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RESPONSE TO REVIEWER #1

The authors thank anonymous reviewer 1 for his/her review of the manuscript and for
the fruitful comments.

1.1 [The work is technically sound, scientifically interesting and worthy of publication.
However I do suggest some revisions to the text for clarity and readability and beyond
these specific revisions recommend further proof reading by the authors, a native En-
glish speaker and/or the journals editorial team. Particular attention should be paid
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to clarity in the introduction as improvements here would encourage more readers to
engage with the paper.]

Response 1.1:

Yes, we will re-read the whole paper. Should a revised version of this paper be ac-
cepted in HESS, a copy editing work will be performed.

1.2 [P1 L8 “this parameter is usually unavailable” - slightly awkward, perhaps “this
parameter is uncertain”.]

Response 1.2:

Agreed.

1.3 [P1 L23 “supervision” - not sure what is meant by this.]

Response 1.3:

Yes. "There is a need for better supervision of the impacts of droughts" was replaced
by "There is a need to monitor the impacts of droughts".

1.4 [P1 L29 “This quantity...” - this sentence is confusing and could be improved; please
bear in mind any non-expert readers (e.g. “field capacity” is jargon which is fine in the
paper in general, however ideally the very first paragraph should give strong accessible
motivation for the paper]

Response 1.4:

Yes. "at field capacity" was deleted.

1.5 [P2 L18 “Other studies...” - confusing sentence.]

Response 1.5:

Yes. This sentence was reworded as: "Tanaka et al. (2004), Portoghese et al. (2008),
and Piedallu et al. (2011), have highlighted the important role of the soil characteristics
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(soil texture, rooting depth) on MaxAWC. Soylu et al. (2011) and Wang et al. (2012)
illustrated the major impact of MaxAWC on evapotranspiration."

1.6 [P2 L22 Are the units really kg m-2? Total water per volume suggests kg m-3. In
any case, I am not sure that information on the units is really necessary here..]

Response 1.6:

Yes. The sentence was reworded as: "While soil properties such as soil texture deter-
mine the soil water holding capacity (in kg m-3), information on rooting depth is needed
to determine MaxAWC (in kg m-2)."

1.7 [P2 L24 “The lack of...” This paragraph should be revised. The first sentence
states a problem – though instead of “a significant issue” could you be more explicit?
Following this it would help the casual reader to make it clearer that ECVs & data
assimilation are potential solutions to this problem.]

Response 1.7:

Yes. The sentence was reworded as: "The lack of in situ observations of MaxAWC
to calibrate and assess LSMs impacts the ability of LSMs to represent drought effects
on plants. Using satellite observations and data assimilation techniques could be a
solution to this problem".

1.8 [P2 L31 “Besides, data assimilation...”. ’Besides’ is a strange word to use here..]

Response 1.8:

Yes. "Besides" was deleted.

1.9 [P2 L22 “In particular, the assimilation of LAI...” This is a key piece of motivating
research and it would help to make more of it...e.g “Previous work has studied the
impact of assimilation of LAI observations and found that...”.]

Response 1.9:
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Yes. The sentence was reworded as: "Previous work has studied the impact of assimi-
lation of LAI observations and found that it can significantly improve the representation
of vegetation growth (e.g. Albergel et al., 2010 ; Barbu et al., 2011, 2014)."

1.10 [P3 L1 “The ISBA LSM...” This paragraph describing some results specific to this
model in detail is out of place in the introduction – I suggest removing and incorporating
the relevant information in section 3.1..]

Response 1.10:

We think that this paragraph is needed in the Introduction to present the rationale for
the present study.

1.11 [P3 L10 “On the other hand, no more than 27%...presented significant correla-
tions”. Unnecessary elaborate use of language. A clearer way to put it would be: “On
the other hand, only 27%...had significant correlations”..]

Response 1.11:

Yes. The sentence was reworded as: "On the other hand, only 27% of the 45 straw
cereals départements (i.e. only 12 départements) had significant correlations".

1.12 [P3 L15 “to retrieve”. Retrieve is used throughout but feels like the wrong word.
“Estimate” would be more accurate]

Response 1.12:

Yes. Throughout the text, "retrievals" was replaced by "estimates", and "to retrieve"
was replaced by "to estimate".

1.13 [P3 L26 “IM and LT. With already a large number of acronyms in the paper, these
new acronyms are unnecessary and add to confusion. As a reader I would prefer
to continually read “inverse modelling” and “LDAS tuning” method, rather than the
acronyms – I found it necessary to remind myself of the meaning of these terms.]
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Response 1.13:

Agreed.

1.14 [P4 L9 “They highlighted that". Why do you quote the author talking about their
results here whilst describing results yourself elsewhere? Quotations like this is highly
unusual and recommend avoiding.]

Response 1.14:

This paragraph was moved to the Supplement.

1.15 [P4 L11 “They give the following scores...” the R2 values are not really informa-
tive, unless you also provide information about the spatial scale, time period (annual,
monthly, daily?) that the validation was carried across. But overall I think this entire
sentence is too much information – I think it is sufficient to say that the product is well
evaluated against ground observations and leave it at that. The particularly interested
reader can follow the reference.]

Response 1.15:

Yes. This paragraph was moved to the Supplement and replaced by: "The product is
well evaluated against ground observations (see the Supplement)".

1.16 [P6 equation 2. This is two equations, please split.]

Response 1.16:

Agreed.

1.17 [P6 L18 “The t superscript stands for time (t)”. Adding (t) is unnecessary]

Response 1.17:

Agreed.

1.18 [P6 L19 “The initial time (t=0) is denoted by the 0 superscript.” Again, (t=0) is
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unnecessary.]

Response 1.18:

Agreed.

1.19 [P6 L21 “The yt term of ...”. The description of these equations is slightly out of
order. I would move this yt up, where you describe all the terms in the delta x equation
of (2). After you have described all the terms in this equation, then add the second
equation for K=..., then describe all the terms here.]

Response 1.19:

Agreed.

1.20 [P6 L22 “i.e. the model predicted value of the observation at the analysis time”. I
am not an expert in data assimilation, but this sounds strange. I assume you just mean
“the modelled value at the analysis time”. Please reread and ensure that you feel that
this whole section is sufficiently precise and clear, particularly for non-experts.]

Response 1.20:

Agreed.

1.21 [P6 equation 3. h (lower case) appears to be undefined. Later on in equation 6
y(x) is used. Either a typo or missing description.]

Response 1.21:

Yes. "h" is now defined as the observation operator.

1.22 [P7 L7 “The standard deviation of errors of GEOV1 is assumed to be 20% of
GEOV1 LAI”. Why do you make this assumption, do you have any basis? If possible,
please explain your reason, or at least help the sceptical reader trust that it is reason-
able.]

