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If you have any additional questions, we would be more than happy to address them. 
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Kashif Mahmud 
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We have now drastically reduced the references to previous work, which we agree 
was too heavily referenced. We only kept the references needed to clearly define 
which parts of the manuscript are novel or can be attributed to our previous 
publications. 

 
There is a discrepancy in the coefficient of variation values between Figure 2 , Figure 4. 
I don’t think you have coefficient of variation of 10^4-10^5 like it looks in figure 2. In Figure 
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Xavier Janson; Improving fractured carbonate-reservoir characterization with remote sensing 
of beds, fractures, and vugs. Geosphere; 5 (2): 126–139. doi: 
https://doi.org/10.1130/GES00205.1 
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1 

 

Hydrological characterization of cave drip waters in a porous limestone: Golgotha 1 

Cave, Western Australia 2 

Kashif Mahmud1, Gregoire Mariethoz2, Andy Baker3, Pauline C. Treble4 3 

1Hawkesbury Institute for the Environment, Western Sydney University, Australia 4 
2Institute of Earth Surface Dynamics, University of Lausanne, Switzerland  5 
3Connected Waters Initiative Research Centre, UNSW Australia, NSW, Australia 6 
4Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia 7 
 8 
Correspondence to: Kashif Mahmud (k.mahmud@westernsydney.edu.au) 9 

 10 

Abstract 11 

Cave drip water response to surface meteorological conditions is complex due to the heterogeneity of water 12 

movement in the karst unsaturated zone. Previous studies have focused on the monitoring of fractured rock 13 

limestones that have little or no primary porosity. In this study, we aim to further understand infiltration water 14 

hydrology in the Tamala Limestone of SW Australia, which is Quaternary aeolianite with primary porosity. We 15 

build on our previous studies of the Golgotha Cave system and utilize the existing spatial survey of 29 16 

automated cave drip loggers and a LiDAR-based flow classification scheme, conducted in the two main 17 

chambers of this cave. We find that a daily sampling frequency at our cave site optimizes the capture of drip 18 

variability with least possible sampling artifacts. With the optimum sampling frequency, most of the drip sites 19 

show persistent autocorrelation for at least a month, typically much longer, indicating ample storage of water 20 

feeding all stalactites investigated. Drip discharge histograms are highly variable, showing sometimes 21 

multimodal distributions. Histogram skewness is shown to relate to the wetter than average 2013 hydrological 22 

year and modality is affected by seasonality. The hydrological classification scheme with respect to mean 23 

discharge and the flow variation, can distinguish between groundwater flow types in limestones with primary 24 

porosity, and the technique could be used to characterize different karst flow paths when high-frequency 25 

automated drip logger data are available. We observe little difference in the coefficient of variation (COV) 26 

between flow classification types, probably reflecting the ample storage due to the dominance of primary 27 

porosity at this cave site. Moreover, we do not find any relationship between drip variability and discharge 28 

within similar flow type. Finally, a combination of multi-dimensional scaling (MDS) and clustering by k-means 29 

is used to classify similar drip types based on time series analysis. This clustering reveals four unique drip 30 

regimes which agree with previous flow type classification for this site. It highlights a spatial homogeneity in 31 

drip types in one cave chamber, and spatial heterogeneity in the other, which is in concordance with our 32 

understanding of cave chamber morphology and lithology. 33 

 34 

Keywords: karst aquifers, drip loggers, infiltration, cave drip water 35 
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1 Introduction 36 

Karst features in limestone are typically developed from the solutional dissolution of fractures and bedding 37 

planes in carbonate rocks (Arbel et al., 2010; Kurtzman et al., 2009). Worldwide, karst regions represent 38 

significant geographical areas with potentially high rates of infiltration through fractured and karstified 39 

carbonate rocks. The most usual recharge method in karstic aquifers is the faster infiltration through the deep 40 

karstic openings (Ford and Williams, 2007). Complex spatial spreading of various karst features such as 41 

solutionally widened fractures, caves and conduits, makes the monitoring and precise groundwater recharge 42 

modeling very difficult (Lange et al., 2003; Arbel et al., 2010). The upper part of karstified rock (the epikarst 43 

zone) has higher permeability than the underlying vadose zone (Klimchouk, 2004). Therefore, infiltration into 44 

the epikarst zone is faster compared to the drainage through it, and water is kept stored in this region. This 45 

stored water in the vadose zone seeps slowly and finally emerges inside caves as infiltrating drip waters 46 

(Williams, 1983).  47 

Karstic features such as speleothems, commonly used to reconstruct paleo-environmental records, are formed 48 

due to calcite deposition from cave drip water. Therefore, the knowledge of drip water hydrology is critical to 49 

study the paleoclimatic records (Baldini et al., 2006). An early study using tipping bucket loggers formulated a 50 

relationship between maximum discharge and coefficient of variation of discharge to categorize cave discharges 51 

