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Response to comments from reviewer 1: 
 
A. Lines 38-41: one approach to using FDC signatures in model calibration is direct use of multiple 
signatures (e.g., Yilmaz et al., 2008; and Shafii and Tolson, 2015), which is missing in the list of practices 
in this section.  
 We shortly mentioned this approach in line 37, as “distinctive flow signatures can be used in lieu of 
hydrograph.” And, we cited the given references at the sentence.  
 
B. Regarding hypothesis testing results: when the null hypothesis cannot be rejected, it does not mean 
that it is accepted. Rather, we should say there is no evidence that it is rejected. Therefore, in Table 3, 
the word 'No' has to be replaced with 'No Evidence'. The corresponding text needs to change too, which 
will be a slight modification. 
 We agree to this comment and used “Unlikely” for Q6 and Q7 in Table 3. For Q1, since we found a 
statistical significance that PROX_reg outperformed RFDC_cal, we used the term “No” to differentiate 
from “Unlikely” 
 
C. It is not clear how additional constraints (i.e., signatures) are utilized. For example, looking at Figure 9, 
how is IBF used in FDC+IBF case? Has there been a threshold for accepting/rejecting models? Some 
explanation is needed in the paper. 
 We explained this in line 342. We chose the parameter set providing the minimum biases for each 
flow signature from the collection of 50 parameters gained from the FDC calibration. This simple 
selection could bring the improved predictability. 
 
D. In the limitation section, I think authors should mention that all catchments have a long record of 
data, and conclusions may not be expandable to poorly gauged catchments. I am wondering if 
hydrograph is still more appropriate than FDC if the number of available data points is not high. 
 We addressed this issue in line 431. We agree that a same comparison between PROX_reg and 
RFDC_cal may bring different conclusions in a poor river gauging network. 
 
  



Response to comments from reviewer 2: 
 
Optional suggestion 1: I recommend using quotation marks the first time that you use the terms 
referring to the key techniques used in the paper. 
Line 25: (referred to as the “hydrograph calibration” hereafter) 
Line 47: (referred to as the “FDC calibration” hereafter) 
Line 62: (referred to as “RFDC_cal” hereafter) 
This makes it clear to the reader the general term that you will be using to describe these techniques 
throughout the rest of the manuscript. If they get lost in the methodology and results then they can 
easily find where you define these terms in the introduction. 
 
 We agree. We used quotations marks for the terms and for “PROX_reg” as requested. They are in 
lines 25, 47, 62, and 220 in the revised manuscript, respectively.  
 
Optional suggestion 2: Add a table/figure summarising (in columns) the key methods (e.g.“hydrograph 
calibration”, “FDC calibration”, “RFDC_cal”,) the key references for these methods, the key strengths, 
the key weaknesses and gaps in literature. This will give the reader a bit of a road-map of the 
introduction and make it easier to see the research gap that you are trying to address. 
 
 We agree that adding a table with reviews on the modelling approaches is a good way to promote 
readers’ awareness of research gaps. However, the hydrograph calibration is a general approach applied 
in many rainfall-runoff studies. And, FDCs or metrics from FDCs have been frequently used for parameter 
identification. Condensing many studies into a table with key information would require a long time. 
Since we believe that the literatures introducing the objective of this study seem to be sufficient, we want 
to consider this comment for our further study on rainfall-runoff modelling with regional flow signatures.  
 
Minor comments: 
1. Line 136: “and thus can worsen the equifinality” without providing evidence or a reference I suggest 
removing this statement. 
 We removed the statement as recommended (line 136). 
 
2. Line 177: For completeness I suggest also mentioning the BATEA uncertainty estimation methodology 
of Kuczera et al (2006). 
 We cited the reference suggested (line 176). 
 
3. Line 154: I suggest being a bit more descriptive about your methods than using the term “Monte-
Carlo random sampling” or to reference a particular methodology that you used for implementing this 
broad technique. This is important to ensure the reproducibility of the work. 
 In section 3.3, we introduced the objective function first (line 153), and described our calibration 
method (line 162-167). 
 
4. Line 333: “Catchment 2” is a bit vague now that you have removed the previous version of the 
manuscript “Table 1” that listed the catchments. I recommend using the catchment name here i.e. 
“Namgang Dam” and also in the Figure 6 caption, to again ensure the reproducibility of the work. 
 We corrected as recommended (line 333). 
 



5. Line 374: I recommend referring to Table 3 much earlier in this section (at the beginning if possible) so 
that the reader knows what you are referring to 
 In line 367 (the second sentence of the paragraph), we referred to Table 3 for better readability. 
 
A few typos: 
1. Line 75: “reginal” to “regional” 
 We corrected it (line 75). 
2. Line 94: (Optional) My preference is to not start a section/paragraph with a numerical number. 
 Now we begin with “For this study, we selected 45 catchments…” (line 94). 
3. Line 271: “rainfalls” to “rainfall” to be consistent with earlier in the sentence. 
 We corrected it (line 271). 
4. Line 461: “combining” to “combine” 
 We corrected it (line 463). 
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Abstract. Rainfall-runoff modelling has long been a special subject in hydrological sciences, but identifying behavioural 

parameters in ungauged catchments is still challenging. In this study, we comparatively evaluated performance of the local 

calibration of a rainfall-runoff model against regional flow duration curves (FDC), which is a seemingly alternative method 

of classical parameter regionalisation for ungauged catchments. We used a parsimonious rainfall-runoff model over 45 10 

Korean catchments under semi-humid climate. The calibration against regional FDCs was compared with the simple 

proximity-based parameter regionalisation. Results show that transferring behavioural parameters from gauged to ungauged 

catchments significantly outperformed the local calibration against regional FDCs due to the absence of flow timing 

information in the regional FDCs. The behavioural parameters gained from observed hydrographs were likely to contain 

intangible flow timing information affecting predictability in ungauged catchments. Additional constraining with the rising 15 

limb density appreciably improved the FDC calibrations, implying that flow signatures in temporal dimensions would 

supplement the FDCs. As an alternative approach in data-rich regions, we suggest calibrating a rainfall-runoff model against 

regionalised hydrographs to preserve flow timing information. We also suggest use of flow signatures that can supplement 

hydrographs for calibrating rainfall-runoff models in gauged and ungauged catchments. 

 20 

1 Introduction 

A standard method to predict daily streamflow is to employ a rainfall-runoff model that conceptualises catchment functional 

behaviours, and simulate synthetic hydrographs from atmospheric drivers (Wagener and Wheater, 2006; Blӧschl et al., 2013). 

A prerequisite of this conceptual modelling approach is parameter identification to enable the rainfall-runoff model to imitate 

actual catchment behaviours. Conventionally, behavioural parameters are estimated via model calibration against observed 25 

hydrographs (referred to as the “hydrograph calibration” hereafter). The hydrograph calibration provides convenience to 

attain reproducibility of the predictand (i.e., streamflow time series), which is commonly used as a performance measure in 

rainfall-runoff modelling studies. Because the degree of belief in hydrological models is normally measured by how they can 
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reproduce observations (Westerberg et al., 2011), use of the hydrograph calibration has a long tradition in runoff modelling 

(Hrachowiz et al., 2013). 30 

The hydrograph calibration, however, can be challenged by epistemic errors in input and output data, sensitivity to 

calibration criteria, and inability under no or poor data availability (Westerberg et al, 2011; Zhang et al., 2008). Importantly, 

it is difficult to know whether the parameters optimised toward maximising hydrograph reproducibility are unique to 

represent actual catchment behaviours, since multiple parameter sets possibly show similar predictive performance (Beven, 

2006, 1993). This low uniqueness of the optimal parameter set, namely the equifinality problem in conceptual hydrological 35 

modelling, can become a significant uncertainty source particularly when extrapolating the optimal parameters to ungauged 

catchments (Oudin et al., 2008). 

To overcome or circumvent those disadvantages, distinctive flow signatures (i.e., metrics or auxiliary data representing 

catchment behaviours) in lieu of observed hydrographs can be used to identify model parameters (e.g., Yilmaz et al., 2008; 

Shafii and Tolson, 2015). The flow duration curve (FDC) has received particular attention in the signature-based model 40 

calibrations as a single criterion (e.g., Westerberg et al., 2014, 2011; Yu and Yang, 2000; Sugawara, 1979) or one of 

calibration constraints (e.g., Pfannerstill et al., 2014; Kavetski et al., 2011; Hingray et al., 2010; Blazkova and Beven, 2009; 

Yadav et al., 2007). The FDC, the relationship between flow magnitude and its frequency, provides a summary of temporal 

streamflow variations in a probabilistic domain (Vogel and Fennessey, 1994). Many FDC-related studies have found that 

climatological and geophysical characteristics within a catchment determine the shape of the FDC (e.g., Cheng et al., 2012; 45 

Ye et al., 2012; Yokoo and Sivaplan, 2011; Bottor et al., 2007). With only few physical parameters, the shape of the period-

of-record FDC could be analytically expressed (Botter et al., 2008). Based on this strong relationship between catchment 

physical properties and the FDC, one may hypothesise that model calibration against the FDC (referred to as the “FDC 

calibration” hereafter) can provide parameters that can sufficiently capture actual catchment behaviours. Sugawara (1979) is 

the first attempt at the FDC calibration, emphasising its advantage to reduce negative effects of epistemic errors in rainfall-50 

runoff data. Westerberg et al. (2011) also highlighted that the FDC calibration may provide robust predictions to moderate 

disinformation such as the presence of event flows under inconsistency between inputs and outputs.  

