i=1

          (5) 

For uncertainty assessment, the lower and upper bounds were drawn at the values of 2.5 and 97.5 percentiles of predicted 

hydrographs with the collection of 50 parameter sets. Uncertainty in predicted flows was quantified by the area between the 10 

lower and upper bounds of simulated hydrographs. We took a ratio of uncertainty of the FDC calibration to that of the 

hydrograph calibration for each catchment and defined it as the uncertainty ratio. It should be noted that this assessment was 

not to estimate absolute uncertainty but to measure relative uncertainty gained by replacing a hydrograph with a FDC for 

model calibration. 

We additionally selected three typical flow metrics to evaluate flow signature predictability; the runoff ratio (RQP), the 15 

baseflow index (IBF), and the rising limb density (DRL). The three typical signatures describe aridity in a catchment, long-

term baseflow contribution, and the flashness of catchment response respectively. They are defined as the ratio of runoff to 

precipitation, the ratio of long-term baseflow to total runoff, and the inverse of average time to peak as:  

RQP =
Q̅

P̅
             (6a) 

IBF = ∑
QB,t

Qt

T
t=1              (6b) 20 

DRL =
NRL

TR
             (6c) 

where Q̅ and P̅ are the average flow and precipitation during a period, Qt and QB,t (m d
-1

) is the total streamflow and the base 

flow at time t respectively, NRL is the number of rising limb, and TR is the total amount of time the hydrograph is rising 

(days). QB,t can be calculated by subtracting direct flow QD,t from Qt as: 

QD,t = c ∙ QD,t + 0.5 ∙ (1 + c) ∙ (Qt − Qt−1)         (7a) 25 

QB,t = Qt − QD,t            (7b) 
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where the parameter c is a value of 0.925 from a comprehensive case study by Eckhardt (2007). Reproducibility of RQP, IBF, 

and DRL can be evaluated by the relative absolute bias between the modelled and observed signatures as: 

DFS =
|FSsim−FSobs|

FSobs
            (8) 

where DFS is the relative absolute bias, FSsim is a flow signature of the modelled flows, and FSobs is that of the observed flows.  

4 Results 5 

4.1 Streamflow prediction in gauged catchments 

The box plots in Figure 3 comparatively show distributions of NSE and LNSE values between the observed and modelled 

flows. This result clearly indicates that the hydrograph calibration outperformed the FDC calibration in prediction of high 

flows. The NSEs of the hydrograph calibration were generally greater than those of the FDC calibration for both calibration 

and validation periods. The FDC calibration was of much wider NSE ranges than the hydrograph calibration, suggesting 10 

greater uncertainty in high flow prediction. The prediction results tended to have greater medians of NSEs for the calibration 

period than the validation period. Because the term NSE was directly used for calibration, the parameter identification could 

be slightly inclined towards reproduction of high flows for the calibration period. The NSE ranges for the calibration period 

was smaller than those for validation period (Figure 3b). It implies that the FDC calibration has weaker temporal parameter 

transferability from one period to another. In low-flow prediction, the FDC calibration showed slightly weaker performance 15 

than the hydrograph calibration. Although the LNSE medians of the FDC calibration were comparable to those of the 

hydrograph calibration, LNSEs of the FDC calibration also showed wider ranges than the hydrograph calibration. The FDC 

calibration was still likely to yield significant uncertainty in low-flow predictions when parameters were temporally 

transferred. Unlike the NSE comparison, the median LNSE values did not decrease from the calibration to the validation 

periods for the both hydrograph and the FDC calibrations. This would imply that the behavioural parameter sets have more 20 

temporal consistency in low flows than high flows. 

