
Dear Dr. Fabrizio Fenicia 

First, let us thank for your efforts in handling our manuscript. We greatly appreciate the constructive 

comments from you and the anonymous referees. We believe all the comments were helpful to improve 

the quality of our work. 

In this revision, to improve the clarity of this study, we highlighted that the scientific meaning of the 

model calibration against regional flow duration curves (RFDC_cal), and clearly stated the objective of 

this study to compare RFDC_cal with a classical parameter regionalization. We introduced strengths of 

RFDC_cal in line 37-72. Then, we addressed potential questions that can arise when applying RFDC_cal 

in practice in line 73-84. We emphasized that RFDC_cal has barely compared with conventional 

parameter regionalization schemes in line 85-87. If RFDC_cal has poorer predictability than the 

proximity-based parameter transfer (PROX_reg), RFDC_cal would not be pragmatic. The main research 

question of this study is whether RFDC_cal outperform PROX_reg. We addressed this question by 

applying two methods to 45 Korean catchments in the jackknife cross validation mode. 

As shown in the previous version of our manuscript, RFDC_cal was likely to have weaker predictability 

than PROX_reg due to the absence of flow timing information in regional FDCs. And, we argued that 

flow signatures in temporal dimensions should supplement RFDC_cal. In the revision, we attempted one 

more parameter regionalization that transfers the parameters gained against observed FDCs to 

ungauged catchments. This approach cannot transfer flow timing information through the model 

parameters from gauged to ungauged catchments (we referred this approach to as FPROX_reg), because 

the behavioral parameters were gained against flow magnitudes only. We found that PROX_reg 

significantly outperformed FPROX_reg via a paired t-test between them. This implies that PROX_reg 

could transfer flow timing information to ungauged catchments, while it is impossible when using 

RFDC_cal. In section 4.4 (from line 348), you can find the results of several paired t-tests between 

modeling approaches applied in this study. We believe they provide clearer indications about 

performance of RFDC_cal. 

In addition, as an alternative method of RFDC_cal in data-rich regions, we suggested use of regional 

hydrographs (e.g., Viglione et al., 2013) to preserve flow amount and timing information together. And, 

we emphasized that preserving all flow information inherent in hydrographs would be a key for rainfall-

runoff modeling against flow metrics that condense the hydrographs. You may find this context in 

section 5. To make the manuscript more concise, we combined the discussion and the conclusion 

sections. 

We believe this revision can provide clear lessons and readability. Following are our responses to 

specific comments from the referees. Again, we thank for all of your editing efforts. 

 

Sincerely, 

 

Jong Ahn Chun 

Corresponding author 



Response to comments from reviewer 1: 

Major comments: The first objective in this study, as stated on page 4 lines 8-10, is to evaluate 

predictive performance of the hydrograph calibration and the FDC calibration as well as their 

uncertainty for gauged catchments. I think this idea has been addressed extensively in the literature 

(some of which are cited in the present manuscript), and therefore, it does not need any further 

examination. The fact that this study finds FDC-based calibration less promising than hydrograph-based 

approach (as stated on page 11 lines 13-15) is not of a big surprise, e.g., due to different challenges in 

FDC estimation and that timing is not handled by FDC, as authors point out in the manuscript as well. 

Probably, what is more worth studying is how FDC can help to reduce equi-finality. As a result, I suggest 

that authors remove the first part of the study, or consider FDC as an additional criteria in model 

calibration and show how its use would improve parameter identifiability (e.g., posterior ranges) and 

reduce uncertainty (e.g., uncertainty ratio of hydrograph+FDC to only hydrograph). 

 We globally revised the manuscript to provide clearer lessons from this study.  

We agreed that it was not a surprise that the FDC calibration has more equifinality than the 

hydrograph calibration. Therefore, we focused on comparing RFDC_cal and PROX_reg for 

ungauged catchments (i.e. we removed the comparative assessment for gauged catchments in 

the previous version). 

We did not consider the second option to use FDCs as an additional criterion, because it is 

already proposed by Pfannerstill et al. (2014).Instead, in this revision, we added one more 

regionalization approach that transfers parameters gained from observed FDCs to ungauged 

(FPROX_reg) in order to check whether PROX_reg transfers flow timing information for 

ungauged catchments. FPROX_reg uses parameters gained from flow magnitudes only, thus it 

cannot transfer flow timing information to ungauged catchments. A paired t-test showed that 

the performance difference between PROX_reg and FPROX_reg was significant (i.e., parameters 

gained from flow magnitudes only may cause predictability losses). 

Through several paired t-tests, we found a clearer indication that PROX_reg is better than 

RFDC_cal for the Korean catchments. We believe that this revision can provide you clear 

indications. 

Authors claim that FDC calibration performs promising for low flow prediction. I would argue that FDC-

based approach performs only better than hydrograph-based approach, not good overall. Looking at 

figure 9, I see that there are several large deviations between simulated and observed BFI (up to 90%) 

which means that FDC-based method is not that reliable.  

 In revision, we withdrew this argument. RFDC_cal could provide better predictability in low flows 

than high flows due to smaller variability in base flow; however, it was unlikely that RFDC_cal 

outperformed PROX_reg in low flows. However, it is unclear that PROX_reg outperform RFDC_cal 

in reproducing BFI as addressed in Q6 in Table 3. 

My other major issue is with how authors set the experiments related to streamflow predictions in 

ungauged catchments. They first mention three classes of parameter regionalisation in lines 26-30 on 



page 8, but then mention that they chose the proximity based approach due to its simplicity. I think, 

given than the first part of the paper can be removed according to my view, authors should focus more 

on this part and compare different regionalization approaches. 

 In section 3.5, we addressed why the proximity-based parameter regionalization was chosen. 

Modeling conditions in this study were suitable to use PROX_reg. Other regionalization such as 

similarity-based or regression-based regionalization can be applied too, but our focus was 

comparing RFDC_cal with the simplest parameter regionalization. 

Also, why not considering the proximity-based transfer of FDCs from donor catchments as an additional 

approach? Then, a potential topic for the paper can be “comparative evaluation of different 

regionalization approaches for model calibration in ungauged catchment”. 

 The geostatistical method applied in this study is a proximity-based transfer (or interpolation) of 

empirical FDCs. We already transferred observed FDCs to ungauged catchment using the top-

kriging weights. And, it showed promising performance for predicting FDCs in ungauged 

catchments as addressed in section 4.1. The focus of this study is comparison between RFDC_cal 

and PROX_reg for rainfall-runoff modeling in ungauged catchments. 

Page 7 line 15 says that “Synthetic runoff time series were generated by GR4J for the same 45 

catchments by treating each catchment as ungauged. 

 Nothing was requested. We globally reviewed the manuscript and used the term “LOOCV mode” 

to distinguish between approaches for gauged and ungauged catchments. 

Introduction needs to be shorter. Objectives are stated after 6 very long paragraphs in the introduction 

section. Moreover, discussions sub-sections are too long. I think authors can make them briefer, but still 

transfer the message to readers. 

 In revision, we highlighted the scientific meaning of RFDC_cal in comparison to PROX_reg. The 

main objective of this study is a comparative assessment of RFDC_cal. 

 

Minor comments (for improving manuscript quality):  

I suggest continuous line numbering in the next version of the manuscript. 

 For convenience, we used continuous line numbers in the revised manuscript. 

Page 3, line 34: I suggest that a little explanation is provided here about the proximity-based approach. 

It is not clear up to this point what that approach actually is. Authors provide a brief description on page 

7 line 17. Also, I suggest removing “in truth”  



 We globally revised the manuscript, and PROX_reg was addressed in section 3.5. We removed 

the term “in truth”. 

Also related to the description of proximity-based approach, section 3.3.2 is not fully understandable. I 

suggest rewording the paragraph so that the approach is explained in a clearer way. Moreover, please 

explain at the beginning of this section that when you talk about parameters in the proximity-based 

approach, you actually mean the parameters of the hydrologic model. Because one can also estimate 

the parameters of a parametric FDC using this approach. 

 PROX_reg is now addressed in section 3.5. From line 227, we explained how we transferred 

behavioral parameters from gauged to ungauged catchments. 

Page 9 line 1: what do you mean by “synchronizing” donor catchments?  

 It means that we used same donor catchments for the regional FDC and the parameter 

regionalization. It was for consistency between PROX_reg and RFDC_cal as explained in line 228. 

Page 4 line 3: define “orthogonal” 

 In revision, we did not use the term “orthogonal”. 

Please explain why Monte Carlo is used for parameter estimation, whereas SCE has been used by 

authors in one of the catchments. I believe that there is the possibility of quantifying uncertainty bounds 

using the solutions sampled by SCE. 

 The Monte-Carlo framework was good for us to gauge equifinality across all catchments under 

the same sampling size and the acceptance rate, though there are other methods for individual 

catchments. This approach was good to evaluate equifinality under changing input-output 

consistency across the 45 catchments. It is explained in line 169-175. 

 Page 12 line 26-28: the sentence is not understandable. Please reword. 

 In revision, we did not use this sentence.  

  



Response to comments from reviewer 2: 

The work explores the predictive performance of application of a FDC in comparison with conventional 

hydrograph calibration and parameter regionalisation for gauged and ungauged catchments. While the 

manuscript has some interesting results and discussion, it is not clear to me from the text how the work 

is innovative and unique to the previous studies mentioned in the literature review and discussion. For 

this reason I suggest major review to lift the manuscript before the work is suitable for publication in 

HESS. To me the manuscript currently lacks focus in the sense that the key research gaps and innovation 

should stand out more clearly in the introduction and conclusion. In my opinion the authors should 

focus on quality and innovation rather than applying existing techniques, and quantity of results and 

discussion. 

 To improve the clarity of this study, we addressed strengths of RFDC_cal in comparison to the 

classical parameter regionalization in line 37-72. Then, in line 73-84, we addressed potential 

questions when applying RFDC_cal in practice. If RFDC_cal has poorer predictability than the 

proximity-based parameter transfer (PROX_reg), RFDC_cal would not be pragmatic because 

regional FDC may require expensive efforts. The main research question of this study is whether 

RFDC_cal outperform PROX_reg for ungauged catchments. We believe the new introduction 

shows objectives of this study more clearly. In addition, we added the section of paired t-tests 

for checking our hypotheses. It was emphasized that the flow timing information embedded in 

parameters gained against observed hydrographs affects predictability for ungauged 

catchments. 

Major comments: The innovation of this work compared to previous studies is not clear to me. Could 

the authors please state explicitly the innovation of their work compared to previous FDC regionalisation 

studies and existing methods? The specific research gap/s that the work is addressing should be more 

prominent in the introduction, and the innovations compared to previous studies need to be more 

prominent in the summary and conclusions section. 

 As answered above, the new introduction is now focused on evaluating RFDC_cal in comparison 

to PROX_reg, which has been barely addressed in previous similar studies. We added paired t-

tests between modelling approaches applied in this study. And, we argued that flow timing 

information can play an important role in prediction even in ungauged catchments. You can find 

this context throughout the revised manuscript. We also provide a suggestion that regional 

hydrographs, instead of regional FDCs, would be better to preserve flow timing information for 

calibration of rainfall-runoff models in ungauged catchments.  

Could the authors also please describe in detail how you improve on your previous 2016 submission to 

HESS that uses the same 45 South Korean catchments and has a similar goal: “Kim et al. A comparison 

between parameter regionalization and model calibration with flow duration curves for prediction in 

ungauged catchments”. Reading the comments from the reviewers on the previous submission there 

are some points that have not been fully addressed in this submission. 



 Here, we briefly summarize how we considered the comments given by the previous review 

process. We believe the comprehensive comments were considered in the revision generally. For 

example, actual constraining with flow signatures, and replacing the objective function, 

evaluating low and high flows were considered in the manuscript. 

 The referee 1 mainly argued that our study had limited contribution to prediction in ungauged 

basins because of existing FDC methods for runoff prediction. However, the objective of our 

study was not to provide a new FDC-based runoff prediction, but a comparative evaluation 

between existing methods. Hence, we disagreed. The referee 1 also argued that it is no surprise 

with low performance of the FDC calibration. However, we cannot assure it in the case of 

ungauged catchments, thus we disagreed. The small number of gauged catchments was pointed 

out; however, 45 is not a large number, but some parameter regionalization studies used even 

smaller samples. The reviewer 1 argued that the objective function of NSE is not practical 

because of its emphasis on high flows. We replaced the objective function with one proposed by 

Zhang et al. (2015) that considers NES and WBE together. And, we considered all catchments for 

regionalization instead of only using high performance catchments. Other minor comments were 

considered as well. 

 The referee 2 recommended us to soften conclusions that PROX_reg is better than the other. 

Nevertheless, in the revision, it was necessary to highlight that RFDC_cal is not as good as 

PROX_reg, because we received clearer indications that flow timing information in gauged 

catchments plays an important role in prediction in ungauged catchments too. Use of multiple 

criteria was recommended as well, thus we used NSE and LNSE together in revision. Some minor 

suggestions for title, tables, and context were given together. We added new figures and tables. 

And, the manuscript is retitled. 

 The referee 3 provided constructive comments, asking first “why not parameter regionalization 

gained from observed FDCs?” We did consider this comment to check whether parameters 

gained against hydrographs can outperform those from FDCs in ungauged catchments. As 

mentioned, the former significantly outperformed the latter, implying that flow timing 

information for ungauged catchments might be contained in the parameters from observed 

hydrographs. The referee3 also suggested including uncertainty evaluation for both approaches 

for ungauged catchments. The equifinality evaluation using the Monte-Carlo simulations 

provides a lesson that uncertainty of the FDC calibration would be much larger than in the 

hydrograph calibration, though this evaluation was not a direct uncertainty comparison between 

RFDC_cal and PROX_reg. Referee3 also argued that there is no evidence that the rising limb 

density can supplement the FDC. Hence, we provided actual calibration results conditioned by 

the rising limb density. This could lend support to the hypothesis. With some minor comments, it 

was asked to provide more specific examples using flow signatures in runoff modeling. So, we 

improved the introduction with more literatures about use of FDCs in model calibrations. 

