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Dear Editor, 
Please find attached the revised manuscript and author response to the reviewers’ 
comments of the manuscript “Hydrological characterization of cave drip waters in a 
porous limestone: Golgotha Cave, Western Australia” by Mahmud et al. for your 
consideration. We believe we have addressed all questions raised by the two 
reviewers of the manuscript.  
 
As requested, we have included a detailed response to reviewer’s questions (below), 
indicating page and line numbers where the changes are made in the revised 
manuscript. A marked-up manuscript version is also provided showing all the 
modifications. 
 
If you have any additional questions, we would be more than happy to address them. 
 
With kind regards, 
 
For the authors, 
Kashif Mahmud 

 
------------------------------------------------------------------------- 
Comments to the Author 
Interactive comment on “Hydrological characterization of cave drip waters in a porous 
limestone: Golgotha Cave, Western Australia” by Mahmud et al. 
 
Reviewer(s) Comments: 
Anonymous Referee #1 
In the submitted manuscript Mahmud et al. provide a detailed study on the dynamics of cave 
drips at a large karst cave in South West Australia. The authors use a large set of 
automatically recorded drip rate records to classify and cluster the different drips by their 
statistical properties and knowledge from previous research. They show that established 
classification schemes do not apply to their data set but their new clustering method provided 
a clear distinction of 4 clusters of drip types within the cave. The most prominent one, cluster 
1, consisted of drips that were mostly controlled by matrix flow, which is in accordance with 
previous classification using LiDAR imaging. The other clusters were expressed by a 
stronger hydrological variability in terms of mean discharge and flow variability. 

We appreciate the reviewer’s comments. 
 
The manuscript is generally well-written, the methods are clearly explained and the 
conclusions are well supported by the results and discussion. Some improvement is necessary 
in terms of structure and detail: Some parts of the methods appear in the results section and 
should be moved to the methods description. Also the elaborations about the drip 
characteristics are a bit too detailed and may be shortened to improve the readability of the 
manuscript.  

We have reorganized the method/result sections and removed the unnecessary portion 
that described the previous paper (see the newly structured section 3 and 4).  

 
Finally, another subsection addressing the impact of the results of this study would be very 
valuable for the karst and cave hydrology communities. I am confident that this can be done 
in the frame of minor revisions. 
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The impacts of the findings of this study have been briefly identified in the last 
paragraph of the conclusion, however we have elaborated this discussion further, 
including presenting a summary of the implications of the current study, as well as 
bringing together an overall summary tying in the relevant findings from the previous 
two papers by Mahmud et al. We have also recommended potential future research 
directions. This appears as the following subsection in the revised manuscript (section 
5): 
  
Implications of the findings and future research: 
We will emphasize the overall impacts of this study from different perspectives, 
starting with temporal analysis, multisite analysis, karst modelling, and then 
paleoclimate records.  
 
Starting with the time-series analysis, this research presents a methodology that can 
be applied globally for drip logger data. The results show that some data-integration is 
necessary to avoid artefacts from slow drip sites. For sites where there is significant 
matrix flow, our study has demonstrated that the Smart and Friederich (S&F) 
classification is not appropriate. Therefore, this study proposes an alternative 
hydrological classification scheme that incorporates cave sites influenced by matrix 
flow. The times series approach adopted in this study also opens the way for 
improved analysis and classification of hydrology time series in general e.g. tests for 
non-linearity, autocorrelation, cluster analysis, etc. and all of these will certainly 
benefit our understanding of the hydrology of karst systems. 
 
In this study, we also extend the analysis of drip time series to multiple sites, whereby 
we take advantage of the ensemble of loggers to extract common properties by 
clustering, which would not be possible with single site analysis. The results show 
that by considering multiple simultaneous time series, one can make better inferences 
about water flow and unsaturated zone properties. The main impact is to recommend 
the use of spatial networks of loggers over individual loggers – it should be noted that 
currently, most researchers deploy only a few loggers to understand the flow to 
individual sites. This study also proposes a possible methodology for the analysis of 
such datasets. 
 
Regarding application of our findings, we believe that our methodology based on drip 
logger datasets can provide direct evidence of deep drainage, and therefore the timing 
of diffuse recharge, which could be used for basic model calibration. Spatial drip data 
(possibly combined with Lidar) is beneficial to infer flow types (e.g. the proportion of 
fracture vs matrix, etc.) which could be used for model configuration to produce 
realistic karst recharge (Hartmann et al. 2012), and hence large-scale groundwater 
estimation (Hartmann et al. 2015). Another potential application is the integration of 
flow types in groundwater models through inverse modelling. Such data could also be 
used to constrain water isotope model configurations used for forward modelling 
speleothem δ18O (Bradley et al. 2010, Treble et al. 2013). Overall, the findings of this 
work will definitely provide a better understanding of processes that control vadose 
zone flow and transport processes, which would ultimately help develop approaches 
to incorporate these processes into simulation models (Hartmann and Baker 2017).  
 
The analysis, presented here and combined with the findings of our previous two 
papers (Mahmud et al. 2016, Mahmud et al. 2015), provides valuable information for 
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paleoclimatologists and geochemists wishing to sample stalagmites. While these 
studies have characterised Golgotha Cave, they could be applied to any other cave 
system globally. We can summarize our previous work as follows: 1) we have devised 
a classification for flow-type based on stalactite morphology (Mahmud et al. 2015); 2) 
quantified the recharge response of each flow type to infiltration (Mahmud et al. 
2016); 3) combined findings in points 1-2 to estimate the total volume of cave 
discharge; 4) compared cave discharge with infiltration to estimate the total recharge 
volume and identify highly focused areas of recharge (Mahmud et al. 2016). The 
current study has further developed the spatial and temporal statistical relationships 
between the flow sites, permitting both quantification and visualisation of the 
hydrology between the ground surface and the cave ceiling. More generally, these 
studies illustrate the heterogeneity between flow sites and what causes this, as well as 
putting forth methods that can be applied to any cave system to better understand 
diffuse recharge and paleoclimate records from speleothems.  
 
We have further proposed some ideas for future research that have evolved from this 
study. For example:  

a) Combining drip logger network with a surface weather station and soil moisture 
network to constrain the water balance with site specific measurements using 
modelled input time series derived from nearby meteorological stations. 
Additionally, employing sap flow meters to constrain tree water use. 

b) Combining the logger network, which constrains diffuse recharge, to a bore 
network that measures groundwater level, to understand the relative importance 
of diffuse and river recharge. 

c) Combining cave drip logger data with surface geophysics data to track water 
movement.  

 
 

Please see the attached and commented pdf for more detailed specific and technical 
comments. 
1) Line 27:  The typo 

This typing mistake is now corrected (line 26). 
 
2) Line 50:  The typo 

A comma is added (line 53). 
 
3) Line 54: This may depend on the more or less developed connection between the surface 
and the cave, doesn't it? 

Yes indeed, is added (line 57-58). 
 
4) Lines 57-58: remove unnecessary brackets 

Removed (line 61-62). 
 
5) Line 131: Provide short information about method. 

This paper is essentially not about climate, and is about drip categorization. So, we 
have removed the entire paragraph explaining water budgets and infiltration, and 
focused only on drip classification (section 2.2). 
 

6) Line 139: The second part of this section is a bit too detailed, please shorten. 
We have immensely minimized the description of previous works (see section 2.3). 



	
	

4	
	

 
7) Line 160: better use points instead of lines to avoid misinterpretation  

We think point plots would make it difficult to grasp the trend of these dense time 
series, and hence we prefer to stick with the line plots. 

 
8) Line 216: which processes does the offset account for? different flow lengths? Please 
provide short explanation. 

The offset O (in hours) is needed to align two time-series such that they present 
maximum correlation. This offset accounts for the lag time based on the maximum 
correlation between two-time series in order to match those time series. This is 
explained in line 222-223. 

 
9) Line 223: Please provide some short description of the MDS method for readers that are 
not familiar with the method. 

Multi-dimensional scaling (MDS) starts by defining a distance between a set of 
objects. In our case, each drip logger is an object and a specific distance between drip 
loggers is considered to characterize the similarity between any two loggers. This 
definition with more elaboration on the technique is added in section 3.2.  

 
10) Line 248: please move apart the 10^4 and the figure title, please provide x- and y-axis 
labels 

The figure Y-axis ticks is modified, however we feel adding the axis levels to each of 
the subplots will make the diagram congested. So, we have added the axis labels in 
the first plot with a description in the figure caption (Figure 3).  