Figure 4 illustrates 1:1 scatter plots between the performance measures and correlation between CPI and observed 

hydrographs, indicating that consistency between model input and output meaningfully affects predictive performance of 

rainfall-runoff models. The performance measures were generally in positive relationships with correlation between CPI and 

observed hydrographs. Adequate input-output consistency seems to be a prerequisite of parameter identification to attain 25 

good high-flow predictability especially for the hydrograph calibration. For having 0.6 or higher NSE, the correlation 

coefficient between CPI and observed flows should be greater than 0.6 approximately. On the other hand, predictability of 

low flows was achieved with relatively low input-out consistency. LNSEs less than 0.4 were rarely observed than NSEs for 

both hydrograph and FDC calibrations. Interestingly, the FDC calibration appears to have better predictability in low flows 

despite the use of NSE for parameter calibration, which is a sensitive measure to high-flow reproducibility. This result 30 
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implies that the FDC calibration has some deficiency to capture catchment responses to storm events even with adequate 

model input-output consistency whereas it performs well for long-term low-flow or baseflow predictions. 

Shortly, the FDC calibration could lead to relatively low predictive power with increased uncertainty when adopted as an 

alternative of the hydrograph calibration. Low predictability in high-flows can be a particular concern of the FDC calibration. 

The simplification of flow information appears to exacerbate the equi-finality in parameter identification. This weakness of 5 

the FDC calibration was confirmed by the uncertainty bounds of modelled hydrographs in Figure 5. The collection of 50 

parameter sets from the FDC calibration showed less robust simulations than the hydrograph calibration for the three 

catchments even though their FDCs were fairly well reproduced by the FDC calibration. For the 45 catchments, the mean 

NSE between the observed and modelled FDCs was 0.95 when using the FDC calibration. In other words, parameters 

reproducing observed FDCs generally were less unique to represent catchment functional behaviours than ones reproducing 10 

observed hydrographs. The equi-finality in the FDC calibration is likely to become worse with decreasing performance of 

the hydrograph calibration (Figure 6). On average, uncertainty of predicted hydrographs was doubled for the 45 catchments 

when the FDC calibration substitutes for the hydrograph calibration. The prediction results from the 45 gauged catchments, 

hence, suggest that parameter identification with compact information of FDCs could yield weaker performance and less 

parameter identifiability than the hydrograph calibration. 15 

4.2 Geostatistical FDC regionalisation 

Figure 7a illustrates the 1:1 scatter plot between the observed and estimated TNDs of the 45 catchments. The correlation 

coefficient between the empirical and estimated TNDs was 0.56 (equivalent to 0.30 NSE). It is likely that use of annual 

precipitation for normalising flow quantiles lead to the relatively poor prediction of TNDs. In the original study of the 

geostatistical method (Pugliese et al., 2014), the TND prediction became poorer (NSE was decreased from 0.81 to 0.60) 20 

when using the rescaled annual precipitation instead of the observed mean annual flow. Uncertainty introduced by estimation 

of mean annual flows might influence predictive power of the geostatistical TND interpolation. Another possible reason is 

that TND is a complex signature of streamflow regime; yet, it could be descriptive in terms of functional similarity between 

catchments (Pugliese et al., 2016). It may be difficult to completely capture spatial variation of TNDs with topological 

proximity only. However, Pugliese et al. (2016) also argued that poor prediction of TND did not automatically result in poor 25 

quantile flow predictions. Their comparative study achieved successful FDC predictions for 182 catchments in the United 

States (0.95 of median NSE) using the top-kriging weights of TNDs in spite of low TND predictability. A further study is 

recommended to be directed towards effects of TND prediction on the FDC regionalisation. Because it is still unclear 

whether or not descriptors from FDCs well predict flow quantiles, top-kriging weights of various flow signatures need to be 

tested for improving the geostatistical FDC prediction as well. 30 

The high performance in FDC prediction with poor TND prediction was replicated in this study. Overall NSE and LNSE 

values between the observed and predicted flow quantiles of the 45 catchments suggest good applicability of the 

geostatistical method to the study catchments (Figure 7b). The averages of individual NSEs and LNSEs for each catchment 
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were 0.83 and 0.91 with standard deviations of 0.25 and 0.11 respectively. The higher LNSEs imply that performance of the 

geostatistical method is better for low flows. This might be because the top-kriging weights interpolating TNDs were 

obtained from below-average flows only. No information of above-average flows reflected in TNDs might incline the FDC 

