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Abstract 9	

Cave drip water response to surface meteorological conditions is complex due to the heterogeneity of water 10	
movement in the karst unsaturated zone. Previous studies have focused on the monitoring of fractured rock 11	
limestones that have little or no primary porosity. In this study, we aim to further understand infiltration water 12	
hydrology in the Tamala Limestone of SW Australia, which is Quaternary aeolianite with primary porosity. We 13	
build on our previous studies of the Golgotha Cave system and utilize the existing spatial survey of 29 14	
automated cave drip loggers and a LiDAR-based flow classification scheme, conducted in the two main 15	
chambers of this cave. We find that a daily sampling frequency at our cave site optimizes the capture of drip 16	
variability with least possible sampling artifacts. Most of the drip sites show persistent autocorrelation for at 17	
least a month. Drip discharge histograms are highly variable, showing sometimes multimodal distributions. 18	
Histogram skewness is shown to relate to the wetter than average 2013 hydrological year and modality is 19	
affected by seasonality. Finally, a combination of Multi-dimensional scaling (MDS) and clustering by k-means 20	
is used to classify similar drip types based on time series analysis. This clustering reveals four unique drip 21	
regimes which agree with the flow type classification of Mahmud et al. (2016) for this site. It highlights a spatial 22	
homogeneity in drip types in one cave chamber, and spatial heterogeneity in the other, which is in concordance 23	
with our understanding of cave chamber morphology and lithology. Our hydrological classification scheme with 24	
respect to mean discharge and the flow variation, can distinguish between groundwater flow types in limestones 25	
with primary porosity, and the technique could be used to characterize different karst formations when high-26	
frequency automated drip logger data are available. We observe little difference in the Coefficient of variation 27	
(COV) between flow classification types, probably reflecting the dominance of primary porosity at this cave 28	
site, and the seasonal variations in discharge related to storage replenishment in winter followed by recession in 29	
the periods of soil moisture deficit. Moreover, we do not find any relationship between drip variability and 30	
discharge within similar flow type. 31	
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1. Introduction 35	

Karst features in limestone are typically developed from the solutional dissolution of fractures and bedding 36	
planes in carbonate rocks (Arbel et al. 2010). Worldwide, karst regions represent significant geographical areas 37	
with potentially high rates of infiltration through fractured and karstified carbonate rocks. The most usual 38	
recharge method in karstic aquifers is the faster infiltration through the deep karstic openings (Ford and 39	
Williams 2007). Complex spatial spreading of various karst features such as solutionally widened fractures, 40	
caves and conduits, makes the monitoring and precise groundwater recharge modeling very difficult (Lange et 41	
al. 2003) and (Arbel et al. 2010). The upper part of karstified rock (the epikarst zone) has higher permeability 42	
than the underlying vadose zone (Klimchouk 2004). Therefore, infiltration into the epikarst zone is faster 43	
compared to the drainage through it, and water is kept stored in this region. This stored water in the vadose zone 44	
seeps slowly and finally emerges inside caves as infiltrating drip waters (Williams 1983).  45	

Karstic features such as speleothems, commonly used to reconstruct paleo-environmental records, are formed 46	
due to calcite deposition from cave drip water. Therefore, the knowledge of drip water hydrology is critical to 47	
study the paleoclimatic records (Baldini et al. 2006). An early study using tipping bucket loggers formulated a 48	
relationship between maximum discharge and coefficient of variation of discharge to categorize cave discharges 49	
(Smart and Friederich (1987), for a fractured-rock limestone system with a vertical range of approximately 140 50	
m (GB Cave, Mendip Hills, UK). They found that the drips close to the surface have extreme coefficient of 51	
variations, whereas the drips in depths have fairly constant flow rates over time, with a significant possibility of 52	
water storage in vadose zone fractures. Thus the stalagmite record resulting from slower drips may be more 53	
closely related to the karst hydrology rather than palaeoclimate (Baldini et al. 2006). Quantitative analysis of 54	
such stalagmite drip data has, in the past, used manual observations of cave drips (e.g. Baker et al 1997). 55	
However, the recent development of automatic cave drip loggers (Collister and Mattey 2008) has enabled the 56	
generation of high temporal resolution and continuous drip discharge time-series (e.g. (Jex et al. 2012), 57	
(Cuthbert et al. 2014), (Markowska et al. 2015), (Mariethoz et al. 2012)), providing new opportunities for 58	
quantitative hydrological analysis. 59	

