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Abstract. Designing an optimum water quality monitoring network will not only minimize the pollution detection time and

maximize the detection probability in river systems, but also reduce the redundant monitoring nodes and save the investment

and costs for building and running the network. We propose a novel method for the optimum water quality monitoring network

design and identification of the influence of bidirectional water flows which has not be studied in the literature. In order to

handle discrete issues of designing an optimum water quality monitoring network for bidirectional rivers, we have modified5

the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm and developed new fitness functions. The Storm Water

Management Model (SWMM) is used to simulate pollution events of a hypothetical river network which was studied in the

literature for comparative analysis of our work. Simulation results show that the modified MOPSO can obtain a better Pareto

frontier whilst bidirectional water flows have a significant effect on the optimization monitoring network design. We achieve

a different optimum deployment from unidirectional water flow for the same river system. We also find that the probability of10

bidirectional water flows has no effect on the optimum monitoring network design but the pollution detection threshold of the

monitoring devices can affect the network design when the threshold is high.

1 Introduction

River systems play a crucial role in the sustainable development of a community. Water quality is influenced simultaneously

by both anthropogenic and natural activities. Overexploitation and increasing pollution of this vital resource is threatening our15

ecosystems and even the life of future generations. In recent 50 years, with rapid development of world economy, on one hand

we need more and more clean water, and on the other hand, industry and living activities create more and more pollutants to

freshwater sources. It is estimated that 280 billion yuan is lost each year in China for freshwater pollution events. Water quality

monitoring has become one of the routine efforts for environmental protection all over the world. However, monitoring water

quality remains a very complex process due to the large number of factors to consider such as monitoring locations, selection20

of water quality parameters, monitoring frequency, identification of monitoring objectives (Behmel et al., 2016). The problem
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of planning and optimizing water quality monitoring programs (WQMPS) has been addressed since 1940s and a great many

papers have been published on this subject (Park et al., 2006; Chilundo and Kelderman, 2008; Chang et al., 2014).

With the rapid development of computer science and communication technology, more water quality parameters can be

remotely detected and transmitted by automatic monitoring stations resulting in a much higher monitoring frequency, more

monitoring data and better monitoring efficiency. However, the cost of building and operating an automatic monitoring station5

is very high (about 500,000-600,000 dollars per station for construction and 14,000 dollars per year for operating and maintain).

The successful water quality monitoring relies on the availability of low-cost and high efficient monitoring network to collect

appropriate and reliable data. Optimization design of the water quality monitoring network cannot only help us to build a

cost-effective and logistically adaptable monitoring network but also improve the monitoring performance and reduce the

construction and operating cost, which is very essential for the sustainable development of water quality monitoring network.10

Many researchers have studied the optimum design of water quality monitoring network for river systems. Ouyang et al. (2008)

used a single objective generic algorithm (GA) to design an optimum monitoring network based on a geometric analysis

and a simple application in a hypothetical river system. However, only the spatial distribution of the monitoring stations

was considered as an optimization objective in this algorithm. Practical river systems are complex and other factors such as

flow rate, river depth and width should also be considered while designing the monitoring network. Telci et al. (2008) argued15

that the design of an optimal water quality monitoring network should mainly focus on two objectives: minimal pollution

detection time and maximal detection reliability and calculated the optimal placement of monitoring devices using the GA

under relatively simple discrete uniform distributions on spill events. They also applied this methodology to the Altamaha river

basin to identify the locations of the best monitoring stations in the river system (Telci et al., 2009). However, the Pareto frontier

for the optimization results was not mentioned in this paper resulting in difficulties for evaluating all the optimization results.20

Park (2013) used stochastic discrete optimization via a simulation (QvS) algorithm and a penalty function with memory (PFM)

to the optimal location of a finite number of monitoring positions that minimize the expected detection time of a contaminant

spill event while guarantee a higher detection probability. However, the penalty value significantly increased the detection time

of a deployment solution when the detection probability is less than 100%. Chang and Lin (2014) selected seven criteria to

evaluate the suitability of the water quality monitoring design and used fuzzy theory to improve the objectivity in the data25

classification and ranking. However, it is very difficult for researchers to collect detailed information and data (e.g. percentage

of farmland and built-up area and green cover ratio) to satisfy all the criteria for the algorithm.

Most of the research simplifies the model of river systems and only unidirectional water flow is considered to design the

optimum water quality monitoring network. However, affected by regular tides, some river systems have bidirectional water

flows. To the best of our knowledge, the effect of bidirectional water flows has not been studied on the optimum network30

design for a water quality monitoring system and we do not know how far the bidirectional water flows will affect the optimal

deployment.
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2 Methodology

The purpose of designing an optimum water quality monitoring network is: given a river system being monitored and a definite

number of monitoring devices, try to find a deployment solution to maximize the pollution detection probability and minimize

the pollution detection time within all the potential monitoring locations. In this study we emphasize the dynamic behavior

of water flow directions affected by tides, pollution transport along the river system and the multi-objective particle swarm5

optimization. The Pareto frontier is also used to evaluate optimization results as well as compare the results to the literature.

