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Abstract. Reliable drought prediction is fundamental for water resource managers to develop and implement drought 

mitigation measures. Considering that drought development is closely related to the spatio-temporal evolution of large-scale 

circulation patterns, we develop a conceptual prediction model of seasonal drought processes based on atmospheric/oceanic 10 

Standardized Anomalies (SA). Empirical Orthogonal Function (EOF) analysis is first applied to drought-related SA at 200 

hPa/500 hPa geo-potential height (HGT) and sea surface temperature (SST). Subsequently, SA-based predictors are built 

based on the spatial pattern of the first EOF modes. This drought prediction model is essentially the synchronous statistical 

relationship between 90-day-accumulated atmospheric/oceanic SA-based predictors and 3-month SPI (SPI3), calibrated 

using a simple stepwise regression method. It is forced with seasonal climate forecast systems, including the NCEP Climate 15 

Forecast System Version 2 (CFSv2). It can make seamless drought prediction for operational use after a year-to-year 

calibration. Model application to four recent severe regional drought events in China indicates its good performance in 

predicting seasonal drought development, despite its weakness in predicting drought severity. Therefore, it can provide some 

valuable information and is a worthy reference for seasonal water resource management.  

 20 

1 Introduction 

Drought is an economically and ecologically disruptive natural hazard that profoundly impacts water resources, agriculture, 

ecosystems, and basic human welfare (Dai, 2011). In recent years, extreme drought events have caused disastrous impacts 

worldwide. The 2011 East Africa drought led to famine and severe food crises in several countries, affecting over nine 

million people (Funk, 2011). As part of the 2011–14 California Drought, the drought in 2014 alone cost California $2.2 25 

billion in damages and 17000 agricultural jobs (Howitt et al., 2014). China has also suffered from extreme drought events, 

such as the 2009/2010 severe drought in Southwest China (Yang et al., 2012), 2011 spring drought in the Yangtze River 

basin (Lu et al., 2014), and 2014 summer drought in North China (Wang and He, 2015). Because drought is a costly and 

disruptive natural hazard, reliable drought prediction is fundamental for water resource managers to develop and implement 
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feasible drought mitigation measures. In the present study, drought prediction is restricted to meteorological drought, which 30 

is associated with long-term precipitation deficits. 

Drought is generally predicted using two types of methods: model-based dynamical forecasting and statistical prediction. 

Dynamical forecasting primarily relies on computed drought indicators, such as the Standardized Precipitation Index (SPI; 

McKee and Kleist, 1993), based on forecasted precipitation retrieved from seasonal climate forecast systems (Dutra et al., 

2013; Dutra et al., 2014; Mo and Lyon, 2015; Yoon et al., 2012). Although dynamically predicted precipitation is useful 35 

information for drought situations, especially for short-term forecasting, it also contains high levels of uncertainty and 

limited skill with respect to long lead times (Wood et al., 2015; Yoon et al., 2012; Yuan et al., 2013). In contrast, statistical 

drought prediction is an additional source of prospective drought information (Behrangi et al., 2015; Hao et al., 2014). 

Different from the physically complex processes in coupled atmosphere-ocean models used for dynamical prediction, 

statistical drought prediction models are relatively simple but also perform well. They consist of input variables, 40 

methodology, and prediction targets (Mishra and Singh, 2011). 

Reasons for good and effective performance of statistical models include methodology improvements and drought-related 

climate indices used as input variables. To date, much attention has been paid to methodology improvements. Taking 

advantage of probabilistic and temporal-evolution features of input variables, statistical drought prediction models are 

primarily forced with probability or machine-learning methods, such as the ensemble streamflow prediction (ESP) method 45 

(AghaKouchak, 2014), Markov Chain- and Bayesian Network-Based Models (Aviles et al., 2015; Aviles et al., 2016; Shin et 

al., 2016), neural network, and support vector models (Belayneh et al., 2014). In addition to method improvement, climate 

indices represent large-scale atmospheric or oceanic drivers of precipitation, partly responsible for effective model 

performance. These climate indices include typical atmospheric and oceanic circulation patterns, such as the North Atlantic 

Oscillation (NAO; Hurrell, 1995) and El Niño-Southern Oscillation (ENSO; Ropelewski and Halpert, 1987), which have 50 

been widely used for drought prediction in different seasons and regions (Behrangi et al., 2015; Bonaccorso et al., 2015; 

Chen et al., 2013; Mehr et al., 2014; Moreira et al., 2016). 

These inherent climate indices, such as the NAO index and NINO 3.4 index, are simple, explicit, and widely used, therefore, 

they are the primary indices used for drought prediction. Additionally, based on the relationship between drought indices and 

potential atmospheric or oceanic circulation patterns, some researchers have also discovered large-scale circulation patterns 55 

closely related to regional droughts or have structured new drought predictors (Funk et al., 2014; Kingston et al., 2015). For 

instance, after discovering the two dominant modes of the East African boreal spring rainfall variability that are tied to SST 

fluctuations, Funk et al. (2014) further determined that the first- and second-mode SST correlation structures were related to 

two SST indices that could be used to predict East African spring droughts.  

Similarly, potential atmospheric and oceanic circulation patterns, which are closely related to regional droughts, are also 60 

used to construct drought predictors in the present study. Considering that the development of drought processes is closely 

related to the spatio-temporal evolution of large-scale circulation patterns, we constructed predictors based on anomalous 

spatial patterns. Because precipitation-inducing circulation patterns usually occur in the troposphere, predictors can be built 
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based on sea surface temperature (SST) and 200 hPa/500 hPa geopotential height (HGT), reflecting information from 

different levels of the troposphere. Subsequently, all predictors during different drought processes and 3-month SPI updated 65 

daily (hereafter SPI3) were used to calibrate the synchronous stepwise-regression relationship. The model can be forced with 

dynamically predicted SST and 200 hPa/500 hPa HGT conditions, indicating that the lead-time depends on that of the 

climate forecast models. Based on predicted prospective 90-day SPI3 curves, we developed angle-based rules for the drought 

outlook, which can make the drought outlook easily accessible to water resource managers. 