Here we present monitoring data from Golgotha Cave located in SW Western Australia that has been 60	
extensively monitored since 2005, with the aim of better understanding karst drip water hydrogeology and the 61	
relationship between drip hydrology and surface climate. We build on the work of Mahmud et al. (2016), which 62	
presented the largest spatial and temporal survey of automated cave drip monitoring with matrix (primary) 63	
porosity published to date. This previous study consisted of data from two large chambers within this cave, 64	
measured in the period  from 2012 to 2014, using a highly spatially (29 sites in two separate chambers) and 65	
temporally (0.001 Hz, 15 min intervals) resolved dataset and developed a recharge estimation technique for 66	
caves using the drip data and flow classification techniques of Mahmud et al. (2015). Mahmud et al. (2015) 67	
performs morphological analysis of karstic features, based on ground-based LiDAR data, to identify different 68	
flow processes in karstified limestone. Based on the findings of Mahmud et al. (2016), Mahmud et al. (2015), 69	
here we investigate the relationship between drip water hydrology and cave depth, spatial location and stalactite 70	
type, and develop a hydrological classification scheme that is appropriate to high-frequency drip logger data and 71	
limestones with a primary porosity. This classification scheme is also compared with previous studies (Baker et 72	
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al. 1997, Smart and Friederich 1987) to examine the limitations of these previous schemes. These findings will 73	
also help better characterize and understand water movement in highly porous karst formations.  74	

Finally we use a combination of multi-dimensional scaling (MDS) and the popular K-Means algorithm for 75	
clustering similar drip characteristics. Time series clustering has been shown to be effective in providing useful 76	
information in various domains (Liao 2005) and is implemented here to determine the degree of similarity 77	
between two drip time series. There seems to be an increased interest in time series clustering as part of the 78	
research effort in temporal data mining. The method we use here is suitable for large datasets, has been studied 79	
extensively in the past and achieves good results with minimum computational cost (Borg and Groenen 1997, 80	
Jex et al. 2012, Scheidt and Caers 2009).  81	

2 Site Description 82	

2.1 Studied Cave 83	

The cave site has been explained in detail by Mahmud et al. (2016), Mahmud et al. (2015), Treble et al. (2013). 84	
Briefly, the field site, Golgotha Cave is 200 m in length and up to 25 m in width (Figure 1), is developed in 85	
Quaternary aeolianite, which consists of wind-blown calcareous sands that were deposited along the southwest 86	
coast of Australia (Brooke et al., 2014). Vadose zone water flow, and subsequent widening by ceiling collapse, 87	
formed the cave chamber. Treble et al. (2013) described the cave site as developed in the Spearwood System of 88	
the Tamala Limestone and is mantled by a variable thick layer of sand formation having depths of between 0.3 89	
m and 3 m. Diffuse (or matrix) flow is likely to be dominant in the Tamala Limestone formation due to its high 90	
matrix porosity (Smith et al. 2012). Karst in this region is also called “syngenetic” (Treble et al. 2013) that 91	
implies processes like preferential vertical dissolution and varying morphology of the subsurface caprock. These 92	
processes may establish vadose-zone preferential flow extending to the cave ceiling, with occasional rapid 93	
delivery of percolating waters deep into the calcarenite which end up seeping through to the cave ceiling. 94	
Therefore, this young limestone formation offers various opportunities for preferential flow into the hostrock 95	
and storage within it (Brooke et al. 2014). Golgotha Cave was chosen because (a) it is located in an intensively 96	
studied karst area (e.g.,(Mahmud et al. 2016, Mahmud et al. 2015, Treble et al. 2013, Treble et al. 2016, Treble 97	
et al. 2015)), which has 9 years of manual and 3 years of automated drip water monitoring, (b) it contains 98	
actively growing speleothems, and (c) it is accessible year-round.  99	