regionalisation towards low-flow predictions. Low predictive power of the regional FDC model was found at locations with 

low gauging density. Catchments 4, 10, 35, and 36, which recorded 0.6 or less NSEs, were with no hatching catchments 5 

and/or limited adjacent catchments; nonetheless, LNSEs of those catchments were still greater than 0.7. This result was 

consistent with a finding of Pugliese et al. (2016) that performance of the geostatistical method was highly sensitive to river 

gauging density. Transferring quantile flows of remote catchments can yield significant errors because functional similarity 

would not be captured between donor and receiver catchments. Overall, in spite of abovementioned shortcomings, the 

geostatistical FDC regionalisation was considered to be acceptable and topological proximity would to be a good predictor 10 

of FDCs across the study catchments. 

4.3 Streamflow prediction for ungauged catchments  

The box plots in Figure 8 present predictive performance of the calibration against regional FDCs (referred to as RFDC_cal 

hereafter) in comparison with the proximity-based parameter regionalisation (referred to as PROX_reg hereafter). The 

performance measures between the observed and modelled hydrographs were computed for the entire period of streamflow 15 

data (2007-2011). Distributions of NSEs clearly showed that PROX_reg outperforms the FDC calibration in prediction of 

high flows (Figure 8a), indicating that a priori parameter sets from neighbouring catchments should perform even better than 

ones from local calibrations against the observed FDCs. The average difference between NSEs of PROX_reg and RFDC_cal 

was 0.18 with a standard deviation of 0.25. RFDC_cal outperformed PROX_reg only for 8 out of the 45 catchments. LNSEs 

with PROX_reg were still of a slightly higher median than RFDC_cal. Although RFDC_cal appears to have comparable 20 

predictability in low flows, 31 out of 45 catchments were having greater LNSEs with PROX_reg. 

The weaker performance of RFDC_cal in this work is consistent with the comparative study of Zhang et al. (2015), which 

evaluated performance of RFDC_cal using GR4J in 228 Australian catchments. Zhang et al. (2015) argued that RFDC_cal is 

not good enough for predicting daily hydrographs in the Australian catchments due to its much worse performance than the 

hydrograph calibration in gauged catchments. The information loss from simplifying hydrographs can be attributed to 25 

weaker performance and higher uncertainty of rainfall-runoff modelling against in FDCs. In recognition of good agreement 

between the empirical and regional FDCs for the study catchments, prediction errors in regional FDCs would exert minor 

impacts on performance of RFDC_cal. 

4.4 Evaluation of flow signature reproducibility 

Figure 9 summarises performance of the four methods applied in this study to regenerate three flow signatures of RQP, IBF, 30 

and DRL. The box plots of absolute biases between the observed and modelled signatures indicate that parameter 

identification against FDCs showed competitive reproducibility in the long-term signatures RQP and IBF, while its ability was 
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relatively weak to regenerate the event-based signature DRL. RQP biases seem to be sensitively affected by additional 

uncertainty sources in the FDC regionalisation and in spatial and temporal parameter transfer, but their medians and box 

heights were similar between FDC-based and hydrograph-based approaches. Given their relatively competitive performance 

in low flows, FDC-based approaches would show strong performance to reproduce IBF. 

In contrast, the FDC-based approaches were poorer to reproduce the event-based flow signature, DRL. It is not surprising 5 

because a FDC aggregates information of flow magnitude only. No information of flow timing in FDCs is likely a main 

factor that resulted in poor predictions of peak flow timing for both gauged and ungauged catchments. The FDC-based 

approaches could be insufficient for hydrological applications that require specific flow timings (e.g., flood forecasting). The 

conventional parameter regionalisation would be a more pragmatic option for the Korean catchments. From Figure 9c, we 

also had an indication that predictability in peak flow timing of the hydrograph calibration was well preserved even when 10 

parameter sets were transferred to neighbouring catchments. 