Overall, the objective of this study is to build a conceptual prediction model of seasonal drought processes. The essential and 70 

important steps are to (1) structure predictors on the basis of drought-related atmospheric/oceanic circulation patterns; (2) 

build the synchronous statistical predictor-SPI3 relationship forced with reanalysis and operationally forecasted datasets; (3) 

simulate and predict four severe seasonal drought processes in China to investigate model performance; and (4) propose an 

objective angle-based method for drought outlook.  

Considering the proposed conceptual model consists of several important parts, a brief but general introduction with 75 

sequential procedures are shown (Fig. 1), prior to specific descriptions in Sect. 3 to Sect. 8. In Sect. 3, historical extreme and 

severe drought processes are identified with 3-month SPI updated daily (SPI3). These drought processes usually go through 

one or several dry/wet spells, in which precipitation deficit characteristics and circulation patterns vary. Therefore, process-

split rules according to dry/wet spells in Sect. 4 are designed to assign drought process segments to different dry/wet spells. 

Meanwhile, gridded values in the fields of 200 hPa/500 hPa HGT and SST are transformed into gridded values of 80 

Standardized Anomalies (SA) in Sect. 5. Maps of atmospheric/oceanic SA during drought process segments within the same 

dry/wet spells are important inputs of predictor construction. After Empirical Orthogonal Function (EOF) analyses are 

conducted on these SA-based maps, the first leading EOF modes are used to generate predictors (Sect. 5). Further, 

synchronous statistical relationships between SA-based predictors and SPI3 are calibrated with the stepwise regression 

method in Sect. 6. The National Centers for Environmental Prediction / National Center for Atmospheric Research 85 

(NCEP/NCAR) Reanalysis datasets and NCEP Climate Forecast System Version 2 (CFSv2) operationally forecasted 

datasets are used to force the synchronous statistical relationship, respectively. Simulated and predicted 90-day prospective 

SPI3 time series are presented in Sect. 7. With the aid of angle-based rules for seasonal drought outlook, simulated and 

predicted SPI3 time series are transformed to five types of drought outlooks, which are easily accessible to water resource 

managers. 90 
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Figure 1. Brief introduction of the sequential procedures for drought prediction model construction 

Additionally, historical drought events in North China were used to introduce the model construction and calibration in Sect. 

3–6, but similar detailed procedures in East and Southwest China were not shown in the present study. Besides, SPI3 time 

series during the period extending from 2009 to 2014 in North China, East China, and Southwest China were used in the 95 

process simulation. Finally, recent severe drought processes in these three regions were used to verify model performance in 

operational application. 

2 Data 

The precipitation data used were the second-version Dataset of Observed Daily Precipitation Amounts at each 0.5° × 0.5° 

grid point in China for 1961–2014 (http://data.cma.cn/data/detail/dataCode/SURF_CLI_CHN_PRE_DAY_GRID_0.5.html), 100 

which was kindly provided by the Climate Data Center (CDC) of the National Meteorological Information Center, China 

Meteorological Administration (CMA). It was initially used to calculate area-averaged precipitation in North China, East 

China, and Southwest China (Fig. 2), which are the three Chinese drought regions investigated in this study. Atmospheric 

anomalies were diagnosed with respect to the NCEP/NCAR Reanalysis datasets, which has a resolution of 2.5° × 2.5° at 17 

pressure levels, extending from January 1948 to the present (Kalnay et al., 1996). The National Oceanic and Atmospheric 105 

Administration (NOAA) High Resolution SST dataset, with a spatial resolution of 0.25° × 0.25° and extends from 

September 1981 to present (Reynolds et al., 2007), were used for SST anomaly analysis. Additionally, the NCEP Climate 

Forecast System Version 2 (CFSv2; Saha et al., 2014) was introduced to verify operational performance of the proposed 

conceptual model. Since CFSv2 began on 1 April 2011, some drought events that occurred before this date were forced with 

the CFS reforecast output. All the reforecast and forecasted datasets are accessible on the website 110 
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(https://nomads.ncdc.noaa.gov/modeldata/), and 6-hourly forecasted datasets are transformed to daily timescale by a simple 

time-weighted mean method. 

 

Figure 2. The geographical distribution of China’s nine drought study regions (black solid curves) and provinces (light grey curves). The 
three regions labelled with red boxes are the focus in the present study. 115 

3 Identification of drought processes 

3.1 Three-month SPI updated daily 

SPI3 was used as the drought index for seasonal drought recognition and prediction in this study, and the calculation period 

is 1979–2014. Traditionally, the SPI3 set varies with a monthly timescale; each month a new value was determined from the 

previous 3 months (McKee and Kleist, 1993). To obtain seasonal drought processes at the 1-day timescale, we chose to 120 

update SPI3 daily, which was also recommended by the World Meteorological Organization (2012). Compared with the 

traditional method, the essential difference is that the interval for SPI3 calculation has been extended from 1 month to 1 day. 

However, no other changes relevant to mathematic procedures occur. Specified illustrations and details for calculating SPI3 

updated daily are shown as Fig. 3. Prior to the detailed procedures shown in Fig.3, daily area-averaged precipitation datasets 

are computed first. 125 
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Figure 3. Illustration indicating the steps for calculating SPI3 updated daily. The letter “E” represents value existence, while the letter “N” 

represents no relevant data. 

3.2 Drought process identification and grade classification 

Similar to the rules for SPI grade division recommended by the World Meteorological Organization (2012), the rules in our 130 

study are shown in Table 1. Drought processes are identified when the daily SPI3 values are below -0.50 for more than 30 

consecutive days.  