2.1 Hydrodynamic Simulations

The Storm Water Management Model (SWMM) is a dynamic rainfall-runoff simulation model used for single event or long-

term (continuous) simulation of runoff quantity and quality from primarily urban areas. It can track the quantity and quality of

runoff generated within each sub-catchment, and the flow rate, flow depth, and quality of water in each pipe or channel during a10

simulation period (Rossman et al., 2010). Here we use SWMM to simulate the pollution events and pollutants transport along

the river system. To compare our study results with the achievements given by Ouyang et al. (2008) and Telci et al. (2008,

2009), we use the same hypothetical river network they used in Figure 1. We build the river network using SWMM shown in

Figure 1. The hypothetical river network A has six inlet nodes of 1, 3, 5, 8, 10 and 11, five intermediate nodes of 2, 4, 6, 7 and

9, as well as one outlet node of 12. We assume that a pollution event can occur at any node randomly with the same amount15

of pollutant spilling and there is only one pollution event at each time. In order to get steady water flows when a pollution

event occurs, we simulate the water flows for 24 hours from 00:00 to 23:59 with a steady water flow of 10ft3/s for each inlet

node and the pollution event occurs at 10:00 and lasts for 1 hour. We also assume that the pollutant concentration is 10mg/L

when a pollution event occurs at inlet nodes, resulting in 10.19kg of the total amount of pollutant spilling for each pollution

event. In order to get the same pollution level during simulations, we also set the same amount of pollutant spilling of 10.19kg20

for intermediate nodes of 2, 4, 6, 7 ,9 and the outlet node of 12 when a pollution event occurs at these nodes. The remaining

characteristics of the river network A is shown in Table 1, which is the same as Telci used.

2.2 Optimum objectives

The optimum design for water quality monitoring network has several optimization objectives. Here we consider two optimal

objectives of minimum pollution detection time and maximum pollution detection probability, which is the same as Telci’s25

paper.

2.2.1 minimum pollution detection time

Assume that we will deploy n monitoring devices in a river system within m potential monitoring locations (n≤m), which

means n special monitoring locations will be selected to deploy monitoring devices from m potential monitoring locations. It
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Figure 1. Hypothetical river network A

Table 1. Hydraulic characteristics of the river network A

Catchment Width Channel Manning’s Length Flow rate

(ft) slope coefficient (ft) (ft3/s)

A 10 0.0001 0.02 2000 10

B 10 0.0001 0.02 2000 10

C 10 0.0001 0.02 2000 10

D 10 0.0001 0.02 2000 10

E 10 0.0001 0.02 1000 10

F 10 0.0001 0.02 2000 10

G 10 0.0001 0.02 3000 20

H 10 0.0001 0.02 4000 20

I 10 0.0001 0.02 2000 30

J 10 0.0001 0.02 3000 30

K 10 0.0001 0.02 5000 60
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is easy to know that the total number of potential deployment solutions T is:

T =
n∏

i=1

(m− i + 1) (1)

where m is the number of potential monitoring locations, n is the number of monitoring devices deployed in a river system.

For a given optimum deployment solution Sk = [sk1,sk2,ski, ...,skn], where ski is the index of selected monitoring locations,

k ≤ T and ski ≤m. Let dj
i (Sk) be the pollution detection time of monitoring location i when a pollution event occurs at5

location j. The minimum pollution detection time for location j is:

dj(Sk) = min{dj
1(Sk),dj

2(Sk), ...,dj
n(Sk)} (2)

where j ≤m. For a definite optimum deployment solution S, the set of minimal pollution detection time for all potential

locations is d(Sk) = [d1(S),d2(Sk), ...,dj(Sk)...,dm(Sk)]. Assume d(Sk) is the mean value of all minimal pollution detection

time at all m potential monitoring locations for the given solution Sk, d(Sk) is:10

d(Sk) =
1
m

m∑

j=1

dj(Sk) (3)

Let d(S) be the minimal mean pollution detection time for all potential deployment solutions, we can get the following equa-

tion:

d(S) = min{d(S1),d(S2), ...,d(ST )} (4)

where T is the total number of deployment solutions shown in Formula (1). One of our two objectives is to find a deployment15

solution which has the minimum mean pollution detection time as Formula (4) shows.