5 Discussion 

5.1 Evaluation of rainfall-runoff modelling against regional FDCs 

Regionalised flow signatures have frequently used for constraining rainfall-runoff models (e.g., Bárdossy, 2007; Boughton 

and Chiew, 2007; Bulygina et al., 2009). Advantages of the approaches are that they are complementary to a priori 15 

estimation of model parameters and are similar to usual methods to directly determine the model parameters from dynamic 

catchment response data (Blӧschl et al., 2013). An important lesson learned from previous studies was that the models would 

dominantly work for reproducing the flow signature of interest (Blӧschl et al., 2013), albeit it appears self-evident. Thus, if 

one forces the model to reproduce low-flow signatures, use of the model would be appropriate for a drought forecasting 

rather than a flood analysis. Likewise, multiple signatures are obviously necessary for constraining runoff models to consider 20 

various aspects of flow variation. 

In this context, use of a FDC as a single calibration criterion appears to be a great choice for searching model parameters 

suitable for dynamic catchment behaviours. A FDC is a compact representation of runoff variability in frequency domain at 

all time scales from inter-annual to event-scale, and thus it embeds various aspects of multiple flow signatures (Blӧschl et al., 

2013). A pilot study of Yokoo and Sivapalan (2011) discovered that the upper part of a FDC with high flows is controlled by 25 

interaction between extreme rainfall and fast runoff, while the middle and lower parts are governed by interactions between 

water availability, energy and water storage and by baseflow recession behaviour during dry periods respectively. The major 

hydrological processes within a catchment are reflected in a FDC, and therefore a runoff model constrained by a FDC can be 

expected to provide reliable flow predictions. The studies of Westerberg et al. (2014, 2011) and Yu and Yang (2000) are 

successful examples that applied FDCs to rainfall-runoff modelling as a single calibration criterion. 30 

The comparative evaluation in this study, however, provides a lesson that rainfall-runoff modelling against FDCs sufficiently 

reproduces the FDC itself, but it was insufficient to be comparable to the hydrograph calibration in gauged catchments. For 
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41 out of the 45 catchments, NSEs between the observed and modelled FDCs were greater than 0.9; nonetheless, hydrograph 

reproducibility of the FDC calibration was generally weaker. The hydrograph is an output of numerous hydrological 

processes interacting within a catchment, and is regarded as the most complete flow signature (Blӧschl et al., 2013). Since 

any simplification of the hydrograph including FDCs would lose some amount of flow information, it is no surprise that the 

FDCs calibration worsens the equi-finality problem in conceptual rainfall-runoff modelling. If one has a runoff time series 5 

with acceptable data quality and length, there should be no reason to adopt the FDC calibration in replacement of the 

hydrograph calibration. The weaker DRL reproducibility confirms that the absence of flow timing in FDCs would lead to 

poorer runoff predictions of the FDC calibration. Instead, the FDC calibration may successfully predict compact flow 

signatures which are less informative than FDCs (e.g., mean annual runoff and seasonal flow regime). 

For ungauged or poorly gauged catchments, on the other hand, rainfall-runoff modelling against regionalised FDCs 10 

(RFDC_cal) can bring advantages. As aforementioned, a priori parameter sets derived from the outside of a catchment of 

interest may be more uncertain and thus less reliable than ones achieved from independently predicted flow signatures. 

Nevertheless, RFDC_cal was less powerful than use of parameter sets transferred from neighbouring catchments despite 

well-regionalised FDCs. The deficiency in RFDC_cal was likely to come not only from the absence of flow information in 

FDCs, but from powerful performance of PROX_reg. Modelling conditions of this study were very suitable for the 15 

proximity-based parameter transfer based on an extensive comparative study of Parajka et al. (2013). Parajka et al. (2013) 

reported that parameter regionalisation generally showed higher NSE performance under humid conditions than in arid and 

tropical regions. They argued that PROX_reg can be competitive with or better than similarity-based and regression-based 

regionalisation (e.g., Oudin et al., 2008; Parajka et al., 2005). Parajka et al. (2013) also provided a relationship between 

model complexity and performance, indicating that the complexity of GR4J (4 parameters) used in this study was desirable 20 

for parameter regionalisation. Given the knowledge in Parajka et al. (2013), aridity and temperature conditions of the 45 

study catchments were suited to provide good predictive performance with PROX_reg. The strong performance of 

PROX_reg in this study suggests that functional similarity between Korean catchments may be changing gradually in space 

and thus found with spatial proximity. This could be confirmed by good performance of the geostatistical FDCs 

regionalisation in this study. Under these conditions, it may be difficult to produce better predictions using RFDC_cal with 25 

much higher equi-finality. 