(Smart and Friederich, 1987), for a fractured-rock limestone system with a vertical range of approximately 140 52 

m (GB Cave, Mendip Hills, UK). They found that the drips close to the surface have extreme coefficient of 53 

variations, whereas the drips in depths have fairly constant flow rates over time, with a significant possibility of 54 

water storage in vadose zone fractures. Thus the stalagmite record resulting from slower drips may be more 55 

closely related to the karst hydrology rather than palaeoclimate (Baldini et al., 2006). This may also be a 56 

consequence of the developed connection between the surface and the cave. Quantitative analysis of such 57 

stalagmite drip data has, in the past, used manual observations of cave drips (e.g. Baker et al 1997). However, 58 

the recent development of automatic cave drip loggers (Collister and Mattey, 2008) has enabled the generation 59 

of high temporal resolution and continuous drip discharge time-series (e.g. (Jex et al., 2012; Cuthbert et al., 60 

2014; Markowska et al., 2015; Mariethoz et al., 2012)), providing new opportunities for quantitative 61 

hydrological analysis. 62 

Here we present monitoring data from Golgotha Cave located in SW Western Australia that has been 63 

extensively monitored since 2005, with the aim of better understanding karst drip water hydrogeology and the 64 

relationship between drip hydrology and surface climate. We build on the work of Mahmud et al. (2016), which 65 

presented the largest spatial and temporal survey of automated cave drip monitoring with matrix (primary) 66 

porosity published to date. This previous study consisted of data from two large chambers within this cave, 67 

measured in the period from August 2012 to March 2015, using a highly spatially (29 sites in two separate 68 

chambers) and temporally (0.001 Hz, 15 min intervals) resolved dataset. In a separate study, Mahmud et al. 69 

(2015) performed morphological analysis of karstic features, based on ground-based LiDAR data, to identify 70 

different flow processes in karstified limestone. Based on the findings of these two studies, here we investigate 71 

the relationship between drip water hydrology and cave depth, spatial location and stalactite type, and develop a 72 

hydrological classification scheme that is appropriate to high-frequency drip logger data and limestones with a 73 
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primary porosity. This classification scheme is also compared with previous studies (Smart and Friederich, 74 

1987; Baker et al., 1997) to examine the limitations of these previous schemes. These findings will also help 75 

better characterize and understand water movement in highly porous karst formations.  76 

Finally, we use a combination of multi-dimensional scaling (MDS) and the popular K-Means algorithm for 77 

clustering similar drip characteristics. Time series clustering has been shown to be effective in providing useful 78 

information in various domains (Liao, 2005) and is implemented here to determine the degree of similarity 79 

between two drip time series. There seems to be an increased interest in time series clustering as part of the 80 

research effort in temporal data mining. The method we use here is suitable for large datasets, has been studied 81 

extensively in the past and achieves good results with minimum computational cost (Jex et al., 2012; Scheidt 82 

and Caers, 2009; Borg and Groenen, 1997).  83 

2 Site Description 84 

2.1 Studied Cave 85 

The cave site has been explained in detail by Treble et al. (2013). Briefly, the field site, Golgotha Cave is 200 m 86 

in length and up to 25 m in width (Figure 1), is developed in Quaternary aeolianite, which consists of wind-87 

blown calcareous sands that were deposited along the southwest coast of Australia (Brooke et al., 2014). Vadose 88 

zone water flow, and subsequent widening by ceiling collapse, formed the cave chambers. Treble et al. (2013) 89 

described the cave site as being developed in the Spearwood System of the Tamala Limestone and is mantled by 90 

a variable thick layer of sand formation having depths of between 0.3 m and 3 m. Diffuse (or matrix) flow is 91 

likely to be dominant in the Tamala Limestone formation due to its high matrix porosity as 0.3 – 0.5 (Smith et 92 

al., 2012). Karst in this region is also called “syngenetic” (Treble et al., 2013) that implies processes like 93 

preferential vertical dissolution and varying morphology of the subsurface caprock. These processes may 94 

establish vadose-zone preferential flow extending to the cave ceiling, with occasional rapid delivery of 95 

percolating waters deep into the calcarenite which end up seeping through to the cave ceiling. Therefore, this 96 

young limestone formation offers various opportunities for preferential flow into the hostrock and storage within 97 

it (Brooke et al., 2014). Golgotha Cave was chosen because (a) it is located in an intensively studied karst area 98 

(Treble et al., 2015; Treble et al., 2013; Treble et al., 2016), which has over ten years of manual and 3 years of 99 

automated drip water monitoring, (b) it contains actively growing speleothems, and (c) it is accessible year-100 

round.  101 

Based on previous studies at this site, we determined previously that Chamber 1 (Figure 1b, c and d) is mostly 102 

dominated by matrix flow representing water flowing down and seeping through the rock matrix, characterised 103 

by both icicle-shape and soda straw stalactites with slow drip rates of low variability. In contrast, Chamber 2 104 

(Figure 1b and e) is typically controlled by fracture and combined flow, with high drip rates that are shown to 105 

vary over time depending upon the mode of water delivery to the preferential flow system. In fracture flow, 106 

water moves along the fracture orientation, forming curtain-shape stalactites in the direction of highest 107 

fracturing. Finally, combined flow is defined as the combination of conduit, matrix and fracture flow, resulting 108 

in a circular pattern of stalactite formation.  109 
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 110 