Based on the findings of Treble et al. (2013) and the morphological analysis of stalactite clusters by Mahmud et 100	
al. (2015), combined with the classification of drip rate data from the underlying drip sites (Mahmud et al. 101	
2016), we determined previously that chamber 1 (Figure 1b and c) is mostly dominated by matrix flow 102	
representing water flowing down and seeping through the rock matrix, characterised by both icicle-shape and 103	
soda straw stalactites with slow drip rates of low variability. In contrast, chamber 2 (Figure 1b and d) is typically 104	
controlled by fracture and combined flow, with high drip rates that are shown to vary over time depending upon 105	
the mode of water delivery to the preferential flow system. In fracture flow, water moves along the fracture 106	
orientation, forming curtain-shape stalactites in the direction of highest fracturing. Finally, combined flow is 107	
defined as the combination of conduit, matrix and fracture flow, resulting in a circular pattern of stalactite 108	
formation.  109	
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 110	
Figure 1: (a) Coastal belt of SWWA (South-West Western Australia). (b) Golgotha cave plan view displaying 111	
both Chamber 1 (green marked area), that comprises Site 1 and Chamber 2 (blue marked area) containing Site 2. 112	
Average limestone thickness from cave ceiling to ground surface over Site 1 and 2 are 32.33 m and 40.24 m 113	
respectively. (c) Site 1 LiDAR image and (d) Site 2 LiDAR image. (Fig. adapted from Mahmud et al. (2016) 114	
and Mahmud et al. (2015)) 115	

2.2 Climate and Meteorology 116	

A comprehensive description of the climate at our study site has been presented in Mahmud et al. (2016), 117	
Mahmud et al. (2015), Treble et al. (2013). To summarize, the site is in Mediterranean climate, associated with 118	
wet winters and dry summers. Annual rainfall recorded at Forest Grove weather station (Figure 1A, 5 km away 119	
from the study site) is 1136.8 ± 184 mm, among which ~75% occurs between May and September, with an 120	
average daily maximum temperature variation from 16°C (in July) to 27°C (in February) (BoM 2015). 121	
Typically, the peak rainfall begins in late autumn (May) and the wet season continues until end of September 122	
with a median monthly rainfall of ~100 mm (Figure 2). Weekly rainfall data are shown in Fig. 2a for three 123	
hydrological years. Each hydrological year is defined as April to March, as April has the lowest water budget.   124	

As reported in Mahmud et al. (2016), hydrological year 2012 had roughly similar annual rainfall of 1008.6 mm 125	
to the long-term annual mean, whereas 2013 was rather wet (total rainfall of 1239.8 mm) and 2014 was a 126	
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relatively dry year with a total rainfall of 943.8 mm. Recorded rainfall was significantly above average in the 127	
2013 hydrological year for various weather stations in Western Australia (BoM 2015). Therefore, our site had a 128	
wetter winter in 2013 (Fig. 2b) with an estimated annual recharge of 858.67 mm which is very much above 129	
average (ten year mean annual recharge is 564 mm).  130	

We use the Australian Water Availability Project (AWAP) precipitation (P) and modelled evapotranspiration 131	
(ET) data to estimate both cumulative water budgets and total infiltration from April 2012 to March 2015 132	
(Raupach et al. 2009). Weekly calculated ET was subtracted from the weekly rainfall totals to determine the 133	
weekly water budget (Figure 2a). Annual infiltration is estimated by summing all positive weekly water budgets 134	
and a smooth spline interpolation trend is plotted through those points (Figure 2a, pink line). All hydrological 135	
years have water deficit during the dry season (October to April) and significant infiltration during the wet 136	
period (Figure 2a). Low evaporative conditions during winter should permit increased infiltration to the caves, 137	
enhancing the drip discharge response to winter rainfall.  138	

3 Drip data acquisition and characteristics 139	

Data acquisition and pre-processing has been previously described in Mahmud et al. (2016) and is concisely 140	
summarized here. Stalagmate drip loggers (www.driptych.com) were set up in approximate transects throughout 141	
the two large chambers from higher to lower ceiling elevation in 34 locations and are currently being monitored 142	
since August 2012. Each chamber has contrasting discharge, dune facies and karst features of Golgotha Cave 143	
(Figure 3). Data loggers were set to record continuously at 15 minute intervals. The notation used for site 144	
identification follows the same style as described in Mahmud et al. (2016), consisting of a numerical number 145	
(represents the chamber) and a letter/roman number (represents a drip site within the given chamber, with a 146	
letter indicates the sites having both manual and automatic drip counts and a roman number specifies the sites 147	
only having drip logger data).  148	