Table 1. Rules for SPI3 grade classification. 

daily SPI3 value grade 

0.50 and more wet 

-0.49 to 0.49 near normal 

-0.99 to -0.50 slightly dry 

-1.49 to -1.00 moderately dry 

-1.99 to -1.50 severely dry 

-2.00 and less extremely dry 
 

Each daily SPI3 value for a recognized drought process was assigned to the corresponding SPI3 grade (e.g., severely dry). 135 

Starting from the extremely dry grade to slightly dry grade, the ratio between the duration of a particular SPI3 grade and the 

total days of the entire drought process is calculated. When the ratio increases beyond 35%, the corresponding grade is 

assigned to the entire drought process. For example, as shown in Fig. 4, the proportion of the severely dry days is beyond 

35%. Accordingly, the 2001 summer drought in North China corresponded to the severe grade. 

 140 
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Figure 4. An example of grade classification for one complete drought process: the 2001 summer drought in North China. 

Therefore, we identified severe and extreme drought processes for 1979–2008 in North China. As shown in Table 2, 

persistent drought periods from 1997 to 2002 in North China were found, in agreement with other associated studies (Rong 145 

et al., 2008;Wei et al., 2004).  

Table 2. Identified severe and extreme drought processes from 1979 to 2008 in North China. 

Extreme 
Drought 

12/6/1997–28/11/1997  

2/11/1998–11/4/1999  

Severe 
Drought 

15/1/1984–14/5/1984 

9/11/1988–9/1/1989  

17/7/1999–1/11/1999  

23/3/2000–27/6/2000  

14/4/2001–1/8/2001  

3/8/2002–4/12/2002  

26/12/2005–2/2/2006  

 

4 Drought process division according to dry/wet spells 

Identified drought processes usually go through one or several dry/wet spells. Different dry/wet spells usually correspond to 150 

various precipitation deficit characteristics and atmospheric/oceanic circulation patterns. Therefore, we divided drought 

processes into different segments according to dry/wet spells, to further analyse atmospheric/oceanic anomalies during 

drought segments within the same dry/wet spells. Additionally, SPI3 on the start date also indicates that SPI3 is initially less 

than -0.5 and a severe drought process indeed follows, which is also important and special. Due to its implication, SPI3 on 
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the start date of an identified drought process actually reflects drought-inducing precipitation information for the previous 90 155 

days. Therefore, the start date of the drought process is advanced to the past 90th day, preceding the drought process division. 

This measure can contribute to introducing early drought-inducing information to predictor construction. 

Using North China as an example, the specified procedures for the division process are as follows. Similar to general 

seasonal classification, we divided the annual period into four dry/wet spells (Table 3) according to the temporal evolution of 

the daily precipitation rate in North China (Fig. 5). It is evident that the wet spell (one-fourth of the annual duration) 160 

accounts for over 50% of total precipitation, while the dry spell (one-third of the annual duration) accounts for about 6%. 

 

Figure 5. Temporal evolution of daily precipitation rate in North China averaged from 1961 to 2010. 

 

Table 3. Dates of dry/wet spells and their associated proportions of annual total precipitation in North China. Both Wet–Dry and Dry–Wet 165 
represent corresponding transition spells. 

Spell Period Precipitation Proportion (%) 

Wet 21 June–10 September 56.4  

Wet–Dry 11 September–20 November 14.9 

Dry 21 November–20 March  6.3 

Dry–Wet 21 March–20 June 22.4 

 

Based on these dry/wet spells, process-split rules (Fig. 6) are constructed using the Intersection Proportion (IP) and critical 

Proportion (P, set as 40%). Herein, IP is the proportion of initial segments accounting for relevant dry/wet spells, and the 

initial segments (e.g., D1, D3 and D4 in Fig. 6) refer to parts of one drought process split with dry/wet spells. As shown in Fig. 170 

6, one complete process is first transformed into several initial segments according to dry/wet spells. Second, “IP[0]” and 

“IP[-1]” are calculated, which express IP at the start and end segments respectively. Third, based on a comparison of IP and 

P results, these initial segments can be assigned to different dry/wet spells.   
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Figure 6. Process-split rules for one drought process according to dry/wet spells. IP represents Intersection Proportion, while P refers to 175 
critical Proportion. The terms “IP[0]” and “IP[-1]” express the IP at the start and end segments respectively.  

In practice, the start dates of identified drought processes (Table 2) were first shifted 90 days in advance. Following the 

process-split rules shown in Fig. 6, we divided these drought processes according to dry/wet spells in North China (Table 3). 

Detailed procedures of relevant IP calculations and comparisons can be found in Fig. S1, while final assignments of initial 

drought segments are shown in Table 4. In addition, to highlight the importance of extreme droughts, severe and extreme 180 

drought segments are considered respectively. 

 

Table 4. Drought process segments assigned to dry/wet spells during 1979–2008 in North China. 

Drought 
Grades 

Dry Spell Dry–Wet Spell Wet Spell Wet–Dry Spell 

Extreme 
21/11/1998–11/4/1999 14/3/1997–20/6/1997 21/6/1997–10/9/1997 11/9/1997–28/11/1997 

- - 4/8/1998–10/9/1998 11/9/1998–20/11/1998 

Severe 

21/11/1983–20/3/1984 21/3/1984–14/5/1984 21/6/1999–10/9/1999 17/10/1983–20/11/1983 

21/11/1988–9/1/1989 18/4/1999–20/6/1999 21/6/2001–1/8/2001 11/8/1988–20/11/1988 

24/12/1999–20/3/2000 21/3/2000–27/6/2000 21/6/2002–10/9/2002 11/9/1999–1/11/1999 

14/1/2001–20/3/2001 21/3/2001–20/6/2001 - 11/9/2002–4/12/2002 

21/11/2005–2/2/2006 5/5/2002–20/6/2002 - 27/9/2005–20/11/2005 
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5 Predictor construction 185 

5.1 Atmospheric and oceanic standardized anomalies 

To describe atmospheric and oceanic anomalies objectively, we chose the Standardized Anomalies (SA) method. It was first 

used to effectively identify high-impact weather events (Grumm and Hart, 2001; Hart and Grumm, 2001). Subsequently, the 

SA method has also provided significant values for the analysis of extreme precipitation events (Duan et al., 2014; Jiang et 

al., 2016). In the present study, the SA of a meteorological variable was defined in Hart and Grumm (2001), described as 190 

          SA  ,            (1) 

Where X represents daily grid-point atmospheric/oceanic circulation pattern variables, which are 200 hPa/500 hPa HGT and 

SST. μ and σ are the daily grid-point mean value and daily grid-point standard deviation, respectively. The climatological 

periods are 1979–2008 for 200 hPa/500 hPa HGT and 1982–2008 for SST, respectively. For example, with respect to one 

certain grid point, both the mean 1 January 500 hPa HGT value and associated standard deviation are computed on the 1 195 

January 500 hPa HGT datasets observed during 1979–2008 at the grid point. 