Response 1.22:
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Yes. This sentence was reworded as: "This assumption is based on option 3 presented
in Barbu et al. (2011). They showed that this option gives the best simulated LAI over
an instrumented grassland site in southwestern France".

1.23 [P8 L12-14 It is not quite clear what you did here, by calculating the average B
above a threshold of 90% of its maximum. Why does this limit the impact of model
errors? Please explain.]

Response 1.23:

Yes. The following sentences were added in Sect. 3.4: "In drought conditions, modelled
Bag can rise to a maximum value and then drop rapidly. Therefore the peak Bag can be
dependent on modelling uncertainties and on uncertainties in the atmospheric forcing".

1.24 [P9 Section 3.5.1. This reads like bullet points, please expand to prose. P9 L7 “by
minimising this cost function”. This makes the optimisation sound more complicated
than it is. Preferably explain as simply as possible i.e., “the MaxAWC used in the
simulation with the lowest RMSE was selected as the optimal one.”]

Response 1.24:

Agreed.

1.25 [Results section generally good, though please re-read for clarity. Discussion: the
structure of the section into five questions is appealing – this approach would be im-
proved if you start each subsection with a clear sentence which answers the question.
Currently some sections start with dense recapitulation of the methods, or answers to
questions different from those which are posed. e.g. 5.1 What is the added value of
the LDAS? “The LDAS approach allows sequential integration of LAI observations into
the model”. Instead: “The LDAS approach leads to more realistic simulations of LAI
and Bag. In addition, N does not need to be determined”. Overall I would recommend
editing of this section to make it more streamlined.]

Response 1.25:
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Yes. We reorganised the Discussion sub-sections accordingly.

1.26 [Section 5.6 is mislabelled (or section 5.5 is missing).]

Response 1.26:

Yes. This correction was made.

1.27 [Suggest moving table 1 / 2 to supplementary material, or making a concise ver-
sion of table 2 for the main paper and moving the rest to supplementary.]

Response 1.27:

Agreed.

1.28 [Figure 1: The caption is slightly confusing to read. For one thing, the colour
of the symbols is redundant – they are uniquely determined by their shape, therefore
you can precisely just use this to refer to them using just the symbol in the caption.
Also, “Colour symbols show the departments presenting a significant correlation...” is
confusing, when all the symbols are coloured (arguably, black is a colour). Finally,
“empty blue circles” is confusing at first, since many of the circles on the plot are filled
with another symbol. Suggest instead just “circles”. Overall consider revising and
unpacking this caption to make it clearer, and potentially revise the use of colour in
the figure. Potentially the figure could be reproduced using just a single colour for all
symbols without any loss of precision.]

Response 1.28:

Yes. "yellow down triangle" was replaced by "green down triangle". This improved the
readability of Fig. 1.

1.29 [Figure 3: figures too small, would be better if they were placed in a 2x2 panel
plot and resized. Figures 4,5,8,9,10,12 could each be placed on a single row with two
figures, rather than a single column. Would help fit nicer on a page. Some could also
be combined (e.g. 8 & 9, or 11 & 12).]
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Response 1.29:

We prefer leaving the Figure layout as is. We think it will facilitate the inclusion of the
Figures in the two-column format of HESS.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-
120, 2017.
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RESPONSE TO REVIEWER #2

The authors thank anonymous reviewer 2 for his/her review of the manuscript and for
the fruitful comments.

2.1 [As of now the authors validate the drought representation of the model by com
paring the annual maximum above-ground biomass (Bag) and straw cereal grain yield
(GY) values only. In my opinion for better drought representation, it is also important
to see how the selection of MaxAWC influences drought representation in terms of
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water balance (ET, Runoff, Soil Moisture). This would also provide an independent
criterion for model evaluation for drought representation. The authors may want to use
observations such as streamflow, satellite based SM or ET for the evaluation purposes.]

Response 2.1:

Using independent satellite-derived products for validation is a very good idea but some
limitations have to be considered. We made an attempt to use the GLEAM evapotran-
spiration product (Miralles et al., 2011) but very poor correlations were obtained for
most départements (median R2 values less than 0.06). Using streamflow observa-
tions would require the coupling with an hydrological model. This is out of the scope of
this study. On the other hand, good correlations were found for the Gross Primary Pro-
duction (GPP) FLUXNET-MTE product described in Jung et al. (2009). With respect to
basic ISBA simulations, GPP RMSE is nearly systematically improved by the original
LDAS simulations, and LDAS tuning drastically reduces the largest RMSE values. A
new Figure presenting these results will be added.

References:

Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of
FLUXNET eddy covariance observations: validation of a model tree ensemble ap-
proach using a biosphere model, Biogeosciences, 6, 2001–2013, doi:10.5194/bg-6-
2001-2009, 2009.

Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C.
A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based
observations, Hydrology and Earth System Sciences, 15, 453–469, doi:10.5194/hess-
15-453-2011, 2011.

2.2 [The introduction section needs to be improved by ensuring a better connection
between the focus of a paragraph with the one following it. For example, as of now the
paragraph two (starting on line 5 page 2) seems out of place. The paragraphs before
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and after it discuss the influence of MaxAWC and this one discusses the influence of
climate variability. Likewise, the discussion of data assimilation starting on line 30 page
2, also seems to be out of place.]

Response 2.2:

Yes. Paragraph 2 was moved before the first paragraph. Data assimilation is now
introduced before as: "Using satellite observations and data assimilation techniques
could be a solution to this problem."

2.3 [(1) Line 23 (page 1): Not just due to climate change, but in the context of natural
climate variability too.]

Response 2.3:

Agreed.

2.4 [(2) Line 2 (page 2): Almost all regions are affected by drought, it’s just some are
more sensitive/vulnerable to drought risks exposure than the others.]

Response 2.4:

Yes. "In regions affected by drought" was replaced by "In regions vulnerable to drought
risk exposure,"

2.5 [(3) Page 2, Line 5: “Assigning agricultural...” rephrase this sentence for better
clarity, please.]

Response 2.5:

Yes. "Assigning" was replaced by "Comparing".

2.6 [(4) Page 2 Line 8: “Li et al. (2010) showed: : :.” Please provide an estimate of the
scales here]

Response 2.6:
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Yes. This sentence was changed to: "Li et al. (2010) showed that air temperature
tends to influence mean crop yields at small scales (400 to 600 km) whereas rainfall
drives crop yields at larger scales (50 to 300 km)".

2.7 [(5) Page 2 Line 12: Please change this sentence to: “Soil characteristic influence
the vegetation response to...”.]