If it allows rainfall-runoff models to sufficiently capture functional behaviours of catchments, the FDC calibration would 

have an especial value in comparison to the parameter regionalisation for prediction in ungauged catchment. The parameter 

regionalisation, which transfers or extrapolates behavioural parameters from gauged to ungauged catchments (e.g., Kim and 55 

Kaluarachchi, 2008; Oudin et al., 2008; Parajka et al., 2007; Wagener and Wheater, 2006; Dunn and Lilly, 2011), 

conveniently provides a priori estimates of behavioural parameters and thus became a popular approach to parameter 

identification in ungauged catchments (see a comprehensive review in Parajka et al., 2013). However, it has a critical 

concern that regionalised parameters are highly dependent on model calibrations at gauged sites that may have substantial 

equifinality problems. Under no flow information in ungauged catchments, it is impossible to know whether regionalised 60 

parameters are behavioural. Thus, regionalised parameters might be insufficiently reliable and highly uncertain (Bárdossy, 

2007; Oudin et al., 2008; Zhang et al., 2008). 
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On the other hand, the calibration against regional FDCs (referred to as “RFDC_cal” hereafter) may reduce the primary 

concern in the classical parameter regionalisation scheme. The regional models predicting FDCs at ungauged sites have 

showed strong performance, for instance, via regression analyses between quantile flows and catchment properties (e.g., Shu 65 

and Ouarda, 2012; Mohammoud, 2008; Smakhtin et al., 1997), geostatistical interpolation of quantile flows (e.g., Pugliese et 

al., 2014; Westerberg et al., 2014), and regionalisation of theoretical probability distributions (e.g., Atieh et al., 2017; Sadegh 

et al., 2016) among many variations. The parameters obtained from RFDC_cal are deemed behavioural, because a distinctive 

flow signature of the target ungauged catchment directly identifies them; however, predicted FDCs should be reliable in this 

case. A FDC is a compact representation of runoff variability at all time scales from inter-annual to event-scale, embedding 70 

various aspects of multiple flow signatures (Blӧschl et al., 2013). Based on this strength, several studies already showed 

promising predictive performance using RFDC_cal for ungauged catchments (e.g., Westerberg et al., 2014; Yu and Yang, 

2000). 

Nevertheless, practical questions arise when using RFDC_cal for ungauged catchments. First, the FDC is simplified 

information with flow magnitudes only; hence, the FDC calibration could worsen the equifinality problem relative to the 75 

hydrograph calibration. Due to no flow timing information in regional FDCs, one may cast a concern that parameters 

obtained from RFDC_cal may provide poorer predictive performance than regionalised parameters gained from the 

hydrograph calibration. Indeed, there is additional uncertainty in predicted FDCs possibly introduced by the regionalisation 

models (Westerberg et al., 2011; Yu et al., 2002). RFDC_cal may be undesirable when a simple parameter regionalisation 

can provide better performance, because regionalising observed FDCs may require expensive efforts. Several comparative 80 

studies on parameter regionalisation (e.g., Parajka et al., 2013; Oudin et al., 2008) suggested that the simple proximity-based 

parameter transfer can be competitive in many regions. Second, there may be additional flow signatures to improve 

predictive performance of the FDC calibration. Additional constraining can lead to better predictive performance of the 

RFDC (Westerberg et al., 2014); however, it is still an open question which flow signatures can supplement the FDC 

calibration. 85 

As discussed, RFDC_cal seems promising for prediction in ungauged catchments. However, to our knowledge, RFDC_cal 

has never been evaluated in a comparative manner with classical parameter regionalisation except Zhang et al. (2015), which 

assessed its performance in part. Therefore, this study aimed to evaluate predictive performance of RFDC_cal in comparison 

to a conventional parameter regionalisation. We focused on the absence of flow timing in the FDC and its impacts on 

rainfall-runoff modelling. In this work, a parsimonious 4-parameter conceptual model was used to simulate daily 90 

hydrographs for 45 catchments in South Korea. To predict FDCs in ungauged catchments, a geostatistical regional model 

was adopted here. The Monte-Carlo sampling was used to identify model parameters and measure equifinality in the 

hydrograph and the FDC calibrations. 
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2 Description of the study area and data 

For this study, we selected 45 catchments located across South Korea with no or negligible human-made influences on flow 95 

variations were selected for this study (Figure 1). South Korea is characterised as a temperate and semi-humid climate with 

rainy summer seasons. The North Pacific high-pressure brings monsoon rainfall with high temperatures during summer 

seasons, while dry and cold weathers prevail in winter seasons due to the Siberian high-pressure. Typical ranges of annual 

precipitation are 1200-1500 and 1000-1800 mm in the northern and the southern areas respectively (Rhee and Cho, 2016). 

Annual mean temperatures in South Korea range between 10 and 15 °C (Korea Meteorological Administration, 2011). 100 

Approximately, 60-70 percent of precipitation falls in summer seasons from June to September (Bae et al., 2008). 

Streamflow usually peaks in the middle of summer seasons because of heavy rainfall or typhoons, and hence information of 

catchment behaviours is largely concentrated on summer-season hydrographs. Snow accumulation and ablation occurring at 

high elevations have minor influences on flow variations due to relatively small amount of winter precipitation (Bae et al., 

2008).  105 

The study catchments were selected based on availability of streamflow data. High-quality daily streamflow data across 

South Korea have been produced since establishment of the Hydrological Survey Centre in 2007 (Jung et al., 2010), though 

river stages have been monitored for an extensive length at a few gauging stations. Thus, we collected streamflow data at 29 

river gauging stations from 2007 to 2015 together with inflow data of 16 multi-purpose dams for the same data period from 

the Water Resources Management Information System operated by the Ministry of Land, Infrastructure, and Transport of the 110 

Korean government (available at http://www.wamis.go.kr/). The mean annual flow of the study catchments was 739 mm yr-1 

with a standard deviation of 185 mm yr
-1

 during 2007-2015. 

In addition, as atmospheric forcing inputs, we collected daily precipitation and maximum and minimum temperatures for 

2005-2015 at 3-km grid resolution produced by spatial interpolations between 60 stations of the automated surface observing 

system (ASOS) maintained by the Korea Meteorological Administration. The ASOS data were interpolated by the 115 

Parameter-elevation Regression on Independent Slope Model (PRISM; Daly et al., 2008), and overestimated pixels of the 

PRISM grid data were smoothed by the inverse distance method. Jung and Eum (2015) found that this combined method 

improved the spatial interpolation of precipitation and the temperatures in South Korea. The annual mean precipitation and 

temperature of the study catchments vary within ranges of 1145–1997 mm yr
-1

 and 8.0–13.8 °C during 2007-2015. Hydro-

climatological features of the 45 catchments are summarised in Table 1. 120 

3 Methodology 

3.1 Hydrological model (GR4J) 

A parsimonious rainfall-runoff model, GR4J (Perrin et al., 2003), was adopted to simulate daily hydrographs of the 45 

catchments for 2007-2015. GR4J conceptualises functional catchment response to rainfall with four free parameters that 
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regulate the water balance and water transfer functions. Figure 2 schematises the structure of GR4J. The four parameters (X1 125 

to X4) conceptualises soil water storage, groundwater exchange, routing storage, and the base time of unit hydrograph 

respectively. Since its parsimonious and efficient structure allows robust calibration and reliable regionalisation of the 

parameters, GR4J has been frequently used for modelling daily hydrographs with various purposes under diverse climatic 

conditions (Zhang et al., 2015). The computation details and discussion are found in Perrin et al. (2003). The potential 

evapotranspiration (PE in Figure 2) was estimated by the temperature-based model proposed by Oudin et al. (2005) for 130 

lumped rainfall-runoff modelling. 

3.2 Preliminary data processing  

Before rainfall-runoff modelling, we preliminarily processed the grid climatic data to convert precipitation data to liquid 

water forcing (i.e., rainfall and snowmelt depths) using a physics-based snowmelt model proposed by Walter et al. (2005). 