5.2 The first EOF leading modes of SA 

Empirical Orthogonal Function (EOF) analysis (Wilks, 2011) is introduced to decompose spatio-temporal dataset of 

drought-related atmospheric/oceanic SA into spatially stationary coefficients (leading modes) and time-varying coefficients 

(principal component). Considering the first leading EOF modes reflect the largest fraction of drought-related 200 

atmospheric/oceanic spatial variability, we focus on them. In addition, to highlight the importance of extreme droughts, EOF 

analysis is conducted on atmospheric/oceanic SA during severe and extreme drought segments, respectively. With the same 

dry/wet spells and drought grade, SA-based maps during all drought process segments are used for EOF analysis. For 

example, SA-based maps of 500hPa HGT during all three severe segments in wet spells (Table 4) are analysed with the EOF 

method, and the first EOF lead mode is shown in Fig. 7 (h). Identical EOF analysis is conducted on atmospheric/oceanic SA 205 

of 200/500 hPa HGT and SST during all four dry/wet spells. Relevant results are found in Fig. 7, Fig. S2 and Fig. 8, 

respectively. 
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Figure 7. The first leading Empirical Orthogonal Function (EOF) modes of Standardized Anomalies (SA) for 500 hPa geo-potential height 
fields (HGT) during all severe and extreme drought process segments in different dry/wet spells. The black boxes outline the selected areas 210 
used to structure predictors, while capital letters refer to the selected area codes. 
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Figure 8. Same as Fig. 7, but for Standardized Anomalies (SA) of SST fields. 

5.3 Pattern-based predictor construction 215 

Positive and negative pattern areas in the first EOF leading modes are used to build predictors, which resemble the pattern-

based definition of atmospheric teleconnection indices (Wallace and Gutzler, 1981). As shown in Fig. 7 (a), a large area of 

positive pattern area (Region B) occurs over southeast China, while a negative pattern area (Region A) appears to the north 

of Eurasia. Generally, the predictor is area-averaged over all gridded SA-based variables in selected areas, such as A and B, 

considering the positive and negative signs indicated with different colours. Results from the pattern-based predictor 220 

construction are shown in Table 5. 

As shown in Fig. 7, the spatial pattern of different phases in the 500 hPa HGT fields were adequately considered, including 

low/high latitude differences (e.g., PHGT500,0 in Table 5) and ocean/continent differences (e.g., PHGT500,3 in Table 5). In 

addition, the spatial pattern of different phases surrounding the prediction-targeted region (e.g., Region R, S and T in Fig. 

7(g)) was intentionally used to construct predictors, such as PHGT500,9  and PHGT500,10 in Table 5. Because the first EOF modes 225 

of 200 hPa HGT (Fig. S2) were similar to those of 500 hPa HGT, the specified illustrations were ignored. Additionally, the 

positive and negative pattern areas in the Pacific SST SA fields were also used, especially in the subtropical gyre zone (Fig. 
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8 (a)–(d)) and El Niño region (Fig. 8 (e) and (f)). Furthermore, some regions, such as the El Niño Regions R, Q and S, were 

separately used for predictor construction. 

 230 

Table 5. Predictor-structured results based on the first leading Empirical Orthogonal Function (EOF) modes for SA of 200 hPa HGT, 500 
hPa HGT and SST fields during different dry/wet spells in North China. Capital letters refer to the code for selected areas in Fig. 7, Fig. S2 
and Fig. 8. In the term “PXXX,Y”, P, XXX, and Y refer to predictor, atmospheric or oceanic elements, and the code of new predictors, 
respectively. 

Dry Dry–Wet Wet–Dry Wet 

PSST,0=A-B PSST,5=L+K-I PSST,9=Q PSST,12=T 

PSST,1=D-B PSST,6=J-I PSST,10=R PSST,13=U-V 

 PSST,2=A-C PSST,7=M-P PSST,11=S PSST,14=W-X 

 PSST,3=F-E PSST,8=N-O P HGT500,5=J-K P HGT500,9=R-S 

PSST,4=H-G P HGT500,2=E-F P HGT500,6=M-L P HGT500,10=T-S 

PHGT500,0=B-A P HGT500,3=G-F P HGT500,7=O-N P HGT500,11=U-V 

P HGT500,1=C-D P HGT500,4=H-I P HGT500,8=Q-P P HGT500,12=X-W 

PHGT200,0=A-B PHGT200,2=F-E PHGT200,6=K-L P HGT500,13=U-W 

PHGT200,1=C-D PHGT200,3=F-G PHGT200,7=K-M PHGT200,10=R-S 

- 

PHGT200,4=H-I PHGT200,8=O-N PHGT200,11=X-T 

PHGT200,5=H-J PHGT200,9=Q-P PHGT200,12=V-U 

- - PHGT200,13=W-U 

 235 

6 Model calibration 

6.1 Synchronous statistical relationship 

Stepwise regression (Afifi and Azen, 1972) is a method for fitting multiple linear regression models, in which a predictive 

variable is considered for addition to or subtraction from a set of explanatory variables according to statistically significant 

extent or loss. It is used to build the synchronous statistical relationship between all 90-day-accumulated SA-based 240 

predictors and prediction target SPI3. SA-based predictors are calculated with the NCEP/NCAR Reanalysis dataset (Kalnay 

et al., 1996). Essentially, the conceptual model, aimed at seasonal drought process prediction, is a synchronous stepwise 

relationship.  