5.2 Why the FDC calibration performs good for low flow prediction  

Although we showed its weaknesses, this paper is not intended to leave negative messages on hydrological modelling against 

FDCs. It should be emphasised that the FDC calibration may provide advantages for applications aiming at assessing long-

term flow regime under projected environmental conditions (e.g., climate change impact assessment). In particular, its 30 

powerful predictability in low flows needs to be underlined. The objective function used in the parameter calibration 

includes the NSE, which can lead to overemphasis on high or peak flows due to squared residuals (Hrachowitz et al., 2013), 

albeit it is combined with the WBE. The calibration against FDCs, however, well reproduced low flows and IBF with no 
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logarithmic transformation of observed flows, and hence could be a good alternative for a low flow analysis or a long-term 

water resources management in both gauged and ungauged catchments. 

In regard of flow variation condensed into quantile flows of a FDC, predictability of the FDC calibration may be explained. 

In Korean catchments under a typical monsoonal climate, low flows governed by baseflow during dry seasons have less 

temporal variation than high flows generated by intermittent storm events. Thus, information loss of low flows is much 5 

smaller than high flows when a hydrograph is summarised in frequency domain. Figure 10a and b illustrate that high flows 

modelled by the collection of 50 parameter sets have flow timing errors and low robustness in medium to high flows in spite 

of fairly good agreement between observed and modelled FDCs across all flow magnitudes. The ranges of baseflow and 

direct runoff (i.e., main controls of low and high quantile flows) for the calibration period are shown together in Figure 10c. 

It indicates that direct runoff is more significantly condensed into a FDC. Because of the flow regime with small low-flow 10 

variability of the Korean catchments, the FDC calibration could automatically incline the model parameter towards 

reproduction of low flows. Should considerable variability exist in baseflow (e.g., snow-fed catchments), performance of the 

FDC calibration may differ. 

5.3 Flow signatures for improving calibration against FDCs 

As evaluated, rainfall-runoff modelling against FDCs has strength in baselow or low flow prediction in South Korea while 15 

high flows were not well captured due to the absence of flow timing. It was confirmed by the flow signature reproducibility 

in Figure 9 and the low robustness of direct runoff simulations in Figure 10b. Hence, additional constraining may fill the gap 

in FDC calibration as discussed in Westerberg et al. (2014). Westerberg et al (2014) emphasised the necessity of further 

constraining to reduce predictive uncertainty despite their sophisticated modelling against FDCs. The comparative evaluation 

of this study simply suggests that orthogonal (or complementary) flow signatures to a FDC should explain temporal flow 20 

variation (e.g., DRL, falling limb density, and recession rate). 

The box plots in Figure 11 show how the FDC calibration can be improved by additional constraints of the three flow 

signatures (RQP, IBF, and DRL). For runoff predictions, we simply chose one parameter set with the best reproducibility of 

each signature from the collection of 50 parameter sets of the FDC calibration. As expected from the competitive 

reproducibility of the FDC calibration in RQP and IBF, no meaningful improvement was found from the addition of both 25 

signatures. On the contrary, the parameter sets constrained by DRL resulted in fairly improved performance, suggesting the 

need of metrics associated with temporal flow variation in the FDC calibration. A further study needs to be directed for 

regionalising flow metrics representing flow dynamics together with a framework to combine multiple signatures as it could 

fill the gap in model calibration against FDCs. 