The preliminary snowmelt modelling was mainly for reducing systematic errors from no snow component in GR4J, which 135 

may affect model performance in catchments at relatively high elevations. We chose this preliminary processing to avoid 

adding more parameters (e.g., the temperature index) to the existing structure of GR4J. In the case of GR4J, one additional 

parameter implies 25% complexity increase in terms of the number of parameters, and thus can worsen the equifinality. The 

snowmelt model uses the same inputs of GR4J to simulate point-scale snow accumulation and ablation processes (i.e., no 

additional inputs are required). The snowmelt model is a physics-based model but uses empirical methods to estimate its 140 

parameters for the energy balance simulation. As outputs, it produces the liquid water depths and the snow water equivalent. 

For lumped inputs to GR4J, we took spatially averaged pixel values of the liquid water depths and the maximum and 

minimum temperatures within the boundary of each catchment. 

After the snowmelt modelling, consistency between the liquid water depths and the observed flows (i.e., input-output 

consistency) was checked using the current precipitation index (CPI; Smakhtin and Masse, 2000) defined as: 145 

It = It−1 ∙ K + Rt            (1) 

where It is the CPI (mm) at day t, K is a decay coefficient (0.85 d
-1

), and Rt is the liquid water depth (mm d
-1

) at day t. CPI 

mimics temporal variations of typical streamflow data by converting intermittent precipitation data to a continuous time 

series with an assumption of the linear reservoir. The input-output consistency can be evaluated using correlation between 

CPI and observed streamflow as in Westerberg et al. (2014) and Kim and Kaluarachchi (2014). The Pearson correlation 150 

coefficients between CPI and streamflow data of the 45 catchments had an average of 0.67 with a range of 0.43-0.79, and no 

outliers were found in the box plot of the correlation coefficients. Hence, we assumed that consistency between climatic 

forcing and observed hydrographs was acceptable. 
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3.3 The hydrograph calibration in gauged catchments 

To search behavioural parameter sets of GR4J against the streamflow observations (i.e., the hydrograph calibration), we used 155 

the objective function in Zhang et al. (2015) as the calibration criterion to consider the Nash-Sutcliffe Efficiency (NSE) and 

the Water Balance Error together:the Monte-Carlo random sampling with the parameter ranges given by Demirel et al. 

(2013).  

The objective function in Zhang et al. (2015) was chosen as the calibration criterion to consider the Nash-Sutcliffe 

Efficiency (NSE) and the Water Balance Error (WBE) together: 160 

OBJ = (1 − NSE) + 5|ln(1 + WBE)|2.5         (2a) 

NSE = 1 −
∑ (Qobs,i−Qsim,i)

2N
i=1

∑ (Qobs,i−Qobs
̅̅ ̅̅ ̅̅ ̅)

2N
i=1

          (2b) 

WBE =
∑ (Qobs,i−Qsim,i)N

i=1

∑ Qobs,i
N
i=1

           (2c) 

where Qobs and Qsim are the observed and simulated flows respectively, Qobs
̅̅ ̅̅ ̅̅  is the arithmetic mean of Qobs, and N is the total 

number of flow observations. The best parameter sets for each study catchment was obtained from minimisation of the OBJ 165 

using the Monte-Carlo simulations described below. 

To determine sufficient runs for the random simulations, we calibrated GR4J parameters using the shuffled complex 

evolution (SCE) algorithm (Duan et al., 1992) for one catchment with moderate input-output consistency with the parameter 

range given by Demirel et al. (2013). Then, the total number of random simulations was iteratively determined by adjusting 

the number of runs until the minimum OBJ of the random simulations became adequately close to the OBJ value from the 170 

SCE algorithm. We found that approximately 20,000 runs could provide the minimum OBJ value equivalent to that from the 

SCE algorithm. Subsequently, GR4J was calibrated by 20,000 runs of the Monte-Carlo simulations for all 45 catchments, 

and the parameter sets with the minimum OBJ values were taken for runoff predictions. In addition, we sorted the 20,000 

parameter sets in terms of corresponding OBJ values in ascending order, and first 50 sets (0.25% of the total samples) were 

taken to measure the degree of equifinality. We measured the equifinality simply by the prediction area between 2.5% and 175 

97.5% boundaries of runoff simulations given by the collected 50 parameter sets. This prediction area was later compared to 

that from the FDC calibration under the same Monte-Carlo framework. Note that we estimated the prediction area to 

comparatively evaluate the degree of equifinality between the hydrograph and the FDC calibrations under the same sampling 

size and the same acceptance rate for all the catchments. For more sophisticated and reliable uncertainty estimation, other 

methods are available such as the Generalised Likelihood Uncertainty Estimation (GLUE; Beven and Bingley, 1992), the 180 

Bayesian Total Error Analysis (BATEA; Kavetski et al., 2006), and the Differential Evolution Adaptive Metropolis 

(DREAM; Vrugt and Ter Braak, 2011). 
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For the hydrograph calibration, the 9-year streamflow data were divided into two parts for calibration (2011-2015) and for 

validity check (2007-2010), respectively. A two-year warm-up period was used for initialising all runoff simulations in this 

study. 185 

3.4 Model calibration against the regional FDC for ungauged catchments 

Each catchment was treated ungauged for the comparative evaluation of RFDC_cal in the leave-one-out cross-validation 

(LOOCV) mode. For regionalising empirical FDCs, the geostatistical method recently proposed by Pugliese et al. (2014) 

was used. Pugliese et al. (2014) employed the top-kriging method (Skøien et al., 2006) to spatially interpolate the total 

negative deviation (TND), which is defined as the area between the mean annual flow and below-average flows in a 190 

normalised FDC. The top-kriging weights that interpolate TND values were taken as weights to estimate flow quantiles of 

ungauged catchments from empirical FDCs of surrounding gauged catchments. The FDC of an ungauged catchment in 

Pugliese et al. (2014) is estimated from normalised FDCs of surrounding gauged catchments as: 

Φ̂(w0, p) = ϕ̂(w0, p) ∙ Q̅(𝑤0)          (3a) 

ϕ̂(w0, p) = ∑ λi ∙ ϕi(wi, p)n
i=1 ,    pϵ(0,1)         (3b) 195 

where Φ̂(w0, p) is the estimated quantile flow (m
3
 s

-1
) at an exceedance probability p (unitless) for an ungauged catchment 

w0, ϕ̂(w0, p) is the estimated normalised quantile flow (unitless), Q̅(𝑤0) is the annual mean streamflow (m
3
 s

-1
) of the 

ungauged catchment, and ϕi(wi, p) and λi are normalised quantile flows (unitless) and corresponding top-kriging weights 

(unitless) of gauged catchment wi, respectively. The unknown mean annual flow of an ungauged catchment, Q̅(𝑤0), can be 

estimated with a rescaled mean annual precipitation defined as: 200 

MAP∗ = 3.171 × 10−5 ∙ MAP ∙ A          (4) 

where MAP* is the rescaled mean annual precipitation (m
3
 s

-1
), MAP is mean annual precipitation (mm yr

-1
) and A is the 

area (km
2
) of the ungauged catchment, and the constant 3.171×10

-5
 converts the unit of MAP

*
 from mm yr

-1 
km

2
 to m

3
 s

-1
. 

A distinct advantage of the geostatistical method is its ability to estimate the entire flow quantiles in a FDC with a single set 

of top-kriging weights. Since a parametric regional FDC (e.g., Yu et al., 2002; Mohamoud, 2008) is obtained from 205 

independent models for each flow quantile in many cases, for instance, by multiple regressions between selected quantile 

flows and catchment properties, fundamental characteristics in a FDC continuum would be entirely or partly lost. The 

geostatistical method, on the other hand, treats all flow quantiles as a single object; thereby, features in a FDC continuum 

can be preserved. It showed promising performance to reproduce empirical FDCs only using topological proximity between 

catchments. More details on the geostatistical method are found in Pugliese et al. (2014). 210 

For regionalising empirical FDCs of the 45 catchments, we followed the same procedure of Pugliese et al. (2014). We 

obtained top-kriging weights (λi) by the geostatistical interpolation of TND values from observed FDCs for the calibration 

period (2011-2015). Then, the top-kriging weights were used to interpolate empirical flow quantiles. The number of 
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neighbours for the TND interpolation was iteratively determined as five at which additional neighbouring TNDs are unlikely 

to bring better agreement between the estimated and observed TNDs. In other words, normalised flow quantiles of five 215 

catchments surrounding the target ungauged catchment were interpolated with the top-kriging weights. Then, MAP
*
 of the 

target ungauged catchment was multiplied. We predicted flow quantiles at 103 exceedance probabilities (p of 0.001, 0.005, 

99 points between 0.01 and 0.99 at an interval of 0.01, 0.995, and 0.999) for rainfall-runoff modelling against regional FDCs 

(i.e., RFDC_cal). 

For runoff prediction in ungauged catchments, the GR4J parameters were identified by the same Monte-Carlo sampling but 220 

toward minimisation of OBJ value between the regional and the modelled flow quantiles at the 103 exceedance probabilities. 