6.2 Rolling calibration year by year 

To meet the practical requirements of operational service departments, model calibration is also running year by year. Six 245 

experiments of seasonal drought prediction are conducted (Table 6). Detailed information about selected predictors and 

relevant coefficients can be found in Table S1. For example, the seasonal drought prediction model, calibrated from 1 Jan 



14 
 

1983 to 31 Dec 2011, is used for initial daily prediction time in the entire 2012 year. For every initial drought prediction in 

the 2013 year, the corresponding drought model is calibrated from 1 Jan 1983 to 31 Dec 2012.  

Table 6. Statistical parameters of stepwise-regression equations used for prediction during different calibration periods in North China. 250 

Calibration period 
(1 Jan 1983–) 

Simulation or Prediction 
period 

Numbers of 
selected/initial predictors 

Multiple 
correlation 
coefficient 

31 Dec 2008 1 Jan 2009–31 Dec 2009 38/43 0.76 

31 Dec 2009 1 Jan 2010–31 Dec 2010 37/43 0.76 

31 Dec 2010 1 Jan 2011–31 Dec 2011 39/43 0.75 

31 Dec 2011 1 Jan 2012–31 Dec 2012 39/43 0.76 

31 Dec 2012 1 Jan 2013–31 Dec 2013 38/43 0.76 

31 Dec 2013 1 Jan 2014–31 Dec 2014 39/43 0.75 
 

The calibration period increases year by year, therefore, the figure for samples used for calibration is considerable. Multiple 

correlation coefficients in six drought prediction models are no less than 0.75. Statistical parameters and their total numbers 

show slight changes across the six calibration experiments (Table 6). Furthermore, calibrated SPI3 curves are almost 

consistent with the observation data (Fig. 9), especially with respect to the key turning points and trends. 255 

 

 

Figure 9. Temporal evolution of observed and calibrated SPI3 during the calibration period between 1 Jan 1983 and 31 Dec 2008 in North 
China. 

 260 
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7 Drought process simulation and prediction 

7.1 Model forcing 

Because the conceptual model is essentially a synchronous statistical relationship, the model itself has no lead time. 

Therefore, model simulation and prediction have to be further forced with different forecasted datasets. During the periods of 

model simulation, the synchronous statistical relationship is forced with the NCEP/NCAR Reanalysis dataset (Kalnay et al., 265 

1996). For model prediction, SPI3 prediction is operationally forced with CFSv2 (Saha et al., 2014), which is a type of 

climate forecast model. Therefore, the lead time for the conceptual model depends on that of the climate forecast models.  

In the present study, we focus on the prospective 90 day seasonal drought process prediction. That is, 90 daily SPI3 values in 

the future will be predicted and they will compose a prospective SPI3 curve with 90 points. To achieve it, prospective 90 day 

forecasted data subsets for 200 hPa/500 hPa HGT and SST are retrieved from CFSv2, which are used for the predictor 270 

calculation.  

7.2 Drought processes simulated with the NCEP/NCAR reanalysis datasets  

To assess model performance of severe seasonal droughts, we take recent drought events in Southwest China, East China, 

and North China as examples. First, Southwest China experienced two severe droughts (the black boxes in Fig. 10 (c)). 

Although the simulated SPI3 does not reach its peak during the 2009/2010 drought, it indicates the state transformation from 275 

drought occurrence to persistence and eventually to relief. In terms of the 2011 summer drought in the Southwest China, the 

simulated SPI3 indicates that the state remains wet and gradually becomes wetter, indicating no valuable information 

consistent with observations. Nevertheless, during the phase of drought recession, the simulated development is quite similar 

to the observed development. This comparison indicates that the conceptual model performs well in development but is weak 

in severity. This distinct feature also appears in the simulation of the 2011 drought in East China (the black box in Fig. 10 (b)) 280 

and 2014 drought in North China (the black box in Fig. 10 (a)). 
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Figure 10. Temporal evolution of observed and simulated SPI3 processes during the period from 1 Jan 2009 to 31 Dec 2014. The black 
boxes in (a)–(c) indicate the 2014 summer and autumn drought in North China, 2011 spring drought in East China, 2009/2010 drought in 
Southwest China, and 2011 summer drought in Southwest China. Red curves refer to simulated SPI3, while curves filled with light blue 285 

represent observed SPI3. 

7.3 Drought processes predicted with the CFSv2 forecast datasets  

Compared with drought simulation, operationally predicted results may bring some uncertainties into the prospective 

drought processes. As shown in Fig. 11 (b), predicted curves perform worse than the simulated curves near the peak of the 

2011 East China drought, as the prospective observation tendency is rising rather than decreasing. However, in the other 290 

three droughts, the predicted curves are well indicating drought development to different degree, resembling the simulated 

results quite well. For example, the presented operationally reforecast curves indicate drought occurrence, persistence, and 

relief during the 2009/2010 drought in Southwest China (Fig. 11 (a)).  
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 295 

Figure 11. Simulation and prediction results of four recent severe drought events in China. Every unfilled curve represents simulated or 
predicted prospective 90 day SPI3, with an interval of initial prediction time of about 10 days. The curves filled with blue refer to observed 
SPI3. Dark and bright red curves refer to SPI3 predicted with CFSv2 and CFS products, respectively. Light green curves represent SPI3 
simulated with the NCEP/NCAR reanalysis datasets. Every simulated or predicted curve consists of daily SPI3 time series with 90 points. 

8 Drought outlook  300 

8.1 Angle-based rules 

Compared with the predicted prospective SPI3 time series, the drought outlook is a convenient and valuable attachment 

product for water resource managers. To create the drought outlook, angle-based rules are developed to transform the 

predicted prospective 90-day SPI3 curves into different drought tendencies. Three essential technical points are as follows.  

First, the variables must be defined to describe drought development. Similar to the slope of curves, angles of predicted 90 305 

day SPI3 curves are used to describe the prospective drought situation. Generally, positive angles of SPI3 curves indicate 

wetter tendencies, while negative angles represent drier tendencies. 