Figure 1: a) Coastal belt of SWWA (South-West Western Australia). (b) Golgotha cave plan view displaying 111 

both Chamber 1 (green marked area), which comprises Site 1, and Chamber 2 (blue marked area) containing 112 

Site 2. Average limestone thickness from cave ceiling to ground surface over Site 1 and 2 are 32.33 m and 40.24 113 

m respectively. LiDAR scans of drip sites on: (c) Chamber 1 north floor, (d) Chamber 1 south floor and (e) 114 

Chamber 2 floor. The red arrows show the geographic orientation (c, d and e). * indicates the sites where the 115 

stalagmate loggers are not clearly visible in the LiDAR floor images as they are obscured by formations in front 116 

of them, however the approximate locations are marked in yellow circles. Additional scans of cave ceiling and 117 

photographs of underlying stalagmites are shown in Fig. 3 of Mahmud et al. (2016). 118 

2.2 Climate and Meteorology 119 

A comprehensive description of the climate at our study site has been presented in Treble et al. (2013). To 120 

summarize, the site is a Mediterranean climate, associated with wet winters and dry summers. Annual rainfall 121 

recorded at Forest Grove weather station (Figure 1a, 5 km away from the study site) is 1136.8 ± 184 mm, among 122 

which ~75% occurs between May and September, with an average daily maximum temperature variation from 123 

16°C (in July) to 27°C (in February) (BoM, 2017). Typically, the peak rainfall begins in late autumn (May) and 124 

the wet season continues until end of September with a median monthly rainfall of ~100 mm. Each hydrological 125 

year is defined as April to March, as April has the lowest water budget (precipitation-evapotranspiration).   126 
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As reported in previous studies, all hydrological years have water deficit during the dry season (October to 127 

April) and significant infiltration during the wet period. Low evaporative conditions during winter should permit 128 

increased infiltration to the caves, enhancing the drip discharge response to winter rainfall. The hydrological 129 

year 2012 had roughly similar annual rainfall of 1008.6 mm to the long-term annual mean, whereas 2013 was 130 

rather wet (total rainfall of 1239.8 mm) and 2014 was a relatively dry year with a total rainfall of 943.8 mm. 131 

Recorded rainfall was significantly above average in the 2013 hydrological year for various weather stations in 132 

Western Australia (BoM, 2017). Therefore, our site had a wetter winter in 2013 with an estimated annual 133 

recharge of 858.67 mm which is very much above average (ten year mean annual recharge is 564 mm).  134 

2.3 Drip data acquisition and characteristics 135 

Data acquisition and pre-processing has been previously described in Mahmud et al. (2016) and is concisely 136 

summarized here. Stalagmate drip loggers (www.driptych.com) were set up in approximate transects throughout 137 

the two large chambers from higher to lower ceiling elevation in 34 locations and are currently being monitored 138 

since August 2012. Each chamber has contrasting discharge, dune facies and karst features of Golgotha Cave 139 

(Figure 1). Data loggers were set to record continuously at 15 minute intervals. The notation used for site 140 

identification follows the same style as described in previous studies, consisting of a numerical number 141 

(representing the chamber) and a letter/roman number (representing a drip site within the given chamber, with a 142 

letter indicating the sites having both manual and automatic drip counts and a roman number specifying the sites 143 

only having drip logger data). Based on previous studies of the site, 29 sites are considered in the time series 144 

analysis although short periods of poor quality data were omitted if they were associated with changes in the 145 

mean and variability at the time of fieldwork. This impacted sites 1A, 1B, 2A, 2B, 2E as the logger was 146 

temporarily placed aside every 6 weeks in order to sample water from a collection bottle underneath the logger. 147 

Time series gaps are filled with synthetic data based on the drip statistics and correlation between drip rates.  148 

As previously reported, drip rates in Chamber 1 are generally very low (the fastest drip rate was 25 drips per 15 149 

mins) consistent with the predominance of matrix flow in this chamber. However, it is obvious that most drip 150 

loggers exhibit a clear response to the 2013 wet winter and also indicate the substantial inter-annual variation in 151 

discharge between three hydrological years. All Chamber 1 drip sites (except site 1x) show a gradual drip rate 152 

decrease during summer 2012 to winter 2013 due to below average rainfall in 2012. Then after displaying the 153 

sudden increase in all drip discharges that express the 2013 wet winter, the drip rates further reduce due to the 154 

dry 2014 hydrological year. This intra-annual variation is identified much greater than the inter-annual discharge 155 

variation of the drip sites, as previously observed in Baker et al. (1997). This suggests that high-resolution intra-156 

annual drip rate data is helpful to obtain a complete picture of changing flow variability with recharge. The high 157 

resolution of the data sets includes precise characterization of the temporal behavior of an individual drip, 158 

illustrating the differences inherent to the drip sites.  159 

In contrast, Chamber 2 drip rates present more variability between sites both in intra-annual and inter-annual 160 

discharges, except few very slow dripping sites. Of the Chamber 2 drips, the slow drip sites have the lowest 161 

coefficient of variations (COVs) and lowest discharges, indicative of matrix flow types. The timing of maximum 162 

drip rates is generally delayed in Chamber 2 versus Chamber 1: Chamber 1 drip rates typically peak in late 163 
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spring/early summer (Oct-Dec) while Chamber 2 drips tend to peak a few months later (Dec-May), reflecting a 164 

longer water residence time. This may be a function of the thicker ceiling above Chamber 2 (40.24 versus 32.33 165 

m) but also heterogeneity in flow paths to each chamber. Overall the drip response to the 2013 wet winter is 166 

amplified in Chamber 2 versus Chamber 1, consistent with the presence of greater fracture flow in Chamber 2.  167 