Response 2.7:

Agreed.

2.8 [(6) Page 2 line 12: Please change “In the model benchmarking study of Eitzinger
et al. (2004),” to “In a model benchmarking study, Etizinger et al., (2004) ...“]

Response 2.8:

Agreed.

2.9 [(7) Page 2, Line 14: Please change “differing” to “that differ”.]

Response 2.9:

Agreed.

2.10 [(8) Page 2, Line 17: Please change “taking into account soil type” to “taking into
account of soil type”.]

Response 2.10:

Agreed.

2.11 [(9) Page 8, Line 2, “Of” is missing in “relevance the”.]

Response 2.11:

Yes. this was corrected.

2.12 [(10) Page 8, Line 11: Please change “consists in” to “consists of”.]
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Response 2.12:

Agreed.

2.13 [(11) Caption of Figure 4: “Dark” should be “black”.]

Response 2.13:

Agreed.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-
120, 2017.
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CNRM – UMR3589 (Météo-France, CNRS), Toulouse, 31057, France 5 

Correspondence to: Jean-Christophe Calvet (jean-christophe.calvet@meteo.fr) 

Abstract. Soil Maximum Available Water Content (MaxAWC) is a key parameter in Land Surface Models (LSMs). 

However, being difficult to measure, this parameter is usually unavailableuncertain. This study assesses the feasibility of 

using a fifteen-year (1999-2013) time-series of satellite-derived low resolution observations of Leaf Area Index (LAI) to 

retrieve estimate MaxAWC for rainfed croplands over France. LAI inter-annual variability is simulated using the CO2-10 

responsive version of the Interactions between Soil, Biosphere and Atmosphere (ISBA) LSM for various values of 

MaxAWC. Optimal value is then selected by using (1) a simple inverse modelling technique, comparing simulated and 

observed LAI, (2) a more complex method consisting in integrating observed LAI in ISBA through a Land Data 

Assimilation System (LDAS) and  minimizing LAI analysis increments. The evaluation of the MaxAWC retrievalestimates 

from both methods is done using simulated annual maximum above-ground biomass (Bag) and straw cereal grain yield (GY) 15 

values from the Agreste French agricultural statistics portal, for 45 administrative units presenting a high propor tion of straw 

cereals. Significant correlations (p-value < 0.01) between Bag and GY are found for up to 36% and 53% of the administrative 

units for the inverse modelling and LDAS tuning methods, respectively. It is found that the LDAS tuning experiment gives 

more realistic values of MaxAWC and maximum Bag than the inverse modelling experiment. Using low resolution LAI 

observations leads to an underestimation of MaxAWC and maximum Bag in both experiments. Median annual maximum 20 

values of disaggregated LAI observations are found to correlate very well with MaxAWC. 

1 Introduction 

Extreme weather conditions markedly affect agricultural production. The inter-annual variability of rainfed crop yields is 

driven to a large extent by the climate variability. Comparing agricultural statistics to climate data shows the impact of 

atmospheric conditions on vegetation production. For example, lower temperature in northern Europe tends to shorten the 25 

period of crop growth. Conversely, persistent high temperatures as well as droughts in southern Europe are linked to 

negative anomalies of crop yields (Olesen et al., 2011). Li et al. (2010) showed that air temperature tends to influence mean 

crop yields at small scales (400 to 600 km) whereas rainfall drive crop yields at larger scales (50 to 300 km). Capa-Morocho 

et al. (2014) also showed the influence of air temperature on crop yields. They established a link between temperature 



2 

 

anomalies related to the El Niño phenomenon and potential crop yield anomalies, obtained from reanal ysis data and crop 

model, respectively.  

In the context of climate change and of natural climate variability, there is a need for better supervision to monitorof the 

impacts of droughts on crops and water resources at continental and global scales (Quiroga  et al., 2010; Van der Velde et al., 

2011; Crow et al., 2012; Bastos et al., 2014). Large scale mModelling of continental surfaces into atmospheric and 5 

hydrological models has evolved in recent decades towards Land Surface Models (LSMs) able to simulate the coupling of 

the water, energy and carbon cycles (Calvet et al., 1998; Krinner et al., 2005; Gibelin et al., 2006). In particular, LSMs are 

now able to simulate photosynthesis and plant growth. A major source of uncertainty in both LSMs and crop models is  the 

maximum available water content of the soil (MaxAWC). This quantity represents the amount of water stored in the soil at 

field capacity available for plant transpiration along the vegetation growing cycle (Portoghese et al., 2008; Piedallu et al., 10 

2011). MaxAWC is constrained by soil parameters and by the plant rooting depth. In regions affected vulnerable toby 

drought risk exposures, MaxAWC is a key driver of the plant response to the climate variability. 

Extreme weather conditions markedly affect agricultural production. The large scale inter-annual variability of rainfed crop 

yields is driven to a large extent by the climate variability. Assigning agricultural statistics to climate data shows the im pact 

of atmospheric conditions on vegetation production. For example, lower temperature in northern Europe tends to shorten the 15 

period of crop growth. Conversely, persistent high temperatures as well as droughts in southern Europe are linked to 

negative anomalies of crop yields (Olesen et al., 2011). Li et al. (2010) showed that air temperature tends to influence crop 

yields at large scales whereas rainfall drive crop yields at smaller scales. Capa-Morocho et al. (2014) also showed the 

influence of air temperature on crop yields. They established a link between temperature anomalies related to the El Niño 

phenomenon and potential crop yield anomalies, obtained from reanalysis data and crop model, respectively.  20 

Soil characteristics have an impact oninfluence the vegetation response to climate (Folberth et al., 2016). In the a model 

benchmarking study, of Eitzinger et al. (2004), simulated evapotranspiration, soil moisture and biomass were compared with 

observations. They used three crop models that differing in the representation of the Available soil Water Content (AWC): 

WOFOST (WOrld Food Studies model) (Van Diepen et al., 1989), CERES (Crop Environment REsource Synthesis model) 

(Ritchie and Otter, 1985) and SWAP (Statewide Agricultural Production model) (van Dam et al., 1997). They showed that a 25 

better description of rooting depth and evapotranspiration, taking into account of soil type and crop type, could significantly 

improve these models. Tanaka et al. (2004), Portoghese et al. (2008), and Piedallu et al. (2011), Other studies have also 

highlighted the important role of the parameterization of the soil characteristics (soil texture, rooting depth) that determineon 

the water retention capacity of the soilMaxAWC (Tanaka et al., 2004 ; Portoghese et al., 2008 ; Piedallu et al., 2011) . Soylu 

et al. (2011) and Wang et al. (2012) illustrated the major impact of MaxAWC on but also evapotranspiration (Soylu et al., 30 