The best parameter set, which provided the minimum OBJ value, was taken as the best behavioural set of RFDC_cal for each 

catchment. 

3.5 Proximity-based parameter regionalisation for ungauged catchments 

We selected the proximity-based parameter transfer (referred to as “PROX_reg” hereafter) to comparatively evaluate 225 

predictive performance of RFDC_cal. The parameter regionalisation has three classical categories: (a) proximity-based 

parameter transfer (i.e., PROX_reg; e.g., Oudin et al., 2008); (b) similarity-based parameter transfer (e.g., McIntyre et al., 

2005); and (c) regression between parameters and physical properties of gauged catchments (e.g., Kim and Kaluarachchi, 

2008). A comprehensive review on the parameter regionalisation in Parajka et al. (2013) reported that PROX_reg has 

competitive performance under humid climate with low-complexity models relative to the other categories. Based on 230 

modelling conditions in this study (semi-humid climate and 4 parameters), we chose PROX_reg to evaluate RFDC_cal. 

To predict runoff at the 45 catchments in the LOOCV mode, we transferred the behavioural parameter sets obtained from the 

hydrograph calibration of the five donor catchments used for the FDC regionalisation. In other words, we used the same 

donor catchments for FDC regionalisation and PROX_reg. This allows us to have consistency in transferring hydrological 

information from gauged to ungauged catchments between RFDC_cal and PROX_reg. Using the best behavioural parameter 235 

sets of the five donor catchments, we generated five runoff time series and took the arithmetic averages of them to represent 

runoff predictions by PROX_reg. 

3.6 Performance evaluation 

We used multiple performance metrics to evaluate predictive performance of all modelling approaches applied in this study. 

Predictive performance of each modelling approach was graphically evaluated using box plots of the performance metrics of 240 

the 45 catchments. In addition, we performed several paired t-tests to check the statistical significance of performance 

differences between the modelling approaches. Following is the description of the performance metrics. 

To measure high- and low-flow reproducibility, we chose two traditional performance metrics, (1) the NSE between 

observed and predicted flows (Eq. 2b) and (2) the NSE of log-transformed flows (LNSE) respectively. LNSE is calculated as: 
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LNSE = 1 −
∑ (ln(Qobs,i)−ln(Qsim,i) )

2N
i=1

∑ (ln(Qobs,i)−ln(Qobs)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2N

i=1

          (5) 245 

Though NSE and LNSE are frequently used for performance evaluation, they may be sensitive to errors in flow observations 

(Westerberg et al., 2011). Hence, we additionally selected three typical flow metrics that embed dynamic flow variation in a 

compact manner; the runoff ratio (RQP), the baseflow index (IBF), and the rising limb density (DRL). RQP, IBF, and DRL are 

proxies of aridity and water holding capacity, contribution of the baseflow to flow variations, and flashness of catchment 

behaviours, respectively. They are defined as the ratio of runoff to precipitation, the ratio of baseflow to total runoff, and the 250 

inverse of average time to peak (d
-1

) as:  

RQP =
Q̅

P̅
             (6a) 

IBF = ∑
QB,t

Qt

T
t=1              (6b) 

DRL =
NRL

TR
             (6c) 

where Q̅ and P̅ are average flow and precipitation for a given period (mm d
-1

), Qt and QB,t (m d
-1

) is the streamflow and the 255 

base flow at time t respectively, NRL is the number of rising limb, and TR is the total amount of time when the hydrograph is 

rising (days). QB,t can be calculated by subtracting direct flow QD,t from Qt as: 

QD,t = c ∙ QD,t−1 + 0.5 ∙ (1 + c) ∙ (Qt − Qt−1)         (7a) 

QB,t = Qt − QD,t             (7b) 

where c is the filter parameter, which was set to 0.925 (Brooks et al., 2011; Eckhardt, 2007). 260 

Flow signature reproducibility of RFDC_cal and PROX_reg were evaluated by the relative absolute bias between modelled 

and observed signatures as: 

DFS =
|FSsim−FSobs|

FSobs
            (8) 

where DFS is the relative absolute bias, FSsim is a flow signature of the modelled flows, and FSobs is that of the observed flows.  

4 Results 265 

4.1 Hydrograph calibration and FDC regionalisation in gauged catchments  

Figure 3a displays results of the parameter identification against the observed hydrographs (i.e., the hydrograph calibration). 

The 45 catchments had the mean NSE and LNSE of 0.66 and 0.65 between the simulated and observed flows for the 

calibration period, respectively. The average NSE reduction from the calibration to the validation periods was 0.06 with a 

standard deviation of 0.10. The temporal transfer of the calibrated parameters did not decrease the mean LNSE value, while 270 
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a wider LNSE range indicates that uncertainty of low-flow predictions may increase when temporally transferring the 

calibrated parameters. 

The predictive performance was closely related to the input-output consistency (Figure 3b), which was measured by the 

Pearson correlation coefficient between the CPI and the observed flows. A low input-output consistency implies that the 

rainfall-runoff data may include significant epistemic errors such as minimal flow responses to heavy rainfall or excessive 275 

response to tiny rainfalls. If the model calibration compensates disinformation from such errors, the parameters would be 

forced to have biases. Figure 3b shows that consistency in input-output data is a critical factor affecting parameter 

identification and thus performance. Perhaps, screening catchments with low input-output consistency may provide better 

predictions in ungauged catchments. However, we did not consider it in the LOOCV for RFDC_cal and PROX_reg, since 

variation in input-output consistency would be a common situation. Rather, reducing the number of gauged catchments 280 

lowers spatial proximity and thus can cause biases for ungauged catchments too. Overall, 27 catchments and 33 catchments 

showed NSE and LNSE values greater than 0.6. We assumed the hydrograph calibration under the Monte-Carlo framework, 

which was assisted by the SCE optimisation, was able to acceptably identify the behavioural parameters under given data 

quality. 

Besides, Figure 4 illustrates the 1:1 scatter plot between the observed and predicted flow quantiles of all the catchments, 285 

indicating high applicability of the top-kriging FDC regionalisation. The overall NSE and LNSE values between the 

observed and regionalised flow quantiles show good applicability of the geostatistical method. The NSE and LNSE values 

for individual catchments have averages of 0.83 and 0.91 with standard deviations of 0.25 and 0.11, respectively, implying 

that low-flow predictions were slightly better. The performance of the geostatistical method was relatively poor at locations 

where gauging density is low. Catchments 4, 10, 35, and 36, which recorded 0.6 or less NSEs are limitedly hatched with or 290 

adjacent to the other catchments; nonetheless, LNSEs of those catchments were still greater than 0.7. This result is consistent 

with a finding of Pugliese et al. (2016) that performance of the geostatistical method was sensitive to river gauging density. 

Transferring flow quantiles from remote catchments may not sufficiently capture functional similarity between donor and 

receiver catchments. In spite of the minor shortcomings, the geostatistical FDC regionalisation was deemed acceptable based 

on the high NSE and LNSE of flow quantiles. Topological proximity was generally a good predictor of flow quantiles for the 295 

study catchments. 

4.2 Comparing hydrograph predictability between RFDC_cal and PROX_reg 

Figure 5 compares the box plots of NSE and LNSE values between RFDC_cal and PROX_reg. PROX_reg generally 

outperforms RFDC_cal in predicting both high and low flows, suggesting that transferring parameters identified by observed 

hydrographs would be a better choice than a local calibration against predicted FDCs. The differences between NSE values 300 

of PROX_reg and RFDC_cal have an average of 0.22 with a standard deviation of 0.34. Only 8 catchments showed higher 

NSEs with RFDC_cal. These higher NSE values of PROX_reg imply that PROX_reg is preferable when high-flow 

predictability is needed such as flood analyses. In the case of LNSE, PROX_reg still had a higher median than RFDC_cal 
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(0.53 and 0.62 for RFDC_cal and PROX_reg respectively). In 25 catchments, PROX_reg provided LNSE values greater than 

those of RFDC_cal.  305 

The low performance of RFDC_cal was also found in the comparative assessment of Zhang et al. (2015), which evaluated 

RFDC_cal for 228 Australian catchments using the same GR4J model. Zhang et al. (2015) found that RFDC_cal was inferior 

to PROX_reg in the Australian catchments, because the FDC calibration poorly reproduced temporal flow variations relative 

to the hydrograph calibration. This study confirms the difficulty to capture dynamic catchment behaviours with FDCs 

containing no flow timing information. 310 

A major weakness of RFDC_cal is the absence of flow timing information in the parameter calibration process. Unlike 

RFDC_cal, PROX_reg did not discard the flow timing information. The regionalised parameters may be able to implicitly 

transfer the flow timing information from gauged to ungauged catchments (this hypothesis will be discussed later in Section 

4.4). Figure 6 illustrates how the absence of flow timing negatively influences on predictive performance. For this 

comparison, the parameters were recalibrated against the observed FDCs (not regional FDCs) under the same Monte Carlo 315 

method to discard errors introduced by the FDC regionalisation (i.e., equivalent to calibrations against perfectly regionalised 