 
11) Line 262: Same as above: figure needs axis labels 

We have moved this figure to supplementary section S1. Similar to the previous 
comment, we feel adding the axis levels to each of the subplots will make the diagram 
congested. So, we have added the axis labels in the first plot with a description in the 
figure caption (Figure S2). 

 
12) Lines 268-269: Please mention in methods that this is part of the analysis. 

Mentioned in method section 4.1 (line 187-189). 
 
13) Line 283: please mention in caption that ln is the log10 (isn't it?) 

Yes it is, cited in axis labels (Figure 2). 
  
14) Line 292, 295: here, and some lines before some accidental breaks should be removed 

Removed (see section 4.4). 
 
15) Line 306: K-means requires a pre-definition of the number of clusters. How was this done 
here? 

We have defined the cluster number in section 3.2 (line 245) based on the number of 
flow categories identified by Mahmud et al. (2016). 

 
16) Line 316: or their flow paths pass the same hydrological domain, the karst matrix.  

That could be another possibility and therefore is added in line 337-338. 
 
17) Line 332: Another subsection discussing the implications of this research concerning the 
understanding of cave hydrology, karst recharge, and paleoclimate reconstruction is missing 
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here. Also, how the newly gained knowledge could be incorporated into hydrological models 
to simulate the unsaturated zone (see refs below) would be very valuable. 
 
Bradley, C., Baker, A., Jex, C.N. & Leng, M.J. 2010. Hydrological uncertainties in the 
modelling of cave drip-water δ18O and the implications for stalagmite palaeoclimate 
reconstructions. Quaternary Science Reviews, 29, 2201–2214, doi: 
10.1016/j.quascirev.2010.05.017. 
 
Treble, P.C., Bradley, C., et al. 2013. An isotopic and modelling study of flow paths and 
storage in Quaternary calcarenite, SW Australia: Implications for speleothem paleoclimate 
records. Quaternary Science Reviews, 64, 90–103, doi: 10.1016/j.quascirev.2012.12.015. 
 
Hartmann, A., Lange, J., Weiler, M., Arbel, Y. & Greenbaum, N. 2012. A new approach to 
model the spatial and temporal variability of recharge to karst aquifers. Hydrology and Earth 
System Sciences, 16, 2219–2231, doi: 10.5194/hess-16-2219-2012. 
 
Hartmann, A., Gleeson, T., Rosolem, R., Pianosi, F., Wada, Y. & Wagener, T. 2015. A large-
scale simulation model to assess karstic groundwater recharge over Europe and the 
Mediterranean. Geoscientific Model Development, 8, 1729–1746, doi: 10.5194/gmd-8-1729-
2015. 

Earlier in this response letter we have mentioned adding a new section with all these 
suggested references. This section 5 discusses the implications of this research 
concerning the understanding of cave hydrology, karst recharge, modelling, and 
paleoclimate reconstruction.  

 
 

Reviewer(s) Comments: 

Anonymous Referee #2 
This manuscript is a follow up on drip monitoring data that were published in previous works 
including a 2016 paper in HESS. Whereas classification of flow regimes in the previous 
paper(s) was based also on morphological characteristics of the stalactites, here a similar 
clustering is based solely on a cluster analysis of the drip data. Beside the cluster analysis, 
there are new histograms and analysis of autocorrelation, which may add some qualitative 
understandings of the karst flow regime in these stalactites (seasonality, annual precipitation 
variability). I am not sure the “delta” from the previous works on this data that is presented in 
the current manuscript is worth a new HESS paper. I am sure that in the present way it is 
written it is not. Therefore, I recommend on a major revision in which: 1) the description of 
previous methods and results will be decreased to minimum; 2) Elaboration on the new 
statistical methods and results that are used here, 3) the presentation and discussion 
concerning the histograms and autocorrelation analysis will be upgraded significantly; and 4) 
the “delta” from our understanding of the system we had before this analysis will be declared 
more explicitly. 

We have removed the unnecessary portions that described the previous paper and 
elaborated the result section significantly with the description of new statistical 
analysis (see the newly structured section 2.3 and 3). We have also added a section 
about the wider impacts of the research in the field of karst and cave hydrology that 
distinguishes the added findings compared to our previous works in this domain (see 
the newly added section 5). The site description and methods are stripped to the 
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minimum during the revision and substantially revised, and this makes space for 
increased discussions and presentation of the results. 

 
Major Comments 
1) Even though it is declared in the manuscript and figure captions, it’s inappropriate that 
more than half of the paper including 3 figures and 2 tables are repetition of methods and 
results of a previous work. It doesn’t look good, especially the almost identical figures, avoid. 

We have removed Figure 2 completely and cited our previous work (Mahmud et al. 
2016) for the climate data and drip time series. Figure 3 is merged with Figure 1 by 
focusing only the cave floor images, complementing with the ceiling image and 
photographs of underlying stalagmites shown in Fig. 3 of previous paper (Mahmud et 
al. 2016). We have significantly modified the tables (Table 1 and 2) to represent the 
new findings with minimal overlap of previous outcomes.  

 
2) Lines 83-212, old stories, to be reduced to a 1/3 of current. 

We have condensed the content more and emphasized on our previous works 
(Mahmud et al. 2016, Mahmud et al. 2015) to follow for more detail. See the newly 
structured section 2 and 3.  

 
3) Lines 213-228 these are the new methods: Elaborate in explaining them, equations, figures 
that illustrate, etc,. MDS, K-means, these are not general statistics (this section (4) has to be 
as long as sections 2+3 at least). 

We employed a data analysis technique called Multi-dimensional scaling (MDS), that 
allows a data dimensionality reduction i.e., mapping complex multidimensional data 
on a low-dimensional manifold. MDS is a technique concerned with embedding a set 
of points in a low-dimensional space so that the distances between the points resemble 
as closely as possible a given set of dissimilarities between objects that they represent 
(Birchfield and Subramanya 2005). MDS requires a distance matrix to be computed, 
in which a single scalar number characterizes the similarity between any two time-
series. It takes an input matrix giving dissimilarities between pairs of items and 
outputs a coordinate matrix whose configuration minimizes a loss function. MDS is 
also known as Principal Coordinates Analysis (PCoA) and works differently from 
principle-component analysis (PCA), which operates on a covariance matrix, MDS 
operates on a distance or dissimilarity matrix (Pisani et al. 2016). Even if PCA and 
MDS methods can return the same results in specific contexts, MDS can be 
considered as a more general method that maintains its validity in a rigorous sense 
also for non-euclidean distances, i.e., the distance matrix (d) chosen in this study. 
MDS is used to translate these distances into a configuration of points defined in an n-
dimensional Euclidean space (Cox and Cox 1994). A MDS results in a set of points 
arranged so that their corresponding Euclidean distances indicate the dissimilarities of 
the time series. 
 
The basic steps of performing the MDS algorithm are:  
1.  Construct the distance matrix d: One key component in clustering is the function 

used to measure the temporal similarity (or distance) between any two time-series 
being compared. To define an appropriate measure of similarity between time 
series, we determine two factors: firstly, the offset (O) to match two time-series 
based on their maximum correlation, and secondly the complement of the 
correlation coefficient (1-R) between the time series (Jex et al. 2012). Initially, we 
compute the cross-correlation function and O is defined as the lag time based on 
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the maximum correlation between two time-series. Next, we define R as the 
correlation coefficient with the time series being moved by the offset amount O to 
have maximum correlation coefficient. Finally, the distance matrix (d) is 
computed for each pair of loggers using the following equation (Jex et al. 2012): 

𝑑 = 𝑂 (1 − 𝑅) 
2.  Compute the inner product matrix B = −'

(
𝐽𝐷𝐽, where J = 𝐼 − '

-
𝟏𝟏/ is the double-

centering matrix and 1 is a vector of all ones. 
3.  Decompose B as B = 𝑉Λ𝑉/, where Λ = diag	(λ', … , λ-), the diagonal matrix of 

eigenvalues of B, and V = [v', … , 𝑣-], the matrix of corresponding unit 
eigenvectors. Sort the eigenvalues in non-increasing order: λ' ≥ ⋯ ≥	λ- ≥ 0. 

4.  Extract the first p eigenvalues ΛD = diag	(λ', … , λD) and corresponding 
eigenvectors VD = [𝑣', … , vD]. 

5.  The corresponding Euclidean distances of the set of points, indicating the 
dissimilarities of the time series are now located in the 𝑛×𝑝	matrix X =
𝑥', … , xD

/ = VDΛD'/(. 
 