Based on the initial data screening of Mahmud et al. (2016), we entirely discard five drip sites i.e. 1iv, 1vii, 1xii, 149	
2ii and 2xii. We observe that some of these drip sites (1iv, 2ii and 2xii) contain abrupt changes in drip rate and 150	
that is probably not recording an actual change in discharge, rather due to the logger being accidentally moved 151	
or misaligned. Some other loggers (1vii and 1xii) were removed part way through the monitoring period due to 152	
either recording dual drips or a ceasation of dripping and ignored in full. The rest of the 29 sites are considered 153	
in the time series analysis although short periods of poor quality data were omitted if they were associated with 154	
changes in the mean and variability at the time of fieldwork. This impacted sites 1A, 1B, 2A, 2B, 2E as the 155	
logger was temporarily placed aside every 6 weeks in order to sample water from a collection bottle underneath 156	
the logger. Time series gaps are filled with synthetic data based on the drip statistics and correlation between 157	
drip rates. The processed drip rate time series for all the sites and three hydrological years from April 2012 to 158	
March 2015 are plotted in Figure 2c-f. 159	
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 160	

Figure 2: (a) Weekly water excess data for three hydrological years with estimated annual infiltration pattern. 161	
(b) Box plot of monthly rainfall at Golgotha Cave site, (c) Chamber 1 drip rates time series. Further 162	
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classification of Chamber 2 drip sites for effective time series visualization: (d) slow flow rates with drip 163	
frequency of less than 10 drops per 15 mins, (e) medium discharges with drip frequency of between 10 to 100 164	
drops per 15 mins, and (f) fast drip rates of more than 100 drops per 15 mins. (Fig. is adapted from Mahmud et 165	
al. (2016)). 166	

Drip rates were also measured manually at five different sites (the location of Sites 1A, 1B, 2A, 2B and 2E 167	
shown in Figure 3) within both chambers at 4-6 week intervals using a stopwatch since 2005, however such 168	
measurements were superseded in May 2014 by the Stalagmate loggers (Treble et al. 2013). Sites 1A and 1B are 169	
located ~60 m into the cave and are approximately 0.5 m apart. Sites 2A, 2B and 2E are located ~30 m further 170	
into the cave in Chamber 2. Site 2E is located in the wettest area close to the lowest point at which the ceiling 171	
and wall intersect, whilst 2B and 2A are located on each transect, approximately 5-6 m from Site 2E. A surface 172	
soil auger survey by Treble et al. (2013) at points immediately above Chamber 2 revealed that soil depth was 173	
particularly deep above this area, which could reflect the presence of a soil-filled doline-type structure. We use 174	
these available manual drip data for quality assurance of loggers automatic drip rates for the two hydrological 175	
years (August 2012 to May 2014). Drip rates recorded by the loggers tend to match the manual data for these 176	
drip sites, with slight variations in absolute value between manual and logger data for the slow dripping sites 177	
due to 15 minutes sampling intervals. 178	

Drip rates in Chamber 1 are generally very low (the fastest drip rate was 25 drips per 15 mins) consistent with 179	
the predominance of matrix flow in this chamber. However, it is obvious that most drip loggers exhibit a clear 180	
response to the 2013 wet winter, presenting peak discharges at the end of September 2013 (Figure 2) and also 181	
indicate the substantial inter-annual variation in discharge between three hydrological years. All chamber 1 drip 182	
sites (except site 1x) show a gradual drip rate decrease during summer 2012 to winter 2013 due to below 183	
average rainfall in 2012 that produces high water deficit (Figure 2). Then after displaying the sudden increase in 184	
all drip discharges that express the 2013 wet winter, the drip rates further reduce due to the dry 2014 185	
hydrological year. This intra-annual variation is identified much greater than the inter-annual discharge variation 186	
of the drip sites, as previously observed in Baker et al. (1997). This suggests that high-resolution intra-annual 187	
drip rate data is helpful to obtain a complete picture of changing flow variability with recharge. The high 188	
resolution of the data sets includes precise characterization of the temporal behavior of an individual drip, 189	
illustrating the differences inherent to the drip sites.  190	

In contrast, Chamber 2 drip rates present more variability between sites both in intra-annual and inter-annual 191	
discharges, except few very slow dripping sites (Figure 2d). To envisage the drip time series efficiently, they 192	
were further divided into three classes on the basis of their flow behavior through the three-year study period 193	
(Mahmud et al. 2016): (i) slow drips with little discernable variation through time and very low flow rates 194	
(Figure 2d), (ii) medium-variability drips with moderate discharges (Figure 2e), and (iii) high-variability drips 195	
with high discharges (Figure 2f).  196	