2.2.2 maximum pollution detection probability

Let R(Sk) be the ratio of successful pollution detection scenarios to all potential detection scenarios for a given deployment

solution Sk. We get R(Sk) as:

R(Sk) =
1
m

m∑

i=1

ri (5)20

where k ≤ T , m is the amount potential monitoring locations, ri = 1 if the pollution event at location i can be detected by

the deployment solution Sk or ri = 0 if the pollution event cannot be detected. Let R(S) be the maximum pollution detection

probability within all the potential deployment solutions:

R(S) = max{R(S1),R(S2), ...,R(ST )} (6)

where T is the total number of potential deployment solutions. Our second objective is to find a proper deployment solution25

which has a maximum pollution detection probability as Formula (6) shows.
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2.3 MOPSO Algorithm

On one hand, we can find from Formula (1) that when we increase the value of m and/or n, the number of deployment solutions

will be increased exponentially. Assume we will deploy 20 monitoring devices within 100 potential locations, the number of the

deployment combinations is about 1040, which is too large to get the optimum deployment results using enumeration search

methods within a reasonable time. On the other hand, these two optimum objectives above are normally conflict with each5

other, which means we aim to find some good trade-off solutions among these objectives (Reyes-Sierra et al., 2006). So some

optimization methodologies should be used here to save the computing time and converge to optimum results in a reasonable

period of time.

The Multi-objective particle swarm optimization algorithm (MOPSO) is one of the popular evolution algorithms used in re-

cent years (Coello and Lechuga, 2002). The Pareto dominance was used in the MOPSO to handle multi-objective functions to10

improve the PSO algorithm to be able to deal with multi-objective optimization problems (Coello et al., 2004). The algorithm

uses a secondary repository of particles that is later used by other particles to guide their own flight and the special muta-

tion operator to enrich the exploratory capabilities. Compared to some special multi-objective evolutionary algorithms known

to date, MOPSO has a highly competitive performance and can be considered a viable alternative to solve multi-objective

optimization problems. Literature research shows that it can cover the full Pareto frontier of all the potential solutions with15

low computational time. The velocity and position of particles during the computing iteration are updated by the following

equations:

Vi(t + 1) =wVi(t)+ c1r1(pbest(i, t)− pi(t))

+ c2r2(gbest(t)− pi(t))
(7)

pi(t + 1) = pi(t)+ Vi(t + 1) (8)20

where V denotes the particle’s velocity, w is an inertia weight constant, r1 and r2 are uniformly distributed random variables

within range [0, 1], pbest(i, t) is the best position that the particle i has had, gbest(t) is the best position in all current particles,

and c1 and c2 are positive constant coefficients for acceleration. The pseudocode of MOPSO is shown in Algorithm 1.

The classical MOPSO is a powerful algorithm to find global optimum results for continuous definition domains, however

it cannot be applied to discrete problems directly. Here we define a new fitness function to calculate the cost of each particle25

by the means of using a round function to map the continuous value of a particle to a discrete space, which represents the

number of potential monitoring locations. Assume that we will deploy n monitoring devices in the hypothetical river system

shown in Figure 1, each particle is composed of n different values and each value represents a location chosen for monitoring.

The main idea of the fitness function is: First, we decompose the particle into n separate real values and then get n integers

using a round function. The n integers represent the number of n potential monitoring locations respectively. Second, we will30

search each row in pollution detection time table gotten from the pollution simulation by SWMM (e.g. Table 2) and get the

minimal detection time for each potential pollution event. Finally, we can calculate the mean detection time and the detection

probability for this particle.
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As we mentioned above, we try to find an optimum monitoring deployment solution with minimum mean pollution detection

time and maximum detection probability. However, MOPSO always requires minimal parameter values to calculate the Pareto

frontier. So we calculate the mean pollution detection time and the reciprocal of pollution detection probability in our fitness

function to meet the requirement of MOPSO. The pseudocode for the fitness function is as Algorithm 2 shows. In our fitness

function, if a pollution event cannot be detected in a deployment scenario (detectT ime = Inf ) we will not count it in the5

mean pollution detection time but will calculate it in the pollution detection probability. It is different from Telci’s paper. They

used a penalty value for non-detection scenario which will significantly increase the final pollution detection time when the

pollution detection probability is less than 100%.

Algorithm 1 MOPSO

Step 1. Algorithm initialization

(1) Initialize all parameters (e.g. size of population and repository, maximum number of iterations and search space)

(2) For each particle do

(a) Initialize the particle’s position randomly

(b) Initialize pbest with its initial position

(c) Initialize particle’s velocity Vi=0

(3) Calculate non-domination particles using fitness function

(4) Initialize gbest with a particle selected from non-domination particles using a roulette wheel selection.

Step 2. Repeat until the termination criteria is met or to the maximum number of iterations

(5) For each particle do

(a) Calculate particle’s new velocity using formula (1)

(b) Calculate particle’s new position using formula (2)

(c) Update particle’s pbest

(d) Calculate non-domination particles using fitness function

(e) gbest = a particle selected from non-domination particles using a roulette wheel selection.

Step 3. Output non-domination particles.

3 Simulations and analysis

In order to make a deep understanding about how the dynamic characteristics of a river system affect the optimum design of10

water quality monitoring network, we carry out 4 groups of simulations in the following sections. We also assume that only 3

monitoring devices will be deployed within the 12 potential monitoring locations showed in Figures 1 and 3.