The k-Means clustering algorithm is then used to divide these points into k clusters, 
which corresponds to a categorization of the drip data time series. k-means clustering, 
or Lloyd's algorithm (Lloyd 1982), is a method of vector quantization that is popular 
for cluster analysis in data mining. k-means clustering aims to partition n observations 
into k clusters in which each observation belongs to the cluster with the nearest mean, 
serving as a prototype of the cluster.  
 
The algorithm proceeds as follows: 
1.  Choose k initial cluster centers (centroid): Here, we use k=4 clusters as this was the 

number of flow categories identified by Mahmud et al. (2016). 
2.  Compute point-to-cluster-centroid distances of all observations to each centroid. 

There are two steps to follow: first assign each observation to the cluster with the 
closest centroid. Then individually assign observations to a different centroid if 
the reassignment decreases the sum of the within-cluster, sum-of-squares point-to-
cluster-centroid distances. 

3.  Compute the average of the observations in each cluster to obtain k new centroid 
locations. 

4.  Repeat steps 2 and 3 until cluster assignments do not change, or the maximum 
number of iterations is reached. 

 
All these are added in the manuscript (section 3.2).  

 
4) What does the MDS analysis add to the correlation matrices analyzed in Mahmud et al. 
2016. ? 

This paper goes beyond the analysis done by Mahmud et al. (2016), where the 
correlation was considered without offset, and the quantitative drip data were not used 
for clustering, but only for validation. We could summarize both the papers like 
below in terms of investigating the dependence between multiple drip time series: 
 
Mahmud et al. (2016): correlation between time series 
Mahmud et al. (2017): computation of a distance between time series + offset 
correction + MDS-based clustering  
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Overall this study establishes a novel way to find consistent characterization of cave 
hydrology, which can be obtained by performing together both methodologies of 
Mahmud et al. (2015) and Jex et al. (2012). It relies on a metric that defines drip 
logger time series as similar if they are well correlated and only have a small offset 
with one another, and therefore these time series should cluster together. The MDS 
analysis supports this hypothesis and moreover, displays the spatial patterns of the 
flow paths between the surface and the cave chambers. This technique shows 
potential to classify, quantify and visualise the observed relationships between 
infiltration through the fractured limestone rocks and surface climate inputs. 

 
Specific Comments 
5) L 22 –Abstract should not include references. 

Removed (line 30-31). 
 
6) L 27 Capital C 

Corrected (line 26). 
 
7) L 37 for development of karst in relation to fractures, beds, bedding plains see also 
Kurtzman et al., 2009, Geosphere, v. 5; no. 2; p. 126–139; 

The reference is added in line 39. 
 
8) Line 91 “high matrix porosity” – give numbers 0.1? 0.2? 0.3? 

The porosity is reported in Smith et al. (2012) as 0.3 – 0.5 and is added in line 96. 
 
9) Lines 215-221: define cross-correlation function; is O and R calculated to all n(n-1)/2 pairs 
of drip data, elaborate, explain the method. End of lines 216 and 218 – redundancy. What are 
the dimensions of the distance matrix – d? 

Cross-correlation is a measure of similarity of two time-series as a function of the 
displacement of one relative to the other. The function is an estimate of the covariance 
between two time-series, y1t and y2t, at lags k = 0, ±1, ±2, .... 

 
Yes, both O and R are calculated to all n(n-1)/2 pairs of drip data. We will reorganize 
this section with detailed explanation on both MDS and K-means algorithms, as we 
stated before in comment 3.  
 
The distance matrix d is square, symmetric, and has dimension equal to the number of 
drip loggers. All these are added in section 3.2. 

 
10) Lines 223 – 228, what is MDS? Is it of the family of the classic principle-component 
analysis (PCA)? In the current application how many dimensions? Equations, figures, tell us 
the method? What is the K-means algorithm – elaborate on top of citing? 

We have discussed above the MDS and k-means algorithm earlier in this response 
letter and is explained in details in the revised manuscript (section 3.2).  
 

11) Figure 4. Put all vertical axis the same - 10000 or 1X10-4, do not mix; Color choice not 
good – try blue for wet seasons ad red for dry, or rainy 2013 in contrast with other play with 
it and choose the better, print and see if it is good on printing as well. 

Y-axis ticks are modified as well as different colour choices are explored to find the 
best one in Figure 3.  
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12) L 245. These histograms are not skewed. Maye be add a sub figure to figure 4 with the 
most characteristic normal, skewed, be-modal histograms, including a continuous line of the 
pdf to illustrate. 

The histogram plots were not clearly explained and are improved in the revised 
manuscript (see section 4.2).  
 
We believe that adding a subplot is not necessary at all, because there was a silly 
mistake in the text (mentioning wrong sites as skewed distribution) in earlier 
submitted version, which made the reviewer to ask for these extra figures. We have 
corrected the text and would prefer to leave the layout like this without making it too 
clumsy.  

 
13) Figure 5 and relevant text. – The most contrasting ACF are usually at time lag of 150-200 
(1 season in the 2-seasons Mediterranean climate), I would plot these ACF until lags of 365 
days to enhance the seasonal understanding, that may be gained. 

We have moved this section to supplementary material section S1. We tested the 
ACFs until lags of 365 days, however in general the yearly signal is quite weak. In 
some drips, we got some negative correlation, but it is very insignificant and no 
process can explain that negative yearly correlation. This is now mentioned in section 
S1. 

 
14) Figure 6 and 7, choose more contrasting colors and increase symbol size. 

Contrasting colors are used with larger symbol size (Figure 2 and 4). 
 
15) L 292 and 296 typo mistake of new line. 

Corrected (section 4.4). 
 
16) L313-314 “inconsistency” - unclear 

We observe that the clustering generally agrees with the morphology-based flow 
classification of our previous work (Mahmud et al. 2016) with few exceptions. For 
example, site 2vi has really high discharge with high variability, showing irregular 
drip rate. This is clarified in line 331-333.  

 
17) L339 the beginning of line is unclear 

The histogram distributions of various drip data time series can illustrate the 
differences between the flow classifications. This is now clarified in line 408-410. 

 
 
Additional references: 
 
Birchfield, S.T. and Subramanya, A. (2005) Microphone Array Position Calibration by Basis-
Point Classical Multidimensional Scaling. IEEE Transactions on Speech and Audio 
Processing 13(5), 1025-1034. 
Bradley, C., Baker, A., Jex, C.N. and Leng, M.J. (2010) Hydrological uncertainties in the 
modelling of cave drip-water δ18O and the implications for stalagmite palaeoclimate 
reconstructions. Quaternary Science Reviews 29(17-18), 2201-2214. 
Cox, T. and Cox, M. (1994) Multidimensional scaling, Chapman and Hall, London. 
Hartmann, A. and Baker, A. (2017) Modelling karst vadose zone hydrology and its relevance 
for paleoclimate reconstruction. Earth-Science Reviews 172, 178-192. 
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Hartmann, A., Gleeson, T., Rosolem, R., Pianosi, F., Wada, Y. and Wagener, T. (2015) A 
large-scale simulation model to assess karstic groundwater recharge over Europe and the 
Mediterranean. Geosci. Model Dev. 8(6), 1729-1746. 
Hartmann, A., Lange, J., Weiler, M., Arbel, Y. and Greenbaum, N. (2012) A new approach to 
model the spatial and temporal variability of recharge to karst aquifers. Hydrol. Earth Syst. 
Sci. 16(7), 2219-2231. 
Jex, C.N., Mariethoz, G., Baker, A., Graham, P., Andersen, M., Acworth, I., Edwards, N. and 
Azcurra, C. (2012) Spatially dense drip hydrological monitoring and infiltration behaviour at 
the Wellington Caves, South East Australia. International Journal of Speleology 41(2), 283–
296. 
Lloyd, S. (1982) Least squares quantization in PCM. IEEE Transactions on Information 
Theory IT-28(2 pt 1), 129-137. 
Mahmud, K., Mariethoz, G., Baker, A. and Treble, P.C. (2017) Hydrological characterization 
of cave drip waters in a porous limestone: Golgotha Cave, Western Australia. Hydrol. Earth 
Syst. Sci. Discuss. 2017, 1-19. 
Mahmud, K., Mariethoz, G., Baker, A., Treble, P.C., Markowska, M. and McGuire, L. (2016) 
Estimation of deep infiltration in unsaturated limestone environments using cave LiDAR and 
drip count data. Hydrol. Earth Syst. Sci. 20, 359-373. 
Mahmud, K., Mariethoz, G., Pauline, C.T. and Baker, A. (2015) Terrestrial Lidar Survey and 
Morphological Analysis to Identify Infiltration Properties in the Tamala Limestone, Western 
Australia. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal 
of 8(10), 4871 - 4881. 
Pisani, P., Caporuscio, F., Carlino, L. and Rastelli, G. (2016) Molecular Dynamics 
Simulations and Classical Multidimensional Scaling Unveil New Metastable States in the 
Conformational Landscape of CDK2. PLoS ONE 11(4), 1-22. 
Smith, A.J., Massuel, S. and Pollock, D.W. (2012) Geohydrology of the Tamala Limestone 
Formation in the Perth Region: Origin and Role of Secondary Porosity, p. 63. 
Treble, P.C., Bradley, C., Wood, A., Baker, A., Jex, C.N., Fairchild, I.J., Gagan, M.K., 
Cowley, J. and Azcurra, C. (2013) An isotopic and modelling study of flow paths and storage 
in Quaternary calcarenite, SW Australia: implications for speleothem paleoclimate records. 
Quaternary Science Reviews 64(0), 90-103. 
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Abstract 11 