FDCs). The parameters identified by the observed hydrograph (Figure 6a) brought a good predictability in both high and low 

flows, resulting in an excellent performance to reproduce the FDC. On the other hand, an excellent FDC reproducibility does 

not guarantee a good predictability in high flows (Figure 6b). This indicates that reproducing FDCs with rainfall-runoff 

models would be less sufficient than the hydrograph calibration to capture functional catchment responses. 320 

In addition, Figure 6 shows that the prediction area of the 50 behavioural parameters from the Monte-Carlo simulations 

(indicated by the grey areas and the blue arrows) became much larger when using the FDC calibration instead of the 

hydrograph calibration. We calculated the ratio of the prediction area of the FDC calibration to that of the hydrograph 

calibration, and defined it as the equifinality ratio. It quantifies the degree of equifinality augmented by replacing the 

hydrograph calibration with the FDC calibration. Figure 7 displays the scatter plot between the equifinality ratio and the 325 

input-output consistency. The equifinality augmented by the loss of flow timing is likely to increase as the input-output 

consistency decreases. The average of the equifinality ratios was 1.96, implying that potential equifinality inherent in 

RFDC_cal could be substantial. This may suggest that the equifinality problem embedded in RFDC_cal could be more 

significant than that in PROX_reg. 

4.3 Comparing flow-signature predictability between RFDC_cal and PROX_reg 330 

Figure 8 summarises performance of RFDC_cal and PROX_reg to regenerate three flow signatures of RQP, IBF, and DRL. 

RFDC_cal is competitive in reproducing the averaged-based signatures RQP and IBF, while it showed relatively a weak ability 

to regenerate the event-based signature DRL. RQP and IBF are flow metrics based on averages of long-term flow and 

precipitation in which no flow timing information is involved. Especially, RFDC_cal showed strong performance in 

reproducing IBF relative to PROX_reg. This result can be explained by considering that baseflow has less temporal variations 335 

than direct runoff in the Korean catchments under typical monsoonal climate. High seasonality of monsoonal precipitation 
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makes high temporal variations in direct runoff during June to September, while relatively steady baseflow is dominant 

during dry seasons (October to May). In Namgang Dam Catchment 2 whose flow variation is displayed in Figure 6, for 

example, the coefficient of variance (CV) of direct runoff was 5.86 for 2007-2015, which is approximately 3.5 times as high 

as that CV of baseflow. 340 

On the other hand, RFDC_cal was poorer to reproduce DRL than PROX_reg. This highlights the weakness of RFDC_cal in 

which only flow magnitudes were used for identifying model parameters. PROX_reg showed better performance to predict 

DRL than RFDC_cal. Flow timing information gained from the observed hydrographs might be preserved, even after 

behavioural parameters were transferred to ungauged catchments. Overall, PROX_reg seems to be better than RFDC_cal to 

predict the three flow signatures together. 345 

The box plots in Figure 9 provide an indication that DRL is likely to supplement the FDC calibration and thus improve 

RFDC_cal. From the collection of 50 behavioural parameter sets given by the FDC calibration, we chose the parameter set 

providing the lowest bias for each flow signature as the best behavioural sets, and simulated runoff again for all catchments. 

The high-flow predictability was fairly improved by additional constraining with DRL, suggesting that flow metrics 

associated with flow timing make up for the weakness of the FDC calibration. Additional constraining with RQP and IBF did 350 

not bring appreciable improvement in the FDC calibration. However, PROX_reg was still better than the additional 

constraining with DRL, indicating that a further study is needed for better constraining rainfall-runoff models using FDCs 

together with additional flow metrics. 

4.4 Paired t-tests between the modelling approaches 

For comparative evaluation in this study, we produced several runoff prediction sets using multiple rainfall-modelling 355 

approaches. First, we calibrated GR4J against the observed hydrographs (referred to as Q_cal), and transferred the 

behavioural parameters to ungauged catchments in the LOOCV mode (PROX_reg). We constrained GR4J with the regional 

FDCs (RFDC_cal). To evaluate equifinality, we recalibrated the GR4J parameters against the observed FDCs (referred to as 

“FDC_cal”). Additionally, we constrained the model with observed FDCs plus the flow signatures, and significant 

performance improvement was found with DRL (referred to as FDC+DRL_cal). A paired t-test using the performance metrics 360 

(NSE, LNSE, or DFS) between these modelling approaches can answer various questions beyond the graphical evaluations 

with box plots. For paired t-tests, we added one more case of transferring parameters gained from FDC_cal to ungauged 

catchments (referred to as FPROX_reg). FPROX_reg transfers behavioural parameters with no flow timing information from 

gauged to ungauged catchments. The mean NSE of FPROX_reg was 0.44 with a standard deviation of 0.49. 

A primary hypothesis of this study was that RFDC_cal could outperform PROX_reg. This question can be addressed by 365 

NSE differences between RFDC_cal and PROX_reg. The mean NSE difference between them was -0.22 and the standard 

error was 0.051, providing an evaluation that the NSE differences were less than zero at a 95% confidence level. The paired 

t-test did not lend support the hypothesis (i.e., PROX_reg outperformed RFDC_cal significantly). However, we could 
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assume that DRL could improve predictive performance of FDC_cal. The mean NSE difference between FDC+DRL_cal and 

FDC_cal was 0.12 and the standard error was 0.025, confirming the significance at a 95% confidence level.  370 

Likewise, we tested several questions relevant to rainfall-runoff modelling in ungauged catchments using different 

combinations. In Table 3, we summarised the results of paired t-tests for scientific questions that may arise from this study.  

One interesting question would be “Did the behavioural parameters from Q_cal contain flow timing information for 

ungauged catchments?” We addressed this question by comparing between PROX_reg and FPROX_reg with a hypothesis 

that predictability in ungauged catchments would decrease if the regionalised parameters were gained only from flow 375 

magnitudes. FPROX_reg uses FDC_cal for searching behavioural parameters at gauged catchments; thereby, it cannot 

transfer flow timing information to ungauged catchments through the behavioural parameters. The mean NSE difference 

between PROX_reg and FPROX_reg was 0.10, and the standard error was 0.031. The NSE differences were greater than 

zero significantly. The behavioural parameters from Q_cal were likely to have flow timing information affecting 

predictability in ungauged catchments. In Table 3, we summarised the results of paired t-tests for scientific questions that 380 

may arise from this study. They could be beneficial information for rainfall-runoff modelling in ungauged catchments. 

5 Discussion and conclusions 

5.1 RFDC_cal for rainfall-runoff modelling in ungauged catchments 

The use of regional FDCs as a single calibration criterion appears to be a good choice for searching behavioural parameters 

in ungauged sites. As discussed earlier, the FDC is a compact representation of runoff variability at all time scales, and thus 385 

able to embed multiple hydrological features in catchment dynamics (Blӧschl et al., 2013). A pilot study of Yokoo and 

Sivapalan (2011) discovered that the upper part of an FDC is controlled by interaction between extreme rainfall and fast 

runoff, while the lower part is governed by baseflow recession behaviour during dry periods. The middle part connecting the 

upper and the lower parts is related to the mean within year flow variations, which is controlled by interactions between 

water availability, energy, and water storage (Yager et al., 2012; Yokoo and Sivapalan, 2011). It is well-documented that 390 

hydro-climatological processes within a catchment are reflected in the FDC (e.g., Cheng et al., 2012; Ye et al., 2012; 

Coopersmith et al., 2012; Yaeger et al., 2012; Botter et al., 2008), and therefore the model parameters identified solely by a 

regional FDC are expected to provide reliable predictions in ungauged catchments (e.g., Westerberg et al., 2014; Yu and 

Yang, 2000). 

The comparative evaluation in this study, however, provides another expected lesson that the FDC calibration is good to 395 

reproduce the FDC itself, but it insufficiently captures functional responses of catchments due to the absence of flow timing 

information. A hydrograph is the most complete flow signature embedding numerous processes interacting within a 

catchment (Blӧschl et al., 2013), being more informative than an FDC. Since any simplification of a hydrograph, including 

the FDC, should lose some amount of flow information, it is no surprise that the FDC calibration worsens the equifinality. 