Of the Chamber 2 drips, the slow drip sites have the lowest COVs and lowest discharges (Figure 2d), indicative 197	
of matrix flow types (Mahmud et al., 2016). Drip rates at intermediate sites (Figure 2e) are considerably greater 198	
(typically ×10) than those of slow dripping sites (Figure 2d). The drip site 2vi has the maximum discharge from 199	
all drip sites, with 550 drips per 15 mins peaking in response to the wet 2013 winter (Figure 2f). The timing of 200	

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-127
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 6 June 2017
c© Author(s) 2017. CC BY 3.0 License.



	 8	

maximum drip rates is generally delayed in Chamber 2 versus Chamber 1: Chamber 1 drip rates typically peak 201	
in late spring/early summer (Oct-Dec) while Chamber 2 drips tend to peak a few months later (Dec-May), 202	
reflecting a longer water residence time (Figure 2c-f). This may be a function of the thicker ceiling above 203	
Chamber 2 (40.24 versus 32.33 m) but also heterogeneity in flowpaths to each chamber (Mahmud et al., 2015; 204	
Treble et al., 2016). Overall the drip response to the 2013 wet winter is amplified in Chamber 2 versus Chamber 205	
1, consistent with the presence of greater fracture flow in Chamber 2 (Mahmud et al., 2015).  206	
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 207	

Figure 3: LiDAR images of drip sites on floor plus photographs of underlying stalagmites. The blue arrows in 208	
all Figures show the geographic orientation. * indicates the sites where the stalagmate loggers are not clearly 209	
visible in the LiDAR floor images as they are obscured by formations in front of them, however the rough 210	
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locations are marked in yellow circles. Complimentary image of cave ceiling are shown in Fig. 3 of Mahmud et 211	
al. (2016). 212	

4 Clustering of similar drip time series 213	

One key component in clustering is the function used to measure the temporal similarity (or distance) between 214	
any two time series being compared. To define an appropriate measure of similarity between time series, we 215	
determine two factors: firstly the offset (O) to match two time series based on their maximum correlation, and 216	
secondly the complement of the correlation coefficient (1-R) between the time series (Jex et al. 2012). Initially, 217	
we compute the cross-correlation function and O is defined as the lag time based on the maximum correlation 218	
between two time series. Next we define R as the correlation coefficient with the time series being moved by the 219	
offset amount O to have maximum correlation coefficient. Finally the distance matrix (d) is computed for each 220	
pair of loggers using the following equation (Jex et al. 2012): 221	

𝑑 = 𝑂	(1 − 𝑅) 222	

Next, MDS is used to translate these distances into a configuration of points defined in an n-dimensional 223	
Euclidean space (Borg and Groenen 1997, Cox and Cox 1994). A MDS results in a set of points arranged so that 224	
their corresponding Euclidean distances indicate the dissimilarities of the time series. The K-Means clustering 225	
algorithm is then used to divide these points into k clusters, which corresponds to a categorization of the drip 226	
data time series. Here we use 4 clusters as this was the number of flow categories identified by Mahmud et al. 227	
(2016). 228	

5 Results and Discussion 229	

The statistical properties of the drip data (skewness, COV), elevation and LiDAR classified flow type are taken 230	
from Mahmud et al. (2016), Mahmud et al. (2015) are listed in Table 1 and Table 2. Average drip discharges are 231	
calculated from the 15-minute drip rates that appear in Tables 1 and 2 of Mahmud et al (2016). The MDS cluster 232	
groups (analyzed later in section 5.4) are also listed in Table 1 and Table 2. 233	

Table 1: Statistical properties of chamber 1 drip data 234	

Site/Stalagmate  Elevation  
(ASL m) 

Average drip discharge 
(l/yr) 

Skewness COV Flow type MDS Cluster 
Group 

(Mahmud et al. 2016) 
1A 77.46 19.8 0.17 18.23 Icicle 1 
1B 77.424 12.6 -0.03 19.93 Icicle 1 
1i 77.4 6.6 0.13 40.31 Icicle 1 
1ii 77.521 11.2 -0.06 28.09 Icicle 1 
1iii 77.655 8.1 -0.29 30.52 Icicle 1 
1v 