Cave drip water response to surface meteorological conditions is complex due to the heterogeneity of water 12 

movement in the karst unsaturated zone. Previous studies have focused on the monitoring of fractured rock 13 

limestones that have little or no primary porosity. In this study, we aim to further understand infiltration water 14 

hydrology in the Tamala Limestone of SW Australia, which is Quaternary aeolianite with primary porosity. We 15 

build on our previous studies of the Golgotha Cave system and utilize the existing spatial survey of 29 16 

automated cave drip loggers and a LiDAR-based flow classification scheme, conducted in the two main 17 

chambers of this cave. We find that a daily sampling frequency at our cave site optimizes the capture of drip 18 

variability with least possible sampling artifacts. With the optimum sampling frequency, most of the drip sites 19 

show persistent autocorrelation for at least a month, typically much longer, indicating ample storage of water 20 

feeding all stalactites investigated. Drip discharge histograms are highly variable, showing sometimes 21 

multimodal distributions. Histogram skewness is shown to relate to the wetter than average 2013 hydrological 22 

year and modality is affected by seasonality. The hydrological classification scheme with respect to mean 23 

discharge and the flow variation, can distinguish between groundwater flow types in limestones with primary 24 

porosity, and the technique could be used to characterize different karst flow paths when high-frequency 25 

automated drip logger data are available. We observe little difference in the coefficient of variation (COV) 26 

between flow classification types, probably reflecting the ample storage due to the dominance of primary 27 

porosity at this cave site. Moreover, we do not find any relationship between drip variability and discharge 28 

within similar flow type. Finally, a combination of multi-dimensional scaling (MDS) and clustering by k-means 29 

is used to classify similar drip types based on time series analysis. This clustering reveals four unique drip 30 

regimes which agree with previous flow type classification for this site. It highlights a spatial homogeneity in 31 

drip types in one cave chamber, and spatial heterogeneity in the other, which is in concordance with our 32 

understanding of cave chamber morphology and lithology. 33 

 34 

Keywords: karst aquifers, drip loggers, infiltration, cave drip water 35 
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 36 

1 Introduction 37 

Karst features in limestone are typically developed from the solutional dissolution of fractures and bedding 38 

planes in carbonate rocks (Arbel et al., 2010; Kurtzman et al., 2009). Worldwide, karst regions represent 39 

significant geographical areas with potentially high rates of infiltration through fractured and karstified 40 

carbonate rocks. The most usual recharge method in karstic aquifers is the faster infiltration through the deep 41 

karstic openings (Ford and Williams, 2007). Complex spatial spreading of various karst features such as 42 

solutionally widened fractures, caves and conduits, makes the monitoring and precise groundwater recharge 43 

modeling very difficult (Lange et al., 2003; Arbel et al., 2010). The upper part of karstified rock (the epikarst 44 

zone) has higher permeability than the underlying vadose zone (Klimchouk, 2004). Therefore, infiltration into 45 

the epikarst zone is faster compared to the drainage through it, and water is kept stored in this region. This 46 

stored water in the vadose zone seeps slowly and finally emerges inside caves as infiltrating drip waters 47 

(Williams, 1983).  48 

Karstic features such as speleothems, commonly used to reconstruct paleo-environmental records, are formed 49 

due to calcite deposition from cave drip water. Therefore, the knowledge of drip water hydrology is critical to 50 

study the paleoclimatic records (Baldini et al., 2006). An early study using tipping bucket loggers formulated a 51 

relationship between maximum discharge and coefficient of variation of discharge to categorize cave discharges 52 

(Smart and Friederich, 1987), for a fractured-rock limestone system with a vertical range of approximately 140 53 

m (GB Cave, Mendip Hills, UK). They found that the drips close to the surface have extreme coefficient of 54 

variations, whereas the drips in depths have fairly constant flow rates over time, with a significant possibility of 55 

water storage in vadose zone fractures. Thus the stalagmite record resulting from slower drips may be more 56 

closely related to the karst hydrology rather than palaeoclimate (Baldini et al., 2006). This may also be a 57 

consequence of the developed connection between the surface and the cave. Quantitative analysis of such 58 

stalagmite drip data has, in the past, used manual observations of cave drips (e.g. Baker et al 1997). However, 59 

the recent development of automatic cave drip loggers (Collister and Mattey, 2008) has enabled the generation 60 

of high temporal resolution and continuous drip discharge time-series (e.g. (Jex et al., 2012; Cuthbert et al., 61 

2014; Markowska et al., 2015; Mariethoz et al., 2012)), providing new opportunities for quantitative 62 

hydrological analysis. 63 

Here we present monitoring data from Golgotha Cave located in SW Western Australia that has been 64 

extensively monitored since 2005, with the aim of better understanding karst drip water hydrogeology and the 65 

relationship between drip hydrology and surface climate. We build on the work of Mahmud et al. (2016), which 66 

presented the largest spatial and temporal survey of automated cave drip monitoring with matrix (primary) 67 

porosity published to date. This previous study consisted of data from two large chambers within this cave, 68 

measured in the period from August 2012 to March 2015, using a highly spatially (29 sites in two separate 69 

chambers) and temporally (0.001 Hz, 15 min intervals) resolved dataset and developed a recharge estimation 70 

technique for caves using the drip data and flow classification techniques of Mahmud et al. (2015a). Mahmud et 71 

al. (2015a) performs morphological analysis of karstic features, based on ground-based LiDAR data, to identify 72 
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different flow processes in karstified limestone. Based on the findings of Mahmud et al. (2015a); Mahmud et al. 73 

(2016), here we investigate the relationship between drip water hydrology and cave depth, spatial location and 74 

stalactite type, and develop a hydrological classification scheme that is appropriate to high-frequency drip 75 

logger data and limestones with a primary porosity. This classification scheme is also compared with previous 76 

studies (Smart and Friederich, 1987; Baker et al., 1997) to examine the limitations of these previous schemes. 77 

These findings will also help better characterize and understand water movement in highly porous karst 78 

formations.  79 

Finally, we use a combination of multi-dimensional scaling (MDS) and the popular K-Means algorithm for 80 

clustering similar drip characteristics. Time series clustering has been shown to be effective in providing useful 81 

information in various domains (Liao, 2005) and is implemented here to determine the degree of similarity 82 

between two drip time series. There seems to be an increased interest in time series clustering as part of the 83 

research effort in temporal data mining. The method we use here is suitable for large datasets, has been studied 84 

extensively in the past and achieves good results with minimum computational cost (Jex et al., 2012; Scheidt 85 

and Caers, 2009; Borg and Groenen, 1997).  86 

2 Site Description 87 

2.1 Studied Cave 88 

The cave site has been explained in detail by Mahmud et al. (2015a); Mahmud et al. (2016); Treble et al. (2013). 89 

Briefly, the field site, Golgotha Cave is 200 m in length and up to 25 m in width (Figure 1), is developed in 90 

Quaternary aeolianite, which consists of wind-blown calcareous sands that were deposited along the southwest 91 

coast of Australia (Brooke et al., 2014). Vadose zone water flow, and subsequent widening by ceiling collapse, 92 

formed the cave chambers. Treble et al. (2013) described the cave site as being developed in the Spearwood 93 

System of the Tamala Limestone and is mantled by a variable thick layer of sand formation having depths of 94 

between 0.3 m and 3 m. Diffuse (or matrix) flow is likely to be dominant in the Tamala Limestone formation 95 

due to its high matrix porosity as 0.3 – 0.5 (Smith et al., 2012). Karst in this region is also called “syngenetic” 96 