2011 ; Wang et al., 2012). While soil properties such as soil texture determine the volumetric soil water holding capacity (in 

kg m
-3

), information on rooting depth is needed to determine MaxAWC, (in units of kg m
-2

.). A better representation of 

MaxAWC could improve the simulated inter-annual variability of both water fluxes and vegetation biomass by LSMs.  
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The lack of in situ observations of MaxAWC to calibrate and assess LSMs is a significant issueimpacts the ability of LSMs 

to represent drought effects on plants. Using satellite observations and data assimilation techniques could be a solution to 

this problem. A list of atmospheric, oceanic and terrestrial Essential Climate Variables (ECVs) which can be monitored at a 

global scale from remote sensing observations, was proposed by the Global Climate Observing System (GCOS). Leaf area 

Index (LAI), Fraction of absorbed photosynthetically active radiation (FAPAR) and soil moisture are key ECVs for land 5 

surface modelling. The use of these satellite-derived products to verify LSM simulations or to optimize key LSM parameters 

has been assessed by several authors (e.g. Becker-Reshef et al., 2010 ; Crow et al., 2012 ; Ferrant et al., 2014 ; Ford et al., 

2014 ; Ghilain et al., 2012 ; Ichii et al;, 2009 ; Kowalik et al. 2009 ; Szczypta et al., 2012 ; Szczypta et al., 2014).  Besides, 

dData assimilation is a field of active research. Data assimilation techniques allow the integration of different observation 

types (e.g. in situ or satellite-derived) into LSMs in order to optimally combine them with model outputs: the correction 10 

applied to the model state is called the increment and the corrected model state is the analysis. Previous works have studied 

the impact of In particular, the assimilation of LAI observations and found that it can significantly improve the 

representation of vegetation growth (e.g. Albergel et al., 2010 ; Barbu et al., 2011, 2014).  

The Interactions between Soil, Biosphere and Atmosphere (ISBA) LSM includes a modelling option able to simulate 

photosynthesis and plant growth (Calvet et al., 1998 ; Gibelin et al., 2006). ISBA produces consistent surface energy, water 15 

and carbon fluxes, together with key vegetation variables such as LAI and the living above-ground biomass (Bag). Previous 

studies showed that this model can represent well the inter-annual variability of Bag over grassland and straw cereal sites in 

France provided MaxAWC values are tuned (Calvet et al., 2012 ; Canal et al., 2014). In these studies, MaxAWC for straw 

cereals was retrieved by maximizing the correlation coefficient between simulated annual maximum Bag (BagX) and grain 

yield (GY) observations. The MaxAWC values were obtained for 45 French administrative units ("départements") presenting 20 

a large proportion of rainfed straw cereals. For grasslands, dry matter yield observations were used. Significant correlations 

were found between the simulated BagX value of grassland and dry matter yield of grasslands for up to 90 % of the 

administrative units. On the other hand, no more thanonly 27 % of the 45 straw cereals départements (i.e. no more thanonly 

12 départements) presented had significant correlations. A possible cause of the difficulty to simulate the interannual 

variability of straw cereals' GY was that the standard deviation of GY represented less than 10 % of the mean GY. This was 25 

a relatively weak signal. For grasslands a much larger value, of about 30 % of the mean dry matter yield, was observed 

(Canal et al., 2014). 

The main purpose of this study is to retrieve estimate MaxAWC for straw cereals using reverse modelling techniques based 

on satellite-derived LAI observations disaggregated over separate vegetation types. Simulated and observed LAI are 

compared for a 15-year period (1999-2013) over the same 45 agricultural spots used in the previous studies of Calvet et al. 30 

(2012) and Canal et al. (2014). We use LAI observations instead of GY to retrieve estimate MaxAWC. The GY observations 

are used to verify the interannual variability of the simulated BagX. This can be considered as an indirect validation of the 

retrieved MaxAWC. In a first experiment, we use a simple inverse modelling technique to retrieve estimate MaxAWC 

together with the mass-based leaf nitrogen content, minimising a cost function based on observed and simulated LAI values. 
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In another experiment, we use a Land Data Assimilation System (LDAS) able to sequentially assimilate LAI observations. In 

this case, MaxAWC solely is retrieved by minimizing the LAI analysis increments. In the following, these two experiments 

are referred as inverse modelling and LDAS tuning, respectively. 

The main goals of this study are to (1) assess the usefulness of integrating satellite-derived LAI observations into a LSM, (2) 

compare inverse modelling and LDAS techniquestuning, (3) determine MaxAWC values. In the following, inverse 5 

modelling and LDAS tuning are referred as IMinverse modelling and LT, respectively. 

The observation data sets are described in Section 2, together with the version of ISBA used in this study and the LDAS. 

Results obtained from both methods are presented in Section 3, analysed and discussed in Section 4. Conclusions and 

prospects are summed up in Section 5.  

 10 

2 Data  

The forcing and validation observations used in this study over the 1999-2013 period are described below. The location of 

the considered straw cereal spots is presented in Fig. 1. 

2.1. Satellite LAI product 

We use the GEOV1 global LAI product (Baret et al., 2013) provided in near real time (every 10 days) at a spatial resolution 15 

of 1 km  1 km by the European Copernicus Global Land Service (http://land.copernicus.eu/global/). The GEOV1 LAI 

product is derived from SPOT-VGT satellite observations starting in 1999. The complete 1999-2013 LAI time series comes 

from SPOT-VGT and is fully homogeneous. The product is well evaluated against ground observations (see the 

Supplement). Camacho et al. (2013) compared the GEOV1 LAI with in situ LAI observations and with different remote 

sensing products such as MODIS and CYCLOPES. They highlighted that: "The best accuracy and precision are observed for 20 

the GEOV1 LAI product. GEOV1 provides also very good agreement across the whole range of LAI values, with however 

only a slight underestimation for the highest values". They give the following scores for GEOV1 LAI with respect to ground 

observations over 30 crop, grass and forest sites in Europe, Africa and North America: R
2
 = 0.81, RMSE = 0.74 m

2
m

-2
. 

The GEOV1 product is a low resolution product (1 km x 1 km). At this spatial scale, it is not possible to i solate pure straw 

cereal pixels and it is preferable to disaggregate the LAI (i.e. compute the LAI of each vegetation type) before integrating it 25 

into a straw cereal model. We disaggregated the GEOV1 LAI data following the method developed by Carrer et al.  (2014), 

based on a Kalman filtering technique. This method permits separating the individual LAI of different vegetation types that 

co-exist in a grid pixel and then provides dynamic estimates of LAI for each type of vegetation within the pixel (Munier et  

al., 2017). The Kalman filter optimally combines satellite LAI data and prior information from the ECOCLIMAP land cover 

database (Farroux et al., 2007, Masson et al., 2003). ECOCLIMAP prescribes physiographic parameters (fractional 30 

vegetation cover, soil depth, etc.) for several vegetation types including grasslands, forests, and C3 crops like straw cereals. 
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Mean annual LAI cycles per vegetation type from ECOCLIMAP are used as a first guess to partition the GEOV1 LAI every 

time a new satellite observation is available. 