77.585 
6.7 1.21 40.83 Soda-

straw 
1 

1vi 77.036 7.4 0.1 33.83 Icicle 1 
1viii 77.167 60.9 0.38 42.49 Combined 2 
1ix 76.88 14.8 0.23 21.01 Icicle 1 
1x 76.9 86.2 0.19 28.88 Fracture 3 
1xi 76.885 12.7 -0.71 48.98 Icicle 1 
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Table 2: Statistical properties of chamber 2 drip data 235	

Site/Stalagmate  
Elevation 
(ASL m) 

Average drip 
discharge (l/yr) Skewness COV Flow type (Mahmud 

et al. 2016) 
MDS Cluster 
Group 

(Mahmud et al. 2016) 
2A 75.48 9.4 -0.24 44.31 Icicle 1 
2B 73.49 17.1 0.2 16.01 Icicle 1 
2E 75.37 140.3 -0.59 6.21 Combined 3 
2i 72.22 243.0 0.31 2.57 Fracture 4 
2iii 75.2 4.2 -1.64 45.62 Soda-straw 1 
2iv 73.7 14.6 -0.82 13.23 Icicle 1 
2v 75.75 67.8 0.10 5.65 Combined 3 
2vi 75.66 985.0 0.44 100.95 Fracture 1 
2vii 75.7 25.0 0.03 21.63 Icicle 2 
2viii 73.72 113.8 -0.11 16.11 Combined 3 
2ix 73.34 360.2 -0.22 8.3 Fracture 4 
2x 73.59 7.0 0.5 43.86 Icicle 1 
2xi 73.5 0.6 2.68 289.31 Soda-straw 1 
2xiii 73.54 26.2 -0.47 25.29 Icicle 2 
2xiv 73.49 42.8 -0.17 11.81 Icicle 2 
2xv 73.36 11.6 0.56 21.57 Icicle 1 
2xvi 73.52 266.9 0.17 45.28 Fracture 3 
2xvii 73.72 7.0 -0.06 53.08 Icicle 1 

 236	

5.1 Histogram plots 237	

We plot drip rate histograms for representative drip sites in Figure 4 for different flow categories. Drip sites are 238	
organized from lowest to highest discharge in each flow classification (Mahmud et al. 2016). All of the slow 239	
dripping soda straw types typically fall into two bins only. The lower drip counts (sites 2iii, 1v) indicate the drip 240	
response of hydrological years 2012 and 2013 until the wet winter, and the higher values direct the consequence 241	
of the infiltration due to high rainfall events during the entire 2013 winter (April - September). The histograms 242	
for icicle flow types show unimodal normal distribution, while the combined flow systems represent bimodal 243	
distributions. The rest of the fracture sites show bimodal or multimodal distributions. With the limited temporal 244	
scale of the analysis, it seems that the histograms with skewed distribution (sites 1xi, 2vii, 2xiii, 2xiv) actually 245	
represent the wetter 2013 hydrological year. In contrast, the bimodal distributions indicate the drip response to 246	
the annual cycle of wet and dry seasons of each hydrological year.  247	
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 248	

Figure 4: Histogram plots of both chambers drip data according to four flow types identified by Mahmud et al. 249	
(2016). The histogram represents the frequency of the drip counts per 15 minutes. Note that the bin size is 250	
variable because the unit is in drips per 15 minutes and slow drips only take a small number of discrete values, 251	
in contrast to fast drips for which we can see the entire distribution, including multimodality. The legend shows 252	
all the seasons over the monitoring period (wet seasons: April to September and dry seasons: October to March). 253	
2012 wet season had similar to long-term annual mean rainfall event, whereas 2013 was rather wet and 2014 254	
was a relatively dry year. 255	

5.2 Autocorrelation functions 256	

We plot autocorrelation functions (ACF) for major drip sites in Figure 5 for different flow categories using the 257	
optimum sampling frequency of 1-day (see next section). All sites have an autocorrelation that persists for at 258	
least a month, and often much longer. However, there is no relationship between the strength of correlation or 259	
the time period of the autocorrelation and the flow type. This indicates the presence of ample storage in the 260	
system, supplying all stalactite types. 261	
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 262	