I suggest adding either “ungauged” or “regionalisation “ to the title of the manuscript to make the title 

more descriptive of the work undertaken in the manuscript. 



 We agree. We retitled the manuscript as “A comparative assessment of rainfall-runoff modelling 

against regional flow duration curves for ungauged catchments”. 

Minor comments: In the future please line number the manuscript continuously e.g. 1-999 rather than 

by each page, this will aid the review process. 

 Now we used continuous line numbers. 

The first paragraph of Section 3 introduces the GR4J model, and I see no logical progression to Section 

3.1. I recommend an opening paragraph describing the structure of the methodology and turning your 

current paragraph into a new Section e.g. “3.1 Hydrological model (GR4J)”. Furthermore I suggest a 

second section e.g. “3.2. Flow duration curve (FDC)” for consistency and to ensure reproducibility of 

your work.  

 We considered this comment to improve readability of the methodology section. 

Can you clarify in page 9, lines 4-7 your justification for applying a different objective function for 

calibration (Eq. 2a, 2b, 2c) OBJ, to the functions used to evaluate predictive performance (Eq. 5) NSE and 

LNSE? 

 The objective function was to consider high-flow reproducibility and long-term water balance in 

model calibration. NSE and LNSE were to evaluate model predictability in high and low flows. 

They are addressed in line 156 and 238, respectively. 

Page 10, Line 12 I disagree that the term NSE was used “directly” for calibration, rather I understand 

that you used a combination of the NSE and the WBE in OBJ. Please clarify. 

 We provide new results and discussion sections. This sentence was removed. 

Figure 3: I suggest adding headings “GR4J”, and “FDC” to the top panels to ease interpretation. 

 Now, Figure 5 compares between RFDC_cal and PROX_reg. GR4J and FDC do not distinguish the 

two approaches for ungauged catchments. 

Figure 4: If these are 1:1 plots then I suggest adding a 1:1 line to the panels to ease interpretation. 

 They were not 1:1 plots. They display the relationship between input-output consistency and 

model performance. Now it is combined in Figure 3(b) only for the hydrograph calibration. 

Figure 5. Where is the difference between the first and second column of panels described in the 

caption or figure? I suggest adding headings to describe the difference in a similar manner to my 

recommendation for Figure 3. 

 Instead, we provided Figure 6 to emphasize the equifinality in FDC_cal. 



Could you please provide a more professional title (i.e. remove the phrase “performs good”) to 

Subsection 5.2? e.g. “performs well”, or a new title “Suitability of the FDC calibration for prediction of 

low flows” 

 Now we mainly focused on comparing RFDC_cal and PROX_reg rather than the performance of 

the FDC regionalization. Accordingly, we revised all headings. 

In Figure 10a it is very difficult to see the difference between observed and modelled FDCs. If this result 

is presented then could the authors provide an inset zoom to allow the reader to see the difference 

between the FDCs for the highest flows? 

 We did not use this figure in revision. 

Please proof read future submissions in greater detail, see some notes below. Typos and clarifications: 

Abstract line 11: “. . .Monte-Carlo framework. . .“ is a bit vague given the complexity of your calibration 

(e.g. initial use of the SCE) please be more descriptive. 

 We rewrote the abstract. 

 Page 1, Line 2: Should we not have an “and”? 

 The given form is unlikely to use “and” between author names. 

Page 2, Line 9: Should “has” be replaced with “is”? 

 We restructured the introduction. 

Page 2, Line 15: In the papers that you refer to in the previous sentence (i.e. Beven 2006), the term used 

is “equifinality” rather than “equi-finality”. As this is a widely used term in the field of hydrological 

modelling I think that this consistency is important. Furthermore, the paper referenced (Oudin, 2008) 

does not refer to the term “equifinality”, and so I feel that you may wish to choose a reference that 

better reflects the implication of the sentence. 

 We used “equifinality” in the revision. Oudin et al. (2008) did not use the term “equifinality” 

literally; however, they pointed out that “most models have been shown to have no unique set of 

parameters to define the best model fit to the flow response of a catchment” (in paragraph 3). In 

the context, we could find equifinality is an important uncertainty source when extrapolating 

parameters to ungauged catchments. Thus, we cited it. 

Page 4, Line 3: Please clarify what you mean by “orthogonal” here 

 In revision, we did not use the term “orthogonal” 

Page 4, Line 13: Why have you used the term “simply”? I suggest removing it.  

 We removed it. 



Page 4, Line 18: “Characterized”, previously you have used UK English rather than US English, e.g. Page 4, 

Line 7 “regionalisation“. Another e.g. Figure 1 caption “regionalization”. Another Page 8, Line 25: 

“regionalization”. Another example when you refer to Figure 2 you use “schematized”, but in the Figure 

2 caption you use “schematised”. Please be consistent throughout the paper.  

 We globally reviewed the expressions. 

Page 4, Line 32: typo “Mistry”, should be “Ministry”  

 We corrected it. 

Page 7, Line 25: Please choose an alternative wording to: “and thus of consistency”, e.g. “and therefore 

are consistent”  

 The context in this sentence is now moved to section 3.5 in line 228. 

Page 8, line 10: “50 parameter sets” I recommend adding “. . .from the Monte-Carlo. . .” to remind the 

reader what you are referring to here. 

 We added it in line 316 where it is necessary. 

Page 10, Paragraph starting with line 22. Please clarify what correlation coefficient you are referring to. -

->I.e. Pearson correlation. 

 In revision, we clearly stated “Pearson” correlation coefficient where it is necessary. 

Page 16, line 15. I am not sure if the word “Obviously” is necessary here. How is this future work more 

“obvious” than the other limitations that you have discussed above? I suggest removing it. 

 In revision, it was removed. 

Table 1: Typo: “Draiage” 

 In revision, it was removed. 
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Abstract. Streamflow prediction using rainfallRainfall-runoff modelsmodelling has long been a special subject in 

hydrological sciences, and parameter identification is still challengingbut identifying behavioural parameters in ungauged 

catchments. is still challenging. In this study, we comparatively evaluated predictive powerperformance of the local 10 

calibration of a rainfall-runoff modellingmodel against theregional flow duration curvecurves (FDC), which is gaining 

attention as signature-based parameter identification, by comparing it with conventional hydrograph-based approaches for 

gauged and ungauged catchments. Using a parsimonious model GR4J under a Monte-Carlo framework, we conducted 

rainfall-runoff modelling against observed hydrographs and empirical FDCs for 45 gauged catchments in South Korea. By 

treating each catchment as ungauged, we compared again between parameter calibration against regional FDCs and 15 

proximity-basedseemingly alternative method of classical parameter regionalisation in terms of hydrograph and flow 

signature reproducibility. Results showed that the FDC calibration could lead to noticeably weaker performance and higher 

uncertainty in predictions in gauged catchments due to the absence of flow timing.for ungauged catchments. We used a 

parsimonious rainfall-runoff model over 45 Korean catchments under semi-humid climate. The calibration against regional 

FDCs, which were estimated by a geostatistical method, also showed weaker performance than the was compared with the 20 

simple proximity-based parameter regionalisation. A relative merit of Results show that transferring behavioural parameters 

from gauged to ungauged catchments significantly outperformed the local calibration against regional FDCs due to the 

absence of flow timing information in the FDC calibration was high performance in predicting low flows. Fromregional 

FDCs. The behavioural parameters gained from observed hydrographs were likely to contain intangible flow timing 

information affecting predictability in ungauged catchments. Additional constraining with the evaluation of signature 25 

reproducibility, we found that metrics describing flow dynamics such as rising limb density should be added as 

complementary constraints for improvingappreciably improved the FDC calibrations, implying that flow signatures in 

temporal dimensions would supplement the FDCs. As an alternative approach in data-rich regions, we suggest calibrating a 

rainfall-runoff modelling against FDCsmodel against regionalised hydrographs to preserve flow timing information. We also 

suggest use of flow signatures that can supplement hydrographs for calibrating rainfall-runoff models in gauged and 30 

ungauged catchments. 



 

2 

 

1 Introduction 

The runoff hydrograph, a time series of streamflow, is the basis for practical resource management tasks such as water 

resource allocations, designing infrastructures, flood and drought forecasting, environmental impact assessment (Westerberg 

et al., 2014; Parajka et al., 2013). It is essential information for investigating physical controls of catchment functional 

behaviours because a hydrograph aggregates processes interacting within a catchment. Prediction of the runoff hydrograph 5 

has long been an important subject in hydrological sciences and is gaining increasing attention with growing concerns about 

environmental changes (Blӧschl et al., 2013). Runoff prediction in ungauged sites has already been a special topic in 

hydrological sciences, e.g., a decade-long project, Prediction in Ungauged Basins (PUB) by the International Association of 

Hydrological Sciences (see http://iahs.info/pub/biennia.php). However, predicting hydrograph is a still challenging task due 

to poor data availability and unknown knowledge of complex catchment responses (Zhang et al., 2015; Blӧschl et al., 2013). 10 

A standard method for predictingto predict daily streamflow is to employ a rainfall-runoff model that conceptualises 

catchment functional behaviours, and simulatessimulate synthetic hydrographs from atmospheric forcing inputsdrivers 

(Wagener and Wheater, 2006; Blӧschl et al., 2013). A prerequisite of this conceptual modelling approach is parameter 

identification to enable the rainfall-runoff model to imitate actual catchment responses, and is commonly achieved 

viabehaviours. Conventionally, behavioural parameters are estimated via model calibration against observed hydrographs 15 

(referred to as the hydrograph calibration hereafter). On one hand, theThe hydrograph calibration provides convenience to 

modellers becauseattain reproducibility of the predictand (i.e., the runoffstreamflow time series), which is typically 

takencommonly used as a performance measure, in rainfall-runoff modelling studies. Because the degree of belief in 

hydrological models is normally measured by how they can be automatically achieved. Thereproduce observations 

(Westerberg et al., 2011), use of the hydrograph reproducibility for parameter identification and its validity checkcalibration 20 

has a long tradition in rainfall-runoff modelling (see Hrachowiz et al., 2013).  

The hydrograph calibration, on the other handhowever, can be challenged by epistemic errors in input and output data, 

sensitivity to calibration criteria, and inability of parameter calibration under no or poor data availability (Westerberg et al, 

2011; Zhang et al., 2008). Importantly, it is difficult to know whether or notthe parameters from theoptimised toward 

maximising hydrograph calibrationreproducibility are unique to represent actual catchment responsesbehaviours, since 25 

multiple parameter sets wouldpossibly show similar hydrograph reproducibility predictive performance (Beven, 2006, 1993). 

This low uniqueness of calibratedthe optimal parameter setsset, namely the equi-finalityequifinality problem in rainfall-

runoffconceptual hydrological modelling, can become a significant uncertainty source particularly when extrapolating the 

optimal parameters to ungauged catchments (Oudin et al., 2008). 

To overcome or circumvent those disadvantages of the hydrograph calibration, one can identify the parameters with, 30 

distinctive flow signatures,  (i.e., metrics or auxiliary data representing catchment behaviours,) in lieu of observed 

hydrographs (referred to as the signature calibration hereafter). The signature calibration is a good alternative to the 

hydrograph calibration when suitable can be used to identify model parameters are not easily obtained with observed 
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hydrographs alone. Hingray et al. (2010), for instance, calibrated a runoff model with specific flow signatures relevant to its 

parameters such as snow accumulation and ablation, recession curves, and rising limb, and subsequently found enhanced 

performance in hourly runoff prediction in Alpine catchments. Yadav et al. (2007) used spatially extrapolated flow metrics 

for parameter identification, and found major streamflow indices related to catchment functional behaviours. Euser et al. 

(2013) proposed a framework for structuring a flexible perceptual model with multiple hydrograph signatures, and evaluated 5 

model plausibility. Other examples include use of remotely-sensed geomorphological metrics (Fang et al., 2010), isotope 

concentrations (Son and Sivapalan, 2007), the baseflow index (Bulygina et al., 2009), the spectral density of streamflow 

observations (Montanari and Toth, 2007; Winsemius et al., 2009), and long-term hydrograph descriptors (Shamir et al., 

2005).  