3.1 Simulation for river network A with a pollution detection threshold of 0.01mg/L

At first, we set the pollution detection threshold to 0.01mg/L and run the hydraulic simulation in SWMM. Table 2 shows the

simulation results of pollution detection time for each potential monitoring locations. The value of Inf in Table 2 represents an15

7
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Algorithm 2 Fitnesscost (Particle p)

Array pos← [n position values in particle p ]

Array loc← [ ]

for each element in pos do

node← round(element)

loc← node

end for

meanT ime← 0

count← 0

probability← 0

for each row in TableII do

detectT ime← Inf

for each l in loc do

detectT ime = min (detectT ime, row[l )]

end for

if detectT ime 6= Inf then

meanT ime←meanT ime+ detectT ime

count← count +1

end if

end for

meanT ime←meanT ime/count

probability← row.length/count

return(meanT ime,probability)

infinite value, which means the pollution event cannot be successfully detected at a monitoring location. For example, the first

row in Table 2 demonstrates a scenario that a pollution event occurs at location 1 and can be detected at location 1, 2, 4, 6 and

12. The pollution detection time for these locations are 0 (detected immediately), 27, 81, 118 and 198 minutes respectively.

However, this pollution event cannot be detected at location 3, 5, 7, 8, 9, 10 or 11 because the polluted water flow cannot reach

these locations.5

We run the MOPSO algorithm based on the data in Table 2. For the validation of MOPSO to confirm whether the simulation

results are steady or not, we run the simulation several times. The simulation results show that though the main particles are

quite different from each other, their Pareto frontiers are almost the same. Figure 2 shows 4 Pareto frontiers in 4 different

sub-diagrams with 8 non-dominated particles. The mean pollution detection time, pollution detection probability and optimum

monitoring locations for each non-dominated particle are shown in Table 3.10

Table 3 indicates that if we deploy 3 monitoring devices at locations 6, 9 and 12 respectively, all the pollution events can

be detected, which is the same as the result in Telci’s paper. If monitoring devices are deployed at locations 2, 6 and 9, the

8
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Table 2. Pollution detection time for river network A with a detection threshold of 0.01mg/L

Pollution Pollution detection time for potential monitoring locations

locations 1 2 3 4 5 6 7 8 9 10 11 12

1 0 27 Inf 81 Inf 118 Inf Inf Inf Inf Inf 198

2 Inf 0 Inf 40 Inf 75 Inf Inf Inf Inf Inf 152

3 Inf 27 0 81 Inf 118 Inf Inf Inf Inf Inf 198

4 Inf Inf Inf 0 Inf 23 Inf Inf Inf Inf Inf 96

5 Inf Inf Inf 28 0 62 Inf Inf Inf Inf Inf 139

6 Inf Inf Inf Inf Inf 0 Inf Inf Inf Inf Inf 62

7 Inf Inf Inf Inf Inf 38 0 Inf Inf Inf Inf 113

8 Inf Inf Inf Inf Inf 79 27 0 Inf Inf Inf 157

9 Inf Inf Inf Inf Inf 111 57 Inf 0 Inf Inf 190

10 Inf Inf Inf Inf Inf 133 78 Inf 10 0 Inf 213

11 Inf Inf Inf Inf Inf 156 99 Inf 27 Inf 0 236

12 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0

pollution detection probability will be slightly decreased to 91.7% while the mean pollution detection time is also reduced from

45.8 minutes to 26.6 minutes. It is also the second best choice in the Pareto frontier. However, the second highest detection

probability in Telci’s paper is 83% and the monitoring locations are 4, 7 and 9, which also can be found in our main particles in

Figure 2 but is not a non-dominated particle. Based on this observation, we confirm that using MOPSO can get a better Pareto

frontier and more detailed optimal deployment solutions.5

Telci el at. (2008) used a penalty for non-detected pollution scenarios resulting in a much higher pollution detection time

for non-100% detected pollution scenarios. We argue that it is not reasonable, because the mean detection time represents how

long the pollution event will be detected if it can be detected by current monitoring network. On the contrary, if a pollution

event cannot be detected, the detection probability will be decreased to reflect this non-detected scenario. So we ignore these

non-detected pollution events when calculate the mean pollution detection time, which results in a shorter mean pollution10

detection time than in Telci’s paper.

Comparing Table 3 to Figure 2, we find that there are 13 different monitoring deployment solutions mapping to 8 non-

dominated particles. This is because some deployment solutions with different monitoring locations have the same mean

detection time and detection probability, and they map to a same non-dominated particle.

3.2 Simulation for a reversed river network B with pollution detection threshold of 0.01mg/L15

Most of literature only considers the unidirectional water flow. However, influenced by tides, some river systems have bidirec-

tional water flows. In order to observe how far the bidirectional water flows can affect the monitoring network optimization,

9
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Figure 2. Pareto frontier for river network A with 3 monitoring nodes and a detection threshold of 0.01mg/L

we create river network B shown in Figure 3 with the same parameters and settings as river network A in Figure 1 but have a

reversed water flow direction resulting in a new river network with 6 outlet nodes, 5 intermediate nodes and only 1 inlet nodes.