Figure 5: Autocorrelation functions of both chambers drip data according to flow classification of Mahmud et al. 263	
(2016). X- and Y-axis of individual plots represents the lag (in days) and ACF respectively. 264	

5.3 Hydrological classification of cave drips 265	

Research involving automated drip monitoring systems is increasing, for example at Cathedral Cave in 266	
Wellington (Cuthbert et al. 2014) and Harrie Wood Cave in Snowy Mountain, Yarrangobilly (Markowska et al. 267	
2015). The variability of the drip discharge might not only be a function of discharge itself, but might also 268	
depend on the sampling frequency. We investigate this possibility in Figure 6 that shows COV versus sampling 269	
interval, calculated by resampling the data. Figure 6 shows that for high discharge, COV increases with 270	
sampling frequency, which we explain by the smaller sampling interval better capturing the actual drip 271	
variability. For low discharges, COV also increases with sampling frequency, which we explain by the 272	
variability introduced due to drip rates being less than the sampling frequency. From the data presented in 273	
Figure 6, we can conclude that for both chambers and different types of flow, a sampling frequency of 1 day 274	
gives the minimum COV, which does not change significantly with a finer sampling frequency. Therefore, we 275	
use a sampling frequency of 1 day that minimizes sampling artifacts while maximizing the capture of natural 276	
variability. For Golgotha Cave, this would be to sum the 15 minutes drip rates over a 1-day period. Using this 277	
optimum sampling frequency of 1-day, we summarize the mean discharge of drip sites in relation to the 278	
variability in discharge in  279	
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Figure 7. These are the same drip discharge parameters as used in the classification method proposed by 280	
Friederich and Smart (1982), Fairchild et al. (2006) and Baker et al. (1997) that were based on manual drip 281	
collection at low frequency.  282	

 283	

Figure 6: Optimum sampling frequency that minimizes sampling artifacts while maximizing the capture of 284	
natural variability. 285	

 286	

Figure 7: Hydrological behaviour of drip sites expressed in terms of daily mean discharge versus daily discharge 287	
variability calculated from the automatic drip rate data for three hydrological years. Measured drip rates are 288	
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converted to volume units assuming a drip volume of 0.1433 ml (Genty and Deflandre 1998). Blue lines reflect 289	
flow classification given in Mahmud et al. (2015). 290	

We examine the hydrological behavior of the drips at daily resolution with respect to mean discharge and the 291	
flow variation in  292	

Figure 7. This classification scheme shows that Golgotha Cave drip sites do not fit within the drip classification 293	
method proposed by Smart and Friederich (1987) and Baker et al. (1997), which were based on manual drip 294	
counts with low frequency and limited number of drip sites. It is clear from  295	

Figure 7 that there is a broad continuum from soda-straw flow to fracture flow. One soda-straw discharge (site 296	
2xi) has a seasonal dryness, a very low discharge, and a very high coefficient of variation due to its intermittent 297	
dripping. Otherwise, nearly all soda-straw flow, icicle flow and combined flow drips have COV <60%, whereas 298	
fracture flow has a greater COV range, up to 100%. But in general, there is little difference in the COV between 299	
classification types, probably reflecting the dominance of primary porosity at this cave, and the seasonal 300	
variations in discharge related to storage replenishment in winter followed by recession in the periods of soil 301	
moisture deficit. We do not clearly observe increasing variability with decreasing discharge within similar flow 302	
type, in contrast to other studies from older, fractured rock limestones (Baker et al. 1997, Baldini et al. 2006, 303	
Smart and Friederich 1987).  304	

5.4 Clustering of similar drip time series 305	

The clustering results are overlain upon the chamber ceiling images in Figure 8 and also summarized in Tables 1 306	
and 2. As mentioned above, drip logger time series are deemed similar if they are well correlated and only have 307	
a small offset with each other, and so these time series should cluster together. Most of the drip sites that are 308	
identified as matrix flow (soda-straw and icicle flow) cluster together in C1. However, three of the icicle flow 309	
sites with drip rate greater than 4 per 15 minutes fall in C2. The combined flow category and the fracture type 310	
usually cluster in C3 and C4 respectively. Therefore we observe that our clustering generally agrees with the 311	
morphology-based flow classification of Mahmud et al. (2016). Few of the flow classes show exceptions, for 312	
example site 2vi is a fracture type flow and cluster in C1. This site has really high discharge but low variability 313	
in terms of drip rate and shows inconsistency.  314	