In particular, the . The flow duration curve (FDC) has received greatparticular attention in the signature-based model 10 

calibrations as a calibrationsingle criterion that can fit model parameters to catchment functional behaviours (e.g., 

Westerberg et al., 2014, 2011; 2014). The FDC, the relationship between the frequency and flow magnitudes, provides a 

summary of temporal streamflow variations at the outlet of a catchment (Vogel and Fennessey (1994). It has been useful for 

numerous hydrological applications. Vogel and Fennessey (1995) exemplified potential uses of FDCs in hydrological studies 

including wetland inundation mapping, lake sedimentation studies, instream flow assessment, hydropower feasibility 15 

analysis, contaminant and waste management, water resources allocation, and flood frequency analysis. FDCs has been 

extensively used for runoff prediction (Zhang et al., 2015; Kim and Kaluarachchi, 2014; Smkhtin and Masse, 2000), land use 

change assessment (Zhao et al., 2012), design of power plants (Liucci et al, 2014), water quality evaluation (Morrison and 

Bonta, 2008), and catchment classification (Sawicz et al., 2011) among many variations. Along with those applications, 

FDCs or metrics from FDCs (e.g., the slope of FDCs) were often used as a single calibration criterion (e.g., Westerberg et al., 20 

2011, 2014; Yu and Yang, 2000; Sugawara, 1979) or one of calibration constraints (e.g., Pfannerstill et al., 2014; Kavetski et 

al., 2011; Hingray et al., 2010; Blazkova and Beven, 2009; Son and Sivapalan, 2007; Yadav et al., 2007) for identifying 

behavioural parameters. The rationale behind the model calibration against FDCs is that the catchment functional behaviours 

can be captured byYadav et al., 2007). The FDC, the relationship between flow magnitude and its frequency, provides a 

summary of temporal streamflow variations in a probabilistic domain (Vogel and Fennessey, 1994). Many FDC-related 25 

studies have found that climatological and geophysical characteristics within a catchment determine the shape of FDCs 

(Vogel and Fennessey, 1995; Yokoo and Sivapalan, 2011). This hypothesis also made it possible to apply runoff models to 

FDC prediction (Zhang et al., 2014; Yokoo and Sivapalan, 2011) or investigation of physical controls of FDCs (e.g.,the FDC 

(e.g., Cheng et al., 2012; Ye et al., 2012; Yokoo and Sivaplan, 2011; Bottor et al., 2007). With only few physical parameters, 

the shape of the period-of-record FDC could be analytically expressed (Botter et al., 2008). Based on this strong relationship 30 

between catchment physical properties and the FDC, one may hypothesise that model calibration against the FDC (referred 

to as the FDC calibration hereafter) can provide parameters that can sufficiently capture actual catchment behaviours. 

Sugawara (1979) is the first attempt at the FDC calibration, emphasising its advantage to reduce negative effects of 

epistemic errors in rainfall-runoff data. Westerberg et al. ) in an inverse manner.(2011) also highlighted that the FDC 
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calibration may provide robust predictions to moderate disinformation such as the presence of event flows under 

inconsistency between inputs and outputs.  

For prediction in ungauged catchmentIf it allows rainfall-runoff models to sufficiently capture functional behaviours of 

catchments, the parameter calibration against FDCs (referred to as the FDC calibration hereafter) provides practical 

advantageswould have an especial value in comparison to conventionalthe parameter regionalisation. for prediction in 5 

ungauged catchment. The parameter regionalisation, i.e., transferring calibratedwhich transfers or extrapolates behavioural 

parameters from gauged to ungauged catchments (e.g., Kim and Kaluarachchi, 2008; Oudin et al., 2008; Parajka et al., 2007; 

Wagener and Wheater, 2006; Dunn and Lilly, 2001), has2011), conveniently provides a critical concernpriori estimates of 

over-reliance on behavioural parameters of gauged catchments. Althoughand thus became a prioripopular approach to 

parameter estimates ofidentification in ungauged catchments (see a comprehensive review in Parajka et al., 2013). are 10 

conveniently achieved by the parameter regionalisation, they are indirectly derived from modelling resultsHowever, it has a 

critical concern that regionalised parameters are highly dependent on model calibrations at gauged sites with the equi-finality 

problem.that may have substantial equifinality problems. Under no flow information in ungauged catchments, it is 

impossible to know whether regionalised parameters are behavioural. Thus, regionalised parameters couldmight be 

insufficiently reliable and highly uncertain (Bárdossy, 2007; Oudin et al., 2008; Zhang et al., 2008). To circumvent those 15 

drawbacks of 

On the other hand, the calibration against regional FDCs (referred to as RFDC_cal hereafter) may reduce the primary 

concern in the classical parameter regionalisation, the FDC-based calibration possibly becomes a good alternative. A number 

of studies have proposed scheme. The regional models for predicting FDCs at ungauged sites throughhave showed strong 

performance, for instance, via regression analyses between quantile flows and catchment properties (e.g., Shu and Ouarda, 20 

2012; Mohammoud, 2008; Smakhtin et al., 1997), geostatistical interpolation of quantile flows (e.g., Pugliese et al., 2014; 

Westerberg et al., 2014), and regionalisation of theoretical probability distributions (e.g., Atieh et al., 2017; Sadegh et al., 

2016). In general, FDCs ) among many variations. The parameters obtained from RFDC_cal are deemed behavioural, 

because a distinctive flow signature of the target ungauged catchment directly identifies them; however, predicted by those 

regional models (referredFDCs should be reliable in this case. A FDC is a compact representation of runoff variability at all 25 

time scales from inter-annual to event-scale, embedding various aspects of multiple flow signatures (Blӧschl et al., 2013). as 

the regional FDCs hereafter) well agreed with empirical FDCs; hence, the model calibration with regional FDCs wasBased 

on this strength, several studies already applied and showed promising predictive performance using RFDC_cal for 

ungauged catchments (e.g., Yu and Yang, 2000; Westerberg et al., 2014). The parameter identification against regional 

FDCs was useful even for gauged catchments in the cases of observed hydrographs with poor quality or no overlap between 30 

climatic inputs and hydrographs. Importantly, it may be more reliable than the parameter regionalisation because flow 

information of the catchment of interest, albeit predicted, is directly used to find behavioural parameter sets. ; Yu and Yang, 

2000). 
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However, severalNevertheless, practical questions arise when using the FDC calibrationRFDC_cal for gauged and ungauged 

catchments. First, the FDC is simplified information with flow magnitudes only; thushence, the FDC calibration could 

worsen the equi-finality and may be more deficient in equifinality problem relative to the hydrograph calibration. Due to no 

flow prediction (van Werkhoven et al., 2009). Second, timing information in reginal FDCs, one canmay cast concerns about 

a concern that parameters obtained from RFDC_cal may provide poorer predictive performance than regionalised parameters 5 

gained from the hydrograph calibration. Indeed, there is additional uncertainty in regionalpredicted FDCs possibly 

introduced by errors in streamflow data and the regionalthe regionalisation models (Westerberg et al., 2011; Yu et al., 2002). 

If the calibration with regional FDCs yields highly uncertain and unreliable quantile flows due to those error sources, it may 

be less pragmatic than RFDC_cal may be undesirable when a simple parameter regionalisation. In truth, several  can provide 

better performance, because regionalising observed FDCs may require expensive efforts. Several comparative studies on 10 

parameter regionalisation (e.g., Parajka et al., found that 2013; Oudin et al., 2008) suggested that the simple proximity-based 

parameter transfer well performedcan be competitive in many regions (e.g., . Second, there Parajka et al., 2013; Oudin et al., 

2008); thus, the calibration against the regional FDCs may be undesirable in the case. Third, there may be additional flow 

signatures that canto improve predictive performance of the FDC calibration. If any flow signatures are found orthogonal to 

FDCs, additionalAdditional constraining with those signatures will enablecan lead to alleviate the equi-finality of the FDC 15 

calibration and thus enhancebetter predictive performance. Nevertheless of the RFDC (Westerberg et al., 2014); however, it 

is still an open question which flow signatures complement FDCscan supplement the FDC calibration. 

This As discussed, RFDC_cal seems promising for prediction in ungauged catchments. However, to our knowledge, 

RFDC_cal has never been evaluated in a comparative manner with classical parameter regionalisation except Zhang et al. 

(2015), which assessed its performance in part. Therefore, this study exploredaimed to evaluate predictive performance of 20 

the FDC calibration in RFDC_cal in comparison to a conventional parameter regionalisation. We focused on the absence of 

flow timing in the FDC and its impacts on rainfall-runoff modelling in comparison with the conventional approaches, the 

hydrograph calibration and the parameter regionalisation for gauged and ungauged catchments respectively. To answer the 

questions given, we (1) evaluated predictive performance of the hydrograph calibration and the FDC calibration with their 

uncertainty for gauged catchment, (2) assessed the calibration against regional FDCs in comparison with the proximity-based 25 

parameter regionalisation for ungauged catchments, and (3) gauged ability of the FDC calibration to reproduce typical flow 

signatures.. In this work, a parsimonious 4-parameter conceptual model was used to simulate daily hydrographs from lumped 

atmospheric forcing for 45 unregulatedfor 45 catchments in South Korea. To predict FDCs in ungauged 

catchmentcatchments, a geostatistical regional model was adopted here. The Monte-Carlo sampling was simply used for 

parameter identificationto identify model parameters and uncertainty assessment. The following section presentsmeasure 30 

equifinality in the hydrograph and the FDC calibrations. 

used in our comparative study. 
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2 The study area and data Description of the study area and data 

The study area is 45 gauged45 catchments located across South Korea with no or negligible human-made alterations (e.g., 

river diversion and dam operations) ininfluences on flow variations were selected for this study (Figure 1). South Korea is 

characterizedcharacterised as a temperate and semi-humid climate with rainy summer seasons. The North Pacific high-

pressure brings monsoon rainfall with high temperatures induring summer seasons, while dry and cold weathers prevail in 5 

winter seasons due to the Siberian high-pressure. Typical ranges of annual precipitation are 1200-1500 and 1000-1800 mm 

in the northern and the southern areas respectively (Rhee and Cho, 2016). Annual mean temperatures in South Korea range 

between 10 and 15 °C (Korea Meteorological Administration, 2011). Approximately, 60-70 percent of precipitation falls in 

summer seasons from June to September (Bae et al., 2008). Streamflow usually peaks in the middle of summer seasons 

because of heavy rainfall or typhoons, and hence information of catchment responsebehaviours is largely concentrated on 10 

summer-season hydrographs. Snow accumulation and ablation are observedoccurring at high elevations, but their effects 

have minor influences on temporal flow variations are minor due to the limitedrelatively small amount of winter 

precipitation (Bae et al., 2008). Annual temperatures range between 10 and 15 °C (Korea Meteorological Administration, 

2011). 

The study catchments shown in Figure 1 were selected based on availability of streamflow data. Although long streamflow 15 

data are available at a few river gauging stations, highHigh-quality daily streamflow data across the South Korea have been 

produced since establishment of the Hydrological Survey CenterCentre in 2007 (Jung et al., 2010). We), though river stages 

have been monitored for an extensive length at a few gauging stations. Thus, we collected streamflow data at 29 river 

gauging stations from 2007 to 2015 together with inflow data of 16 multi-purpose dams for the same data period from the 

Water Resources Management Information System operated by the MistryMinistry of Land, Infrastructure, and Transport of 20 

the Korean government (available at http://www.wamis.go.kr/). The selectedmean annual flow of the study catchments are 

listed in Table was 739 mm yr
-1

 with their climatological featuresa standard deviation of 185 mm yr
-1

 during 2007-2015. 

As the climaticIn addition, as atmospheric forcing inputs for rainfall-runoff modelling, we used gridded , we collected daily 

precipitation, and maximum and minimum temperatures for 2005-2015 at 3-km grid resolution produced by spatial 

interpolationinterpolations between 60 stations of the automated surface observing system (ASOS) maintained by the Korea 25 

Meteorological Administration. Jung and Eum (2015) combinedThe ASOS data were interpolated by the Parameter-

elevation Regression on Independent Slope Model (PRISM; Daly et al., 2008) with), and overestimated pixels of the PRISM 

grid data were smoothed by the inverse distance method for . Jung and Eum (2015) found that this combined method 

improved the spatial interpolation, and found improved performance for producing grid  of precipitation and the 

temperatures in South Korea. The annual mean precipitation and temperature datasets across South Korea. For simulating 30 

streamflow at outlets of the of the study catchments, we collected the grid climatic data from 2005 to 2015. Annual 

precipitation and mean temperature in each catchment range vary within ranges of 1145–1997 mm yr
-1

 and 8.0–13.8 °C 
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respectively during 2007-2015. Hydro-climatological features of the climatic data period. Processing the climatic data for 

rainfall-runoff modelling will appear later45 catchments are summarised in the methodology sectionTable 1. 

3 Methodology 

In this work, a conceptual3.1 Hydrological model (GR4J) 

A parsimonious rainfall-runoff model, GR4J (Perrin et al., 2003), was adopted to simulate daily hydrographs of the 45 5 

catchments. for 2007-2015. GR4J conceptualises functional catchment response to rainfall with four free parameters that 

regulate the water balance and water transfer functions, and is schematized in. Figure 2 schematises the structure of GR4J. 

The four parameters (X1 to X4) conceptualises soil water storage, groundwater exchange, routing storage, and the base time 

of unit hydrograph respectively. GR4J is classified as a soil moisture accounting model, and computation details are found in 

Perrin et al. (2003). Since its parsimonious and efficient structure enablesallows robust calibration and reliable 10 

regionalisation of modelthe parameters, GR4J has been frequently used for modelling daily hydrographs with various 

purposes (e.g., Nepalunder diverse climatic conditions (Zhang et al., 2016; Tian et al., 20132015). The computation details 

and discussion are found in Perrin et al. (2003). The potential evapotranspiration (PE in Figure 1) in this study2) was 

estimated by the temperature-based model ofproposed by Oudin et al. (2005) that proposed for lumped rainfall-runoff 

modelling. 15 

3.12 Preliminary data processing  

Before rainfall-runoff modelling with GR4J, we preliminarily processed the griddedgrid climatic data to convert 

precipitation data to liquid water depths forcing catchments (i.e., rainfall and snowmelt depths) using a physics-based 

snowmelt model proposed by Walter et al. (2005). The preliminary processing snowmelt modelling was mainly for reducing 

systematic errors or bias from no snow component in GR4J, which may affect model efficienciesperformance in catchments 20 

at relatively high elevations. Though combining a We chose this preliminary processing to avoid adding more parameters 

(e.g., the temperature index snowmelt model with GR4J can be an alternative approach, it increases the number of 

parameters (i.e., higher equi-finality) and thus model uncertainty. Since contribution of snowmelt to temporal flow variation 

is insignificant in South Korea as described, maintaining ) to the parsimoniousexisting structure of GR4J was considered 

more importantly for . In the case of GR4J, one additional parameter calibration and regionalisation in this work.implies 25% 25 

complexity increase in terms of the number of parameters, and thus can worsen the equifinality. The error sources in the 

snowmelt model were assumed to yield minor impacts on runoff prediction. The snowmelt model hassnowmelt model uses 

the same input requirement as GR4J, thus no additional data are necessary for the processing. It simulatesinputs of GR4J to 

simulate point-scale snow accumulation and ablation processes using(i.e., no additional inputs are required). The snowmelt 

model is a physics-based model but uses empirical methods thatto estimate physicalits parameters required for the energy 30 

balance in snowpack, and simulation. As outputs, it produces the liquid water depths and the snow water equivalent as 
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outputs. After the snowmelt modelling, . For lumped inputs to GR4J, we took spatially averaged pixel values of the liquid 

water depths and the maximum and minimum temperatures within the boundary of each catchment as lumped inputs to 

GR4J. 