By applying morphological analysis of ceiling features acquired by LiDAR data, Mahmud et al. (2015) 168 

distinguished three flow patterns (i.e. matrix flow, fracture flow, and a combination of conduit, fracture, and 169 

matrix flow) for the observed ceiling morphological features. All the drip sites were then characterized 170 

according to this flow classification in Mahmud et al. (2016), which is used here as a reference for clustering 171 

similar drip time series.  172 

3 Methods 173 

3.1 Hydrological classification of cave drips 174 

Research involving automated drip monitoring systems is increasing, for example at Cathedral Cave in 175 

Wellington (Cuthbert et al., 2014) and Harrie Wood Cave in the Snowy Mountains, Yarrangobilly (Markowska 176 

et al., 2015). The variability of the drip discharge might not only be a function of discharge itself, but could also 177 

depend on the sampling frequency. We investigate this possibility by plotting the COV versus sampling interval 178 

(the original 15 mins and calculated by resampling the data at 1 hour, 1 day, 1 week and 1 month). COV is 179 

supposed to be artificially high at the high frequency of 15 mins because of sampling bias that artificially 180 

increases the noise. The resampling at low frequencies is only a way of smoothing out this noise. Using the 181 

optimum sampling frequency to minimize its effect on drip variability, we plot drip rate histograms to identify 182 

the response of drips between the flow classifications and the response to intra and inter-annual variability in 183 

infiltration. We also plot the autocorrelation functions (ACFs) to investigate the relationship between the 184 

strength of correlation and the LiDAR-based flow type. Finally, we summarize the mean discharge of drip sites 185 

in relation to the variability in discharge using the optimum sampling frequency. These are the same drip 186 

discharge parameters as used in the classification method proposed by Friederich and Smart (1982), Fairchild et 187 

al. (2006) and Baker et al. (1997) that were based on manual drip collection at low frequency. 188 

3.2 Clustering of similar drip time series 189 

We employed multi-dimensional scaling (MDS), which allows data dimensionality reduction i.e., mapping 190 

complex multidimensional data on a low-dimensional manifold. MDS is a technique that embeds a set of points 191 

in a low-dimensional space, so that the distances between the points resemble as closely as possible a given set 192 

of dissimilarities between the objects they represent (Birchfield and Subramanya, 2005). MDS requires a 193 

distance matrix to be computed, in which a single scalar number characterizes the similarity between any two 194 

time-series. In our case, each drip logger is an object and a specific distance between drip loggers is considered 195 

to characterize the similarity between any two loggers. It takes an input matrix giving dissimilarities between 196 

pairs of items and outputs a coordinate matrix whose configuration minimizes a loss function. MDS is also 197 

known as Principal Coordinates Analysis (PCoA). MDS operates on a distance or dissimilarity matrix (Pisani et 198 

al., 2016), which is different than principle-component analysis (PCA) that is based on a covariance matrix. 199 
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Even if PCA and MDS methods can return the same results in specific contexts, MDS can be considered more 200 

general because it remains validity for non-euclidean distances, such as the distance matrix (d) chosen in this 201 

study. MDS is used to translate these distances into a configuration of points defined in an n-dimensional 202 

Euclidean space (Cox and Cox, 1994). A MDS results in a set of points arranged so that their corresponding 203 

Euclidean distances indicate the dissimilarities of the time series. According to Birchfield and Subramanya 204 

(2005) the basic steps of performing the MDS algorithm are:  205 

i) Construct the distance matrix D: One key component in clustering is the function used to measure the 206 

temporal similarity (or distance) between any two time-series being compared. To define an appropriate 207 

measure of similarity between time series, we determine two factors: firstly, the offset (O) to match two 208 

time-series based on their maximum correlation, and secondly the complement of the correlation coefficient 209 

(1-R) between the time series (Jex et al. 2012). Initially, we compute the cross-correlation function, a 210 

measure of similarity of two time-series as a function of the displacement of one relative to the other. The 211 

cross-correlation function is an estimate of the covariance between two time-series, y1t and y2t, at lags k = 0, 212 

±1, ±2, .... The offset (O) is defined as the lag time based on the maximum correlation between two time-213 

series. Next, we define R as the correlation coefficient with the time series being moved by the offset 214 

amount O to have maximum correlation coefficient. Both O and R are calculated to all n(n-1)/2 pairs of drip 215 

data, where n is the number of drip data. Here, we use the original recorded drip counts in 15 mins interval. 216 

The sampling bias discussed in section 3.1 is only affecting the drip variability, not the cluster analysis. 217 