This study emphasises that the absence of flow timing in RFDC_cal may cause larger prediction errors than regionalised 400 
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parameters gained against observed hydrographs. The paired t-test between PROX_reg and FPROX_reg highlights that 

regionalised parameters gained from observed hydrographs were likely to contain intangible flow timing information even 

for ungauged catchments. The flow timing information implicitly transferred to ungauged catchment is a major gap between 

PROX_reg and RFDC_cal. The errors introduced by the FDC regionalisation were not significant due to high performance 

of the geostatistical method in this study. 405 

Because the hydrograph calibration can compensate the errors in input-output data, one may convert the hydrograph into the 

FDC to avoid effects of disinformation on rainfall-runoff modelling. However, in this case, valuable flow timing information 

should be paid in trade-off. For RFDC_cal in this study, we began with converting the observed hydrographs into the flow 

quantiles to regionalise them; thus, the flow timing information was initially lost. As shown, the performance of RFDC_cal 

was generally lower than that of PROX_reg. Therefore, when condensing observed hydrographs into flow signatures, 410 

preserving all available flow information in the hydrograph would be a key for a successful rainfall-runoff modelling. This 

study shows that only using regionalised FDCs could lead to less reliable rainfall-runoff modelling in ungauged catchments 

than regionalised parameters. An FDC is unlikely to preserve all flow information in a hydrograph necessary for rainfall-

runoff modelling. 

5.2 Suggestions for improving RFDC_cal 415 

Westerberg et al. (2014) suggested the necessity of further constraining to reduce predictive uncertainty in RFDC_cal. This 

study found that RFDC_cal could provide comparable performance to regenerate the flow signatures within which flow 

magnitudes are only involved (i.e., RQP and IBF). To supplement regional FDCs, flow signatures associated with flow timing 

seems to be essential. Figure 9 shows potential of additional constraining with DRL, and Q2 in Table 3 confirms it. Other 

flow signatures in temporal dimensions such as the high- and the low-flow event durations in Westerberg and McMillan 420 

(2015) can be candidates to improve RFDC_cal. However, uncertainty in those flow signatures will be a challenge to build 

regional models for ungauged catchments (Westerberg et al., 2016). 

An alternative method of RFDC_cal is to directly regionalise hydrographs to ungauged catchments (e.g., Viglione et al., 

2013). In data-rich regions, topological proximity could better capture spatial variation of daily flows than rainfall-runoff 

modelling with regionalised parameters (Viglione et al., 2013). Although a dynamic model may be required for regionalising 425 

observed daily flows at an expensive computational cost, flow timing information would be contained in regionalised 

hydrographs. The parameter identification against the regional hydrographs may become a better approach than RFDC_cal 

and/or other signature-based calibrations. 

5.3 Limitations and future research directions 

There are caveats in our comparative evaluation. First, uncertainty in input-output data was not considered in our assessment. 430 

McMillan et al. (2012) reported typical ranges of relative errors in discharge data as 10-20% for medium to high flow and 

50-100% for low flows. We assumed that quality of the discharge data was adequate. However, other methods objectively 
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considering uncertainty could better estimate model performance and the equifinality (e.g., Westerberg et al., 2011, 2014). 

Second, we used a conceptual runoff model with a fixed structure for all the catchments. Uncertainty from the model 

structure would vary across the study catchments; nevertheless, the structural uncertainty was not measured here. Our 435 

comparative assessment was based on the basic premise that modelling conditions should be fixed for all study catchments. 

Third, we compared RFDC_cal and PROX_reg in a region with sufficient data lengths and quality at gauged catchments. 

The lessons from this study may not be expandable to ungauged catchments under poor data availability. Finally, though the 

proximity-based parameter regionalisation was good for the Korean catchments, comparison between RFDC_cal and other 

regionalisation methods, such as the regional calibration and the similarity-based parameter transfer, may provide beneficial 440 

information for rainfall-runoff modelling in ungauged catchments. Comparative assessment between RFDC_cal and other 

parameter regionalisation using more sample catchments under diverse climates will provide more meaningful lessons.  

We can could no longer hypothesise that the parameters gained against regionalised FDCs would perform sufficiently, 

because an FDC contains less information than a hydrograph (i.e., the absence of flow timing). For improving RFDC_cal, 

we suggested to supplement RFDC_cal with flow signatures in temporal dimensions. Then, a question should be addressed 445 

on how to make flow signatures more informative than (or equally informative to) hydrographs. It may be impossible only 

using flow signatures originated from hydrographs (e.g., mean annual flow, baseflow index, recession rates, FDCs, etc.). 

Combinations of those signatures are unlikely more informative than their origins (i.e., hydrographs), though it depends on 

how much disinformation is present in the observed flows. Future research topics may include finding new signatures that 

supplement hydrographs, and how to combine them with existing flow signatures for rainfall-runoff modelling in ungauged 450 

catchments. 

5.4 Conclusions 

While the rainfall-runoff modelling against regional FDCs appeared a good approach for prediction in ungauged catchments, 

this study highlights its weakness in the absence of flow timing information, which may cause poorer predictive performance 

than the simple proximity-based parameter regionalisation. The following conclusions are worth emphasising: 455 

(1) For ungauged catchments in South Korea where spatial proximity well captured functional similarity between 

gauged catchments, the model calibration against regional FDCs is unlikely to outperform the conventional 

proximity-based parameter transfer for daily runoff prediction. The absence of flow timing information in regional 

FDCs seems to cause a substantial equifinality problem in the parameter identification process and thus lower 

predictability. 460 

(2) The model parameters gained from observed hydrographs would contain flow timing information even for 

ungauged catchments. This intangible flow timing information should be discarded if one calibrates a rainfall-runoff 

model against regional FDCs. This information loss may reduce predictability in ungauged catchments significantly. 

(3) To improve the calibration against regional FDCs, flow metrics in temporal dimensions, such as the rising limb 

density, need to be included as additional constraints. As an alternative approach, if river gauging density is high, 465 
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regionalised hydrographs preserving flow timing information can be used for local calibrations at ungauged 

catchments.  

(4) For better predictions in ungauged catchments, it is necessary to find new flow signatures that can supplement the 

observed hydrographs. How to combining combine them with existing information will be a future research topic 

for rainfall-runoff modelling in ungauged catchments. 470 

Acknowledgements 

This study was supported by APEC Climate Center. We send special thanks to Ms. Yoe-min Jeong and Dr. Hyungil Eum for 

their PRISM climate data sets. We greatly appreciate constructive comments and suggestions from the reviewers that 

significantly improved the manuscript. Data needed required to reproduce the modelling results in this study are available 

upon request from the authors (d.kim@apcc21.org, jachum@apcc21.org). 475 

References 

Atieh, M., Taylor, G., Sttar, A. M. A., Gharadaghi, B.: Prediction of flow duration curves for ungauged basins, J. Hydrol., 

545, 383-394, 2017. 

Bae, D.-H., Jung, I.-W., and Chang, H: Long-term trend of precipitation and runoff in Korean river basins. Hydrol. Process., 

22, 2644-2656, 2008.  480 

Bárdossy, A.: Calibration of hydrological model parameters for ungauged catchments, Hydrol. Earth Syst. Sci., 11, 703-710, 

doi:10.5194/hess-11-703-2007, 2007. 

Beven, K. J., and  Bingley, A.: The future of distributed models. Model calibration and uncertainty prediction, Hydrol. 

Process., 6, 279-298, 1992. 

Beven, K. J.: A manifesto for the equifanality thesis, J. Hydrol., 320, 18-36, 2006. 485 

Beven, K. J.: Prophecy, reality and uncertainty in distributed hydrological modelling, Adv. Water Resour., 16, 41-51, 1993. 

Blazkova, S., and Beven, K.: A limits of acceptability approach to model evaluation and uncertainty estimation in flood 

frequency estimation by continuous simulation: Skalka catchment, Czech Republic, Water Resour. Res., 45, W00b16, 

doi:10.1029/2007wr006726, 2009. 

Blӧschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije,. H.: Runoff Prediction in Ungauged Basins, Simthesis 490 

across Processes, Places, and Scales. Cambridge University Press, New York, USA, 2013. 

Botter, G., Porporato, A., Rodriguez-Iturbe, I. and Rinaldo, A.: Basin-scale soil moisture dynamics and the probabilistic 

characterization of carrier hydrologic flows: Slow, leaching-prone components of the hydrologic response, Water Resour. 

Res., 43, W02417, doi:10.1029/2006WR005043, 2007. 



17 

 

Botter, G., Zanardo, S., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A.: Ecohydrological model of flow duration curves 495 

and annual minima, Water Resour. Res., 44, W08418, doi:10.1029/2008WR006814., 2008.   

Brooks, P. D., Troch P. A., Durcik, M., Gallo, E., and Schlegel, M.: Quantifying regional-scale ecosystem response to 

changes in precipitation: Not all rain is created equal, Water Resour. Res., 47, W00J08, doi:10.1029/2010WR009762, 2011. 

Cheng, L., Yaeger, M., Viglione, A., Coopersmith, E., Ye, S., and Sivapalan, M.: Exploring the physical controls of regional 

patterns of flow duration curves – Part 1: Insights from statistical analyses, Hydrol. Earth Syst. Sci., 16, 4435-4446, 500 

doi:10.5194/hess-16-4435-2012, 2012. 