2.2. Atmospheric forcing  

The global WFDEI dataset (Weedon et al., 2014) is used in this study to drive the ISBA simulations. It provides 3-hourly 

surface atmospheric variables on a 0.5°  0.5° grid: air temperature, air humidity, wind speed, atmospheric pressure, solid 5 

and liquid precipitation, incoming shortwave and longwave radiation. WFDEI is based on the ERA-Interim atmospheric 

reanalysis (Dee et al., 2011). It includes elevation corrections and seasonal monthly bias corrections from grou nd-based 

observations.  

2.3. Agricultural GY statistics 

The Agreste portal (http://agreste.agriculture.gouv.fr/) provides annual statistical surveys over France which allow 10 

establishing a database of yearly GY values. The GY estimates are available per crop type and per administrative unit 

(département). We use GY values for rainfed straw cereals such as barley, oat, rye, triticale and wheat, for the same 45 

départements as in Calvet et al. (2012) and Canal et al. (2014). Calvet et al. (2012) and Canal et al. (2014) used Agreste data 

for the 1994-2008 and 1994-2010 periods, respectively, for both straw cereals and fodder production. We use Agreste data 

from 1999 to 2013, only for straw cereal GY. 15 

3. Methods  

3.1. The ISBA model 

The ISBA LSM is included in the SURFEX (SURFace EXternalisée) modelling platform (Masson et al., 2013). The newest 

version of SURFEX (version 8) is used in this study with the "NIT" biomass option for ISBA. The "C3 crop" plant 

functional type is considered. 20 

ISBA simulates the diurnal course of heat, water, and CO2 fluxes, including Gross Primary Production (GPP). The set of 

ISBA options we use permits the simulation of LAI and Bag on a daily basis (Calvet et al., 1998, 2008). The model includes a 

soil moisture stress function (Fs) applied to photosynthesis key parameters. For low vegetation such as grass or crops, the 

parameters related to soil moisture stress are (Calvet, 2000): the mesophyll conductance (gm) and the maximum leaf-to-air 

saturation deficit (Dmax). Values of gm and Dmax for straw cereals in well-watered conditions are given in Table S1 (in the 25 

Supplement)1, together with other model parameters. It must be noted that this value of gm was derived from IMusing 

inverse modelling by Canal et al. (2014) for the same straw cereal sites as those considered in this study. In moderately dry 

conditions, gm and Dmax are affected by Fs in such a way as to increase the intrinsic water use efficiency (WUE). This 

corresponds to a drought-avoiding behaviour (Calvet, 2000). The model is also able to represent a drought-tolerant behaviour 
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(stable or decreasing WUE) and Calvet et al. (2012) showed that straw cereals tend to behave as drought-avoiding while 

grasslands tend to behave as drought-tolerant. 

The above-ground biomass (Bag) consists of two components within ISBA: the structural biomass and the active biomass. 

The latter corresponds to the photosynthetically active leaves and is related to B ag by a nitrogen dilution allometric 

logarithmic law (Calvet and Soussana, 2001). The mass-based leaf nitrogen concentration (NL) is a parameter of the model 5 

affecting the specific leaf area (SLA) which is the ratio of LAI to leaf biomass (in m
2
 kg

-1
). The SLA depends on NL and on 

plasticity parameters (Gibelin et al., 2006). The NL parameter is key for LAI simulations and has to be included in any 

IMinverse modelling experiment involving LAI.  

The net assimilation of CO2 by the leaves (An) is driven by environmental factors such as the atmospheric CO2 

concentration, air humidity, the incoming solar radiation and the leaf surface temperature. To upscale the net assimilation of 10 

CO2 and transpiration at the vegetation level, a multilayer radiative transfer scheme is used (Carrer et al., 2013). The daily 

canopy-scale accumulated value of An serves as an input for the vegetation growth and mortality sub-models, and the 

phenology is completely driven by An (no growing degree-day parameterization is used). 

The plant transpiration flux is used to calculate the soil water budget through the root water uptake. The soil hydrology 

scheme used in this study is referred to as “FR-2L” in SURFEX. It represents two soil layers: a thin surface layer with a 15 

uniform depth of 1 cm and a root-zone layer of depth Zr. The latter is used as a surrogate for MaxAWC in the calibration 

process. Soil texture parameters such as the gravimetric fraction of sand and clay are extracted from the Harmonized World 

Soil Database (Nachtergaele et al., 2012). Physical soil parameters such as volumetric soil moisture at field capacity (θFc) 

and wilting point (θWilt) are calculated thanks to pedotransfer functions based on soil texture. The MaxAWC parameter is 

given by: 20 

 (1) 

Parameters are defined in Table A1 and model parameter values are summarized in Table S1. 

3.2. Land Data Assimilation System 

We used the LDAS described in Barbu et al. (2011, 2014). It consists of a sequential data assimilation system operated 

offline (uncoupled with the atmosphere). The assimilation is based on a simplified extended Kalman filter (SEKF), able to 

integrate observations  such as LAI and soil moisture in the ISBA model. In this study, only LAI observations are 25 

assimilated and the LDAS produces analyzed LAI values.  

The key update equation of the SEKF is: 

 tt

o

t

f

t

a

t yyK=xx=Δx  , with K = BH
T
(HBH

T
+R)

-1
 (2) 

 

  Zrθθ=MaxAWC WiltFc 



7 

 

where x is the analysis increment, x is a control vector of one dimension representing LAI values propagated by the ISBA 

LSM, and yo is the observation vector representing the GEOV1 LAI observations. The t superscript stands for time (t). The 

initial time (t = 0) is denoted by the 0 superscript. The “a”, “f” and “o” subscripts denote analysis, forecast and observation, 

respectively. The y
t
 term of Eq. (2) represents the model value at the analysis time: 

 0xh=yt
 (3) 

where, h is the observation operator. 5 

K = BH
T
(HBH

T
+R)

-1
 (4) 

 

The Kalman gain K is derived from the background error covariance matrix B and from the observation error covariance 

matrix R. The y
t
 term of Eq. (2) represents the model counterpart of the observations, i.e. the model predicted value of the 

observation at the analysis time: 

 0xh=yt
 (3) 

Matrix H that appears in Eq. (32) represents the Jacobian of potentially non linear h function: 10 

H
0x

y
=

t




 

(45) 

which gives the following Jacobian vector: 

H 










0

t

LAI

LAI
=  

(65) 

The initial state at the beginning of an assimilation window is analysed via the information provided by an observation at the 

end of the assimilation window (Rüdiger et al., 2010). In this approach, the LAI increments (Eq. 2) are applied at the end of  

1-day assimilation intervals. The elements of the Jacobian matrix are estimated by finite differences, individually perturbing 

each components of the control vector x by a small amount x: 15 

H
   

δx
xyδx+xy

=


 
(76) 

The background error covariance matrix B is assumed to be constant at the start of each analysis cycle. The covariance 

matrices B and R are assumed to be diagonal. In the simplified version of the EKF used in this study, namely SEKF, the B 

matrix does not evolve with time. The standard deviation of errors of GEOV1 LAI is assumed to be 20 % of GEOV1 LAI. 