Moreover, high resolution (15 mins interval) data are more suited for the cluster analysis because it allows 218 

better defining the cross-correlation between drips, as sometimes the offset of maximum correlation O 219 

might be less than a day. Finally, the distance matrix D is computed for each pair of loggers using the 220 

following equation (Jex et al. 2012): 221 

𝑫 = 𝑂(1 − 𝑅) 222 

The distance matrix (D) is square, symmetric, and has dimension equal to the number of drip loggers. 223 

ii) Compute the inner product matrix 𝐵 = − *
+
𝐽𝑫𝐽, where 𝐽 = 𝐼 − *

.
𝟏𝟏0 is the double-centering matrix and 1 is 224 

a vector of ones. 225 

iii) Decompose B as 𝐵 = 𝑉Λ𝑉0, where Λ = diag	(λ*, … , λ.), the diagonal matrix of eigenvalues of B, and 𝑉 =226 

[𝐯*, … , 𝐯.], the matrix of corresponding unit eigenvectors. Sort the eigenvalues in non-increasing order: 227 

λ* ≥ ⋯ ≥ 	λ. ≥ 0. 228 

iv) Extract the first p eigenvalues ΛA = diag	(λ*, … , λA) and corresponding eigenvectors 𝑉A = [𝐯*, … , 𝐯A]. 229 

v) The corresponding Euclidean distances of the set of points, indicating the dissimilarities of the time series, 230 

are now located in the 𝑛×𝑝	matrix 𝑋 = 𝐱*, … , 𝐱A
0
= 𝑉AΛA*/+. 231 
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The k-Means clustering algorithm is then used to divide these points into k clusters, which corresponds to a 232 

categorization of the drip data time series. k-means clustering, or Lloyd's algorithm (Lloyd, 1982), is a method 233 

of vector quantization that is popular for cluster analysis in data mining. k-means clustering aims to partition n 234 

observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a 235 

prototype of the cluster. The algorithm proceeds as follows: 236 

i) Choose k initial cluster centers (centroid): Here, we use k=4 clusters as this was the number of flow 237 

categories identified in previous work at this site. 238 

ii) Compute point-to-cluster-centroid distances of all observations to each centroid. There are two steps 239 

to follow: first assign each observation to the cluster with the closest centroid. Then individually assign 240 

observations to a different centroid if the reassignment decreases the sum of the within-cluster, sum-of-241 

squares point-to-cluster-centroid distances. 242 

iii) Compute the average of the observations in each cluster to obtain k new centroid locations. 243 

iv) Repeat steps 2 and 3 until cluster assignments do not change, or the maximum number of iterations 244 

is reached. 245 

4 Results and Discussion 246 

4.1 Determining the relationship between sampling frequency and drip discharge COV  247 

We test the variability of drip discharge COV with the sampling frequency in Figure 2, to find the optimum 248 

sampling frequency that minimizes sampling artifacts while maximizing the capture of natural variability. For 249 

high discharge, COV increases with sampling frequency, which we explain by the smaller sampling interval 250 

better capturing the actual drip variability. For low discharges, COV also increases with sampling frequency, 251 

which we explain by the variability introduced due to drip rates being less than the sampling frequency. From 252 

the data presented in Figure 2, we can conclude that for both chambers and to compare all different types of 253 

flow, a sampling frequency of 1 day gives the minimum COV, which does not change significantly with a finer 254 

sampling frequency. Therefore, we use a sampling frequency of 1 day that minimizes sampling artifacts while 255 

maximizing the capture of natural variability. For Golgotha Cave, this would be to sum the 15 minutes drip rates 256 

over a 1-day period. This optimized sampling frequency is used to plot the histograms (section 4.2), ACFs 257 

(supplementary section S1) and examine the drip discharge behavior with drip variability for various flow types 258 

(section 4.3).   259 
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	260 

Figure 2: Optimum sampling frequency that minimizes sampling artifacts while maximizing the capture of 261 

natural variability. 262 

4.2 Drip rate frequency distributions  263 

Figure 3 shows the drip rate histograms for representative drip sites and different flow categories with optimum 264 

sampling frequency of 1-day. Drip sites are organized from lowest to highest discharge in each flow 265 

classification. Slow dripping soda-straw flows (e.g. sites 2xi, 2iii and 1v) show variation of drips with 266 

seasonality and the response to wetter recharge period with an approximate six-month lag, which suggests the 267 

drip water is supplied from storage in the limestone formation. Among these, site 1v displays the response to 268 

recharge in much shorter duration, the 6 months following 2013 recharge and then a shift to lower flow rates 269 

which may represent flow poaching. The histograms for icicle and combined flow systems represent unimodal 270 

skewed to bimodal distributions, indicating the shift to higher drip rates in response to the wetter 2013 271 

hydrological year (except site 2xiii, which shows a shift to lower drip rates). The rest of the fracture sites show 272 

bimodal or multimodal distributions. With the limited temporal scale of the analysis, it seems that the 273 

histograms with skewed distributions represent the consequences of wetter 2013 hydrological year. These 274 

skewed distributions seem to have higher drip rate response to the drier 2014-15 period rather than the earlier 275 

normal/wetter years. This clearly denotes potential refilling of storage within the system during the 2013 wet 276 

winter, and later supplying drip water in 2014-15 seasons. In contrast, the bimodal distribution of site 2viii 277 

indicates the drip response to the annual cycle of wet and dry seasons of each hydrological year with an 278 

approximate six-month lag. Several bimodal (e.g. site 1x) and multimodal (e.g. sites 2xvi, 2vi) distributions, 279 

characterize as fracture flow, also distinguishes the dry period of 2012 - 2013 (having low drip rates) from the 280 

later period of 2013 wet winter (with high drip rates). 281 
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 282 