(Treble et al., 2013) that implies processes like preferential vertical dissolution and varying morphology of the 97 

subsurface caprock. These processes may establish vadose-zone preferential flow extending to the cave ceiling, 98 

with occasional rapid delivery of percolating waters deep into the calcarenite which end up seeping through to 99 

the cave ceiling. Therefore, this young limestone formation offers various opportunities for preferential flow 100 

into the hostrock and storage within it (Brooke et al., 2014). Golgotha Cave was chosen because (a) it is located 101 

in an intensively studied karst area (Mahmud et al., 2015a; Mahmud et al., 2016; Treble et al., 2015; Treble et 102 

al., 2013; Treble et al., 2016), which has over ten years of manual and 3 years of automated drip water 103 

monitoring, (b) it contains actively growing speleothems, and (c) it is accessible year-round.  104 

Based on the findings of Treble et al. (2013) and the morphological analysis of stalactite clusters by Mahmud et 105 

al. (2015a), combined with the classification of drip rate data from the underlying drip sites (Mahmud et al., 106 

2016), we determined previously that Chamber 1 (Figure 1b, c and d) is mostly dominated by matrix flow 107 

representing water flowing down and seeping through the rock matrix, characterised by both icicle-shape and 108 
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soda straw stalactites with slow drip rates of low variability. In contrast, Chamber 2 (Figure 1b and e) is 109 

typically controlled by fracture and combined flow, with high drip rates that are shown to vary over time 110 

depending upon the mode of water delivery to the preferential flow system. In fracture flow, water moves along 111 

the fracture orientation, forming curtain-shape stalactites in the direction of highest fracturing. Finally, 112 

combined flow is defined as the combination of conduit, matrix and fracture flow, resulting in a circular pattern 113 

of stalactite formation.  114 

 115 

Figure 1: a) Coastal belt of SWWA (South-West Western Australia). (b) Golgotha cave plan view displaying 116 

both Chamber 1 (green marked area), which comprises Site 1, and Chamber 2 (blue marked area) containing 117 

Site 2. Average limestone thickness from cave ceiling to ground surface over Site 1 and 2 are 32.33 m and 40.24 118 

m respectively. LiDAR scans of drip sites on: (c) Chamber 1 north floor, (d) Chamber 1 south floor and (e) 119 

Chamber 2 floor. The red arrows show the geographic orientation (c, d and e). * indicates the sites where the 120 

stalagmate loggers are not clearly visible in the LiDAR floor images as they are obscured by formations in front 121 

of them, however the approximate locations are marked in yellow circles. Additional scans of cave ceiling and 122 

photographs of underlying stalagmites are shown in Fig. 3 of Mahmud et al. (2016). 123 

2.2 Climate and Meteorology 124 

A comprehensive description of the climate at our study site has been presented in Mahmud et al. (2015a); 125 

Mahmud et al. (2016); Treble et al. (2013). To summarize, the site is a Mediterranean climate, associated with 126 
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wet winters and dry summers. Annual rainfall recorded at Forest Grove weather station (Figure 1a, 5 km away 127 

from the study site) is 1136.8 ± 184 mm, among which ~75% occurs between May and September, with an 128 

average daily maximum temperature variation from 16°C (in July) to 27°C (in February) (BoM, 2015). 129 

Typically, the peak rainfall begins in late autumn (May) and the wet season continues until end of September 130 

with a median monthly rainfall of ~100 mm (Mahmud et al., 2016). Each hydrological year is defined as April 131 

to March, as April has the lowest water budget (precipitation-evapotranspiration).   132 

As reported in Mahmud et al. (2016), all hydrological years have water deficit during the dry season (October to 133 

April) and significant infiltration during the wet period (Mahmud et al., 2016). Low evaporative conditions 134 

during winter should permit increased infiltration to the caves, enhancing the drip discharge response to winter 135 

rainfall. The hydrological year 2012 had roughly similar annual rainfall of 1008.6 mm to the long-term annual 136 

mean, whereas 2013 was rather wet (total rainfall of 1239.8 mm) and 2014 was a relatively dry year with a total 137 

rainfall of 943.8 mm. Recorded rainfall was significantly above average in the 2013 hydrological year for 138 

various weather stations in Western Australia (BoM, 2015). Therefore, our site had a wetter winter in 2013 with 139 

an estimated annual recharge of 858.67 mm which is very much above average (ten year mean annual recharge 140 

is 564 mm).  141 

2.3 Drip data acquisition and characteristics 142 

Data acquisition and pre-processing has been previously described in Mahmud et al. (2016) and is concisely 143 

summarized here. Stalagmate drip loggers (www.driptych.com) were set up in approximate transects throughout 144 

the two large chambers from higher to lower ceiling elevation in 34 locations and are currently being monitored 145 

since August 2012. Each chamber has contrasting discharge, dune facies and karst features of Golgotha Cave 146 

(Figure 1). Data loggers were set to record continuously at 15 minute intervals. The notation used for site 147 

identification follows the same style as described in Mahmud et al. (2016), consisting of a numerical number 148 

(represents the chamber) and a letter/roman number (represents a drip site within the given chamber, with a 149 

letter indicates the sites having both manual and automatic drip counts and a roman number specifies the sites 150 

only having drip logger data). Based on the initial data screening of Mahmud et al. (2016), 29 sites are 151 

considered in the time series analysis although short periods of poor quality data were omitted if they were 152 

associated with changes in the mean and variability at the time of fieldwork. This impacted sites 1A, 1B, 2A, 153 

2B, 2E as the logger was temporarily placed aside every 6 weeks in order to sample water from a collection 154 

bottle underneath the logger. Time series gaps are filled with synthetic data based on the drip statistics and 155 

correlation between drip rates. The processed drip rate time series for all the sites and three hydrological years 156 

from April 2012 to March 2015 were published in previous work of Mahmud et al. (2016). 157 

As previously reported, drip rates in Chamber 1 are generally very low (the fastest drip rate was 25 drips per 15 158 

mins) consistent with the predominance of matrix flow in this chamber. However, it is obvious that most drip 159 

loggers exhibit a clear response to the 2013 wet winter (Mahmud et al., 2016) and also indicate the substantial 160 

inter-annual variation in discharge between three hydrological years. All Chamber 1 drip sites (except site 1x) 161 

show a gradual drip rate decrease during summer 2012 to winter 2013 due to below average rainfall in 2012. 162 

Then after displaying the sudden increase in all drip discharges that express the 2013 wet winter, the drip rates 163 
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further reduce due to the dry 2014 hydrological year. This intra-annual variation is identified much greater than 164 

the inter-annual discharge variation of the drip sites, as previously observed in Baker et al. (1997). This suggests 165 

that high-resolution intra-annual drip rate data is helpful to obtain a complete picture of changing flow 166 

variability with recharge. The high resolution of the data sets includes precise characterization of the temporal 167 

behavior of an individual drip, illustrating the differences inherent to the drip sites.  168 

In contrast, Chamber 2 drip rates present more variability between sites both in intra-annual and inter-annual 169 

discharges, except few very slow dripping sites (Mahmud et al., 2016). Of the Chamber 2 drips, the slow drip 170 

sites have the lowest coefficient of variations (COVs) and lowest discharges, indicative of matrix flow types 171 

(Mahmud et al., 2016). The timing of maximum drip rates is generally delayed in Chamber 2 versus Chamber 1: 172 

Chamber 1 drip rates typically peak in late spring/early summer (Oct-Dec) while Chamber 2 drips tend to peak a 173 

few months later (Dec-May), reflecting a longer water residence time. This may be a function of the thicker 174 

ceiling above Chamber 2 (40.24 versus 32.33 m) but also heterogeneity in flow paths to each chamber (Mahmud 175 

et al., 2015; Treble et al., 2016). Overall the drip response to the 2013 wet winter is amplified in Chamber 2 176 

versus Chamber 1, consistent with the presence of greater fracture flow in Chamber 2 (Mahmud et al., 2015).  177 

By applying morphological analysis of ceiling features acquired by LiDAR data, Mahmud et al. (2015a) 178 

distinguished three flow patterns (i.e. matrix flow, fracture flow, and a combination of conduit, fracture, and 179 

matrix flow) for the observed ceiling morphological features. All the drip sites were then characterized 180 

according to this flow classification in Mahmud et al. (2016), which is used here as a reference for clustering 181 

similar drip time series.  182 

3 Methods 183 

3.1 Hydrological classification of cave drips 184 

Research involving automated drip monitoring systems is increasing, for example at Cathedral Cave in 185 