Besides, After the snowmelt modelling, consistency between the spatially-averaged liquid water depths and the observed 

hydrographsflows (i.e., input-output consistency) was checked using the current precipitation index (CPI; Smakhtin and 5 

Masse, 2000) defined as: 

It = It−1 ∙ K + Rt            (1) 

where It is the CPI (mm) at day t, K is a decay coefficient (0.85 d
-1

), and Rt is the liquid water depth (mm d
-1

) at day t that 

forces the catchment (i.e., rainfall or snowmelt).. CPI mimics temporal variations inof typical streamflow data by converting 

intermittent rainfallprecipitation data to a continuous time series with an assumption of the linear reservoir. The consistency 10 

between modelThe input and -output was checked for each catchmentconsistency can be evaluated using correlation between 

CPI and observed streamflow as in Westerberg et al. (2014) and Kim and Kaluarachchi (2014). The Pearson correlation 

coefficients between CPI and streamflow data of the 45 catchments had an average of 0.67 with a range of 0.43-0.79, and no 

outliers were found in the box plot of the correlation coefficients. Hence, we hypothesisedassumed that acceptable 

consistency existed between climatic forcing and observed hydrographs for parameter calibrationwas acceptable. 15 

3.2 Rainfall-runoff modelling for3 The hydrograph calibration in gauged catchments 

To search behavioural parameter sets of GR4J using observed runoff time seriesagainst the streamflow observations (i.e., the 

hydrograph calibration), we used the Monte-Carlo random sampling was used withinwith the parameter ranges given by 

Demirel et al. (2013). The objective function in Zhang et al. (2015) was chosen as the calibration criterion that considers 

togetherto consider the Nash -Sutcliffe Efficiency (NSE) and the Water Balance Error (WBE) between observed and 20 

modelled hydrographs astogether: 

OBJ = (1 − NSE) + 5|ln(1 + WBE)|2.5         (2a) 

NSE = 1 −
∑ (Qobs,i−Qsim,i)

2N
i=1

∑ (Qobs,i−Qobs
̅̅ ̅̅ ̅̅ ̅)

2N
i=1

          (2b) 

WBE =
∑ (Qobs,i−Qsim,i)N

i=1

∑ Qobs,i
N
i=1

           (2c) 

where Qobs and Qsim are the observed and simulated flows respectively, Qobs
̅̅ ̅̅ ̅̅  is the arithmetic mean of Qobs, and N is the total 25 

number of flow observations. The best parameter sets for each study catchment was obtained from minimisation of the OBJ 

using the Monte-Carlo simulations described below. 

To determine a sufficient runs for the random simulations, we calibrated GR4J parameters using the shuffled complex 

evolution (SCE) algorithm (Duan et al., 1992) for one catchment with highmoderate input-output consistency. Then, the total 
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number of random simulations was iteratively determined by adjusting the number of runs until the minimum OBJ of the 

random simulations became adequately close to the OBJ value from the SCE algorithm. We found that approximately 

20,000 runs could provide the minimum OBJ value equivalent to onethat from the SCE algorithm. Subsequently, GR4J was 

calibrated by 20,000 runs of the Monte-Carlo simulations for remaining 44all 45 catchments, and the parameter sets with the 

minimum OBJ values were taken for runoff predictions. In addition, we sorted the 20,000 parameter sets in terms of 5 

corresponding OBJ values in ascending order and first 50 sets were taken for uncertainty assessment (i.e., 0.25% of the 

rejection threshold). For the parameter identification, and first 50 sets (0.25% of the total samples) were taken to measure the 

degree of equifinality. We measured the equifinality simply by the prediction area between 2.5% and 97.5% boundaries of 

runoff simulations given by the collected 50 parameter sets. This prediction area was later compared to that from the FDC 

calibration under the same Monte-Carlo framework. Note that we estimated the prediction area to comparatively evaluate the 10 

degree of equifinality between the hydrograph and the FDC calibrations under the same sampling size and the same 

acceptance rate for all the catchments. For more sophisticated and reliable uncertainty estimation, other methods are 

available such as the Generalised Likelihood Uncertainty Estimation (GLUE; Beven and Bingley, 1992) and the Differential 

Evolution Adaptive Metropolis (DREAM; Vrugt and Ter Braak, 2011). 

For the hydrograph calibration, the 9-year streamflow data were divided into two parts for calibration (2011-2015) and for 15 

validity check (2007-2010)), respectively. A two-year warm-up period was used for initializinginitialising all runoff 

simulations in this study. 

The FDC calibration was also conducted by the same Monte-Carlo sampling but for minimisation of OBJ between observed 

and modelled quantile flows. We used quantile flows at 103 exceedance probabilities (p of 0.001, 0.005, 99 points between 

0.01 and 0.99 at an interval of 0.01, 0.995, and 0.999) to evaluate agreement between observed and simulated FDCs. As did 20 

in the hydrograph calibration, the best parameter set was found by 20,000 random simulations and 50 behavioural parameter 

sets were taken. 

3.3 Rainfall-runoff modelling for ungauged catchments4 Model calibration against the regional FDC for ungauged 

catchments 

Synthetic runoff time series were generated by GR4J again for the 45 catchments by treating each catchment as ungauged. 25 

The parameters of ungauged catchments were identified by (a) local FDCs and by (b) transferring calibrated sets from 

nearby gauged catchments (i.e., proximity-based parameter regionalisation). Following are descriptions of both approaches. 

3.2.1 Parameter identification against regional flow duration curves 

TheEach catchment was treated ungauged for the comparative evaluation of RFDC_cal in the leave-one-out cross-validation 

(LOOCV) mode. For regionalising empirical FDCs, the geostatistical method recently proposed by Pugliese et al. (2014) 30 

was used for regionalising observed FDCs. Pugliese et al. (2014) employed the top-kriging method (Skøien et al., 2006) to 

spatially interpolate the total negative deviation (TND), which indicates anis defined as the area between the mean annual 
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flow and below-meanaverage flows in a normalizednormalised FDC. The top-kriging weights that interpolate TND values 

were usedtaken as weights to estimate flow quantiles of ungauged catchments from empirical FDCs of 

neighbouringsurrounding gauged catchments. Since the top-kriging weights are obtained from topological proximity 

between catchments, the two methods for ungauged catchments in this study are categorised as proximity-based approaches 

and thus of consistency. The FDC of an ungauged catchment in Pugliese et al. (2014) is estimated from normalised FDCs of 5 

neighbouringsurrounding gauged catchments as: 

Φ̂(w0, p) = ϕ̂(w0, p) ∙ Q̅(𝑤0)          (3a) 

ϕ̂(w0, p) = ∑ λi ∙ ϕi(wi, p)n
i=1 ,    pϵ(0,1)         (3b) 

where Φ̂(w0, p) is the estimated quantile flow (m
3
 s

-1
) at an exceedance probability p (unitless) for an ungauged catchment 

w0, ϕ̂(w0, p) is the estimated normalizednormalised quantile flow (unitless), Q̅(𝑤0) is the annual mean streamflow (m
3
 s

-1
) 10 

of the ungauged catchment, and ϕi(wi, p) and λi are normalizednormalised quantile flows (unitless) and corresponding top-

kriging weights (unitless) of gauged catchment wi, respectively. The unknown mean annual flow of an ungauged catchment, 

Q̅(𝑤0), can be estimated with a rescaled mean annual precipitation defined as: 

MAP∗ = 3.171 × 10−5 ∙ MAP ∙ A          (4) 

where MAP* is the rescaled mean annual precipitation (m
3
 s

-1
), MAP is mean annual precipitation (mm yr

-1
) and A is 15 

drainagethe area (km
2
) of the ungauged catchment, and the constant of 3.171×10

-5
 is to convertconverts the unit of MAP

*
 

from mm yr
-1 

km
2
 to m

3
 s

-1
. 

A distinct advantage of the geostatistical method is that it enablesits ability to estimate the entire flow quantiles in a FDC 

with a single set of top-kriging weights. Since a parametric regional FDC (e.g., Yu et al., 2002; Mohamoud, 2008) is 

obtained from independent models for each flow quantile in many cases, e.g.,for instance, by multiple regressions between 20 

selected quantile flows and catchment properties, fundamental characteristics in a FDC continuum would be entirely or 

partly lost. The geostatistical method, on the other hand, treats all flow quantiles as a single object; thereby, features in a 

FDC continuum can be preserved. It showed promising performance to reproduce empirical FDCs only using topological 

proximity between catchments, and further. More details and discussionon the geostatistical method are availablefound in 

Pugliese et al. (2014). 25 

For regionalising empirical FDCs of the 45 catchments, we followed the same procedure of Pugliese et al. (2014). We 

obtained top-kriging weights (λi) by the geostatistical interpolation of TND values from empiricalobserved FDCs for the 

calibration period (2011-2015). Then, the top-kriging weights were used to regionaliseinterpolate empirical flow quantiles. 

The number of neighbours for the TND interpolation was iteratively determined as five at which additional neighbouring 

TNDs are unlikely to givebring better agreement between the estimated and empiricalobserved TNDs. FDCs for the 30 

calibration periodIn other words, normalised flow quantiles of five catchments surrounding the target ungauged catchment 

were regionalisedinterpolated with the top-kriging weights. Then, MAP
*
 of the TND interpolation at the target ungauged 
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catchment was multiplied. We predicted flow quantiles at 103 exceedance probabilities. Against the (p of 0.001, 0.005, 99 

points between 0.01 and 0.99 at an interval of 0.01, 0.995, and 0.999) for rainfall-runoff modelling against regional FDCs, 

parameters of GR4J were directly calibrated for each catchment. The parameters were identified in the same manner of 

20,000 runs of the Monte Carlo simulations, but towards minimisation of the OBJ value between regional and modelled 

FDCs. (i.e., RFDC_cal). 5 

For runoff prediction in ungauged catchments, the GR4J parameters were identified by the same Monte-Carlo sampling but 

toward minimisation of OBJ value between the regional and the modelled flow quantiles at the 103 exceedance probabilities. 

The best parameter set, which provided the minimum OBJ value, was taken as the best behavioural set of RFDC_cal for each 

catchment. 

3.2.25 Proximity-based parameter regionalizationregionalisation for ungauged catchments 10 

As a counterpart of the calibration against regional FDCs, we usedWe selected the proximity-based parameter transfer for 

prediction in ungauged catchments.(referred to as PROX_reg hereafter) to comparatively evaluate predictive performance of 

RFDC_cal. The parameter regionalisation can be classified intohas three typicalclassical categories: (a) proximity-based 

parameter transfer (i.e., PROX_reg; e.g., Oudin et al., 2008); (b) similarity-based parameter transfer (e.g., McIntyre et al., 

2005); and (c) regression between parameters and physical properties of gauged catchments (e.g., Kim and Kaluarachchi, 15 

2008). Based on itsA comprehensive review on the parameter regionalisation in Parajka et al. (2013) reported that 

PROX_reg has competitive performance under humid climate with low-complexity models relative to the other categories. 

Based on modelling conditions in this study (semi-humid climate and simplicity (Oudin et al., 2008; Parajka et al., 20134 

parameters), we chose the proximity-based parameter regionalisationPROX_reg to evaluate RFDC_cal. 

For prediction in ungauged catchment, five donor catchments chosen for the FDC regionalisation were again used for 20 

transferring their parameter sets to each catchment of interest. To be consistent between two proximity-based approaches, we 

synchronised donor catchments. The five runoff simulations were averaged for representing modelled hydrographs for each 

catchment.  

To predict runoff at the 45 catchments in the LOOCV mode, we transferred the behavioural parameter sets obtained from the 

hydrograph calibration of the five donor catchments used for the FDC regionalisation. In other words, we used the same 25 

donor catchments for FDC regionalisation and PROX_reg. This allows us to have consistency in transferring hydrological 

information from gauged to ungauged catchments between RFDC_cal and PROX_reg. Using the best behavioural parameter 

sets of the five donor catchments, we generated five runoff time series and took the arithmetic averages of them to represent 

runoff predictions by PROX_reg. 

3.3 Evaluation of 6 Performance evaluation 30 

We used multiple performance metrics to evaluate predictive performance and uncertainty Two performance measures were 

used for evaluating model predictiveof all modelling approaches applied in this study. Predictive performance. One is NSE 
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in Eq. 2b of each modelling approach was graphically evaluated using box plots of the performance metrics of the 45 

catchments. In addition, we performed several paired t-tests to check the statistical significance of performance differences 

between observed and modelled flows and the other is the logarithmic Nash-Sutcliffe Efficiency (LNSE) the modelling 

approaches. Following is the description of the performance metrics. 