Coopersmith, E., Yaeger, M. A., Ye, S., Cheng, L., and Sivapalan, M.: Exploring the physical controls of regional patterns of 

flow duration curves – Part 3: A catchment classification system based on regime curve indicators, Hydrol. Earth Syst. Sci., 

16, 4467-4482, doi: 10.5194/hess-16-4467-2012, 2012. 

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., and Pasteris, P. P.: 505 

Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States, 

Int. J. Climatol., 28, 2031-2064, doi:10.1002/joc.1688, 2008. 

Demirel, M. C., Booiji, M. J., and Hoekstra, A. Y.: Effect of different uncertainty sources on the skill of 10 day ensemble 

low flow forecasts for two hydrological models, Water Resour. Res., 49, 4035-4053, doi:10.1002/wrcr.20294, 2013. 

Duan, Q., Sorooshian, S., and Gupta, V. K.: Effective and efficient global optimisation for conceptual rainfall–runoff models, 510 

Water Resour. Res., 28, 1015–1031, 1992. 

Dunn, S. M. and Lilly, A.: Investigating the relationship between a soils classification and the spatial parameters of a 

conceptual catchment scale hydrological model, J. Hydrol., 252, 157-173, doi:10.1016/S0022-1694(01)00462-0,  2001. 

Eckhardt, K.: A comparison of baseflow indices, which were calculated with seven different baseflow separation methods, J. 

Hydrol., 352, 168-173, doi: 10.1016/j.jhydrol.2008.01.005, 2007. 515 

Hingray, B., Schaefli, B., Mezghani, A., and Hamdi, Y.: Signature-based model calibration for hydrological prediction in 

mesoscale Alpine catchments, Hydrolog. Sci. J., 55, 1002-1016, doi:10.1080/02626667.2010.505572, 2010. 

Hrachowitz, M. et al.: A decade of Predictions in Ungauged Basins (PUB) - A review. Hydrolog. Sci. J., 58, 1198–1255. 

Doi:10.1080/02626667.2013.803183, 2013. 

Jung, S. et al.: Standardisation of methods and criteria for hydrological survey in South Korea. Report Number: 11-1611492-520 

00058-01. Ministry of Land, Transport, and Maritime Affairs. Gyeonggido, South Korea, Written in Korean, 2010. 

Jung, Y. and Eum, H.-I.: Application of a statistical interpolation method to correct extreme values in high-resolution 

gridded climate variables, J. Clim. Chang. Re., 6, 331-334, 2016. 

Kavetski, D., Fnicia, F., and Clark, M.: Impact of temporal data resolution on parameter inference and model identification 

in conceptual hydrological modeling: Insights from an experimental catchment, Water Reour. Res., 47, W05501, 525 

doi:10.1029/2010WR009525, 2011. 

Kavetski, D., Kuczera, G. and Franks, S. W.: Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, 

Water Resour. Res., 42, W03407, doi:10.1029/2005WR004368, 2006. 



18 

 

Kim, D. and Kaluarachchi, J.: Predicting streamflows in snowmelt-driven watersheds using the flow duration curve method, 

Hydrol. Earth Syst. Sci., 18, 1679-1693, doi:10.5194/hess-18-1679-2014, 2014. 530 

Kim, U. and Kaluarachchi, J. J.: Application of parameter estimation and regionalization methodologies to ungauged basins 

of the Upper Blue Nile River Basin, Ethiopia, J. Hydrol., 362, 39-56, doi:10.1029/j.jhydrol.2008.08.016, 2008.  

Korea Meteorological Administration: Climatological normals of Korea (1981–2010). Publ. 11-1360000-000077-14, 678 pp. 

Available at http://www.kma.go.kr/down/ Climatological_2010.pdf, 2011. 

McIntyre, N., Lee, H., Wheater, H., Young, A., and Wagener, T.: Ensemble predictions of runoff in ungauged catchments, 535 

Water Resour. Res., 41., W12434, doi:10.1029/2005WR004289, 2005. 

McMillan, H., Krueger, T., and Freer, J.: Benchmarking observational uncertainties for hydrology: rainfall, river discharge, 

and water quality, Hydrol. Process., 26, 4078-4111, 2012. 

Mohamoud, Y. M.: Prediction of daily flow duration curves and streamflow for ungauged catchments using regional flow 

duration curves, Hydrolog. Sci. J., 53, 706–724, 2008. 540 

Oudin, L., Andréassian, V., Perrin, C., Michel, C., and Le Moine, N.: Spatial proximity, physical similarity, regression and 

ungaged catchments: a comparison between of regionalization approaches based on 913 French catchments, Water Resour. 

Res., 44, W03413, doi:10.1029/2007WR006240, 2008. 

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., and Loumagne, C. : Which potential 

evapotranspiration input for a lumped rainfall-runoff model? Part 2 – Towards a simple and efficient potential 545 

evapotranspiration model for rainfall-runoff modelling. J. Hydrol., 303, 290-306, 2005. 

Parajka, J., Blöschl, G., and Merz, R.: Regional calibration of catchment models: potential for ungauged catchments, Water 

Resour. Res., 43, W06406, DOI: 10.1029/2006WR005271, 2007. 

Parajka, J., Viglione, A., Rogger, M.,  Salinas, J. L., Sivapalan, M., and Blöschl, G.: Comparative assessment of predictions 

in ungauged basins – Part 1: Runoff-hydrograph studies, Hydrol. Earth Syst. Sci., 17, 1783-1795, doi:10.5194/hess-17-1783-550 

2013, 2013. 

Perrin, C., Michel, C., Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 

275-289, 2003. 

Pfannerstill, M., Guse, B., and Fohrer N.: Smart low flow signature metrics for an improved overall performance evaluation 

of hydrological models, J. Hydrol., 510, 447-458, 2014. 555 

Pugliese, A., Castellarin, A., and Brath, A.: Geostatistical prediction of flow-duration curves in an index-flow framework, 

Hydrol. Earth Syst. Sci., 18, 3801-3816, doi:10.5194/hess-18-3801-2014, 2014. 

Pugliese, A., Farmer, W. H., Castellarin, A., Archfield, S. A., Vogel, R. M.: Regional flow duration curves: Geostatistical 

techniques versus multivariate regression, Adv. Water Resour., 96, 11-22, 2016. 

Rhee, J., and Cho, J.: Future changes in drought characteristics: regional analysis for South Korea under CMIP5 projections. 560 

J. Hydrometeorol., 17, 437-450, 2016. 



19 

 

Sadegh, M., Vrugt, J. A., Gupta, H. V., and Xu, C.: The soil water characteristics as new class of closed-form parametric 

expressions for the flow duration curve, J. Hydrol., 535, 438-456, 2016. 

Shafii, M., and Tolson, B. A.: Optimizing hydrological consistency by incorporating hydrological signatures into model 

calibration objectives, Water Resour. Res., 51, 3796–3814, doi:10.1002/2014WR016520, 2015. 565 

Shu, C. and Ouarda, T. B. M. J.: Improved methods for daily streamflow estimates at ungauged sites, Water Resour. Res., 48, 

W02523, doi:10.1029/2011WR011501, 2012. 

Smakhtin, V. P. and Masse, B.: Continuous daily hydrograph simulation using duration curves of a precipitation index, 

Hydrol. Process., 14, 1083-1100, 2000. 

Smakhtin., V. Y., Hughes, D. A., and Creuse-Naudine, E.: Regionalization of daily flow characteristics in part of the Eastern 570 

Cape, South Africa, Hydrolog. Sci. J., 42, 919–936, 1997. 

Sugawara, M.: Automatic calibration of the tank model, Hydrological Sciences Bulletin, 24, 375-388, 

doi:10.1080/02626667909491876, 1979 

Viglione, A., Parajka, J., Rogger, M., Salinas, J. L., Laaha, G., Sivapalan, M., and Blöschl, G.: Comparative assessment of 

predictions in ungauged basins – Part 3: Runoff signatures in Austria, Hydrol. Earth Syst. Sci., 17, 2263-2279, doi: 575 

10.5194/hess-17-2263-2013, 2013. 

Vrugt, J. A., and Ter Braak, C. J. F.: DREAM(D): an adaptive Markov Chain Monte Carlo simulation algorithm to solve 

discrete, noncontinuous, and combinatorial posterior parameter estimation problems, Hydrol. Earth Syst. Sci., 15, 3701–

3713, doi:10.5194/hess-15-3701-2011, 2011. 

Wagener, T. and Wheater, H. S.: Parameter estimation and regionalization for continuous rainfall-runoff models including 580 

uncertainty, J. Hydrol., 320, 132-154, 2006. 

Walter, M. T., Brooks, E. S., McCool, D. K., King, L. G., Molnau, M., and Boll, J.: Process-based snowmelt modeling: does 

it require more input data than temperature-index modeling?, J. Hydrol., 300, 65-75, doi: 10.1016/j.jhydrol.2004.05.002, 

2005. 