Wellington (Cuthbert et al., 2014) and Harrie Wood Cave in the Snowy Mountains, Yarrangobilly (Markowska 186 

et al., 2015). The variability of the drip discharge might not only be a function of discharge itself, but could also 187 

depend on the sampling frequency. We investigate this possibility by plotting the COV versus sampling interval 188 

(the original 15 mins and calculated by resampling the data at 1 hour, 1 day, 1 week and 1 month). COV is 189 

supposed to be artificially high at the high frequency of 15 mins because of sampling bias that artificially 190 

increases the noise. The resampling at low frequencies is only a way of smoothing out this noise. Using the 191 

optimum sampling frequency to minimize its effect on drip variability, we plot drip rate histograms to identify 192 

the response of drips between the flow classifications and the response to intra and inter-annual variability in 193 

infiltration. Finally, we summarize the mean discharge of drip sites in relation to the variability in discharge 194 

using the optimum sampling frequency. These are the same drip discharge parameters as used in the 195 

classification method proposed by Friederich and Smart (1982), Fairchild et al. (2006) and Baker et al. (1997) 196 

that were based on manual drip collection at low frequency. 197 



7 

 

3.2 Clustering of similar drip time series 198 

We employed multi-dimensional scaling (MDS), which allows data dimensionality reduction i.e., mapping 199 

complex multidimensional data on a low-dimensional manifold. MDS is a technique that embeds a set of points 200 

in a low-dimensional space, so that the distances between the points resemble as closely as possible a given set 201 

of dissimilarities between the objects they represent (Birchfield and Subramanya, 2005). MDS requires a 202 

distance matrix to be computed, in which a single scalar number characterizes the similarity between any two 203 

time-series. In our case, each drip logger is an object and a specific distance between drip loggers is considered 204 

to characterize the similarity between any two loggers. It takes an input matrix giving dissimilarities between 205 

pairs of items and outputs a coordinate matrix whose configuration minimizes a loss function. MDS is also 206 

known as Principal Coordinates Analysis (PCoA). MDS operates on a distance or dissimilarity matrix (Pisani et 207 

al., 2016), which is different than principle-component analysis (PCA) that is based on a covariance matrix. 208 

Even if PCA and MDS methods can return the same results in specific contexts, MDS can be considered more 209 

general because it remains validity for non-euclidean distances, such as the distance matrix (d) chosen in this 210 

study. MDS is used to translate these distances into a configuration of points defined in an n-dimensional 211 

Euclidean space (Cox and Cox, 1994). A MDS results in a set of points arranged so that their corresponding 212 

Euclidean distances indicate the dissimilarities of the time series. According to Birchfield and Subramanya 213 

(2005) the basic steps of performing the MDS algorithm are:  214 

i) Construct the distance matrix D: One key component in clustering is the function used to measure the 215 

temporal similarity (or distance) between any two time-series being compared. To define an appropriate 216 

measure of similarity between time series, we determine two factors: firstly, the offset (O) to match two 217 

time-series based on their maximum correlation, and secondly the complement of the correlation coefficient 218 

(1-R) between the time series (Jex et al. 2012). Initially, we compute the cross-correlation function, a 219 

measure of similarity of two time-series as a function of the displacement of one relative to the other. The 220 

cross-correlation function is an estimate of the covariance between two time-series, y1t and y2t, at lags k = 0, 221 

±1, ±2, .... The offset (O) is defined as the lag time based on the maximum correlation between two time-222 

series. Next, we define R as the correlation coefficient with the time series being moved by the offset 223 

amount O to have maximum correlation coefficient. Both O and R are calculated to all n(n-1)/2 pairs of drip 224 

data, where n is the number of drip data. Here, we use the original recorded drip counts in 15 mins interval. 225 

The sampling bias discussed in section 3.1 is only affecting the drip variability, not the cluster analysis. 226 

Moreover, high resolution (15 mins interval) data are more suited for the cluster analysis because it allows 227 

better defining the cross-correlation between drips, as sometimes the offset of maximum correlation O 228 

might be less than a day. Finally, the distance matrix D is computed for each pair of loggers using the 229 

following equation (Jex et al. 2012): 230 

𝑫 = 𝑂(1 − 𝑅) 231 

The distance matrix (D) is square, symmetric, and has dimension equal to the number of drip loggers. 232 
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ii) Compute the inner product matrix 𝐵 = − *
+
𝐽𝑫𝐽, where 𝐽 = 𝐼 − *

.
𝟏𝟏0 is the double-centering matrix and 1 is 233 

a vector of ones. 234 

iii) Decompose B as 𝐵 = 𝑉Λ𝑉0, where Λ = diag	(λ*, … , λ.), the diagonal matrix of eigenvalues of B, and 𝑉 =235 

[𝐯*, … , 𝐯.], the matrix of corresponding unit eigenvectors. Sort the eigenvalues in non-increasing order: 236 

λ* ≥ ⋯ ≥ 	λ. ≥ 0. 237 

iv) Extract the first p eigenvalues ΛA = diag	(λ*, … , λA) and corresponding eigenvectors 𝑉A = [𝐯*, … , 𝐯A]. 238 

v) The corresponding Euclidean distances of the set of points, indicating the dissimilarities of the time series, 239 

are now located in the 𝑛×𝑝	matrix 𝑋 = 𝐱*, … , 𝐱A
0
= 𝑉AΛA*/+. 240 

The k-Means clustering algorithm is then used to divide these points into k clusters, which corresponds to a 241 

categorization of the drip data time series. k-means clustering, or Lloyd's algorithm (Lloyd, 1982), is a method 242 

of vector quantization that is popular for cluster analysis in data mining. k-means clustering aims to partition n 243 

observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a 244 

prototype of the cluster. Here we use 4 clusters as this was the number of flow categories identified by Mahmud 245 

et al. (2016). The algorithm proceeds as follows: 246 

i) Choose k initial cluster centers (centroid): Here, we use k=4 clusters as this was the number of flow 247 

categories identified by Mahmud et al. (2016). 248 

ii) Compute point-to-cluster-centroid distances of all observations to each centroid. There are two steps 249 

to follow: first assign each observation to the cluster with the closest centroid. Then individually assign 250 

observations to a different centroid if the reassignment decreases the sum of the within-cluster, sum-of-251 

squares point-to-cluster-centroid distances. 252 

iii) Compute the average of the observations in each cluster to obtain k new centroid locations. 253 

iv) Repeat steps 2 and 3 until cluster assignments do not change, or the maximum number of iterations 254 

is reached. 255 

4 Results and Discussion 256 

4.1 Determining the relationship between sampling frequency and drip discharge COV  257 

We test the variability of drip discharge COV with the sampling frequency in Figure 2, to find the optimum 258 

sampling frequency that minimizes sampling artifacts while maximizing the capture of natural variability. For 259 

high discharge, COV increases with sampling frequency, which we explain by the smaller sampling interval 260 

better capturing the actual drip variability. For low discharges, COV also increases with sampling frequency, 261 

which we explain by the variability introduced due to drip rates being less than the sampling frequency. From 262 

the data presented in Figure 2, we can conclude that for both chambers and to compare all different types of 263 
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flow, a sampling frequency of 1 day gives the minimum COV, which does not change significantly with a finer 264 

sampling frequency. Therefore, we use a sampling frequency of 1 day that minimizes sampling artifacts while 265 

maximizing the capture of natural variability. For Golgotha Cave, this would be to sum the 15 minutes drip rates 266 

over a 1-day period. This optimized sampling frequency is used to plot the histograms (section 4.2), ACFs 267 

(supplementary section S1) and examine the drip discharge behavior with drip variability for various flow types 268 