To measure high- and low-flow reproducibility, we chose two traditional performance metrics, (1) the NSE between 5 

observed and simulated flows. They are traditional measures of model performance in hydrological modelling studies, and 

evaluate reproducibility of highpredicted flows (Eq. 2b) and medium flows ((2) the NSE) and low of log-transformed flows 

(LNSE) respectively. LNSE is definedcalculated as: 

LNSE = 1 −
∑ [ln Qobs,i−ln Qsim,i]

2N
i=1

∑ [ln Qobs,i−ln(Qobs
̅̅ ̅̅ ̅̅ ̅)]

2N
i=1

 
∑ (ln(Qobs,i)−ln(Qsim,i) )

2N
i=1

∑ (ln(Qobs,i)−ln(Qobs)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2N

i=1

        

  (5) 10 

For uncertainty assessment, the lower and upper bounds were drawn at the values of 2.5 and 97.5 percentiles of predicted 

hydrographs with the collection of 50 parameter sets. UncertaintyThough NSE and LNSE are frequently used for 

performance evaluation, they may be sensitive to errors in predicted flows was quantified by the area between the lower and 

upper bounds of simulated hydrographs. We took a ratio of uncertainty of the FDC calibration to that of the hydrograph 

calibration for each catchment and defined it as the uncertainty ratio. Note that this assessment was not to estimate absolute 15 

uncertainty but to measure relative uncertainty gained by replacing a hydrograph with a FDC for model calibration. 

Weflow observations (Westerberg et al., 2011). Hence, we additionally selected three typical flow metrics to evaluate flow 

signature predictabilitythat embed dynamic flow variation in a compact manner; the runoff ratio (RQP), the baseflow index 

(IBF), and the rising limb density (DRL). The three typical signatures describe RQP, IBF, and DRL are proxies of aridity in a 

catchment, long-term baseflowand water holding capacity, contribution of the baseflow to flow variations, and the flashness 20 

of catchment responsebehaviours, respectively. They are defined as the ratio of runoff to precipitation, the ratio of long-term 

baseflow to total runoff, and the inverse of average time to peak (d
-1

) as:  

RQP =
Q̅

P̅
             (6a) 

IBF = ∑
QB,t

Qt

T
t=1              (6b) 

DRL =
NRL

TR
             (6c) 25 

where Q̅ and P̅ are the average flow and precipitation duringfor a given period, (mm d
-1

), Qt and QB,t (m d
-1

) is the total 

streamflow and the base flow at time t respectively, NRL is the number of rising limb, and TR is the total amount of time 

when the hydrograph is rising (days). QB,t iscan be calculated by subtracting direct flow QD,t from Qt as: 

QD,t = c ∙ QD,tQD,t−1 + 0.5 ∙ (1 + c) ∙ (Qt − Qt−1)         (7a) 
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QB,t = Qt − QD,t             (7b) 

where c is the filter parameter c is a value of , which was set to 0.925 from a comprehensive case study by(Brooks et al., 

2011; Eckhardt (, 2007). Reproducibility of RQP, IBF, 

Flow signature reproducibility of RFDC_cal and DRL arePROX_reg were evaluated by the relative absolute bias between 

modelled and observed signatures as: 5 

DFS =
|FSsim−FSobs|

FSobs
            (8) 

where DFS is the relative absolute bias, FSsim is a flow signature of the modelled flows, and FSobs is that of the observed flows.  

4 Results 

4.1 Streamflow prediction in gauged catchments Hydrograph calibration and FDC regionalisation in gauged 

catchments 10 

The box plots in Figure 3 comparatively show distributions of NSE and LNSE values between observed and modelled flows. 

It was clearly indicated that the hydrograph outperformed the FDC calibration in prediction of high flows. The NSEs of the 

hydrograph calibration were generally greater than those of the FDC calibration for the both calibration and validation 

periods. The FDC calibration was of much wider NSE ranges than the hydrograph calibration and thus greater uncertainty in 

high flow prediction. The prediction results tend to have greater medians of NSEs for the calibration periods than the 15 

validation period. Because the term NSE is directly used for calibration, the parameter identification could be slightly 

inclined towards reproduction of high flows for the calibration period. The significantly increasing NSE ranges from the 

calibration to validation periods in Figure 3b may imply that the FDC calibration has weaker temporal parameter 

transferability from one period to another. In low-flow prediction, the FDC calibration showed slightly weaker performance 

than the hydrograph calibration. Although the LNSE medians of the FDC calibration were comparable to those of the 20 

hydrograph calibration, LNSEs of the FDC calibration also showed wider ranges than the hydrograph calibration. The FDC 

calibration was still likely to yield significant uncertainty in low-flow predictions when parameters were temporally 

transferred. Unlike the NSE comparison, the median LNSE values did not decrease from the calibration to the validation 

periods for the both hydrograph and the FDC calibrations. This would imply that the behavioural parameter sets have more 

temporal consistency in low flows than high flows.  25 

Figure 4 illustrates 1:1 scatter plots between the performance measures and correlation between CPI and observed 

hydrographs, indicating that consistency between model input and output meaningfully affects predictive performance of 

rainfall-runoff models. The performance measures were generally in positive relationships with correlation between CPI and 

observed hydrographs. Adequate input-output consistency seems to be a prerequisite of parameter identification to attain 

good high-flow predictability especially for the hydrograph calibration. For having 0.6 or more NSE, the correlation 30 
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coefficient between CPI and observed flows should be greater than 0.6 approximately. On the other hand, predictability of 

low flows was achieved with relatively low input-out consistency. LNSEs less than 0.4 were rarely observed than NSEs for 

the both hydrograph and FDC calibrations. Interestingly, the FDC calibration appears to have better predictability in low 

flows despite the use of NSE for parameter calibration, which is a sensitive measure to high-flow reproducibility. It implies 

that the FDC calibration has some deficiency to capture catchment response to storm events even with adequate model input-5 

output consistency whereas it performs well for long-term low-flow or baseflow predictions. 

Shortly, the FDC calibration could lead to relatively low predictive power with increased uncertainty when adopted as an 

alternative of the hydrograph calibration. Low predictability in high-flows can be a particular concern of the FDC calibration. 

The simplification of flow information appears to exacerbate the equi-finality in parameter identification. This weakness of 

the FDC calibration was confirmed by the uncertainty bounds of modelled hydrographs in Figure 5. The collection of 50 10 

parameter sets from the FDC calibration showed less robust simulations than the hydrograph calibration for the three 

catchments even though their FDCs were fairly well reproduced by the FDC calibration. For the 45 catchments, the mean 

NSE between observed and modelled FDCs was 0.95 when using the FDC calibration. In other words, parameters 

reproducing observed FDCs generally were less unique to represent catchment functional behaviours than ones reproducing 

observed hydrographs. The equi-finality in the FDC calibration is likely to get worse with decreasing performance of the 15 

hydrograph calibration (Figure 6). On average, uncertainty of predicted hydrographs was doubled for the 45 catchments 

when the FDC calibration substitutes for the hydrograph calibration. The prediction results from the 45 gauged catchments, 

hence, suggest that parameter identification with compact information of FDCs could yield weaker performance and less 

parameter identifiability than the hydrograph calibration. 

4.2 Geostatistical FDC regionalisation 20 

Figure 7a illustrates the 1:1 scatter plot between observed and estimated TNDs of the 45 catchments. The correlation 

coefficient between empirical and estimated TNDs was Figure 3a displays results of the parameter identification against the 

observed hydrographs (i.e., the hydrograph calibration). The 45 catchments had the mean NSE and LNSE of 0.66 and 0.65 

between the simulated and observed flows for the calibration period, respectively. The average NSE reduction from the 

calibration to the validation periods was 0.06 with a standard deviation of 0.10. The temporal transfer of the calibrated 25 

parameters did not decrease the mean LNSE value, while a wider LNSE range indicates that uncertainty of low-flow 

predictions may increase when temporally transferring the calibrated parameters. 

The predictive performance was closely related to the input-output consistency (Figure 3b), which was measured by the 

Pearson correlation coefficient between the CPI and the observed flows. A low input-output consistency implies that the 

rainfall-runoff data may include significant epistemic errors such as minimal flow responses to heavy rainfall or excessive 30 

response to tiny rainfalls. If the model calibration compensates disinformation from such errors, the parameters would be 

forced to have biases. Figure 3b shows that consistency in input-output data is a critical factor affecting parameter 

identification and thus performance. Perhaps, screening catchments with low input-output consistency may provide better 
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predictions in ungauged catchments. However, we did not consider it in the LOOCV for RFDC_cal and PROX_reg, since 

variation in input-output consistency would be a common situation. Rather, reducing the number of gauged catchments 

lowers spatial proximity and thus can cause biases for ungauged catchments too. Overall, 27 catchments and 33 catchments 

showed NSE and LNSE values greater than 0.6. We assumed the hydrograph calibration under the Monte-Carlo framework, 

which was assisted by the SCE optimisation, was able to acceptably identify the behavioural parameters under given data 5 

quality. 

Besides, Figure 4 illustrates the 1:1 scatter plot between the observed and predicted flow quantiles of all the catchments, 

indicating high applicability of the top-kriging FDC regionalisation. The overall NSE and LNSE values between the 

observed and regionalised flow quantiles show good applicability of the geostatistical method. The NSE and LNSE values 

for individual catchments have averages of 0.83 and 0.91 with standard deviations of 0.25 and 0.11, respectively, implying 10 

that low-flow predictions were slightly better. The performance of the geostatistical method was relatively poor at locations 

where gauging density is low.0.56 (equivalent to 0.30 NSE). The relatively poor prediction of TNDs was likely from the use 

of annual precipitation for normalising quantile flows. In the original study of the geostatistical method (Pugliese et al., 

2014), the TND prediction became poorer (NSE was decreased from 0.81 to 0.60) when using the rescaled annual 

precipitation instead of observed mean annual flow. Uncertainty introduced by estimation of mean annual flows might 15 

influence predictive power of the geostatistical TND interpolation. Another likely reason is that TND is a complex signature 

of streamflow regime; yet, it could be descriptive in terms of functional similarity between catchments (Pugliese et al., 2016). 

It may be difficult to completely capture spatial variation of TNDs with topological proximity only. However, Pugliese et al. 

(2016) also argued that poor prediction of TND did not automatically result in poor quantile flow predictions. Their 

comparative study achieved successful FDC predictions for 182 catchments in the United States (0.95 of median NSE) using 20 

the top-kriging weights of TNDs in spite of low TND predictability. Though it is an outside scope of this study, a further 

study needs to be directed towards effects of TND prediction on the FDC regionalisation. Because it is still unclear whether 

or not descriptors from FDCs well predict flow quantiles, top-kriging weights of various flow signatures need to be tested for 

improving the geostatistical FDC prediction as well. 

The high performance in FDC prediction with poor TND prediction was replicated in this study. Overall NSE and LNSE 25 

values between observed and predicted quantile flows of the 45 catchments suggest good applicability of the geostatistical 

method to the study catchments (Fig 7b). The averages of individual NSEs and LNSEs for each catchment were 0.83 and 

0.91 with standard deviations of 0.25 and 0.11 respectively. The higher LNSEs imply that performance of the geostatistical 

method is better for low flows. This might be because the top-kriging weights interpolating TNDs were obtained from 

below-average flows only. No information of above-average flows reflected in TNDs might incline the FDC regionalisation 30 

towards low-flow predictions. Low predictive power of the regional FDC model was found at locations with low gauging 

density. Catchments 4, 10, 35, and 36, which recorded 0.6 or less NSEs, were are limitedly hatched with no hatching 

catchments and/or limited adjacent to the other catchments; nonetheless, LNSEs of those catchments were still greater than 

0.7. This result wasis consistent with a finding of Pugliese et al. (2016) that performance of the geostatistical method was 
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highly sensitive to river gauging density. Transferring quantile flows of flow quantiles from remote catchments can yield 

significant errors becausemay not sufficiently capture functional similarity would not be captured between donor and 

receiver catchments. Overall, inIn spite of abovementionedthe minor shortcomings, the geostatistical FDC regionalisation 

was deemed acceptable based on the high NSE and topologicalLNSE of flow quantiles. Topological proximity would to 

bewas generally a good predictor of FDCs acrossflow quantiles for the study catchments. 5 

4.2 Comparing hydrograph predictability between RFDC_cal and PROX_reg 

Figure 5 compares the box plots of NSE and LNSE values between RFDC_cal and PROX_reg. PROX_reg generally 

outperforms RFDC_cal in predicting both high and low flows, suggesting that transferring parameters identified by observed 

hydrographs would be a better choice than a local calibration against predicted FDCs. The differences between NSE values 

of PROX_reg and RFDC_cal have an average of 0.22 with a standard deviation of 0.34. Only 8 catchments showed higher 10 

NSEs with RFDC_cal. These higher NSE values of PROX_reg imply that PROX_reg is preferable when high-flow 

predictability is needed such as flood analyses. In the case of LNSE, PROX_reg still had a higher median than RFDC_cal 

(0.53 and 0.62 for RFDC_cal and PROX_reg respectively). In 25 catchments, PROX_reg provided LNSE values greater than 

those of RFDC_cal.  

The low performance of RFDC_cal was also found in the comparative assessment of Zhang et al. (2015), which evaluated 15 

RFDC_cal for 228 Australian catchments using the same GR4J model. Zhang et al. (2015) found that RFDC_cal was inferior 

to PROX_reg in the Australian catchments, because the FDC calibration poorly reproduced temporal flow variations relative 

to the hydrograph calibration. This study confirms the difficulty to capture dynamic catchment behaviours with FDCs 

containing no flow timing information. 