The second is two general classifications of drought outlook on the basis of the current drought situation. For no current 

drought (see sketch map I in Fig. 12), the prospective situation tends to be no drought or drought occurrence. In this case, a 

critical angle α1 can be used to help distinguish between these two types of drought outlook. A calculated SPI3 curve angle α 310 

that is less than α1 results in the prospective development of drought occurrence; otherwise, the non-drought situation 

persists. Similarly, for a current condition of being in drought (see sketch map II in Fig. 12), a comparison of critical angles 
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α2 (equal to zero) and α3 defines the other three types of drought outlook, which are drought persistence (α less than α2), 

drought recession (α more than α2, but less than α3), and drought relief (α more than α3).  

 315 

Figure 12. Rules of drought outlook based on angle comparison of prospective 90 day SPI3 curves. Sketch maps I and II show general 
drought outlook based on current drought situation. (a)–(b) and (c)–(e) express different situations of drought outlook associated with the 
rules regarding critical angles in Table 7. 

Third, it is necessary to explain the practical calculation for curve angles and how to conduct an angle-based drought outlook. 

Except the constant critical angle α2 (equal to zero), both α1 and α3 represent angles between the horizontal line and arrow 320 

from the original point (initial prediction time) to the points on the time axis (see red dashed arrowed lines in Fig. 12(a)–(e)). 

Similarly, α represents angles between the horizontal line and arrow from the original point to the points on the predicted 

SPI3 curve (see green solid arrowed lines in Fig. 12(a)–(e)). However, considering the predicted period of SPI3 time series is 

prospective 90 days, curve angle αi and critical angles α1i, α2i and α3i (i=1, 2,…, 90) can be calculated. Finally, according to 

the angle-based rules shown in Table 7, a drought outlook can eventually be performed. 325 

Table 7. Specific rules for drought outlook based on angle comparison. R1 represents the ratio of days when αi is less than the critical 
angle α1i (α3i) to the total 90 days. R2 represents the ratio of specific days in the period of the predicted prospective 46–90 days. In R2 
calculation, these specific days meet the criteria that αi is greater than critical angle α3i. 

Current SPI3 Current condition  R1 R2 Drought outlook 

greater than -0.5 no drought less than 10% - no drought 
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greater than 10% - drought occurrence 

less than -0.5 in drought 

greater than 90% less than 90% drought persistence 

greater than 90% greater than 90% drought recession 

less than 90% - drought relief 

 

8.2 Simulated and predicted results 330 

Following the method in Sect. 8.1, drought outlook is conducted based on angle comparison of the simulated prospective 90-

day SPI3 curve (Table 8). Simulations at every initial time are real-time corrected with the current situation. In terms of the 

2009/2010 drought in Southwest China and 2011 summer drought in East China, the simulated drought outlook perform well 

with respect to drought occurrence, persistence, and recession before 2/12/2009 and 1/5/2011 respectively. In addition, the 

simulation of the 2011 drought in Southwest China performs well in August 2011. The 2014 summer drought in North China 335 

lasts for a relatively short time, resulting in an observed drought outlook that maintains a state of drought relief during the 

first month of the drought process. Even so, the simulation can also capture it. Additionally, these four drought outlooks 

remain weak in simulating the development of drought relief after 31/1/2010, 11/5/2011, 11/9/2011, and 21/7/2014, 

respectively. Weak performance in simulating severity leads to the development of drought recession rather than drought 

relief. 340 

Table 8. Simulation assessment of recent severe drought events in China forced with the NCEP/NCAR Reanalysis datasets. The numbers 
0–4 in the below table represent different drought states: no drought (0), drought occurrence (1), drought persistence (2), drought recession 
(3), and drought relief (4). Besides, the abbreviation “Simul.” and “Obs.” represent the simulated and observed drought outlook, 
respectively. The abbreviation “Asses.” in the column refers to whether the simulation and observation agree or not. 

Drought 
Events 

Initial 
Time 

Simul. Obs. Asses. Initial Time Simul. Obs. Asses. Initial Time Simul. Obs. Asses. 

the 
2009/2010 
drought in 
Southwest 

China 

30/6/2009 1 2 - 28/9/2009 3 2 - 11/1/2010 2 3 - 

10/7/2009 2 2 yes 18/10/2009 3 2 - 21/1/2010 2 3 - 

20/7/2009 2 3 - 2/11/2009 3 3 yes 31/1/2010 3 4 - 

30/7/2009 2 3 - 12/11/2009 3 3 yes 10/2/2010 3 4 - 

9/8/2009 2 2 yes 22/11/2009 3 3 yes 20/2/2010 3 4 - 

19/8/2009 2 2 yes 2/12/2009 3 3 yes 2/3/2010 3 4 - 

29/8/2009 2 2 yes 12/12/2009 2 3 - 12/3/2010 3 4 - 

8/9/2009 2 2 yes 22/12/2009 2 3 - 22/3/2010 3 4 - 

18/9/2009 2 2 yes 1/1/2010 2 3 - - 

the 2011 
summer 

drought in 
East China 

1/1/2011 1 1 yes 2/3/2011 1 1 yes 1/5/2011 3 3 yes 

11/1/2011 1 1 yes 12/3/2011 3 2 - 11/5/2011 3 4 - 

21/1/2011 1 1 yes 22/3/2011 3 2 - 21/5/2011 3 4 - 

31/1/2011 1 1 yes 1/4/2011 3 3 yes 1/6/2011 3 4 - 

10/2/2011 0 1 - 11/4/2011 3 3 yes 11/6/2011 3 4 - 

20/2/2011 1 1 yes 21/4/2011 3 3 yes 21/6/2011 3 4 - 

the 2011 11/4/2011 1 1 yes 1/7/2011 3 2 - 21/9/2011 3 4 - 
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summer 
drought in 
Southwest 