We set the water flow rate of inlet node 12 to 60ft3/s, which is as same as the water flow rate at outlet node of 12 in Figure

1. We run the hydraulic simulation using SWMM again and get pollution detection times shown in Table 4. we can find from

Tables 2 and 4 that when we reverse the water flow, we get a transposed pollution detection time matrix.5

Due to the page limit, only one MOPSO Pareto frontier is shown here in Figure 4. The optimum deployment solutions are

shown in Table 5.

We find that when we reverse the water flow direction, there are 7 non-dominated particles in Pareto frontier and there is

no 100% detection probability solution for river network B. The maximum pollution detection probability is decreased to 75%

with a mean pollution detection time of 38.2 minutes and the optimization monitoring locations are 3, 5 and 10. This is because10
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Table 3. Pollution detection time and probability in Pareto frontier for river network A with a detection threshold of 0.01mg/L

Monitoring locations Detection time (min) Detection probability

6, 9, 12 45.8 100%

2, 6, 9 26.6 91.7%

2, 7, 9 14.8 66.7%

2, 8, 9 13 58.3%

3, 7, 9 10.7 50.0%

5, 7, 9 10.7 50.0%

5, 8, 9 7.4 41.7%

3, 8, 9 7.4 41.7%

5, 9, 11 2.5 33.3%

5, 8, 11 0.0 25%

1, 5, 10 0.0 25%

5, 8, 10 0.0 25%

1, 5, 8 0.0 25%

there are 6 outlet locations in river network B and only 3 monitoring devices cannot detect all the pollution scenarios occurred

randomly in 12 potential locations.

Comparing Table 5 to Table 3, we find that the optimization results for both water flow directions are quite different. Based

on this observation, we argue that the water flow direction has a significant effect on optimization results of monitoring network

design even for the same river system and we should consider the bidirectional water flows when we design an optimization5

monitoring network for a river system affected by tides regularly.

3.3 Simulation with bidirectional water flows

In order to have a deep insight of the influence of bidirectional water flows for an optimum monitoring network design, we

calculate the mean pollution detection time for both the original river network A (Figure 1) and the reversed river network B

(Figure 3) at the same time based on the data of pollution detection time in Tables 2 and 4. As water flow directions can be10

changed regularly due to tides and the duration for each flow direction may not be equal in a river system. So, we consider two

scenarios here when a pollution event occurs:

– both water flows have the same probability in a river system.

– the probability of two water flows are different.

We slightly modify the previous fitness function in Figure 2 and add two extra parameters of probA and probB in the15

procedure to represent the probability of the two water flows in the river system. We calculate the pollution detection time and
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Figure 3. Hypothetical river network B

Table 4. Pollution detection time for river network B with a detection threshold of 0.01mg/L

Pollution Pollution detection time for potential monitoring locations

locations 1 2 3 4 5 6 7 8 9 10 11 12

1 0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

2 27 0 27 Inf Inf Inf Inf Inf Inf Inf Inf Inf

3 Inf Inf 0 Inf Inf Inf Inf Inf Inf Inf Inf Inf

4 81 40 81 0 28 Inf Inf Inf Inf Inf Inf Inf

5 Inf Inf Inf Inf 0 Inf Inf Inf Inf Inf Inf Inf

6 118 75 118 23 62 0 38 79 111 133 156 Inf

7 Inf Inf Inf Inf Inf Inf 0 27 57 78 99 Inf

8 Inf Inf Inf Inf Inf Inf Inf 0 Inf Inf Inf Inf

9 Inf Inf Inf Inf Inf Inf Inf Inf 0 10 27 Inf

10 Inf Inf Inf Inf Inf Inf Inf Inf Inf 0 Inf Inf

11 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0 Inf

12 198 152 198 96 139 62 113 157 190 213 236 0
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Figure 4. Pareto frontier for river network B with 3 monitoring nodes and a detection threshold of 0.01mg/L

Table 5. Pollution detection time and probability in Pareto frontier for river network B with a detection threshold of 0.01mg/L

Monitoring locations Detection time (min) Detection probability

3, 5, 10 38.2 75%

3, 4, 10 29.3 66.7%

4, 8, 10 22.3 58.3%

6, 8, 10 16.5 50.0%

4, 8, 12 10.0 41.7%

4, 5, 12 5.8 33.3%

4, 7, 12 5.8 33.3%

6, 7, 12 0.0 25%

4, 6, 12 0.0 25%

pollution detection probability for bidirectional water flows respectively and get the final mean pollution detection time and

probability for two water flows at last. The new fitness function is shown in Algorithm 3.

3.3.1 Bidirectional water flows with the same probability

We let probA and probB in Algorithm 3 be 0.5 separately to assume that each water flow with a different direction has the

same probability. The simulation results of Pareto frontier and optimization monitoring locations are shown in Figure 5 and5

Table 6.