Figure 3: Histogram plots of both chambers drip data according to four flow types identified in Mahmud et al. 283 

(2016). Each histogram represents the frequencies of the drip counts per day (The axes labels are shown in the 284 

first histogram). Bin size is uniform for all plots and the external tick marks in x-axes delineates the bin 285 

intervals. The legend shows all the seasons over the monitoring period (blue to cyan for wet seasons: April to 286 

September and red to yellow for dry seasons: October to March, with the color gradually shifting for different 287 

years). The 2012 wet season experienced similar rainfall to the long-term annual mean, whereas 2013 was rather 288 

wet and 2014 was a relatively dry year. Histogram data for all sites appear in Supplementary Figure S1. 289 

4.3 Autocorrelation functions (ACFs) 290 

We investigate the use of ACFs to analyze drip behavior using the optimum sampling frequency of 1-day and 291 

until lags of 365 days. We do not find significant yearly autocorrelation with this limited 3 years of data. In 292 

some drips, a negative correlation occurred, but it is very insignificant and no physical process can explain a 293 

negative yearly correlation. Therefore, we plot ACFs in Figure 4 for different flow categories with the optimum 294 

sampling frequency of 1-day and lag time of 200 days. All sites have an autocorrelation that persists for at least 295 

a month, and often much longer. However, there is no relationship between the strength or the temporal decay of 296 
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the correlation and the LiDAR-based flow classification. This indicates the presence of ample storage in the 297 

system, supplying all stalactite types.  298 

 299 

Figure 4: Autocorrelation functions of both chambers drip data according to flow classification of Mahmud et al. 300 

(2016). X- and Y-axis of individual plots represents the lag (in days) and ACF respectively (The axes labels are 301 

shown in the first ACF plot). ACFs for all sites appear in Supplementary Figure S2. 302 

4.4 Hydrological classification of cave drips 303 

We examine the hydrological behavior of the drips at daily resolution with respect to mean discharge and flow 304 

variation in Figure 5. It is clear from Figure 5 that there is no relationship between COV and flow-type. One 305 

soda-straw discharge (site 2xi) has a seasonal dryness, a very low discharge, and a very high coefficient of 306 

variation due to its irregular dripping. Otherwise, nearly all soda-straw flow, icicle flow, combined flow and 307 

fracture flow drips have COV <60%, with the exception of one fracture flow site showing the highest COV 308 

(Figure 5). But in general, there is little difference in the COV between classification types, probably reflecting 309 

the ample storage (supplementary section S1) due to the dominance of primary porosity at this cave. We do not 310 

clearly observe increasing variability with decreasing discharge within similar flow type, in contrast to other 311 

studies from older, fractured rock limestones (Smart and Friederich, 1987; Baldini et al., 2006; Baker et al., 312 

1997).  This shows that Golgotha Cave drip sites do not fit within the drip classification method proposed by 313 
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Smart and Friederich (1987) and Baker et al. (1997), which were based on manual drip counts with limited 314 

number of intermittent drip sites. Moreover, we utilize drip data from a cave with primary porosity, capturing 315 

the full range of flow types from matrix through to fracture, whereas the previous classifications only captured 316 

slow vs fast drips that were likely dominated by fracture flow paths given the host rock setting.   317 

	318 

Figure 5: Hydrological behaviour of drip sites expressed in terms of daily mean discharge versus daily discharge 319 

variability calculated from the automatic drip rate data for three hydrological years. Measured drip rates are 320 

converted to volume units assuming a drip volume of 0.1433 ml (Genty and Deflandre, 1998). Blue lines and 321 

symbols reflect flow classification given in Mahmud et al. (2015). 322 

4.5 Clustering of similar drip time series 323 

The clustering results are overlain upon the chamber ceiling images in Figure 6 and also summarized in Tables 1 324 

and 2 with the average drip discharges and flow type classification based on LiDAR. Average drip discharges 325 

are calculated from the 15-minute drip rates. As mentioned above, drip logger time series are deemed similar if 326 

they are well correlated and only have a small offset with each other, and so these time series should cluster 327 

together. Most of the drip sites that are identified as matrix flow (soda-straw and icicle flow) cluster together in 328 