The same assumption is made for the standard deviation of errors of the modelled LAI (20 % of modelled LAI) for modelled 

LAI values higher than 2 m
2
m

-2
. For modelled LAI values lower than 2 m

2
m

-2
 , a constant error of 0.4 m

2
m

-2
 is assumed. 20 

Mis en forme
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This assumption is based on (following option 3 presented in Barbu et al., (2011). They showed that this option gives the 

best simulated LAI over an instrumented grassland site in southwestern France. 

3.3. Upscaling disaggregated LAI observations to département level 

Each agricultural spot shown in Fig. 1 corresponds to the area within a département presenting the highest fraction of straw 

cereals. These 45 locations were chosen by Calvet et al. (2012) on a 8 km  8 km grid using fractions of vegetation types 5 

derived from ECOCLIMAP (Faroux et al., 2013). Disaggregated LAI observations have a spatial resolution of 1 km  1 km. 

This represents a small area compared to the size of a département (from 2000 to 10000 km
2
). Local values of the straw 

cereal LAI may not be representative of the straw cereal production at the département level described by Agreste. 

Preliminary tests showed that averaging the disaggregated LAI on the same 8 km  8 km grid cell used by Calvet et al. 

(2012) was not sufficient to represent the interannual variability of the GY observations at the département level. Therefore , 10 

an analysis of the consistency of the two observation datasets (in situ GY and disaggregated satellite LAI), is performed.  The 

average maximum annual value of the disaggregated GEOV1 LAI observation (LAIomax) is calculated for various grid cell 

sizes for this task. In practice, the LAIomax value corresponds to the mean LAI values above a given fraction of the observed 

maximum annual LAI (LAImax). We consider five grid cell sizes of 5 km  5 km, 15 km  15 km, 25 km  25 km, 35 km  

35 km, and 45 km  45 km (from 25, to 2025 km
2
). The five LAIomax time series are compared with the GY time series for 15 

each département. The area size corresponding to the largest number of départements presenting a significant correlation 

between LAIomax and GY is selected. 

3.4. Model calibration/validation 

The feasibility of retrieving MaxAWC from LAI satellite data is explored using two different approaches: IMinverse 

modelling and LTLDAS tuning. For the two approaches, this calibration step is followed by a validation step aiming at 20 

demonstrating the relevance of the retrieved MaxAWC values and the added value of the retrieval technique.  

The satellite LAI observations are available year-round but the sensitivity of straw cereal LAI to MaxAWC may change 

greatly for one period of the year to another. Prior to calibrating the model, a sensitivity study of the time window used for 

the MaxAWC retrieval is performed. Three periods are considered: (1) growing period (from 1 March to the date of the 

observed LAImax); (2) peak LAI (period for which observed LAI is higher than 50% of observed LAImax) ; (3) senescence 25 

(from the date when observed LAImax is reached to 31 July). The ISBA simulations are stopped on 31 July as this date 

corresponds to the maximum harvest date at most locations. 

The validation of the calibrated model consists in of comparing the interannual variability of the simulated maximum annual 

above-ground biomass to the interannual variability of the GY observations. The 1999-2013 period is considered. In drought 

conditions, modelled Bag can rise to a maximum value and then drop rapidly. Therefore the peak Bag can be dependent on 30 

modelling uncertainties and on uncertainties in the atmospheric forcing. In order to limit the impact of model errors, caused 
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for example by uncertainties in the atmospheric forcing, an average value of the simulated BagX is used instead of an 

instantaneous value. This average value is calculated using all the Bag values above a threshold corresponding to 90 % of the 

maximum annual Bag. It was checked that this threshold value permits the maximization of the number of départements 

presenting a significant correlation with GY. Then, scaled anomalies of the average simulated BagX are compared with scaled 

anomalies of the GY observations, and the R
2
 score is calculated. Scaled anomalies (As) are calculated using the mean and 5 

standard deviation of the two variables over the 1999-2013 period:  

 
 

agX

agXagX

BagX
Bσ

BB
=As


          (87) 

 
 GYσ

GYGY
=AsGY


          (98) 

The interannual variability of the modelled LAImax is assessed using the coefficient of variation (CV). CV is given in % and 

is calculated according the following formula with  the standard deviation and  the mean: 10 

100=CV           (109) 

The MaxAWC retrieval is considered to be successful if the Pearson correlation is significant at 1% level (F-test p-value < 

0.01). 

3.5. Design of the experiments 

3.5.1. Inverse modelling 15 

Two parameters are retrievedestimated: NL and MaxAWC. For a given value of NL, a set of 13 LAI simulations is produced, 

corresponding to the following MaxAWC values: 44, 55, 66, 77, 88, 99, 110, 121, 132, 154, 176, 198 and 220 mm. Since N L 

is a key parameter for LAI simulations, it has to be retrieved together with MaxAWC and this simulation process is repeated 

5 times, for the following NL values: 1.05, 1.30, 1.55, 2.05 and 2.55 %.  

The LAI Root Mean Squared Error (RMSE) over the period between the occurrence of the observed LAImax and 31 July for 20 

the 15-years is used to select the best simulation. The MaxAWC used in the simulation with the lowest RMSE is selected as 

the optimal one by minimising this cost function over the period between the occurrence of the observed LAImax and 31 July 

for the 15-years: 

 (1011) 

where LAI is for simulated LAI, LAIo is for observed LAI and n is the length of the data vector. 

 n

=i

ii

n

)LAIo(LAI
=RMSE

0

²
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3.5.2. LDAS tuning 

The LAI observations are integrated into ISBA by the LDAS. The LDAS produces analyzed values of LAI and Bag. 

Therefore, there is no need to retrieve estimate NL and the only degree of freedom in this case is the value of MaxAWC. 