Westerberg, I. K. and McMillan, H. K.: Uncertainty in hydrological signatures, Hydrol. Earth Syst. Sci., 19, 3951-3968, doi: 585 

10.5194/hess-19-3951-2015, 2015. 

Westerberg, I. K., Gong, L., Beven, K. J., Seibert, J., Semedo, A., Xu, C.-Y., and Halldin, S.: Regional water balance 

modelling using flow-duration curves with observational uncertainties, Hydrol. Earth Syst. Sci., 18, 2993-3013, 

doi:10.5194/hess-18-2993-2014, 2014. 

Westerberg, I. K., Guerrero, J.-L., Younger, P. M., Beven, K. J., Seibert, J., Halladin, S., Freer, J. E., and Xu, C.-Y.: 590 

Calibration of hydrological models using flow-duration curves, Hydrol. Earth Syst. Sci., 15, 2205-2227, doi:10.5194/hess-

15-2205-2011, 2011.  

Westerberg, I. K., Wagener, T., Coxon, G., McMillan, H. K., Castellarin, A., Montanari, A., and Freer, J.: Uncertainty in 

hydrological signatures for gauged and ungauged catchments, Water Resour. Res., 52, 1847-1865, 

doi:10.1002/2015WR017635., 2016 595 



20 

 

Yadav, M., Wagener, T., and Gupta, H.: Regionalization of constraints on expected watershed response behavior for 

improved predictions in ungauged basins, Adv. Water Resour., 30, 1756-1774, 2007. 

Yaeger, M., Coopersmith, E., Ye, S., Cheng, L., Viglione, A., and Sivapalan, M.: Exploring the physical controls of regional 

patterns of flow duration curves – Part 4: A synthesis of empirical analysis, process modeling and catchment classification, 

Hydrol. Earth Syst. Sci., 16, 4483-4498, doi: 10.5194/hess-16-4483-2012, 2012. 600 

Ye, S., Yaeger, M., Coopersmith, E., Cheng, L., and Sivapalan, M.: Exploring the physical controls of regional patterns of 

flow duration curves – Part 2. Role of seasonality, the regime curve and associated process controls, Hydrol. Earth Syst. Sci., 

16, 4447-4465, doi:10.5194/hess-16-4447-2012, 2012. 

Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic approach to model evaluation: Application to the 

NWS distributed hydrologic model, Water Resour. Res., 44, W09417, doi:10.1029/2007WR006716, 2008. 605 

Yokoo, Y. and Sivapalan, M.: Towards reconstruction of the flow duration curve: development of a conceptual framework 

with a physical basis, Hydrol. Earth Syst. Sci., 15, 2805–2819, doi:10.5194/hess-15-2805-2011, 2011. 

Yu, P. S., Yang, T. C., and Wang, Y. C.: Uncertainty analysis of regional flow duration curves, J. Water Resour. Plann. 

Manage., 128, 424–430, 2002. 

Yu, P.-S., and Yang, T.-C.: Using synthetic flow duration curves for rainfall–runoff model calibration at ungauged sites. 610 

Hydrol. Process., 14: 117–133. doi:10.1002/(SICI)1099-1085(200001)14:1<117::AID-HYP914>3.0.CO;2-Q, 2000. 

Zhang, Y., Vaze, J., Chiew, F. H. S., and Li, M.: Comparing flow duration curve and rainfall-runoff modelling for predicting 

daily runoff in ungauged catchments, J. Hydrol., 525, 72-86, 2015. 

Zhang, Z., Wagener, T., Reed, P., and Bhushan, R.: Reducing uncertainty in predictions in ungauged basins by combining 

hydrologic indices regionalization and multiobjective optimization, Water Resour. Res., 44, W00B04, 615 

doi:10.1029/2008WR006833, 2008. 

 



21 

 

Table 1: Summary of hydrological features of the study catchments 
 Average CV minimum 25% median 75% Maximum 

Area (km2) 890 1.39 57 208 495 1013 6705 

Elevation (m a.s.l.) 339 0.63 39 193 255 495 996 

Mean annual prcp. (mm yr-1) 1359 0.14 1145 1247 1286 1388 1997 

Mean annual temp. (°C) 11.9 0.13 7.9 11.3 12.3 13.0 13.8 

Aridity index1 (-) 0.66 0.11 0.44 0.61 0.68 0.71 0.76 

Psnow
2 35 0.66 6 23 28 50 141 

Mean annual flow (mm yr-1) 739 0.25 232 624 740 838 1159 

RPQ (-) 0.55 0.27 0.18 0.45 0.54 0.63 0.91 

IBF (-) 0.49 0.16 0.27 0.44 0.49 0.56 0.62 

DRL (day-1) 0.63 0.10 0.50 0.60 0.63 0.66 0.77 

1
Ratio of potential ET to total precipitation, 

2
Percentage of snowfall to total precipitation. Climatological features were 620 

calculated using spatial averages of the grid data, while the flow metrics were from the daily hydrographs for 2007-2015 as 

explained in Section 3.6. 
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Table 2: Ranges of GR4J parameters used for parameter calibration (Demirel et al., 2013) 

Parameter Range 

X1 (mm) 10 to 2000 

X2 (mm) -8 to +6 

X3 (mm) 10 to 500 

X4 (days) 0.5 to 4.0 

 625 
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Table 3: Results of the paired t-tests for potential questions on rainfall-runoff modelling in ungauged catchments 

Questions Corresponding pair 1PM 2ΔPM̅̅ ̅̅ ̅̅  
3std. 

err. 
Answer 

Q1. Did RFDC_cal outperform PROX_reg? RFDC_cal – PROX_reg NSE -0.22 0.051 No* 

Q2. Did DRL improve FDC_cal? FDC+DRL_cal – FDC_cal NSE 0.12 0.025 Yes* 

Q3. Did parameters from Q_cal contain flow timing information 

for ungauged catchments? 
PROX_reg – FPROX_reg NSE 0.10 0.031 Yes* 

Q4. Did absence of flow timing affect model efficiency? Q_cal – FDC_cal NSE 0.23 0.026 Yes* 

Q5. Did PROX_reg outperform RFDC_cal in predicting low 

flows? 
PROX_reg – RFDC_cal  LNSE 0.09 0.031 Yes* 

Q6. Did PROX_reg outperform RFDC_cal in reproducing IBF? PROX_reg – RFDC_cal  DFS(IBF) 0.06 0.028 
NoUnlike

ly 

Q7. Did errors in regional FDCs affect RFDC_cal significantly? RFDC_cal – FDC_cal NSE -0.09 0.069 
NoUnlike

ly 
1Performance metric used for t-test, 2Mean PM difference between the corresponding pair, 3Standard error of ΔPM. *ΔPM is significantly 

different from zero. The significance was evaluated at 95% confidence levels. 

  630 

Formatted Table
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Figure 1: Locations of the study catchments in South Korea. The numbers are labelled at the outlet of each catchment. 
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Figure 2: The schematised structure of GR4J (X1-X4: model parameters, PE: potential evapotranspiration, P: precipitation, Q: 635 
runoff, other letters indicate variables conceptualising internal catchment processes). 
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Figure 3: (a) box plots of high flow (NSE) and low flow (LNSE) reproducibility of the behavioural parameters obtained from the 

hydrograph calibration at the 45 catchments, (b) the relationship between the input-output consistency and the model 640 
performance. The straight lines in the box plots connect the performance metrics for the calibration (2011-2015) and the validation 

periods (2007-2010) in each catchment. 
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Figure 4: 1:1 scatter plot between the empirical flow quantiles and the flow quantiles predicted by the top-kriging FDC 

regionalisation method. 
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 650 

 

Figure 5: Box plots of NSE and LNSE values between the observed and the predicted hydrographs by RFDC_cal and PROX_reg 

for the 45 catchments under the cross validation mode. 
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 655 

 

 

 

Figure 6: The observed and predicted hydrographs, the prediction areas, and the observed and predicted FDCs given by (a) the 

hydrograph calibration and (b) the FDC calibration for Namgang Dam (the Catchment 2 in Figure 1). 660 
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Figure 7: The input-output consistency vs. equifinality increased by replacing the hydrograph calibration with the FDC 

calibration. The equifinality ratio is defined as the ratio between the prediction areas of the 50 behavioural parameters gained 665 
from the FDC calibration and the hydrograph calibration. 
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Figure 8: Flow signature reproducibility comparison between RFDC_cal and PROX_reg in terms of RQP (a), IBF (b), and DRL (c). 670 

  



32 

 

 

 

Figure 9: Predictive performance of the FDC calibrations additionally conditioned by RQP (FDC+RQP), IBF (FDC+IBF), and DRL 

(FDC+DRL) in comparison to the other modelling approaches. Q_cal and FDC_cal refer to the hydrograph and the FDC 675 
calibration in gauged catchments respectively. 38 catchments with positive NSEs for all the modelling approaches were used in the 

box-plots. 
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