China 

21/4/2011 2 2 yes 11/7/2011 3 2 - 1/10/2011 3 4 - 

1/5/2011 2 2 yes 21/7/2011 3 2 - 11/10/2011 3 4 - 

11/5/2011 2 2 yes 1/8/2011 3 3 yes 21/10/2011 3 4 - 

21/5/2011 4 2 - 11/8/2011 3 3 yes 1/11/2011 3 4 - 

1/6/2011 3 2 - 21/8/2011 3 3 yes 11/11/2011 3 4 - 

11/6/2011 3 2 - 1/9/2011 3 3 yes 21/11/2011 2 4 - 

21/6/2011 3 2 - 11/9/2011 3 4 - - 

the 2014 
summer 

drought in 
North 
China 

1/6/2014 4 4 yes 11/7/2014 3 3 yes 21/8/2014 3 4 - 

11/6/2014 4 4 yes 21/7/2014 3 4 - 1/9/2014 3 4 - 

21/6/2014 4 4 yes 1/8/2014 3 4 - 11/9/2014 3 4 - 

1/7/2014 1 1 yes 11/8/2014 3 4 - 21/9/2014 4 4 yes 

 345 

For predicted drought outlooks, operationally predicted results (Table 9) in Southwest China and East China are relatively 

similar to the simulated ones (Table 8). In comparison, predicted drought outlook during the first month of the 2014 drought 

in North China performs worse than simulated results. 

Table 9. Same as Table 8 but for predicted results forced with the operational output from CFSv2. The abbreviation “Predi.” represents the 
predicted drought outlook. The abbreviation “Asses.” in the column refers to whether the prediction and observation agree or not. 350 

Drought 
Events 

Initial 
Time 

Predi. Obs. Asses. Initial Time Predi. Obs. Asses. Initial Time Predi. Obs. Asses. 

the 
2009/2010 
drought in 
Southwest 

China 

30/6/2009 1 2 - 28/9/2009 3 2 - 11/1/2010 3 3 yes 

10/7/2009 2 2 yes 18/10/2009 2 2 yes 21/1/2010 3 3 yes 

20/7/2009 3 3 yes 2/11/2009 3 3 yes 31/1/2010 3 4 - 

30/7/2009 3 3 yes 12/11/2009 3 3 yes 10/2/2010 4 4 yes 

9/8/2009 2 2 yes 22/11/2009 3 3 yes 20/2/2010 3 4 - 

19/8/2009 2 2 yes 2/12/2009 3 3 yes 2/3/2010 3 4 - 

29/8/2009 2 2 yes 12/12/2009 3 3 yes 12/3/2010 3 4 - 

8/9/2009 3 2 - 22/12/2009 3 3 yes 22/3/2010 3 4 - 

18/9/2009 2 2 yes 1/1/2010 3 3 yes - 

the 2011 
summer 

drought in 
East China 

1/1/2011 1 1 yes 2/3/2011 1 1 yes 1/5/2011 2 3 - 

11/1/2011 1 1 yes 12/3/2011 2 2 yes 11/5/2011 2 4 - 

21/1/2011 1 1 yes 22/3/2011 2 2 yes 21/5/2011 2 4 - 

31/1/2011 1 1 yes 1/4/2011 2 3 - 1/6/2011 2 4 - 

10/2/2011 1 1 yes 11/4/2011 2 3 - 11/6/2011 3 4 - 

20/2/2011 1 1 yes 21/4/2011 2 3 - 21/6/2011 3 4 - 

the 2011 
summer 

drought in 
Southwest 

China 

11/4/2011 0 1 - 1/7/2011 4 2 - 21/9/2011 3 4 - 

21/4/2011 3 2 - 11/7/2011 3 2 - 1/10/2011 3 4 - 

1/5/2011 3 2 - 21/7/2011 3 2 - 11/10/2011 3 4 - 

11/5/2011 3 2 - 1/8/2011 3 3 yes 21/10/2011 3 4 - 

21/5/2011 4 2 - 11/8/2011 3 3 yes 1/11/2011 3 4 - 

1/6/2011 4 2 - 21/8/2011 3 3 yes 11/11/2011 4 4 yes 

11/6/2011 4 2 - 1/9/2011 3 3 yes 21/11/2011 2 4 - 
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21/6/2011 3 2 - 11/9/2011 3 4 - - 

the 2014 
summer 

drought in 
North 
China 

1/6/2014 0 4 - 11/7/2014 1 3 - 21/8/2014 3 4 - 

11/6/2014 1 4 - 21/7/2014 2 4 - 1/9/2014 4 4 yes 

21/6/2014 1 4 - 1/8/2014 3 4 - 11/9/2014 3 4 - 

1/7/2014 1 1 yes 11/8/2014 2 4 - 21/9/2014 4 4 yes 

 

9 Discussion 

Considering that the development of drought processes is closely related to spatio-temporal evolution of atmospheric and 

oceanic anomalies, a conceptual prediction model of seasonal drought processes is proposed in our study. Despite its 

weakness in predicting drought severity, the model performs well in simulating and predicting drought development. 355 

Because the proposed model is a new attempt, several associated discussion issues are as follows.  

First, process prediction and outlook of seasonal drought are the focus of our study. To date, a considerable number of 

studies have focused on predicting discrete drought classes (Aviles et al., 2016; Bonaccorso et al., 2015; Chen et al., 2013; 

Moreira et al., 2016) and the probability of drought occurrence within certain classes (AghaKouchak, 2014, 2015; Hao et al., 

2014). Compared with these studies, process prediction of regional drought events is another valuable attempt, which is 360 

beneficial from the moving window of SPI3 extended from 1 month to 1 day. It performs relatively well in predicting the 

development of seasonal drought processes (Fig. 11). In addition, it can indicate drought occurrence, persistence, and relief 

relatively well (Table 8 and Table 9), which is meaningful for seasonal water resource management. 