Thirteen analyses are made, corresponding to the same MaxAWC values used in the IM inverse modelling experiment (Sect. 

3.5.1). 5 

The median analysis increment (Eq. 2) can present positive or negative values. Small corrections provided by the LDAS 

indicate that simulation outputs are close to observations and that the dynamics is well represented. The value closes t to zero 

indicates the best simulation and the corresponding MaxAWC value is considered as the retrieved MaxAWC.  

4. Results 

4.1. Disaggregated satellite LAI vs. grain yield observations 10 

In a first step before integrating the disaggregated LAI observations into the ISBA model, we checked the consistency of the 

interannual variability of LAIomax (Sect. 3.3) with the one of the observed GY from Agreste. We investigated several values 

of the size of the area around each site coordinates to calculate the average of LAIomax, from 25 to 2025 km
2
. Individual 

LAIomax values at a spatial resolution of 1 km  1 km correspond to the mean of LAI values above the LAIomax threshold 

(Sect. 3.3). Several LAIomax threshold values ranging from 40% to 95% of LAImax were investigated together with the grid 15 

cell size (see Fig. S1 in Supplement). A LAIomax threshold value of 50 % and a grid cell size of 35 km  35 km (1225 km
2
) 

were selected. In this configuration, a significant temporal correlation (F-test p-value < 0.01) between the average LAIomax 

and the observed GY is obtained for 31 départements. The latter are shown in Fig. 1 (empty blue circles). The 45 grid cells 

of 35 km  35 km are further used to calculate average 10-day LAI observations to be integrated in the ISBA model through 

either IMinverse modelling or LTLDAS tuning. The fraction of straw cereals derived from ECOCLIMAP for these grid cells 20 

ranges from 15 % to 100 %, with a median value of 68 % (see Table S12 in Supplement).  

The temporal correlation between LAIomax and GY is illustrated in Fig. 2. The two 15-year time series correspond to average 

annual values of LAIomax and GY across the 31 départements where LAIomax is found to correlate with GY. The two time 

series present a very good correlation, with R
2
 = 0.84. This shows that the disaggregated satellite-derived LAI is able to 

capture the interannual variability of GY.  25 

4.2. Sensitivity study 

Figure 3 presents the impact of ISBA parameters on the simulated annual maximum LAI and on its interannual variability. 

Two key parameters are considered: MaxAWC and NL. The same parameter values are applied to all 45 départements, and 

mean modelled LAImax are used to calculate CV values (Eq. 910). The CV values are shown in Fig. 3 as a function of these 

parameters, together with LAImax.  30 
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It appears that the interannual variability of the modelled LAImax is governed by MaxAWC. CV values of more than 12 % 

are derived from the ISBA simulations at low values of MaxAWC (e.g. 50 mm). On the other hand, high MaxAWC values 

(> 200 mm) correspond to limited interannual variability of LAImax (CV < 4 %), in relation to a lower sensitivity of plants to 

drought. 

The NL parameter has a limited impact on CV and its impact depends on MaxAWC. For large (small) MaxAWC values 5 

above (below) the standard average value of 132 mm used in ISBA, the largest values of NL tend to cause a decrease 

(increase) of CV. In the IMinverse modelling experiment, NL mainly impacts the average simulated LAImax value. In the 

ISBA model, NL is linearly related to the leaf specific leaf area (SLA) and large NL values correspond to large SLA values, 

i.e. larger LAI values for a given simulated leaf biomass (Gibelin et al., 2006). However, Fig. 3 shows that MaxAWC has a 

more pronounced impact than NL on LAImax. Increasing MaxAWC from 50 to 250 mm triggers a rise in LAImax, from about 2 10 

m
2
m

-2
 at low NL values to 3 m

2
m

-2
 at high NL values. Switching NL from low to high values at a given MaxAWC level also 

raises LAImax, but not more than 2 m
2
m

-2
.  

This result confirms that MaxAWC is the key parameter to be retrieved in order to improve the representation of straw cereal 

biomass, for both IMinverse modelling and LTLDAS tuning experiments. The impact of MaxAWC on the cost functions 

(LAI RMSE and median LAI analysis increments, Eqs. (110) and (2), respectively) may depend on the LAI observation 15 

period. We tested the two retrieval methods for three different optimisation periods: start of growing period, peak LAI, and 

senescence (see Sect. 3.4).  

This is illustrated in Fig. 4, which shows the average cost function across all 45 départements. In both experiments, 

MaxAWC has little impact on the cost function during the start of the growing season. The most pronounced response of 

both LAI RMSE and analyses increments is observed during the senescence. For this period of the growing cycle, both cost 20 

functions present a minimum value at MaxAWC = 110 mm. Also, the largest RMSE and increments values are observed 

during the senescence, indicating that the processes at stake during this period are more difficult to simulate. For straw 

cereals, senescence is related to soil moisture stress (Cabelguenne and Debaeke, 1998) and during this period the value of 

MaxAWC has a marked impact on the representation of the effect of drought by the model. The peak LAI period is less 

favourable to the integration of LAI observations into the model, with a reduced accuracy on the retrieved MaxAWC.  25 

4.3. Outcomes of the optimisation 

A direct result of the optimisation procedure is the reduction of the cost function value. This is illustrated in Fig. 5 for all 45 

départements. Figure 5 presents the impact of the optimisation on the cost functions of IMinverse modelling and LTLDAS 

tuning during the senescence period: LAI RMSE and LDAS LAI increments, respectively.  

The RMSE values are systematically reduced by the IMinverse modelling experiment. For all 45 départements, the median 30 

value of the LAI RMSE drops from 1.6 to 1.2 m
2
m

-2
. While LAI RMSE exceeds 1.5 m

2
m

-2
 for 29 départements before the 

optimisation, this RMSE value is exceeded for only three départements after the optimisation. It must be noted that this is a 
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much better result than the RMSE obtained in Fig. 4 (1.6 m
2
m

-2
) for the cost function including all 45 départements, with a 

MaxAWC value of 110 mm. This shows the impact of the spatial variability of MaxAWC.  

For LTLDAS tuning, most of the median daily increment values are sharply reduced: while 17 values are larger (smaller) 

than 0.2 (-0.2) m
2
m

-2
 before the optimisation, all the values range from -0.1 to 0.1 m

2
m

-2
 after the optimisation. The spatial 

median value of the LDAS LAI increments varies from -0.03 m
2
m

-2
 for original LDAS to -0.01 m

2
m

-2
 for LTLDAS tuning, 5 

for all 45 départements. Table 12 summarizes results showing the impact of the optimization on indicators such as the 

number of départements presenting a significant correlation of BagX with GY and the median value of the cost functions. 