(section 4.3).   269 

	270 

Figure 2: Optimum sampling frequency that minimizes sampling artifacts while maximizing the capture of 271 

natural variability. 272 

4.2 Drip rate frequency distributions  273 

Figure 3 shows the drip rate histograms for representative drip sites and different flow categories with optimum 274 

sampling frequency of 1-day. Drip sites are organized from lowest to highest discharge in each flow 275 

classification (Mahmud et al., 2016). Slow dripping soda-straw flows (e.g. sites 2xi, 2iii and 1v) show variation 276 

of drips with seasonality and the response to wetter recharge period with an approximate six-month lag, which 277 

suggests the drip water is supplied from storage in the limestone formation. Among these, site 1v displays the 278 

response to recharge in much shorter duration, the 6 months following 2013 recharge and then a shift to lower 279 

flow rates which may represent flow poaching. The histograms for icicle and combined flow systems represent 280 

unimodal skewed to bimodal distributions, indicating the shift to higher drip rates in response to the wetter 2013 281 

hydrological year (except site 2xiii, which shows a shift to lower drip rates). The rest of the fracture sites show 282 

bimodal or multimodal distributions. With the limited temporal scale of the analysis, it seems that the 283 

histograms with skewed distributions represent the consequences of wetter 2013 hydrological year. These 284 

skewed distributions seem to have higher drip rate response to the drier 2014-15 period rather than the earlier 285 

normal/wetter years. This clearly denotes potential refilling of storage within the system during the 2013 wet 286 

winter, and later supplying drip water in 2014-15 seasons. The presence of ample storage in the karst system is 287 
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also supported by the autocorrelation functions (ACFs) discussed in supplementary section S1. In contrast, the 288 

bimodal distribution of site 2viii indicates the drip response to the annual cycle of wet and dry seasons of each 289 

hydrological year with an approximate six-month lag. Several bimodal (e.g. site 1x) and multimodal (e.g. sites 290 

2xvi, 2vi) distributions, characterize as fracture flow, also distinguishes the dry period of 2012 - 2013 (having 291 

low drip rates) from the later period of 2013 wet winter (with high drip rates). 292 

 293 

Figure 3: Histogram plots of both chambers drip data according to four flow types identified by Mahmud et al. 294 

(2016). Each histogram represents the frequencies of the drip counts per day (The axes labels are shown in the 295 

first histogram). Bin size is uniform for all plots and the external tick marks in x-axes delineates the bin 296 

intervals. The legend shows all the seasons over the monitoring period (blue to cyan for wet seasons: April to 297 

September and red to yellow for dry seasons: October to March, with the color gradually shifting for different 298 

years). The 2012 wet season experienced similar rainfall to the long-term annual mean, whereas 2013 was rather 299 

wet and 2014 was a relatively dry year. Histogram data for all sites appear in Supplementary Figure S1. 300 



11 

 

4.3 Hydrological classification of cave drips 301 

We examine the hydrological behavior of the drips at daily resolution with respect to mean discharge and flow 302 

variation in Figure 4. The boundary lines drawn on this figure are based on the flow classification from the 303 

morphological analysis of Mahmud et al. (2015b). It is clear from Figure 4 that there is no relationship between 304 

COV and flow-type. One soda-straw discharge (site 2xi) has a seasonal dryness, a very low discharge, and a 305 

very high coefficient of variation due to its irregular dripping. Otherwise, nearly all soda-straw flow, icicle flow, 306 

combined flow and fracture flow drips have COV <60%, with the exception of one fracture flow site showing 307 

the highest COV (Figure 4). But in general, there is little difference in the COV between classification types, 308 

probably reflecting the ample storage (supplementary section S1) due to the dominance of primary porosity at 309 

this cave. We do not clearly observe increasing variability with decreasing discharge within similar flow type, in 310 

contrast to other studies from older, fractured rock limestones (Smart and Friederich, 1987; Baldini et al., 2006; 311 

Baker et al., 1997).  This shows that Golgotha Cave drip sites do not fit within the drip classification method 312 

proposed by Smart and Friederich (1987) and Baker et al. (1997), which were based on manual drip counts with 313 

limited number of intermittent drip sites. Moreover, we utilize drip data from a cave with primary porosity, 314 

capturing the full range of flow types from matrix through to fracture, whereas the previous classifications only 315 

captured slow vs fast drips that were likely dominated by fracture flow paths given the host rock setting.   316 

	317 

Figure 4: Hydrological behaviour of drip sites expressed in terms of daily mean discharge versus daily discharge 318 

variability calculated from the automatic drip rate data for three hydrological years. Measured drip rates are 319 

converted to volume units assuming a drip volume of 0.1433 ml (Genty and Deflandre, 1998). Blue lines and 320 

symbols reflect flow classification given in Mahmud et al. (2015). 321 
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4.4 Clustering of similar drip time series 322 

The clustering results are overlain upon the chamber ceiling images in Figure 5 and also summarized in Tables 1 323 

and 2 with the average drip discharges and LiDAR classified flow type taken from Mahmud et al. (2015a); 324 

Mahmud et al. (2016). Average drip discharges are calculated from the 15-minute drip rates of Mahmud et al 325 

(2016). As mentioned above, drip logger time series are deemed similar if they are well correlated and only have 326 

a small offset with each other, and so these time series should cluster together. Most of the drip sites that are 327 

identified as matrix flow (soda-straw and icicle flow) cluster together in C1. However, three of the icicle flow 328 

sites with drip rate greater than 4 per 15 minutes fall in C2. The combined flow category and the fracture type 329 

usually cluster in C3 and C4 respectively. Therefore we observe that our clustering generally agrees with the 330 

morphology-based flow classification of Mahmud et al. (2016). Few of the flow classes show exceptions, for 331 

example site 2vi is a fracture type flow and cluster in C1. This site has really high discharge with high 332 

variability, showing irregular drip rate.  333 

Table 1: MDS cluster groups with statistical properties of Chamber 1 drip data. 334 

Site/Stalagmate  MDS Cluster Group Average drip discharge (l/yr)  Flow type (LiDAR-based) 
1A 1 19.8 Icicle 
1B 1 12.6 Icicle 
1i 1 6.6 Icicle 
1ii 1 11.2 Icicle 
1iii 1 8.1 Icicle 
1v 1 6.7 Soda-straw 
1vi 1 7.4 Icicle 
1viii 2 60.9 Combined 
1ix 1 14.8 Icicle 
1x 3 86.2 Fracture 
1xi 1 12.7 Icicle 

Table 2: MDS cluster groups with statistical properties of Chamber 2 drip data 335 

Site/Stalagmate  MDS Cluster Group Average drip discharge (l/yr)  Flow type (LiDAR-based) 
2A 1 9.4 Icicle 
2B 1 17.1 Icicle 
2E 3 140.3 Combined 
2i 4 243.0 Fracture 
2iii 1 4.2 Soda-straw 
2iv 1 14.6 Icicle 
2v 3 67.8 Combined 
2vi 1 985.0 Fracture 
2vii 2 25.0 Icicle 
2viii 3 113.8 Combined 
2ix 4 360.2 Fracture 
2x 1 7.0 Icicle 
2xi 1 0.6 Soda-straw 
2xiii 2 26.2 Icicle 
2xiv 2 42.8 Icicle 
2xv 1 11.6 Icicle 
2xvi 3 266.9 Fracture 
2xvii 1 7.0 Icicle 
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One consistent feature that appears from the cluster analysis of Figure 5 is the spatial homogeneity of the 336 

clusters in Chamber 1, suggesting that they are spatially connected, or that their flow paths are connected to the 337 

same hydrological domain (the karst matrix), and supporting the overall dominant matrix flow patterns (both 338 

soda-straw and icicle). Chamber 2 presents a completely different situation, where it is obvious that drip sites 339 

can have similar behavior (well correlated together with a small lag), and be spatially distinct features, separated 340 

by spans of approximately 6 meters (Figure 5). In particular, clusters 3 and 4 are spatially scattered, representing 341 

the presence of fractures and combined flow systems throughout the chamber ceiling. This indicates an overall 342 

strong heterogeneity of the flow paths between the surface and the cave for Chamber 2. Hence, in Chamber 2 we 343 

expect flow paths to be more complex with routing between multiple stores and interconnected fracture 344 

networks potentially resulting in non-linear response to infiltration. This is supported by dripwater d18O data for 345 

this chamber (Treble et al., 2013). 346 
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347 
Figure 5: Cluster group plot overlain upon the cave ceiling for both chambers. The ceiling images are captured 348 

by LiDAR and the circles represent the ceiling locations of stalactites dripping on various stalagmates in both 349 

chambers (shown in Figure 1). The colour of the circles indicates individual MDS cluster group. The blue 350 

arrows in both Figures show the geographic orientation and the green arrows represent the approximate transects 351 

throughout the chambers from higher to lower ceiling elevation. 352 

5 Implications of the findings and future research 353 

Starting with the time-series analysis, this research presents a methodology that can be applied globally for drip 354 

logger data. The results show that some data-integration is necessary to avoid artefacts from slow drip sites. For 355 
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sites where there is significant matrix flow, our study has demonstrated that the Smart and Friederich 356 

classification is not appropriate. Therefore, this study has presented alternative hydrological classification 357 

schemes that are suitable for cave sites that include matrix flow. The times series approach adopted in this study 358 

also opens the way for improved analysis and classification of hydrology time series in general i.e. tests for 359 

histogram, autocorrelation, cluster analysis, and all of these will certainly benefit our understanding of the 360 

hydrology of karst systems. 361 

In this study, we also extend the analysis of drip time series to multiple sites, whereby we take advantage of the 362 

ensemble of loggers to extract common properties by clustering, which would not be possible with single site 363 

analysis. The results show that by considering multiple simultaneous time series, one can make better inferences 364 

about water flow and unsaturated zone properties. The main impact is to recommend the use of spatial networks 365 

of loggers over individual loggers. It should be noted that currently, most researchers deploy only a few loggers 366 

to understand the flow to individual sites. This study also proposes a possible methodology for the analysis of 367 

such datasets. 368 

Regarding application of our findings, we believe that our methodology based on drip logger datasets can 369 

provide direct evidence of deep drainage, and therefore the timing of diffuse recharge, which could be used for 370 

basic model calibration. Spatial drip data (possibly combined with Lidar) is beneficial to infer flow types (e.g. 371 

the proportion of fracture vs matrix, etc.) which could be used for model configuration to produce realistic karst 372 

recharge (Hartmann et al., 2012), and hence large-scale groundwater estimation (Hartmann et al., 2015). 373 