Comparing Table 6 to Table 3 and Table 5, we observe that when we consider the bidirectional water flows, the maximum

detection probability is decreased from 100% (in Table 3) and 75% (in Table 5) to 66.7% respectively while the mean pollution
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Figure 5. Pareto frontier for bidirectional water flows with 3 monitoring nodes and a detection threshold of 0.01mg/L

Table 6. Pollution detection time and probability in Pareto frontier for bidirectional water flows with a detection threshold of 0.01mg/L

Monitoring locations Detection time (min) Detection probability

3, 10, 12 57.9 66.7%

3, 6, 10 31.6 58.3%

3, 6, 8 22.6 50.0%

5, 6, 8 11.6 41.7%

5, 6, 7 6.4 33.3%

4, 7, 8 0 25%

4, 8, 10 0 25%

3, 7, 9 0 25%

3, 9, 11 0 25%

6, 7, 9 0 25%

detection time is increased from 45.8 and 38.2 minutes to 57.9 minutes. This is because we take into account two water flows

with different directions at the same time and calculate their mean detection time, which will significantly increase the pollution

detection time and decrease the detection probability. We also find that the optimum deployment solutions are quite different

from the previous results in Table 3 and Table 5 and monitoring locations 3, 10, 12 have the best optimum result with 57.9

minutes of mean pollution detection time and 66.7% pollution detection probability.5
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Algorithm 3 BidirectionalFitnessCost (Particle p, probA, probB)

Array pos = n position values in particle p

Array loc =

For each element in pos

node = round(element)

loc = node

EndFor

meanTime = 0

count = 0

probability = 0

For each row1 in TableII and row2 in TableIV

detectTimeA = Inf

detectTimeB = Inf

For each l in loc

detectTimeA = min (detectTimeA, row1[l )]

detectTimeB = min (detectTimeB, row1[l )]

EndFor

a 6= b

avgTime = detectTimeA*porbA+detectTimeB*probB

meanTime = meanTime+avgTime

count = count+1

EndIf

EndFor

meanTime = meanTime / count

probability = row.length / count

Return (meanTime, probability)

3.3.2 Bidirectional water flows with different probabilities

Here we assume two water flows in a river system have different probabilities. We consider two scenarios: (1) the probability

of the water flow as river network A is 70% and the opposite water flow as river network B is 30%. (2) the probability of the

water flow as river network A is 30% and the opposite water flow as river network B is 70%. We set the parameter of probA to

0.7 and probB to 0.3 for the first scenario and exchange the value with each other for the second scenario. We get two Pareto5

frontiers in Figure 6 and two pollution detection time and probabilities in Table 7.

We find from Table 7(a) and Table 6, that though we set 70% probability for river network A and 30% probability for river

network B, we get the same optimization monitoring locations and detection probabilities while the pollution detection time

is slightly increased. This is because the pollution detection time for river network A (Table 3) is slightly higher than for river
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Figure 6. Pareto frontiers for bidirectional water flows with 3 monitoring nodes and a detection threshold of 0.01mg/L

network B (Table 5) resulting in a higher mean pollution detection time. When we reverse the probability of the two water

flows, we get similar results but with a lower mean pollution detection time in Table 7(b).

Comparing Table 7(a) to Table 7(b), we observe that though we exchange their probabilities for the two water flows, we get

the same optimization monitoring locations and the same detection probability while the pollution detection time is slightly

increased.5

Based on the observations above,we draw a conclusion that the bidirectional water flows have a significant effect on an

optimal monitoring network design. However, the different ratio of probability for bidirectional water flows has no effect

on the optimization results of monitoring location selection or the pollution detection probability but slightly influences the

pollution detection time.

3.4 Higher pollution detection threshold for bidirectional water flows10

In order to observe how far the pollution detection threshold can affect the optimum deployment solution for a bidirectional

water flow river system, we assume two bidirectional water flows have the same probability and set the pollution detection

threshold to 1mg/L and 2mg/L respectively. We run the hydraulic simulation using SWMM again based on river networks A

and B. Tables 8 and 9 show four pollution detection time tables for both detection thresholds.

We find that all the pollution detection time in Table 8(a) are much higher than in Table 2 except for non-detected scenarios.15

This is because when we increase the pollution detection threshold from 0.01mg/L to 1mg/L for river network A, it will spend

more time to accumulate to a certain pollutant concentration at each potential monitoring location before it can be detected,

which will significantly increase the pollution detection time.