A major weakness of RFDC_cal is the absence of flow timing information in the parameter calibration process. Unlike 20 

RFDC_cal, PROX_reg did not discard the flow timing information. The regionalised parameters may be able to implicitly 

transfer the flow timing information from gauged to ungauged catchments (this hypothesis will be discussed later in Section 

4.4). Figure 6 illustrates how the absence of flow timing negatively influences on predictive performance. For this 

comparison, the parameters were recalibrated against the observed FDCs (not regional FDCs) under the same Monte Carlo 

method to discard errors introduced by the FDC regionalisation (i.e., equivalent to calibrations against perfectly regionalised 25 

FDCs). The parameters identified by the observed hydrograph (Figure 6a) brought a good predictability in both high and low 

flows, resulting in an excellent performance to reproduce the FDC. On the other hand, an excellent FDC reproducibility does 

not guarantee a good predictability in high flows (Figure 6b). This indicates that reproducing FDCs with rainfall-runoff 

models would be less sufficient than the hydrograph calibration to capture functional catchment responses. 

In addition, Figure 6 shows that the prediction area of the 50 behavioural parameters from the Monte-Carlo simulations 30 

(indicated by the grey areas and the blue arrows) became much larger when using the FDC calibration instead of the 

hydrograph calibration. We calculated the ratio of the prediction area of the FDC calibration to that of the hydrograph 

calibration, and defined it as the equifinality ratio. It quantifies the degree of equifinality augmented by replacing the 
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hydrograph calibration with the FDC calibration. Figure 7 displays the scatter plot between the equifinality ratio and the 

input-output consistency. The equifinality augmented by the loss of flow timing is likely to increase as the input-output 

consistency decreases. The average of the equifinality ratios was 1.96, implying that potential equifinality inherent in 

RFDC_cal could be substantial. This may suggest that the equifinality problem embedded in RFDC_cal could be more 

significant than that in PROX_reg. 5 

4.3 Comparing flow-signature predictability between RFDC_cal and PROX_reg 

Figure 8 summarises performance of RFDC_cal and PROX_reg to regenerate three flow signatures of RQP, IBF, and DRL. 

RFDC_cal is competitive in reproducing the averaged-based signatures RQP and IBF, while it showed relatively a weak ability 

to regenerate the event-based signature DRL. RQP and IBF are flow metrics based on averages of long-term flow and 

precipitation in which no flow timing information is involved. Especially, RFDC_cal showed strong performance in 10 

reproducing IBF relative to PROX_reg. This result can be explained by considering that baseflow has less temporal variations 

than direct runoff in the Korean catchments under typical monsoonal climate. High seasonality of monsoonal precipitation 

makes high temporal variations in direct runoff during June to September, while relatively steady baseflow is dominant 

during dry seasons (October to May). In Catchment 2 whose flow variation is displayed in Figure 6, for example, the 

coefficient of variance (CV) of direct runoff was 5.86 for 2007-2015, which is approximately 3.5 times as high as that CV of 15 

baseflow. 

On the other hand, RFDC_cal was poorer to reproduce DRL than PROX_reg. This highlights the weakness of RFDC_cal in 

which only flow magnitudes were used for identifying model parameters. PROX_reg showed better performance to predict 

DRL than RFDC_cal. Flow timing information gained from the observed hydrographs might be preserved, even after 

behavioural parameters were transferred to ungauged catchments. Overall, PROX_reg seems to be better than RFDC_cal to 20 

predict the three flow signatures together. 

The box plots in Figure 9 provide an indication that DRL is likely to supplement the FDC calibration and thus improve 

RFDC_cal. From the collection of 50 behavioural parameter sets given by the FDC calibration, we chose the parameter set 

providing the lowest bias for each flow signature as the best behavioural sets, and simulated runoff again for all catchments. 

The high-flow predictability was fairly improved by additional constraining with DRL, suggesting that flow metrics 25 

associated with flow timing makes up for the weakness of the FDC calibration. Additional constraining with RQP and IBF did 

not bring appreciable improvement in the FDC calibration. However, PROX_reg was still better than the additional 

constraining with DRL, indicating that a further study is needed for better constraining rainfall-runoff models using FDCs 

together with additional flow metrics. 

4.4 Paired t-tests between the modelling approaches 30 

For comparative evaluation in this study, we produced several runoff prediction sets using multiple rainfall-modelling 

approaches. First, we calibrated GR4J against the observed hydrographs (referred to as Q_cal), and transferred the 
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behavioural parameters to ungauged catchments in the LOOCV mode (PROX_reg). We constrained GR4J with the regional 

FDCs (RFDC_cal). To evaluate equifinality, we recalibrated the GR4J parameters against the observed FDCs (referred to as 

FDC_cal). Additionally, we constrained the model with observed FDCs plus the flow signatures, and significant 

performance improvement was found with DRL (referred to as FDC+DRL_cal). A paired t-test using the performance metrics 

(NSE, LNSE, or DFS) between these modelling approaches can answer various questions beyond the graphical evaluations 5 

with box plots. For paired t-tests, we added one more case of transferring parameters gained from FDC_cal to ungauged 

catchments (referred to as FPROX_reg). FPROX_reg transfers behavioural parameters with no flow timing information from 

gauged to ungauged catchments. The mean NSE of FPROX_reg was 0.44 with a standard deviation of 0.49. 

A primary hypothesis of this study was that RFDC_cal could outperform PROX_reg. This question can be addressed by 

NSE differences between RFDC_cal and PROX_reg. The mean NSE difference between them was -0.22 and the standard 10 

error was 0.051, providing an evaluation that the NSE differences were less than zero at a 95% confidence level. The paired 

t-test did not lend support the hypothesis (i.e., PROX_reg outperformed RFDC_cal significantly). However, we could 

assume that DRL could improve predictive performance of FDC_cal. The mean NSE difference between FDC+DRL_cal and 

FDC_cal was 0.12 and the standard error was 0.025, confirming the significance at a 95% confidence level.  

Likewise, we tested several questions relevant to rainfall-runoff modelling in ungauged catchments using different 15 

combinations. One interesting question would be “Did the behavioural parameters from Q_cal contain flow timing 

information for ungauged catchments?” We addressed this question by comparing between PROX_reg and FPROX_reg with 

a hypothesis that predictability in ungauged catchments would decrease if the regionalised parameters were gained only from 

flow magnitudes. FPROX_reg uses FDC_cal for searching behavioural parameters at gauged catchments; thereby, it cannot 

transfer flow timing information to ungauged catchments through the behavioural parameters. The mean NSE difference 20 

between PROX_reg and FPROX_reg was 0.10, and the standard error was 0.031. The NSE differences were greater than 

zero significantly. The behavioural parameters from Q_cal were likely to have flow timing information affecting 

predictability in ungauged catchments. In Table 3, we summarised the results of paired t-tests for scientific questions that 

may arise from this study. They could be beneficial information for rainfall-runoff modelling in ungauged catchments. 

5 Discussion and conclusions 25 

5.1 RFDC_cal for rainfall-runoff modelling in ungauged catchments 

The use of regional FDCs as a single calibration criterion appears to be a good choice for searching behavioural parameters 

in ungauged sites. As discussed earlier, the FDC is a compact representation of runoff variability at all time scales, and thus 

able to embed multiple hydrological features in catchment dynamics (Blӧschl et al., 2013). A pilot study of Yokoo and 

Sivapalan (2011) discovered that the upper part of an FDC is controlled by interaction between extreme rainfall and fast 30 

runoff, while the lower part is governed by baseflow recession behaviour during dry periods. The middle part connecting the 

upper and the lower parts is related to the mean within year flow variations, which is controlled by interactions between 
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water availability, energy, and water storage (Yager et al., 2012; Yokoo and Sivapalan, 2011). It is well-documented that 

hydro-climatological processes within a catchment are reflected in the FDC (e.g., Cheng et al., 2012; Ye et al., 2012; 

Coopersmith et al., 2012; Yaeger et al., 2012; Botter et al., 2008), and therefore the model parameters identified solely by a 

regional FDC are expected to provide reliable predictions in ungauged catchments (e.g., Westerberg et al., 2014; Yu and 

Yang, 2000). 5 

The comparative evaluation in this study, however, provides another expected lesson that the FDC calibration is good to 

reproduce the FDC itself, but it insufficiently captures functional responses of catchments due to the absence of flow timing 

information. A hydrograph is the most complete flow signature embedding numerous processes interacting within a 

catchment (Blӧschl et al., 2013), being more informative than an FDC. Since any simplification of a hydrograph, including 

the FDC, should lose some amount of flow information, it is no surprise that the FDC calibration worsens the equifinality. 10 

This study emphasises that the absence of flow timing in RFDC_cal may cause larger prediction errors than regionalised 

parameters gained against observed hydrographs. The paired t-test between PROX_reg and FPROX_reg highlights that 

regionalised parameters gained from observed hydrographs were likely to contain intangible flow timing information even 

for ungauged catchments. The flow timing information implicitly transferred to ungauged catchment is a major gap between 

PROX_reg and RFDC_cal. The errors introduced by the FDC regionalisation were not significant due to high performance 15 

of the geostatistical method in this study. 

Because the hydrograph calibration can compensate the errors in input-output data, one may convert the hydrograph into the 

FDC to avoid effects of disinformation on rainfall-runoff modelling. However, in this case, valuable flow timing information 

should be paid in trade-off. For RFDC_cal in this study, we began with converting the observed hydrographs into the flow 

quantiles to regionalise them; thus, the flow timing information was initially lost. As shown, the performance of RFDC_cal 20 

was generally lower than that of PROX_reg. Therefore, when condensing observed hydrographs into flow signatures, 

preserving all available flow information in the hydrograph would be a key for a successful rainfall-runoff modelling. This 

study shows only using regionalised FDCs could lead to less reliable rainfall-runoff modelling in ungauged catchments than 

regionalised parameters. An FDC is unlikely to preserve all flow information in a hydrograph necessary for rainfall-runoff 

modelling. 25 

5.2 Suggestions for improving RFDC_cal 

Westerberg et al. (2014) suggested the necessity of further constraining to reduce predictive uncertainty in RFDC_cal. This 

study found that RFDC_cal could provide comparable performance to regenerate the flow signatures within which flow 

magnitudes are only involved (i.e., RQP and IBF). To supplement regional FDCs, flow signatures associated with flow timing 

seems to be essential. Figure 9 shows potential of additional constraining with DRL, and Q2 in Table 3 confirms it. Other 30 

flow signatures in temporal dimensions such as the high- and the low-flow event durations in Westerberg and McMillan 

(2015) can be candidates to improve RFDC_cal. However, uncertainty in those flow signatures will be a challenge to build 

regional models for ungauged catchments (Westerberg et al., 2016). 
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An alternative method of RFDC_cal is to directly regionalise hydrographs to ungauged catchments (e.g., Viglione et al., 

2013). In data-rich regions, topological proximity could better capture spatial variation of daily flows than rainfall-runoff 

modelling with regionalised parameters (Viglione et al., 2013). Although a dynamic model may be required for regionalising 

observed daily flows at an expensive computational cost, flow timing information would be contained in regionalised 

hydrographs. The parameter identification against the regional hydrographs may become a better approach than RFDC_cal 5 

and/or other signature-based calibrations. 

5.3 Limitations and future research directions 

There are caveats in our comparative evaluation. First, uncertainty in input-output data was not considered in our assessment. 

McMillan et al. (2012) reported typical ranges of relative errors in discharge data as 10-20% for medium to high flow and 

50-100% for low flows. We assumed that quality of the discharge data was adequate. However, other methods objectively 10 

considering uncertainty could better estimate model performance and the equifinality (e.g., Westerberg et al., 2011, 20144.3 

Streamflow prediction for ungauged catchments  

The box plots in Figure 8 present predictive performance of the calibration against regional FDCs (referred to as RFDC_cal 

hereafter) in comparison with the proximity-based parameter regionalisation (referred to as PROX_reg hereafter). The 

performance measures between observed and modelled hydrographs were computed for the entire period of streamflow data 15 

(2007-2011). Distributions of NSEs clearly showed that PROX_reg outperforms the FDC calibration in prediction of high 

flows (Figure 8a), indicating that a priori parameter sets from neighbouring catchments should perform even better than local 

calibrations against observed FDCs. The average difference between NSEs of PROX_reg and RFDC_cal was 0.18 with a 

standard deviation of 0.25. RFDC_cal outperformed PROX_reg only for 8 out of the 45 catchments. LNSEs with PROX_reg 

were still of a slightly higher median than RFDC_cal. Although RFDC_cal appears to have comparable predictability in low 20 

flows, 31 out of 45 catchments were having greater LNSEs with PROX_reg. The results for ungauged catchments bring the 

same intuition as the case for gauged catchment that a priori parameter sets obtained from nearby gauged catchments seem to 

be more desirable than local parameter identification against regional FDCs.  

The weaker performance of RFDC_cal in this work is consistent with the comparative study of). Second, we used a 

conceptual runoff model with a fixed structure for all the catchments. Uncertainty from the model structure would vary 25 

across the study catchments; nevertheless, the structural uncertainty was not measured here. Our comparative assessment 

was based on the basic premise that modelling conditions should be fixed for all study catchments. Finally, though the 

proximity-based parameter regionalisation was good for the Korean catchments, comparison between RFDC_cal and other 

regionalisation methods, such as the regional calibration and the similarity-based parameter transfer, may provide beneficial 

information for rainfall-runoff modelling in ungauged catchments. Comparative assessment between RFDC_cal and other 30 

parameter regionalisation using more sample catchments under diverse climates will provide more meaningful lessons. 

We can no longer hypothesise that the parameters gained against regionalised FDCs would perform sufficiently, because an 

FDC contains less information than a hydrograph (i.e., the absence of flow timing). For improving RFDC_cal, we suggested 
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to supplement RFDC_cal with flow signatures in temporal dimensions. Then, a question should be addressed on how to 

make flow signatures more informative than (or equally informative to) hydrographs. It may be impossible only using flow 

signatures originated from hydrographs (e.g., mean annual flow, baseflow index, recession rates, FDCs, etc.). Combinations 

of those signatures are unlikely more informative than their origins (i.e., hydrographs), though it depends on how much 

disinformation is present in the observed flows. Future research topics may include finding new signatures that supplement 5 

hydrographs, and how to combine them with existing flow signatures for rainfall-runoff modelling in ungauged catchments. 