5.4 Limitations and future research directions 30 

This study provides a lesson that modelling against regional FDCs may not be an attractive option where proximity-based 

parameter regionalisation performs greatly. In our knowledge, the topic of runoff prediction in ungauged catchments has 
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been rarely dealt in South Korea due to limited availability of quality streamflow data, thus this study may become a good 

reference for scientific community. Nonetheless, there are several limitations in our comparative evaluation. First, this study 

did not consider uncertainty in streamflow data. McMillan et al. (2012) reported typical ranges of relative errors in discharge 

data as around 10-20% for medium to high flow and 50-100% for low flows. The measurement errors and epistemic 

uncertainty in input and output data may cause a disinformation effect on model calibration. Especially for the hydrograph 5 

calibration, if the model is significantly forced to compensate disinformation in high flows, calibrated parameters can be 

biased (Westerberg et al., 2011). We assumed that quality of the discharge data was adequate based on rigorous controls of 

the data distribution centre, but consideration of such errors will clarify their relative effects on the hydrograph- and FDC-

based runoff modelling. Second, we used a conceptual runoff model with a fixed structure for all catchments, but it could be 

a structural error source for some catchments. Blӧschl et al. (2013) recommended that structuring a conceptual model needs 10 

to be considered in a realistic manner for reliable predictions. If this step was included in this study, predictive power might 

be better in catchments with relatively low NSE performance. Finally, though the proximity-based parameter regionalisation 

was powerful, other regionalisation methods such as the regional calibration and the spatial similarity parameter transfer 

would provide comprehensive information. 

Obviously, one research direction stemming from this study is how to regionalise metrics related to flow timing and 15 

dynamics. The signature calibration inherently removes the concern in conventional parameter regionalisation approaches, 

but should be based on well-regionalised signatures. Candidate flow signatures that can enhance the FDC calibration would 

be the overall flow variability, the flow autocorrelation, the rising and falling limb densities, and the slope of fast recession 

curve among other metrics. Unfortunately, the task of regionalising these signatures will be challenging. Westerberg et al. 

(2016) found that the metrics gauging flow dynamics could be more uncertain than one measuring flow distribution (e.g., 20 

quantile flows). A new framework beyond conventional regionalisation methods may be needed to reduce uncertainty in 

regional flow signatures.  

6 Summary and conclusions 

In this study, we investigated performance of the FDC calibration by comparing it with hydrograph-based methods for 

gauged and ungauged catchments. We began with parameter calibration of the GR4J model against the observed 25 

hydrographs and empirical FDCs at 45 catchments in South Korea using random simulations. Predictive performance and 

uncertainty of each catchment were evaluated using parameter sets obtained. For evaluation for ungauged catchments, 

hydrographs of the 45 catchments were again predicted by treating each catchment as ungauged. In doing so, we estimated 

regional FDCs of the catchments using a promising geostatistical method, and calibrated model parameters against the 

regional FDCs. Predictive performance of the model based on regional FDCs was evaluated in comparison to hydrographs 30 

simulated with parameters transferred from neighbouring catchments. The key findings from our comparative evaluation are 

summarized as follows: 
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(1) For gauged catchments, if the FDC calibration is employed instead of the hydrograph calibration, predictive 

performance of the rainfall-runoff model can be significantly degraded by loss of flow timing information. 

Uncertainty of the hydrographs predicted by the FDC calibration would be increased by the augmented equi-finality.  

(2) The geostatistical FDC regionalization showed good performance in prediction of quantile flows despite its low 

TND reproducibility. The top-kriging weights interpolating TNDs had high performance to predict quantile flows. 5 

Topological proximity is likely to well explain functional similarity between catchments in South Korea. However, 

it is notable that considering topological proximity only can bring bias where gauging density is low. 

(3) The typical proximity-based parameter transfer was of strong performance to regenerate hydrographs, and 

outperformed model calibration with regional FDCs. Although regional FDCs would have potential for capturing 

functional behaviour of ungauged catchments, the absence of flow timing would lead to less robust and less 10 

predictive performance than the proximity-based parameter transfer that shows good performance under the given 

modelling conditions 

(4) Relative merits of the model calibration with regional FDCs were strong performance in low-flow prediction. 