C1. However, three of the icicle flow sites with drip rate greater than 4 per 15 minutes fall in C2. The combined 329 

flow category and the fracture type usually cluster in C3 and C4 respectively. Therefore we observe that our 330 

clustering generally agrees with the morphology-based flow classification of Mahmud et al. (2016). Few of the 331 

flow classes show exceptions, for example site 2vi is a fracture type flow and cluster in C1. This site has really 332 

high discharge with high variability, showing irregular drip rate.  333 

One consistent feature that appears from the cluster analysis of Figure 6 is the spatial homogeneity of the 334 

clusters in Chamber 1, suggesting that they are spatially connected, or that their flow paths are connected to the 335 

same hydrological domain (the karst matrix), and supporting the overall dominant matrix flow patterns (both 336 
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soda-straw and icicle). Chamber 2 presents a completely different situation, where it is obvious that drip sites 337 

can have similar behavior (well correlated together with a small lag), and be spatially distinct features, separated 338 

by spans of approximately 6 meters (Figure 6). In particular, clusters 3 and 4 are spatially scattered, representing 339 

the presence of fractures and combined flow systems throughout the chamber ceiling. This indicates an overall 340 

strong heterogeneity of the flow paths between the surface and the cave for Chamber 2. Hence, in Chamber 2 we 341 

expect flow paths to be more complex with routing between multiple stores and interconnected fracture 342 

networks potentially resulting in non-linear response to infiltration. This is supported by dripwater d18O data for 343 

this chamber (Treble et al., 2013). 344 

Table 1: MDS cluster groups with statistical properties of Chamber 1 drip data. 345 

Site/Stalagmate  MDS Cluster Group Average drip discharge (l/yr)  Flow type (LiDAR-based) 
1A 1 19.8 Icicle 
1B 1 12.6 Icicle 
1i 1 6.6 Icicle 
1ii 1 11.2 Icicle 
1iii 1 8.1 Icicle 
1v 1 6.7 Soda-straw 
1vi 1 7.4 Icicle 
1viii 2 60.9 Combined 
1ix 1 14.8 Icicle 
1x 3 86.2 Fracture 
1xi 1 12.7 Icicle 

Table 2: MDS cluster groups with statistical properties of Chamber 2 drip data 346 

Site/Stalagmate  MDS Cluster Group Average drip discharge (l/yr)  Flow type (LiDAR-based) 
2A 1 9.4 Icicle 
2B 1 17.1 Icicle 
2E 3 140.3 Combined 
2i 4 243.0 Fracture 
2iii 1 4.2 Soda-straw 
2iv 1 14.6 Icicle 
2v 3 67.8 Combined 
2vi 1 985.0 Fracture 
2vii 2 25.0 Icicle 
2viii 3 113.8 Combined 
2ix 4 360.2 Fracture 
2x 1 7.0 Icicle 
2xi 1 0.6 Soda-straw 
2xiii 2 26.2 Icicle 
2xiv 2 42.8 Icicle 
2xv 1 11.6 Icicle 
2xvi 3 266.9 Fracture 
2xvii 1 7.0 Icicle 
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347 
Figure 6: Cluster group plot overlain upon the cave ceiling for both chambers. The ceiling images are captured 348 

by LiDAR and the circles represent the ceiling locations of stalactites dripping on various stalagmates in both 349 

chambers (shown in Figure 1). The colour of the circles indicates individual MDS cluster group. The blue 350 

arrows in both Figures show the geographic orientation and the green arrows represent the approximate transects 351 

throughout the chambers from higher to lower ceiling elevation. 352 

5 Implications of the findings and future research 353 

Starting with the time-series analysis, this research presents a methodology that can be applied globally for drip 354 

logger data. The results show that some data-integration is necessary to avoid artefacts from slow drip sites. For 355 
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sites where there is significant matrix flow, our study has demonstrated that the Smart and Friederich 356 

classification is not appropriate. Therefore, this study has presented alternative hydrological classification 357 

schemes that are suitable for cave sites that include matrix flow. The times series approach adopted in this study 358 

also opens the way for improved analysis and classification of hydrology time series in general i.e. tests for 359 

histogram, autocorrelation, cluster analysis, and all of these will certainly benefit our understanding of the 360 

hydrology of karst systems. 361 

In this study, we also extend the analysis of drip time series to multiple sites, whereby we take advantage of the 362 

ensemble of loggers to extract common properties by clustering, which would not be possible with single site 363 

analysis. The results show that by considering multiple simultaneous time series, one can make better inferences 364 

about water flow and unsaturated zone properties. The main impact is to recommend the use of spatial networks 365 

of loggers over individual loggers. It should be noted that currently, most researchers deploy only a few loggers 366 

to understand the flow to individual sites. This study also proposes a possible methodology for the analysis of 367 

such datasets. 368 

Regarding application of our findings, we believe that our methodology based on drip logger datasets can 369 

provide direct evidence of deep drainage, and therefore the timing of diffuse recharge, which could be used for 370 

basic model calibration. Spatial drip data (possibly combined with Lidar) is beneficial to infer flow types (e.g. 371 

the proportion of fracture vs matrix, etc.) which could be used for model configuration to produce realistic karst 372 

recharge (Hartmann et al., 2012), and hence large-scale groundwater estimation (Hartmann et al., 2015). 373 

Another potential application is the integration of flow types in groundwater models through inverse modelling. 374 