5.4 Conclusions 

While the rainfall-runoff modelling against regional FDCs appeared a good approach for prediction in ungauged catchments, 

this study highlights its weakness in the absence of flow timing information, which may cause poorer predictive performance 

than the simple proximity-based parameter regionalisation. The following conclusions are worth emphasising: 10 

(1) For ungauged catchments in South Korea where spatial proximity well captured functional similarity between 

gauged catchments, the model calibration against regional FDCs is unlikely to outperform the conventional 

proximity-based parameter transfer for daily runoff prediction. The absence of flow timing information in regional 

FDCs seems to cause a substantial equifinality problem in the parameter identification process and thus lower 

predictability. 15 

(2) The model parameters gained from observed hydrographs would contain flow timing information even for 

ungauged catchments. This intangible flow timing information should be discarded if one calibrates a rainfall-runoff 

model against regional FDCs. This information loss may reduce predictability in ungauged catchments significantly. 

(3) To improve the calibration against regional FDCs, flow metrics in temporal dimensions, such as the rising limb 

density, need to be included as additional constraints. As an alternative approach, if river gauging density is high, 20 

regionalised hydrographs preserving flow timing information can be used for local calibrations at ungauged 

catchments.  

(4) For better predictions in ungauged catchments, it is necessary to find new flow signatures that can supplement the 

observed hydrographs. How to combining them with existing information will be a future research topic for rainfall-

runoff modelling in ungauged catchments. 25 

 Zhang et al. (2015), which evaluated performance of RFDC_cal using GR4J in 228 Australian catchments. Zhang et al. 

(2015) argued that RFDC_cal is not good enough for predicting daily hydrographs in the Australian catchments due to its 

much worse performance than the hydrograph calibration in gauged catchments. The information loss from simplifying 

hydrographs can be attributed to weaker performance and higher uncertainty of rainfall-runoff modelling against in FDCs. In 

recognition of good agreement between empirical and regional FDCs for the study catchments, prediction errors in regional 30 

FDCs would influence minor impacts on performance of RFDC_cal. 
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4.4 Evaluation of flow signature reproducibility 

Figure 9 summarises performance of the four methods applied in this study to regenerate three flow signatures of RQP, IBF, 

and DRL. The box plots of absolute biases between observed and modelled signatures indicate that parameter identification 

against FDCs showed competitive reproducibility in the long-term signatures RQP and IBF, while its ability was relatively 

weak to regenerate the event-based signature DRL. RQP biases seem to be sensitively affected by additional uncertainty 5 

sources in the FDC regionalisation and in spatial and temporal parameter transfer, but their medians and box heights were 

similar between FDC-based and hydrograph-based approaches. Given their relatively competitive performance in low flows, 

FDC-based approaches would show strong performance to reproduce IBF. 

In contrast, the FDC-based approaches were poorer to reproduce the event-based flow signature, DRL. It is not surprising 

because a FDC aggregates information of flow magnitude only. No information of flow timing in FDCs is likely a main 10 

factor that resulted in poor predictions of peak flow timing for both gauged and ungauged catchments. The FDC-based 

approaches could be insufficient for hydrological applications that require specific flow timings (e.g., flood forecasting). The 

conventional parameter regionalisation would be a more pragmatic option for the Korean catchments. From Figure 9c, we 

also had an indication that predictability in peak flow timing of the hydrograph calibration was well preserved even when 

parameter sets were transferred to neighbouring catchments. 15 

5 Discussion 

5.1 Evaluation of rainfall-runoff modelling against regional FDCs 

Regionalised flow signatures have frequently used for constraining rainfall-runoff models (e.g., Bárdossy, 2007; Boughton 

and Chiew, 2007; Bulygina et al., 2009). Advantages of the approaches are that they are complementary to a priori 

estimation of model parameters and are similar to usual methods to directly find the model parameters from dynamic 20 

catchment response data (Blӧschl et al., 2013). An important lesson learned from previous studies was that the models would 

dominantly work for reproducing the flow signature of interest (Blӧschl et al., 2013), albeit it appears self-evident. Thus, if 

one forces the model to reproduce low-flow signatures, use of the model would be appropriate for a drought forecasting 

rather than a flood analysis. Likewise, multiple signatures are obviously necessary for constraining runoff models to consider 

various aspects of flow variation. 25 

In this context, use of a FDC as a single calibration criterion appears to be a great choice for searching model parameters 

suitable for dynamic catchment behaviours. A FDC is a compact representation of runoff variability in frequency domain at 

all time scales from inter-annual to event-scale, and thus it embeds various aspects of multiple flow signatures (Blӧschl et al., 

2013). A pilot study of Yokoo and Sivapalan (2011) discovered that the upper part of a FDC with high flows is controlled by 

interaction between extreme rainfall and fast runoff, while the middle and lower parts are governed by interactions between 30 

water availability, energy and water storage and by baseflow recession behaviour during dry periods respectively. The major 
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hydrological processes within a catchment are reflected in a FDC, and therefore a runoff model constrained by a FDC can be 

expected to provide reliable flow predictions. Westerberg et al. (2014, 2011) and Yu and Yang (2000) are successful 

examples that applied FDCs to rainfall-runoff modelling as a single calibration criterion. 

The comparative evaluation in this study, however, provides the same lesson that rainfall-runoff modelling against FDCs is 

good to reproduce the FDC itself, but it was insufficient to be comparable to the hydrograph calibration in gauged 5 

catchments. For 41 out of the 45 catchments, NSEs between observed and modelled FDCs were greater than 0.9; nonetheless, 

hydrograph reproducibility of the FDC calibration was generally weaker. The hydrograph is an output of numerous 

hydrological processes interacting within a catchment, and is regarded as the most complete flow signature (Blӧschl et al., 

2013). Since any simplification of the hydrograph including FDCs would lose some amount of flow information, it is no 

surprise that the FDCs calibration worsens the equi-finality problem in conceptual rainfall-runoff modelling. If one has a 10 

runoff time series with acceptable data quality and length, there should be no reason to adopt the FDC calibration in 

replacement of the hydrograph calibration. The weaker DRL reproducibility confirms that the absence of flow timing in FDCs 

would lead to poorer runoff predictions of the FDC calibration. Instead, the FDC calibration may be good for prediction of 

compact flow signatures which are less informative than FDCs (e.g., mean annual runoff and seasonal flow regime). 

For ungauged or poorly gauged catchments, on the other hand, rainfall-runoff modelling against regionalised FDCs 15 

(RFDC_cal) can bring advantages. As aforementioned, a priori parameter sets derived from the outside of a catchment of 

interest may be more uncertain and thus less reliable than ones achieved from independently predicted flow signatures. 

Nevertheless, RFDC_cal was less powerful than use of parameter sets transferred from neighbouring catchments despite 

well-regionalised FDCs. The deficiency in RFDC_cal was likely to come not only from the absence of flow information in 

FDCs, but from powerful performance of PROX_reg. Modelling conditions of this study were very suitable for proximity-20 

based parameter transfer based on a comparative study of Parajka et al. (2013), which extensively reviewed literature on 

parameter identification in ungauged catchments. Parajka et al. (2013) reported that parameter regionalisation generally 

showed higher NSE performance under humid conditions than in arid and tropical regions. They argued that PROX_reg can 

be competitive with or better than similarity-based and regression-based regionalisation (e.g., Oudin et al., 2008; Parajka et 

al., 2005). Parajka et al. (2013) also provided a relationship between model complexity and performance, indicating that the 25 

complexity of GR4J (4 parameters) used in this study was desirable for parameter regionalisation. Given the knowledge in 

Parajka et al. (2013), aridity and temperature conditions of the 45 study catchments were suited to provide good predictive 

performance with PROX_reg. The strong performance of PROX_reg in this study suggests that functional similarity between 

Korean catchments may be changing gradually in space and thus found with spatial proximity. This could be confirmed by 

good performance of the geostatistical FDCs regionalisation in this study. Under these conditions, it may be difficult to 30 

produce better predictions using RFDC_cal with much higher equi-finality. 
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5.2 Why the FDC calibration performs good for low flow prediction  

Although we showed its weaknesses, this paper is not intended to leave negative messages on hydrological modelling against 

FDCs. It should be emphasised that the FDC calibration may provide advantages for applications aiming at assessing long-

term flow regime under projected environmental conditions (e.g., climate change impact assessment). In particular, its 

powerful predictability in low flows needs to be underlined. The objective function used in the parameter calibration 5 

includes the NSE, which can lead to overemphasis on high or peak flows due to squared residuals (Hrachowitz et al., 2013), 

albeit it is combined with the WBE. The calibration against FDCs, however, well reproduced low flows and IBF with no 

logarithmic transformation of observed flows, and hence could be a good choice for a low flow analysis or a long-term water 

resources management in both gauged and ungauged catchments. 

In regard of flow variation condensed into quantile flows of a FDC, predictability of the FDC calibration may be explained. 10 

In Korean catchments under a typical monsoonal climate, low flows governed by baseflow during dry seasons have less 

temporal variation than high flows generated by intermittent storm events. Thus, information loss of low flows is much 

smaller than high flows when a hydrograph is summarised in frequency domain. Figure 10a and b illustrate that high flows 

modelled by the collection of 50 parameter sets have flow timing errors and low robustness in medium to high flows in spite 

of fairly good agreement between observed and modelled FDCs across all flow magnitudes. The ranges of baseflow and 15 

direct runoff (i.e., main controls of low and flows) for the calibration period are shown together in Figure 10c. It indicates 

that direct runoff is more significantly condensed into a FDC. Because of the flow regime with small low-flow variability of 

the Korean catchments, the FDC calibration could automatically incline the model parameter towards reproduction of low 

flows. Should considerable variability exist in baseflow (e.g., snow-fed catchments), performance of the FDC calibration 

may differ. 20 

5.3 Flow signatures for improving calibration against FDCs 

As evaluated, rainfall-runoff modelling against FDCs has strength in baselow or low flow prediction in South Korea while 

high flows were not well captured due to the absence of flow timing. It was confirmed by the flow signature reproducibility 

in Figure 9 and the low robustness of direct runoff simulations in Figure 10b. Hence, additional constraining may fill the gap 

in FDC calibration as discussed in Westerberg et al. (2014). Westerberg et al (2014) emphasised the necessity of further 25 

constraining to reduce predictive uncertainty despite their sophisticated modelling against FDCs. The comparative evaluation 

of this study simply suggests that orthogonal (or complementary) flow signatures to a FDC should explain temporal flow 

variation (e.g., DRL, falling limb density, and recession rate). 

The box plots in Figure 11 show how the FDC calibration can be improved by additional constraints of the three flow 

signatures (RQP, IBF, and DRL). For runoff predictions, we simply chose one parameter set with the best reproducibility of 30 

each signature from the collection of 50 parameter sets of the FDC calibration. As expected from the competitive 

reproducibility of the FDC calibration in RQP and IBF, no meaningful improvement was found with both signatures. On the 
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contrary, the parameter sets constrained by DRL resulted in fairly improved performance, suggesting the need of metrics 

associated with temporal flow variation in the FDC calibration. A further study needs to be directed for regionalising flow 

metrics representing flow dynamics together with a framework to combine multiple signatures as it could fill the gap in 

model calibration against FDCs. 

5.4 Limitations and future research directions 5 

This study provides a meaningful lesson that modelling against regional FDCs may not be an attractive option where 

proximity-based parameter regionalisation performs greatly. In our knowledge, the topic of runoff prediction in ungauged 

catchments has been rarely dealt in South Korea due to limited availability of quality streamflow data, thus this study may 

become a good reference for scientific community. Nonetheless, there are several limitations in our comparative evaluation. 

First, we never considered uncertainty in discharge data for constructing FDCs and model calibration. McMillan et al. (2012) 10 

reported typical ranges of relative errors in discharge data as around 10-20% for medium to high flow and 50-100% for low 

flows. The measurement errors and epistemic uncertainty in input and output data may cause a disinformation effect on 

model calibration. Especially for the hydrograph calibration, if the model is significantly forced to compensate 

disinformation in high flows, calibrated parameters can be biased (Westerberg et al., 2011). We assumed that quality of the 

discharge data was adequate based on rigorous controls of the data distribution centre, but consideration of such errors will 15 

clarify their relative effects on the hydrograph- and FDC-based runoff modelling. Second, we used a conceptual runoff 

model with a fixed structure for all catchments, but it could be a structural error source for some catchments. Blӧschl et al. 

(2013) recommended that structuring a conceptual model needs to be considered in a realistic manner for reliable predictions. 

If this step was included in this study, predictive power might be better in catchments with relatively low NSE performance. 

Finally, though the proximity-based parameter regionalisation was powerful, other regionalisation methods such as regional 20 

calibration and spatial similarity parameter transfer would provide comprehensive information for selection between the 

parameter regionalisation and the signature calibration for ungauged catchments. 

Obviously, one research direction stemming from this study is how to regionalise metrics related to flow timing and 

dynamics. The signature calibration inherently removes the concern in conventional parameter regionalisation approaches, 

but should be based on well-regionalised signatures. Candidate flow signatures that can enhance the FDC calibration would 25 

be the overall flow variability, the flow autocorrelation, the rising and falling limb densities, and the slope of fast recession 

curve among other metrics. Unfortunately, the task of regionalising these signatures will be challenging. Westerberg et al. 