Without logarithmic transformation of the observed flows, the parameters with the regional FDCs seem to be forced 

to reproduce low flows because of relatively low temporal variation in baseflow of Korean catchments. 15 

(5) Complementary flow signatures for the FDC calibration could be metrics describing flow timing and dynamics. 

Additional constraining with DRL showed fairly improved performance with the FDC calibration. A further study 

for regionalising those metrics will improve the model calibration against regional FDCs. 

In brief, we suggest that classical parameter regionalisation is pragmatic for predicting hydrographs in ungauged catchments 

in South Korea where spatial proximity well captures functional similarity between catchments. Nonetheless, we believe that 20 

further studies on regionalisation of relevant flow signatures will inherently improve runoff modelling in ungauged 

catchments using the FDC-based calibration. The FDC calibration still has a major advantage that it can directly identify 

parameters against plausible flow information of the catchment of interest unlike the parameter regionalisation. 
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Table 1: List of the gauged catchments and hydrological features (2007-2015) 

ID Name Ar1 Elv2 Pa
3 Ta

4 Ard5 Ps
6 ID Name Ar Elv Pa Ta Ard Ps 

1 Goesan Dam 677  363 1223 11.0 .69 29.5 24 Chunyang 145  201 1611 13.2 58 12.8 

2 Namgang Dam 2293  431 1558 13.8 .61 5.7 25 Osu 360 255 1434 11.7 61 49.6 

3 Miryang Dam 104  512 1824 13.3 .50 20.1 26 Daecheon 816  198 1336 13.2 70 23.4 

4 Boryeong Dam 162  244 1997 11.4 .44 140.8 27 Jeonju 276  176 1312 12.9 71 29.5 

5 Buan Dam 57  177 1253 13.7 .76 39.3 28 Hari 528  197 1332 13.4 71 20.8 

6 Seomjingang Dam 763  357 1487 11.4 .58 54.7 29 Bongdong 345  245 1354 13.2 69 19..4 

7 Soyanggang Dam 2783  634 1231 9.5 .64 50.6 30 Hannaedari 284  126 1218 12.6 75 31.2 

8 Andong Dam 1629  543 1330 10.0 .61 51.5 31 Suchon 224  94 1254 12.4 72 42.4 

9 Yongdam Dam 930  510 1508 12.6 .60 22.6 32 Wolpo 1158 315 1303 11.3 66 30.1 

10 Imha Dam 1976  388 1319 10.1 .63 50.6 33 Jeomchon 615  371 1230 11.5 71 29.9 

11 Hoengseong Dam 208  436 1247 11.1 .68 28.5 34 Sancheong 1131  554 1608 13.8 59 14.1 

12 Habcheon Dam 929  495 1470 12.9 .62 17.1 35 Seonsan 988  298 1202 12.0 73 27.7 

13 Chungju Dam 6705  608 1289 9.9 .62 51.5 36 Nonsan 477  151 1309 13.0 71 19.4 

14 Juam Dam 1029  269 1765 12.7 .52 19.5 37 Ugon 134  39 1272 13.2 73 19.3 

15 Jangheung Dam 192  198 1733 13.4 .54 17.6 38 Seokdong 156  71 1268 12.8 72 29.5 

16 Jungranggyo 209  131 1388 12.7 .66 22.9 39 Cheongju 165  149 1235 12.3 73 24.8 

17 Munmak 1138 303 1286 11.9 .69 25.1 40 Heodeok 609  193 1266 12.4 71 23.0 

18 Yeongchun 4775  996 1145 7.9 .62 83.3 41 Yuseong 246  193 1253 12.6 73 23.0 

19 Yeongwol-1 1614  625 1263 9.7 .62 51.3 42 Boksu 162  216 1267 12.2 71 23.6 

20 Pyeongchang 696  720 1235 9.3 .62 62.3 43 Sangyeogyo 495  255 1267 12.2 71 23.6 

21 Naerincheon 1013  752 1231 9.5 .64 50.6 44 Gidaegyo 361  250 1218 11.3 70 30.6 

22 Wontong 300 707 1283 8.6 .59 71.0 45 Indong 68  203 1229 12.0 72 24.8 

23 Hampyeong 105  87 1327 13.7 .72 23.7         

1Draiage Area (km2), 2Mean elevation (m), 3Mean annual precipitation (mm), 4Mean annual temperature (°C), 5Aridity (unitless) defined 