Comparing Table 8(a) to Table 8(b), we find that all the pollution events can be successfully detected at location 12 when

the pollution detection threshold is 1mg/L. However, no pollution event can be detected at location 12 when we set pollution20
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Table 7. Pollution detection time and probability in Pareto frontier for bidirectional water flows with a detection threshold of 0.01mg/L

(a) Probability ratio for river network A and B is 70%:30%

Monitoring locations Detection time (min) Detection probability

3, 10, 12 65.4 66.7%

3, 6, 10 33.1 58.3%

3, 6, 8 22.6 50.0%

5, 6, 8 11.8 41.7%

5, 6, 7 6.1 33.33%

4, 7, 8 0 25%

4, 8, 10 0 25%

3, 7, 9 0 25%

3, 9, 11 0 25%

6, 7, 9 0 25%

(b) robability ratio for river network A and B is 70%:30%

Monitoring locations Detection time (min) Detection probability

3, 10, 12 50.5 66.7%

3, 6, 10 30.2 58.3%

5, 6, 10 22.1 50.0%

5, 6, 8 11.4 41.7%

5, 6, 7 6.0 33.33%

4, 7, 8 0 25%

4, 8, 10 0 25%

3, 7, 9 0 25%

3, 9, 11 0 25%

6, 7, 9 0 25%

detection threshold to 2mg/L, even the pollution event occurs at location 12 itself. This is because the pollution detection

threshold is so high that it is even higher than the maximum pollutant concentration at location 12 when any pollution event

occurs.

Figure7(a) shows the pollutant degradation along downstream locations when a pollution event occurs at the upstream

location of 1 in the hypothetical river network A (Figure 1). We can find that the pollutant concentration is decreased from5

maximal value of 10mg/L at location 1 to minimal value of 1.67mg/L at outlet location 12 along the downstream. Figure

7(b) demonstrates the pollutant accumulation progress in river network A at location 12 when a pollution event occurs at

monitoring locations 1, 6, 11 and 12 respectively. We can see from Figure 7(b) that when a pollution event occurs at location

1, the pollutant will arrive at location 12 in 198 minutes and will be completely discharged in 368 minutes with a maximum

pollutant concentration of 1.44mg/L in the pollution event duration. When the pollution occurs at location 12 itself, the10

pollutant will be diluted by upstream water flows and the maximum pollutant concentration is only 1.67mg/L. That’s why

none of the pollution events can be detected when we set pollution detection threshold to 2mg/L. We get similar results in

Table 9 when we increase the pollution detection threshold to 1mg/L and 2mg/L respectively for river network B.

Figure 8 shows the Pareto frontier for bidirectional water flows based on the pollution time data in Tables 8 and 9. We can

find that Figure 8(a) is quite different from Figure 8(b) and there are 5 Pareto frontier particles in Figure 8(a) but only 2 Pareto15

frontier particles in Figure 8(b). Table 10 shows the detailed pollution detection time and probability.

Comparing the monitoring location distribution in Table 6 and Table 10(a), we observe that though we increase the pollution

detection threshold from 0.01mg/L to 1mg/L, the two optimum deployment solutions are the same while the detection time

is slightly increased. However, from Table 10(b) we know, when we continue to increase the pollution detection threshold to

2mg/L, which is higher than the maximum pollutant concentration in pollution events, the pollution detection probability is20
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Table 8. Pollution detection time for river network A with higher pollution detection thresholds

(a) Pollution detection threshold=1mg/L

Pollution Pollution detection time for potential monitoring locations

locations 1 2 3 4 5 6 7 8 9 10 11 12

1 0 44 Inf 112 Inf 165 Inf Inf Inf Inf Inf 253

2 Inf 0 Inf 61 Inf 110 Inf Inf Inf Inf Inf 199

3 Inf 44 0 112 Inf 165 Inf Inf Inf Inf Inf 253

4 Inf Inf Inf 0 Inf 42 Inf Inf Inf Inf Inf 131

5 Inf Inf Inf 47 0 97 Inf Inf Inf Inf Inf 186

6 Inf Inf Inf Inf Inf 0 Inf Inf Inf Inf Inf 90

7 Inf Inf Inf Inf Inf 62 0 Inf Inf Inf Inf 152

8 Inf Inf Inf Inf Inf 116 47 0 Inf Inf Inf 205

9 Inf Inf Inf Inf Inf 153 82 Inf 0 Inf Inf 242

10 Inf Inf Inf Inf Inf 181 108 Inf 20 0 Inf 269

11 Inf Inf Inf Inf Inf 208 134 Inf 44 Inf 0 297

12 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0

(b) Pollution detection threshold=2mg/L

Pollution Pollution detection time for potential monitoring locations

locations 1 2 3 4 5 6 7 8 9 10 11 12

1 0 50 Inf 124 Inf Inf Inf Inf Inf Inf Inf Inf

2 Inf 0 Inf 69 Inf Inf Inf Inf Inf Inf Inf Inf

3 Inf 50 0 124 Inf Inf Inf Inf Inf Inf Inf Inf

4 Inf Inf Inf 0 Inf Inf Inf Inf Inf Inf Inf Inf

5 Inf Inf Inf 55 0 Inf Inf Inf Inf Inf Inf Inf

6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

7 Inf Inf Inf Inf Inf Inf 0 Inf Inf Inf Inf Inf

8 Inf Inf Inf Inf Inf Inf 55 0 Inf Inf Inf Inf

9 Inf Inf Inf Inf Inf Inf 92 Inf 0 Inf Inf Inf

10 Inf Inf Inf Inf Inf Inf 119 Inf 24 0 Inf Inf

11 Inf Inf Inf Inf Inf Inf 146 Inf 50 Inf 0 Inf

12 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 7. Pareto frontier for bidirectional water flows with 3 monitoring nodes and 0.01mg/L detection threshold

significantly decreased and we get quite different optimum solutions. Based on the observation above, we make a conclusion

that a slight change of monitoring device’s pollution detection threshold may not affect the design of optimum monitoring

network if the threshold is smaller than the maximal pollutant concentration in the pollution events.
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Table 9. Pollution detection time for river network B with higher pollution detection thresholds