Such data could also be used to constrain water isotope model configurations used for forward modelling 375 

speleothem δ18O (Bradley et al., 2010; Treble et al., 2013). Overall, the findings of this work will definitely 376 

provide a better understanding of processes that control vadose zone flow and transport processes, which would 377 

ultimately help develop approaches to incorporate these processes into simulation models (Hartmann and Baker, 378 

2017).  379 

The analysis, presented here and combined with the findings of previous work at this site, provides valuable 380 

information for paleoclimatologists and geochemists wishing to sample stalagmites. While these studies have 381 

characterised Golgotha Cave, they could be applied to any other cave system. In our previous work, we have: 1) 382 

devised a classification for flow-type based on stalactite morphology; 2) quantified the recharge response of 383 

each flow type to infiltration and; 3) combined the findings of points 1-2 to estimate the total volume of cave 384 

discharge; 4) compared cave discharge with infiltration to estimate the total recharge volume and identify highly 385 

focused areas of recharge. The current study has further developed the spatial and temporal statistical 386 

relationships between the flow sites, allowing both quantification and visualisation of the hydrology between the 387 

ground surface and the cave ceiling. More generally, these studies illustrate the heterogeneity between flow sites 388 

and demonstrate methods that can be applied to any cave system for studying diffuse recharge and paleoclimate 389 

records from speleothems.  390 

We further propose some ideas for future research that have evolved from this study:  391 
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a) Combining a drip logger network with a surface weather station and soil moisture network to constrain 392 

the water balance in hydrological models. Additionally, employing sap flow meters could allow 393 

constraining tree water use. 394 

b) Combining the logger network, which constrains diffuse recharge, to boreholes measuring groundwater 395 

level to understand the relative importance of diffuse and river recharge. 396 

c) Combining cave drip logger data with surface geophysics data to track water movement. 397 

6 Conclusion 398 

Cave drip water response to surface climatic conditions is often complex due to numerous interacting drip routes 399 

with varying response times (Baldini et al., 2006). This study explores the relationship between drip water and 400 

rainfall in a SW Australian karst, where both intra- and inter-annual hydrological variations are strongly 401 

controlled by seasonal variations in recharge. The multi-year drip response data capture the inter-annual drip 402 

water variability that are likely to be greater than intra-annual variability as suggested by Baker et al. (1997). 403 

Building on previous work, we further analyse a set of statistical properties of three hydrological years of drip 404 

data under varying precipitation rates. We test the relationship between drip discharge variability and drip data 405 

sampling frequency to determine the optimum sampling frequency that maximizes the capture of natural 406 

variability with minimum sampling artifacts. Using the daily optimum sampling frequency, the histogram 407 

distributions of various drip data time series illustrate the differences between the flow classifications. Most of 408 

the drip sites show persistent autocorrelation for at least a month. The hydrological behavior of the drips is 409 

examined with respect to mean discharge and the flow types similar to the classification method proposed by 410 

previous researchers (Smart and Friederich, 1987; Baldini et al., 2006; Baker et al., 1997). The drip sites at 411 

Golgotha Cave described in this study do not fit within the drip classification method proposed by Smart and 412 

Friederich (1987) and Baker et al. (1997). These previous studies were based on manual drip counts with limited 413 

number of intermittent drip sites. Here we overcome these limitations with automated drip monitoring system.  414 

Finally, we apply a well-developed clustering method to determine the degree of similarity between drip time 415 

series. The clustering indicates one dominating group: C1 (characterized by matrix flow type) with very slow 416 

continuous drip discharge indicating matrix porosity in the thick limestone formation. This finding concurs with 417 

the observed cave chamber morphology and lithology. Moreover, the cluster analysis agrees with the flow 418 

classification of Mahmud et al. (2016) by grouping similar flow type in one single cluster. Overall this study 419 

establishes a novel way to characterize cave hydrology, which can be obtained by performing together both 420 

methodologies of Mahmud et al. (2015) and Jex et al. (2012). It relies on a metric that defines drip logger time 421 

series as similar if they are well correlated and only have a small offset with one another, and therefore these 422 

time series should cluster together. The MDS analysis supports this hypothesis and moreover, displays the 423 

spatial patterns of the flow paths between the surface and the cave chambers. This technique shows potential to 424 

classify, quantify and visualise the observed relationships between infiltration through the fractured limestone 425 

rocks and surface climate inputs. 426 
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Over the last decade, the automation of cave drip water hydrology measurements has permitted the routine 427 

generation of continuous hydrological time series for the first time. This study demonstrates a complete 428 

methodology for such datasets, which will help better characterize karst drip water hydrogeology and 429 

understand the relationship between drip hydrology and surface climate at any cave site where such 430 

measurements are made. We demonstrate that the analysis of the time series produced by cave drip loggers 431 

generates useful hydrogeological information that can be applied generally, beyond the example presented here. 432 

The time series behaviour integrates a variety of characteristics that combine the properties of the epikarst 433 

(storage), fracture configuration, and recharge. The clustering approach can identify which drip behaviour are 434 

related to these cave characteristics, and their spatial relationship. Most importantly, information on cave 435 

characteristics can now be gathered at a very low cost in terms of measurement and time. 436 
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