One consistent feature that appears from the cluster analysis of Figure 8 is the spatial homogeneity of the 315	
clusters in Chamber 1, suggesting that they are spatially connected and supporting the overall dominant matrix 316	
flow (both soda-straw and icicle) patterns. However, a completely different situation is demonstrated for 317	
Chamber 2. From Chamber 2, it is obvious that drip sites can have similar behavior (well correlated together 318	
with a small lag), and be spatially distinct features, separated by spans of approximately 6m (Figure 8). In 319	
particular, cluster 3 and 4 are spatially scattered, representing the presence of fractures and combined flow 320	
systems throughout the chamber ceiling. This indicates an overall strong heterogeneity of the flow paths 321	
between the surface and the cave for Chamber 2. Hence in Chamber 2, we expect flow paths to be more 322	
complex with potential routing between multiple stores and interconnected fracture networks potentially 323	
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resulting in non-linear response to infiltration. This is supported by dripwater d18O data for this chamber (Treble 324	

et al. 2013). 325	

 326	

Figure 8: Cluster group plot overlain upon the cave ceiling for both chambers. The ceiling images are captured 327	
by LiDAR and the circles represent the ceiling locations of stalactites dripping on various stalagmates in both 328	
chambers (shown in Figure 3). The colour of the circles indicates individual MDS cluster group. The blue 329	
arrows in both Figures show the geographic orientation and the green arrows represent the approximate transects 330	
throughout the chambers from higher to lower ceiling elevation. 331	
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6 Conclusion 332	

Cave drip water response to surface climatic conditions is often complex due to numerous interacting drip routes 333	
with varying response times (Baldini et al. 2006). This study explores the relationship between drip water and 334	
rainfall in a SW Australian karst, where both intra- and inter-annual hydrological variations are strongly 335	
controlled by seasonal variations in recharge. Building on the studies of Mahmud et al. (2015) and Mahmud et 336	
al. (2016), we further analyse a set of statistical properties of three hydrological years of drip data under varying 337	
precipitation rates. The histogram distributions of various drip data time series illustrate a relationship between 338	
the flow classification and surface infiltration. Moreover, we test the relationship between drip discharge 339	
variability and drip data sampling frequency to determine the optimum sampling frequency that maximizes the 340	
capture of natural variability with minimum sampling artifacts. Using the daily optimum sampling frequency, 341	
most of the drip sites show persistent autocorrelation for at least a month.  342	

The hydrological behavior of the drips is examined at daily resolution with respect to mean discharge and the 343	
flow variation is similar to the classification method proposed by previous researchers (Baker et al. 1997, 344	
Baldini et al. 2006, Smart and Friederich 1987). The drip sites at Golgotha Cave described in this study do not 345	
fit within the drip classification method proposed by Smart and Friederich (1987) and Baker et al. (1997). These 346	
previous studies were based on manual drip counts with low frequency and limited number of drip sites. Here 347	
we overcome these limitations with high frequency drip signals.  348	

Finally, we apply a well-developed clustering method to determine the degree of similarity between drip time 349	
series. The clustering indicates one dominating group: C1 (characterized by matrix flow type) with very slow 350	
continuous drip discharge indicating matrix porosity in the thick limestone formation. This finding concurs with 351	
the observed cave chamber morphology and lithology. Moreover, the cluster analysis agrees with the flow 352	
classification of Mahmud et al. (2016) by grouping similar flow type in one single cluster.  353	

Over the last decade, the automation of cave drip water hydrology measurements has permitted the routine 354	
generation of continuous hydrological time series for the first time. This study demonstrates a complete 355	
methodology for such datasets, which will help better characterize karst drip water hydrogeology and 356	
understand the relationship between drip hydrology and surface climate at any cave site where such 357	
measurements are made. We demonstrate that the analysis of the time series produced by cave drip loggers 358	
generates useful hydrogeological information that can be applied generally, beyond the example presented here. 359	
The time series behaviour integrates a variety of characteristics that combine the properties of the epikarst 360	
(storage), fracture configuration, and recharge. The clustering approach can identify which drip behaviour are 361	
related to these cave characteristics, and their spatial relationship. Most importantly, information on cave 362	
characteristics can now be gathered at a very low cost in terms of measurement and time. 363	
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