(a) Pollution detection threshold=1mg/L

Pollution Pollution detection time for potential monitoring locations

locations 1 2 3 4 5 6 7 8 9 10 11 12

1 0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

2 44 0 44 Inf Inf Inf Inf Inf Inf Inf Inf Inf

3 Inf Inf 0 Inf Inf Inf Inf Inf Inf Inf Inf Inf

4 112 61 112 0 47 Inf Inf Inf Inf Inf Inf Inf

5 Inf Inf Inf Inf 0 Inf Inf Inf Inf Inf Inf Inf

6 165 110 165 42 97 0 62 116 153 181 208 Inf

7 Inf Inf Inf Inf Inf Inf 0 47 82 108 134 Inf

8 Inf Inf Inf Inf Inf Inf Inf 0 Inf Inf Inf Inf

9 Inf Inf Inf Inf Inf Inf Inf Inf 0 20 44 Inf

10 Inf Inf Inf Inf Inf Inf Inf Inf Inf 0 Inf Inf

11 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0 Inf

12 253 199 253 131 186 90 152 205 242 269 297 0

(b) Pollution detection threshold=2mg/L

Pollution Pollution detection time for potential monitoring locations

locations 1 2 3 4 5 6 7 8 9 10 11 12

1 0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

2 50 0 50 Inf Inf Inf Inf Inf Inf Inf Inf Inf

3 Inf Inf 0 Inf Inf Inf Inf Inf Inf Inf Inf Inf

4 124 69 124 0 55 Inf Inf Inf Inf Inf Inf Inf

5 Inf Inf Inf Inf 0 Inf Inf Inf Inf Inf Inf Inf

6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

7 Inf Inf Inf Inf Inf Inf 0 55 92 119 146 Inf

8 Inf Inf Inf Inf Inf Inf Inf 0 Inf Inf Inf Inf

9 Inf Inf Inf Inf Inf Inf Inf Inf 0 24 50 Inf

10 Inf Inf Inf Inf Inf Inf Inf Inf Inf 0 Inf Inf

11 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0 Inf

12 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 8. Pareto frontier for bidirectional water flows with 3 monitoring nodes and higher detection threshold

4 Conclusion and future work

We have presented a novel method based on a modified MOPSO algorithm for the optimum water quality monitoring network

design and identification of the influence of bidirectional water flows. We develop new fitness functions for MOPSO to handle

the discrete issues and speed up the convergence. Simulation results show that the modified MOPSO can get a better Pareto
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Table 10. Pollution detection time and probability in Pareto frontier for bidirectional water flows

(a) Pollution detection threshold=1mg/L

Monitoring locations Detection time (min) Detection probability

3, 10, 12 78.9 66.7%

3, 6, 10 46.5 58.3%

3, 6, 8 34.8 50.0%

5, 6, 8 19.8 41.67%

5, 6, 7 11.1 33.33%

4, 7, 8 0 25%

4, 8, 10 0 25%

3, 7, 9 0 25%

3, 9, 11 0 25%

6, 7, 9 0 25%

(b) Pollution detection threshold=2mg/L

Monitoring locations Detection time (min) Detection probability

5, 7, 10 14.5 33.3%

4, 7, 10 14.5 33.3%

3, 7, 10 14.5 33.3%

3, 4, 9 14.5 33.3%

3, 4, 7 14.5 33.3%

4, 7, 9 0 25%

4, 8, 10 0 25%

3, 7, 9 0 25%

3, 9, 11 0 25%

5, 7, 9 0 25%

frontier than GA. A bidirectional fitness function is also developed to handle the bidirectional water flows with different

probabilities. We find that bidirectional water flows in a river system have a significant effect on the optimum design of water

quality monitoring network and the deployment result is quite different from the same river system with a unidirectional water

flow. However, the probability of bidirectional water flows in a river system has no effect on the optimum monitoring network5

design but will slightly affect the mean pollution detection time. We also find that the monitoring sensor’s pollution detection

threshold also has little effect on the design of the optimum water quality monitoring network if it has a smaller value than the

maximal pollutant concentration of a pollution event. However, the sensor’s pollution detection threshold will evidently affect

the monitoring network design when it is larger than the maximal pollution concentration.

This novel approach will be applied to a water quality monitoring network to optimize the network design and improve10

the monitoring performance. Further research is planed to explore the feasibility of integrating graph theory and priority

coefficients into MOPSO to guide the convergence processing. Finally, it is desirable to redesign the velocity and position

functions with a fully discrete method to improve the computing performance.
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