by the sum of potential evapotranspiration divided by the sum of precipitation, and 6Mean annual snowfall (mm) defined by mean annual 

precipitation when mean temperatures were below 0°C. All climatological features were calculated by spatial averages of the grid data.  
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Table 2: Ranges of GR4J parameters used for parameter calibration (Demirel et al., 2013) 

Parameter Range 

X1 (mm) 10 to 2000 

X2 (mm) -8 to +6 

X3 (mm) 10 to 500 

X4 (days) 0.5 to 4.0 
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Figure 1: Locations of the gauged catchments for GR4J model and FDC regionalization. Catchment numbers are labelled at the 

centroid of each catchment. 
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Figure 2: The schematised structure of GR4J (X1-X4: model parameters, PE: potential evapotranspiration, P: precipitation, Q: 

runoff, other letters indicate variables conceptualizing internal catchment processes). 
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Figure 3: Performance comparison between the hydrograph calibration (a and c) and the FDC calibration (b and d) in terms of 

high flow (NSE) and low flow reproducibility (LNSE). Straight lines connect two measures for the calibration and validation 

periods of each catchment. 
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Figure 4: The relationships between model input-output consistency and (a) high flow reproducibility (NSEs) and (b) low flow 

reproducibility (LNSEs) 
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Figure 5: Observed and predicted hydrographs (continuous and dashed lines) with estimated uncertainties (shaded area) at three 

stations with best (top), intermediate (middle), and worst (bottom) predictive performance respectively. The plot inside of each 

hydrograph present agreement between observed and modelled FDCs in log-log space in which its horizontal and vertical axes are 

for exceedance probability (range of 0-1) and runoff (same range of each hydrograph) respectively.  5 
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Figure 6: 1:1 scatter plot between the uncertainty ratio and NSE of the hydrograph calibration, and the box plot of the uncertainty 

ratios 

  

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-138, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 10 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



31 

 

 

 

 

Figure 7: (a) 1:1 scatter plots between the observed and estimated TNDs, and (b) the observed and estimated quantile flows of 45 

catchments. 5 
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Figure 8: (a) boxplots of NSEs (high flow reproducibility) of methods for gauged catchments (FDC and Hydrograph calibrations) 

and for ungauged catchments (RFDC_cal and PROX_reg), (b) boxplots of LSNEs (low flow reproducibility) gained from the same 

methods. The dashed lines distinguish between method for gauged and ungauged catchments. 
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Figure 9: Flow signature reproducibility of methods for gauged catchments (FDC and Hydrograph calibrations) and for ungauged 

catchments (RFDC_cal and PROX_reg) in terms of (a) RQP, (b) IBF, and (c) DRL. The dashed lines distinguish between method for 

gauged and ungauged catchments. 
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Figure 10: (a) observed FDC and FDCs modelled by the 50 parameter sets from the FDC calibration, (b) sample observed 

hydrograph, and hydrograph modelled by the same 50 parameter sets, and (c) Box plots of observed baseflow and direct runoff. 

The whiskers indicate maximum and minimum values. All panels are for Namgang dam (catchment 2) with 0.86 and 0.51 NSEs of 

daily flows using the hydrograph calibration and the FDC calibration respectively. 5 
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Figure 11: Predictive performance of the FDC calibration with additional constraining using RQP (FDC+RQP), IBF (FDC+IBF), 

and DRL (FDC+DRL). The dashed line distinguishes between methods for gauged and ungauged catchments. The dashed line 

distinguishes between method for gauged and ungauged catchments. 39 catchments having positive NSEs for all methods were 5 
plotted. 
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