(2016) found that metrics gauging flow dynamics could be more uncertain than one measuring flow distribution (e.g., 

quantile flows). A new framework beyond conventional regionalisation methods may be needed to reduce uncertainty in 

regional flow signatures.  30 
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6 Summary and conclusions 

In this study, we investigated performance of the FDC calibration by comparing it with hydrograph-based methods for 

gauged and ungauged catchments. We began with parameter calibration of GR4J model against observed hydrographs and 

empirical FDCs at 45 catchments in South Korea using random simulations. Predictive performance and uncertainty of each 

catchment were evaluated using parameter sets obtained. For evaluation for ungauged catchments, hydrographs of the 45 5 

catchments were again predicted by treating each catchment as ungauged. In doing so, we estimated regional FDCs of the 

catchments using a promising geostatistical method, and calibrated model parameters against the regional FDCs. Predictive 

performance of the model based on regional FDCs was evaluated in comparison to hydrographs simulated with parameters 

transferred from neighbouring catchments. The key findings from our comparative evaluation are summarized as follows: 

(1) For gauged catchments, predictive performance and uncertainty of the FDC calibration can be significantly 10 

degraded by lose of flow timing information from a hydrograph to a FDC. Parameter identifiability would be 

reduced since the equi-finality increased. Uncertainty in hydrographs predicted by the FDC calibration was doubled 

on average. 

(2) The geostatistical FDC regionalization showed good performance in prediction of quantile flows despite its low 

TND reproducibility. The top-kriging weights interpolating TNDs had high potential for predicting quantile flows. 15 

Topological proximity is likely to well explain functional similarity between catchments in South Korea. However, 

it is notable that considering topological proximity only can bring bias where gauging density is low. 

(3) The typical proximity-based parameter transfer was of strong performance to regenerate hydrographs, and 

outperformed model calibration with regional FDCs. Although regional FDCs would have potential for capturing 

functional behaviour of ungauged catchments, the absence of flow timing would lead to less robust and less 20 

predictive performance than transferring parameters.  

(4) Relative merits of model calibration with regional FDCs were strong performance in baseflow prediction. Without 

logarithmic transformation of observed flows, parameters with regional FDCs seem to be forced to reproduce low 

flows because of relatively low temporal variation in baseflow of Korean catchments. 

(5) Complementary flow signatures for the FDC calibration could be metrics describing flow timing and dynamics. 25 

Additional constraining with DRL showed fairly improved performance with the FDC calibration. A further study 

for regionalising those metrics will improve the model calibration against regional FDCs. 

In short, we suggest that classical parameter regionalisation is pragmatic for predicting hydrographs in ungauged catchments 

in South Korea where spatial proximity well captures functional similarity between catchments. Nonetheless, we believe that 

further studies on regionalisation of relevant flow signatures will inherently improve runoff modelling in ungauged 30 

catchments using the FDC-based calibration. The FDC calibration still has a major advantage that it can directly identify 

parameters against plausible flow information of the catchment of interest unlike the parameter regionalisation. 
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Table 1: List of the gauged catchments and hydrological features (2007-2015) 

ID Name Ar1 Elv2 Pa
3 Ta

4 Ard5 Ps
6 ID Name Ar Elv Pa Ta Ard Ps 

1 Goesan Dam 677  363 1223 11.0 .69 29.5 24 Chunyang 145  201 1611 13.2 58 12.8 

2 Namgang Dam 2293  431 1558 13.8 .61 5.7 25 Osu 360 255 1434 11.7 61 49.6 

3 Miryang Dam 104  512 1824 13.3 .50 20.1 26 Daecheon 816  198 1336 13.2 70 23.4 

4 Boryeong Dam 162  244 1997 11.4 .44 140.8 27 Jeonju 276  176 1312 12.9 71 29.5 

5 Buan Dam 57  177 1253 13.7 .76 39.3 28 Hari 528  197 1332 13.4 71 20.8 

6 Seomjingang Dam 763  357 1487 11.4 .58 54.7 29 Bongdong 345  245 1354 13.2 69 19..4 

7 Soyanggang Dam 2783  634 1231 9.5 .64 50.6 30 Hannaedari 284  126 1218 12.6 75 31.2 

8 Andong Dam 1629  543 1330 10.0 .61 51.5 31 Suchon 224  94 1254 12.4 72 42.4 

9 Yongdam Dam 930  510 1508 12.6 .60 22.6 32 Wolpo 1158 315 1303 11.3 66 30.1 

10 Imha Dam 1976  388 1319 10.1 .63 50.6 33 Jeomchon 615  371 1230 11.5 71 29.9 

11 Hoengseong Dam 208  436 1247 11.1 .68 28.5 34 Sancheong 1131  554 1608 13.8 59 14.1 

12 Habcheon Dam 929  495 1470 12.9 .62 17.1 35 Seonsan 988  298 1202 12.0 73 27.7 

13 Chungju Dam 6705  608 1289 9.9 .62 51.5 36 Nonsan 477  151 1309 13.0 71 19.4 

14 Juam Dam 1029  269 1765 12.7 .52 19.5 37 Ugon 134  39 1272 13.2 73 19.3 

15 Jangheung Dam 192  198 1733 13.4 .54 17.6 38 Seokdong 156  71 1268 12.8 72 29.5 

16 Jungranggyo 209  131 1388 12.7 .66 22.9 39 Cheongju 165  149 1235 12.3 73 24.8 

17 Munmak 1138 303 1286 11.9 .69 25.1 40 Heodeok 609  193 1266 12.4 71 23.0 

18 Yeongchun 4775  996 1145 7.9 .62 83.3 41 Yuseong 246  193 1253 12.6 73 23.0 

19 Yeongwol-1 1614  625 1263 9.7 .62 51.3 42 Boksu 162  216 1267 12.2 71 23.6 

20 Pyeongchang 696  720 1235 9.3 .62 62.3 43 Sangyeogyo 495  255 1267 12.2 71 23.6 

21 Naerincheon 1013  752 1231 9.5 .64 50.6 44 Gidaegyo 361  250 1218 11.3 70 30.6 

22 Wontong 300 707 1283 8.6 .59 71.0 45 Indong 68  203 1229 12.0 72 24.8 

23 Hampyeong 105  87 1327 13.7 .72 23.7         

1Draiage Area (km2), 2Mean elevation (m), 3Mean annual precipitation (mm), 4Mean annual temperature (°C), 5Aridity (unitless) defined 

by the sum of potential evapotranspiration divided by the sum of precipitation, and 6Mean annual snowfall (mm) defined by mean annual 

precipitation when mean temperatures were below 0°C. All climatological features were calculated by spatial averages of the grid data.  
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Table 1: Summary of hydrological features of the study catchments 
 Average CV minimum 25% median 75% Maximum 

Area (km2) 890 1.39 57 208 495 1013 6705 

Elevation (m a.s.l.) 339 0.63 39 193 255 495 996 

Mean annual prcp. (mm yr-1) 1359 0.14 1145 1247 1286 1388 1997 

Mean annual temp. (°C) 11.9 0.13 7.9 11.3 12.3 13.0 13.8 

Aridity index1 (-) 0.66 0.11 0.44 0.61 0.68 0.71 0.76 

Psnow
2 35 0.66 6 23 28 50 141 

Mean annual flow (mm yr-1) 739 0.25 232 624 740 838 1159 

RPQ (-) 0.55 0.27 0.18 0.45 0.54 0.63 0.91 

IBF (-) 0.49 0.16 0.27 0.44 0.49 0.56 0.62 

DRL (day-1) 0.63 0.10 0.50 0.60 0.63 0.66 0.77 

1
Ratio of potential ET to total precipitation, 

2
Percentage of snowfall to total precipitation. Climatological features were 

calculated using spatial averages of the grid data, while the flow metrics were from the daily hydrographs for 2007-2015 as 

explained in Section 3.6.  
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Table 2: Ranges of GR4J parameters used for parameter calibration (Demirel et al., 2013) 

Parameter Range 

X1 (mm) 10 to 2000 

X2 (mm) -8 to +6 

X3 (mm) 10 to 500 

X4 (days) 0.5 to 4.0 
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Table 3: Results of the paired t-tests for potential questions on rainfall-runoff modelling in ungauged catchments 

Questions Corresponding pair 1PM 2ΔPM̅̅ ̅̅ ̅̅  
3std. 

err. 
Answer 

Q1. Did RFDC_cal outperform PROX_reg? RFDC_cal – PROX_reg NSE -0.22 0.051 No* 

Q2. Did DRL improve FDC_cal? FDC+DRL_cal – FDC_cal NSE 0.12 0.025 Yes* 

Q3. Did parameters from Q_cal contain flow timing information for 

ungauged catchments? 
PROX_reg – FPROX_reg NSE 0.10 0.031 Yes* 

Q4. Did absence of flow timing affect model efficiency? Q_cal – FDC_cal NSE 0.23 0.026 Yes* 

Q5. Did PROX_reg outperform RFDC_cal in predicting low flows? PROX_reg – RFDC_cal  LNSE 0.09 0.031 Yes* 

Q6. Did PROX_reg outperform RFDC_cal in reproducing IBF? PROX_reg – RFDC_cal  DFS(IBF) 0.06 0.028 No 

Q7. Did errors in regional FDCs affect RFDC_cal significantly? RFDC_cal – FDC_cal NSE -0.09 0.069 No 
1Performance metric used for t-test, 2Mean PM difference between the corresponding pair, 3Standard error of ΔPM. *ΔPM is significantly 

different from zero. The significance was evaluated at 95% confidence levels. 
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Figure 1: Locations of the gaugedstudy catchments for GR4J model and FDC regionalization. Catchmentin South Korea. The 

numbers are labelled at the centroidoutlet of each catchment. 
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Figure 2: The schematised structure of GR4J (X1-X4: model parameters, PE: potential evapotranspiration, P: precipitation, Q: 

runoff, other letters indicate variables conceptualizingconceptualising internal catchment processes). 
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Figure 3: (a) box plots of high flow (NSE) and low flow (LNSE) reproducibility of the behavioural parameters obtained from the 

hydrograph calibration at the 45 catchments, (b) the relationship between the input-output consistency and the model 

performance. The straight lines in the box plots connect the performance metrics for the calibration (2011-2015) and the validation 

periods (2007-2010) in each catchment. 5 

  

Formatted: Left, Line spacing:  single
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Figure 4: The relationships between model the behavioural parameters obtained from the hydrograph calibration at the 45 

catchments, (b) the relationship between the input-output consistency and (a) high flow reproducibility (NSEs) and (b) low flow 

reproducibility (LNSEs) 5 

 
Figure 4: 1:1 scatter plot between the empirical flow quantiles and the flow quantiles predicted by the top-kriging FDC 

regionalisation method. 

 

 10 
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the model  
Figure 5: Observed and predicted hydrographs (continuous and dashed lines) with estimated uncertainties (shaded area) at three 

stations with best (top), intermediate (middle), and worst (bottom) predictive performance respectively. The plot inside of each 

hydrograph present agreement between observed and modelled FDCs in log-log space in which its horizontal and vertical axes are 5 
for exceedance probability (range of 0-1) and runoff (same range of each hydrograph) respectively. . The straight lines in the box 

plots connect the performance metrics for the calibration (2011-2015) and the validation periods (2007-2010) in each catchment. 

  

Formatted: Normal
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Figure 5: Box plots of NSE and LNSE values between the observed and the predicted hydrographs by RFDC_cal and PROX_reg 

for the 45 catchments under the cross validation mode. 
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Figure 6: The observed and predicted hydrographs, the prediction areas, and the observed and predicted FDCs given by (a) the 

hydrograph calibration and (b) the FDC calibration for the Catchment 2. 
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Figure 7: (a) 1:1 scatter plots between the observed and estimated TNDs, and (b) the observed and estimated quantile flows of 45 

catchments. 

 

Figure 7: The input-output consistency vs. equifinality increased by replacing the hydrograph calibration with the FDC 5 
calibration. The equifinality ratio is defined as the ratio between the prediction areas of the 50 behavioural parameters gained 

from the FDC calibration and the hydrograph calibration. 
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Figure 8: (a) boxplots of NSEs (high flow reproducibility) of methods for gauged catchments (top-kriging FDC and Hydrograph 

calibrations) and for ungauged catchments (RFDC_cal and PROX_reg), (b) boxplots of LSNEs (low flow reproducibility) gained 

from the same methods. The dashed lines distinguish betweenregionalisation method for gauged and ungauged catchments. 

 5 
 

Figure 8: Flow signature reproducibility comparison between RFDC_cal and PROX_reg in terms of RQP (a), IBF (b), and DRL 

(c).  Formatted: Font: 10 pt, Not Bold
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Figure 9: Flow signature reproducibility of methods for gauged catchments (FDC and Hydrograph calibrations) and for ungauged 

catchments (RFDC_cal and PROX_reg) in terms of (a) RQP, (b) IBF, and (c) DRL. The dashed lines distinguish between method for 

gauged and ungauged catchments. 5 

 

Figure 9: Predictive performance of the FDC calibrations additionally conditioned by RQP (FDC+RQP), IBF (FDC+IBF), and 

DRL (FDC+DRL) in comparison to the other modelling approaches. Q_cal and FDC_cal refer to the hydrograph and the FDC 

calibration in gauged catchments respectively. 38 catchments with positive NSEs for all the modelling approaches were used 

in the box-plots.  10 

Formatted: Normal
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Figure 10: (a) observed FDC and FDCs modelled by the 50 parameter sets from the FDC calibration, (b) sample observed 

hydrograph, and hydrograph modelled by the same 50 parameter sets, and (c) Box plots of observed baseflow and direct runoff. 

The whiskers indicate maximum and minimum values. All panels are for Namgang dam (catchment 2) with 0.86 and 0.51 NSEs of 

daily flows using the hydrograph calibration and the FDC calibration respectively. 5 
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Figure 11: 8: Flow signature reproducibility comparison between RFDC_cal and PROX_reg in terms of RQP (a), IBF (b), and DRL 

(c). 
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