Another potential application is the integration of flow types in groundwater models through inverse modelling. 374 

Such data could also be used to constrain water isotope model configurations used for forward modelling 375 

speleothem δ18O (Bradley et al., 2010; Treble et al., 2013). Overall, the findings of this work will definitely 376 

provide a better understanding of processes that control vadose zone flow and transport processes, which would 377 

ultimately help develop approaches to incorporate these processes into simulation models (Hartmann and Baker, 378 

2017).  379 

The analysis, presented here and combined with the findings of our previous two papers (Mahmud et al., 2015a; 380 

Mahmud et al., 2016), provides valuable information for paleoclimatologists and geochemists wishing to sample 381 

stalagmites. While these studies have characterised Golgotha Cave, they could be applied to any other cave 382 

system. In our previous work, we have: 1) devised a classification for flow-type based on stalactite morphology 383 

(Mahmud et al., 2015a); 2) quantified the recharge response of each flow type to infiltration (Mahmud et al., 384 

2016) and; 3) combined the findings of points 1-2 to estimate the total volume of cave discharge; 4) compared 385 

cave discharge with infiltration to estimate the total recharge volume and identify highly focused areas of 386 

recharge (Mahmud et al., 2016). The current study has further developed the spatial and temporal statistical 387 

relationships between the flow sites, permitting both quantification and visualisation of the hydrology between 388 

the ground surface and the cave ceiling. More generally, these studies illustrate the heterogeneity between flow 389 

sites and what causes this, as well as putting forth methods that can be applied to any cave system to better 390 

understand diffuse recharge and paleoclimate records from speleothems.  391 

We further propose some ideas for future research that have evolved from this study:  392 
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a) Combining a drip logger network with a surface weather station and soil moisture network to constrain 393 

the water balance in hydrological models. Additionally, employing sap flow meters could allow 394 

constraining tree water use. 395 

b) Combining the logger network, which constrains diffuse recharge, to boreholes measuring groundwater 396 

level to understand the relative importance of diffuse and river recharge. 397 

c) Combining cave drip logger data with surface geophysics data to track water movement. 398 

6 Conclusion 399 

Cave drip water response to surface climatic conditions is often complex due to numerous interacting drip routes 400 

with varying response times (Baldini et al., 2006). This study explores the relationship between drip water and 401 

rainfall in a SW Australian karst, where both intra- and inter-annual hydrological variations are strongly 402 

controlled by seasonal variations in recharge. The multi-year drip response data capture the inter-annual drip 403 

water variability that are likely to be greater than intra-annual variability as suggested by Baker et al. (1997). 404 

Building on the studies of Mahmud et al. (2015a) and Mahmud et al. (2016), we further analyse a set of 405 

statistical properties of three hydrological years of drip data under varying precipitation rates. We test the 406 

relationship between drip discharge variability and drip data sampling frequency to determine the optimum 407 

sampling frequency that maximizes the capture of natural variability with minimum sampling artifacts. Using 408 

the daily optimum sampling frequency, the histogram distributions of various drip data time series illustrate the 409 

differences between the flow classifications. Most of the drip sites show persistent autocorrelation for at least a 410 

month. The hydrological behavior of the drips is examined with respect to mean discharge and the flow types 411 

similar to the classification method proposed by previous researchers (Smart and Friederich, 1987; Baldini et al., 412 

2006; Baker et al., 1997). The drip sites at Golgotha Cave described in this study do not fit within the drip 413 

classification method proposed by Smart and Friederich (1987) and Baker et al. (1997). These previous studies 414 

were based on manual drip counts with limited number of intermittent drip sites. Here we overcome these 415 

limitations with automated drip monitoring system.  416 

Finally, we apply a well-developed clustering method to determine the degree of similarity between drip time 417 

series. The clustering indicates one dominating group: C1 (characterized by matrix flow type) with very slow 418 

continuous drip discharge indicating matrix porosity in the thick limestone formation. This finding concurs with 419 

the observed cave chamber morphology and lithology. Moreover, the cluster analysis agrees with the flow 420 

classification of Mahmud et al. (2016) by grouping similar flow type in one single cluster. Overall this study 421 

establishes a novel way to find consistent characterization of cave hydrology, which can be obtained by 422 

performing together both methodologies of Mahmud et al. (2015a) and Jex et al. (2012). It relies on a metric that 423 

defines drip logger time series as similar if they are well correlated and only have a small offset with one 424 

another, and therefore these time series should cluster together. The MDS analysis supports this hypothesis and 425 

moreover, displays the spatial patterns of the flow paths between the surface and the cave chambers. This 426 

technique shows potential to classify, quantify and visualise the observed relationships between infiltration 427 

through the fractured limestone rocks and surface climate inputs. 428 
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Over the last decade, the automation of cave drip water hydrology measurements has permitted the routine 429 

generation of continuous hydrological time series for the first time. This study demonstrates a complete 430 

methodology for such datasets, which will help better characterize karst drip water hydrogeology and 431 

understand the relationship between drip hydrology and surface climate at any cave site where such 432 

measurements are made. We demonstrate that the analysis of the time series produced by cave drip loggers 433 

generates useful hydrogeological information that can be applied generally, beyond the example presented here. 434 

The time series behaviour integrates a variety of characteristics that combine the properties of the epikarst 435 

(storage), fracture configuration, and recharge. The clustering approach can identify which drip behaviour are 436 

related to these cave characteristics, and their spatial relationship. Most importantly, information on cave 437 

characteristics can now be gathered at a very low cost in terms of measurement and time. 438 
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Supplementary Information 

Supplementary Figure S1. Histogram plots of all drip sites. 

Supplementary Section S1. Autocorrelation functions (ACFs) 

Supplementary Figure S2. ACFs of both chambers drip data. 

 

  



Figure S1: Histogram plots of all drip sites. Each histogram represents the frequencies of the drip counts per day 

(The axes labels are shown in the first histogram). Bin size is uniform for all plots and the external tick marks in 

x-axes delineates the bin intervals. The legend shows all the seasons over the monitoring period (blue to cyan for 

wet seasons: April to September and red to yellow for dry seasons: October to March, with the color gradually 

shifting for different years). The 2012 wet season experienced similar rainfall to the long-term annual mean, 

whereas 2013 was rather wet and 2014 was a relatively dry year.  

  



Section S1: Autocorrelation functions (ACFs) 

We investigate the use of ACFs to analyze drip behavior using the optimum sampling frequency of 1-day and 

until lags of 365 days. We do not find significant yearly autocorrelation with this limited 3 years of data. In some 

drips, a negative correlation occurred, but it is very insignificant and no physical process can explain a negative 

yearly correlation. Therefore, we plot ACFs in Figure S2 for different flow categories with the optimum sampling 

frequency of 1-day and lag time of 200 days. All sites have an autocorrelation that persists for at least a month, 

and often much longer. However, there is no relationship between the strength of correlation or the time period 

of the autocorrelation with the LiDAR-based flow type (Mahmud et al., 2016). This indicates the presence of 

ample storage in the system, supplying all stalactite types.  

 

Figure S2: Autocorrelation functions of both chambers drip data according to flow classification of Mahmud et 

al. (2016). X- and Y-axis of individual plots represents the lag (in days) and ACF respectively (The axes labels 

are shown in the first ACF plot).  
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