Second, the proposed model is essentially one stepwise-regression equation, which makes drought prediction for operational 

use year-by-year and seamless. Despite its simplicity, it incorporates drought-related spatial and temporal information as 365 

integrally as possible. Because precipitation-related synoptic systems appear in the troposphere, SST, 500 hPa HGT, and 200 

hPa HGT are chosen as representatives of the low, middle, upper levels of the troposphere, respectively. Furthermore, all 

drought process segments assigned to different dry/wet spells are used for EOF analysis within the same dry/wet spells 

(shown in Sect. 5.2). Therefore, adequate drought-related spatio-temporal information has been included in these drought 

predictors. 370 

Third, the reasons for acceptable performance of operationally predicted results need to be illustrated. Compared with those 

forced with the NCEP/NCAR Reanalysis datasets (green curves in Fig. 11), the predicted developments of drought processes 

forced with CFSv2 or CFS datasets (red curves in Fig. 11) are relatively similar, especially with respect to the former 

segment of every predicted prospective 90-day SPI3 curve. Essentially, the 90-day-accumulated SA-based predictors 

strengthen the good performance of operational use. This indicates that observed information from atmospheric and oceanic 375 

anomalies are involved to different degrees. For instance, the predicted 90-day-accumulated SA-based predictor at the 

prospective 60th day is calculated based on a combination of observed data for the past 30 days and dynamically forecasted 

data for the prospective 1–60 days. With the incorporation of observed data, its operational application provides relatively 
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accurate and valuable information. However, it is also worthwhile to investigate how long the predicted period last can make 

predicted drought processes relatively accurate and acceptable, such as the prospective 1–30 day or the prospective 1–60 day. 380 

The relevant comparison results with different predicted periods are shown in Fig. 13. It appears that the 2009/2010 drought 

in Southwest China and 2014 drought in North China can be predicted and simulated well even for the prospective 1–75 day. 

In contrast, the prospective 1–45 day may be a feasible and acceptable lead time for simulation and prediction of the 2011 

droughts in Southwest China and East China, after which the simulated and predicted developments clearly change. 

 385 

Figure 13. Same as Fig. 11 but for different predicted periods, which are namely the prospective (a)–(d) 1–30 day, (e)–(h) 1–45 day, (i)–(l) 
1–60 day, and (m)–(p) 1–75 day. 

Fourth, the weak performance in predicting the severity of drought, including drought peak and drought relief, is an 

important issue. Similar to the concluding remarks regarding a probabilistic drought prediction model, the weak performance 

in predicting the severity of the drought peak is due to the typical problem of an inherent averaging effect depressing the 390 

extremes (Behrangi et al., 2015). With the help of real-time correction for operational application, the prediction of drought 

peaks can be improved. In addition, the prediction of drought relief should also be considered. As listed in both Table 8 and 

Table 9, the simulated and predicted results for drought relief are unsatisfying. This weak performance may be associated 

with precipitation-causing weather patterns during drought relief. They are unsteady and change dramatically compared with 

those features during drought persistence. Because the period of drought relief is a relatively short phase of the drought 395 
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process, the relevant information may not be involved in the first EOF modes (Sect. 5.2). Generally, three measures for 

potential improvement are as follows. (1) More secondary EOF modes, including precipitation-causing circulation patterns 

during drought relief, can be incorporated when building initial predictors. (2) The rapid change index (Otkin et al., 2015) 

could be introduced to describe temporal changes during drought relief at sub-seasonal time scales. (3) The empirical factor 

can be introduced to improve drought-relief prediction. The predicted SPI3 during the phase of drought relief could be 400 

multiplied by empirical factors to strengthen drought relief development. 

Fifth, it is necessary to explain the method of predictor construction. The predictor-structured method in our study is similar 

to the definition of tele-connection indices (Wallace and Gutzler, 1981). It is more goal-directed, because these structured 

predictors are directly related to synchronous atmospheric/oceanic anomalous circulation patterns during different drought 

segments within the same dry/wet spells. However, to design geographical ranges of anomalous areas and combine them is 405 

subjective, which leads to considerable uncertainties. Accordingly, an objective anomaly-recognized method with explicit 

critical values needs to be developed. This will contribute to auto-run feasibility of this conceptual prediction model without 

artificial interaction.  

The final issue to illustrate is synchronous SST anomalies used in EOF analysis and model construction. Traditionally, SST 

anomalies a few months ahead influence the subsequent regional drought. However, it is also feasible and common that 410 

synchronous SST anomalies are used in the investigation of regional drought events in Southwest China (Feng et al., 2014), 

the Yangtze River basin (Lu et al., 2014), and North China (Wang and He, 2015), which may shape synchronous drought-

related circulation patterns. In addition, this is convenient for operational application, while forecasted SST and 200 hPa / 

500 hPa HGT can be retrieved together from CFSv2 products simultaneously. 

10 Conclusions 415 

Drought prediction is fundamental for seasonal water management. In this study, we constructed a conceptual prediction 

model of seasonal drought processes based on synchronous Standardized Anomalies (SA) of 200 hPa/500 hPa geo-potential 

height (HGT) and sea surface temperature (SST); we considered that drought development is closely related to the spatio-

temporal evolution of large-scale atmospheric/oceanic circulation patterns. We used North China as an example to introduce 

the method and used four recent severe regional drought events in China for application. This model can be used for 420 

seamless drought prediction and drought outlook, forced with seasonal climate forecast models. The main process is as 

follows. (1) 3-month SPI updated daily (SPI3) was used to capture severe and extreme drought processes. (2) Empirical 

Orthogonal Function (EOF) analysis was applied to SA of 200 hPa/500 hPa HGT and SST during drought process segments 

within the same dry/wet spells. Subsequently, spatial patterns of the first EOF modes were used to structure SA-based 

predictors. (3) The synchronous stepwise-regression relationship between SPI3 and all 90-day-accumulated SA-based 425 

predictors were calibrated using the NCEP/NCAR reanalysis datasets. (4) To achieve prospective 90-day drought outlook, 

we further developed an objective method based on angles of the predicted prospective 90-day SPI3 curves. (5) Finally, 
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simulation and prediction of seasonal drought processes, together with drought outlook, were forced with the NCEP/NCAR 

reanalysis datasets and the NCEP Climate Forecast System Version 2 (CFSv2) operationally forecasted datasets, respectively. 

Model application during four recent severe drought events in China revealed that the model is good at development 430 

prediction but weak in severity prediction. These results indicate that the proposed conceptual drought prediction model is 

another potentially valuable addition to current research on drought prediction.  
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