Table 2 also give median and standard deviation values of the retrieved MaxAWC and of the retrieved NL in the case of 

IMinverse modelling, together with modelled BagX and LAImax values. The results are given for the départements presenting 

a significant correlation of BagX with GY and for all 45 départements. An extended version of Table 1 (Table S3 in 10 

Supplement) also give results for undisaggregated LAI and for 15 validated départements for both inverse modelling and 

LDAS tuning. 

In the case of LTLDAS tuning, the median retrieved MaxAWC (12944 mm for all 45 départements and 13346 mm for 

significant départements) is close to the standard value used in ISBA (1322 mm) but the standard deviation is much larger. 

This shows that LTLDAS tuning is able to generate spatial variability in MaxAWC values.  15 

A similar degree of variability is obtained by IMinverse modelling, but the retrieved MaxAWC presents much lower values 

for all 45 départements: 11144 mm. On the other hand, a much larger values of 15340 mm is found for the 16 validated 

départements. The retrieved NL (1.050.20) is smaller than the default value of 1.30 %. The role of NL in the optimization is 

discussed in Sect. 5.1. 

Figure 6 shows the impact of optimizing MaxAWC on the mean annual LAI cycle, with respect to the observed annual LAI 20 

cycle over the 45 départements. IMInverse modelling tends to produce a smaller LAImax median value (3.59 m
2
m

-2
 for all 45 

départements) than basic ISBA simulations or LDAS simulations (3.84 and 3.98 m
2
m

-2
, respectively). IMInverse modelling 

tends to reduce simulated LAI in May and June, while the LDAS simulations (either original LDAS or LTLDAS tuning) are 

much closer to the observations. 

The two optimization methods succeed in reducing the LAI RMSE of the basic ISBA simulations (1.6 m
2
m

-2
 for all 45 25 

départements). With optimized MaxAWC, the tuned LDAS annual mean LAI cycle is closer to the observations than LAI 

resulting from IMinverse modelling, with LAI RMSE equal to 1.1 m
2
m

-2
 for LTLDAS tuning, against 1.2 m

2
m

-2
 for 

IMinverse modelling.  

4.4. Validation 

Agricultural GY statistics (Section 2.3) are used for validation. The optimisation is considered as successful in départements 30 

where the correlation between yearly time series of BagX and GY is significant (p-value < 0.01). Table 12 shows that even 

without tuning MaxAWC, the integration of LAI in ISBA by the original LDAS permits the increase of the number of 
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départements where p-value < 0.01 from 18 in basic ISBA simulations to 21. LTLDAS tuning further increases this number 

to 24 départements. With only 16 validated départements, IMinverse modelling is not able to outperform original LDAS 

simulations. 

Time series of mean scaled anomalies of BagX and GY are shown in Fig. 7 all 45 départements before and after IMinverse 

modelling or LTLDAS tuning. The marked negative anomalies (< -1) in 2001, 2003 and 2011 are represented well after 5 

LTLDAS tuning. On the other hand, the impact of sunlight deficit and low temperatures during the growing period of 2001 

cannot be represented well after IMinverse modelling. The marked negative GY anomaly observed in 2007 is not very well 

represented by the model. Moreover, Fig. 7 shows that parameter tuning does not significantly improve R
2
 values. Basic 

ISBA and original LDAS simulations present R
2
 values of 0.65 and 0.80, against 0.65 and 0.82 after IMinverse modelling 

and LTLDAS tuning, respectively. 10 

Figure 8 further shows that the inter-annual variability of BagX is markedly better represented using LTLDAS tuning. The 

scaled modelled BagX and the scaled GY observations averaged over 45 départements present a R
2
 value of 0.82, against 0.65 

for IMinverse modelling. Considering only the successful validated départements, more similar R
2
 values are observed: 0.88 

and 0.80, respectively. Figure 9 presents the spatial correlation between the scaled BagX and the scaled GY observations 

averaged over the 15-year period considered in this study. Considering the 45 départements, R
2
 = 0.61 for LTLDAS tuning 15 

and R
2
 = 0.58 for IMinverse modelling. Again, LTLDAS tuning supersedes IMinverse modelling, including when the 

comparison is limited to successfully validated départements, with R
2
 values of 0.74 and 0.63, respectively. 

It must be noted that all the correlations presented in Figs. 8 and 9 are significant, with all p -values smaller than 0.001. 

In addition to GY data, we made an attempt to use the satellite-derived GLEAM evapotranspiration product (Miralles et al., 

2011) but very poor correlations were obtained for most départements (the median R
2
 value was less than 0.06). On the other 20 

hand, good correlations were found for photosynthesis using the GPP FLUXNET-MTE product described in Jung et al. 

(2009). With respect to basic ISBA simulations, GPP RMSE was nearly systematically improved by the original LDAS 

simulations, and LDAS tuning drastically reduced the largest RMSE values, observed in southwestern France (see Figs. S2 

and S3 in the Supplement).  

 25 

4.5. Impact of the optimization technique on MaxAWC retrievalsestimates 

Differences in validation results can be caused by uncertainties in Agreste GY observations or by the difficulty to upscale t he 

observations and the simulations (Sect. 3.3). In order to limit this effect, we further compared the MaxAWC 

retrievalsestimates and the simulated vegetation variables for a subset of the départements corresponding to the 15 

départements which are validated for both IMinverse modelling and LTLDAS tuning. Table S32 shows that for this subset of 30 

départements, MaxAWC values are similar: 15440 and 15640 mm, respectively. On the other hand, vegetation variables 

are more realistically simulated after LTLDAS tuning: median LAI RMSE is 1.2 m
2
m

-2
 against 1.4 m

2
m

-2
 for IMinverse 

Mis en forme
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modelling. The median LAImax value is much larger for LTLDAS tuning: 4.35 m
2
m

-2
, against 3.85 m

2
m

-2
 for IMinverse 

modelling. However, peak Bag values are similar: 1.26 kg m
-2

 for LTLDAS tuning and 1.23 kg m
-2

 for IMinverse modelling. 

The similarity in MaxAWC retrievalsestimates and the contrasting simulated LAI values are illustrated in Fig. 10. Analyzed 

LAI from LTLDAS tuning is closer to the LAI observations than the simulated LAI resulting from IMinverse modelling. 

The MaxAWC retrievalsestimates are slightly smaller for IMinverse modelling and correlate very well with the MaxAWC 5 

retrievalsestimates from LTLDAS tuning (R
2
 = 0.81). The latter result is also valid when all 45 départements are considered, 

with R
2
 = 0.72. 

5. Discussion 

5.1. What is the added value of the LDAS ? 

The LDAS approach leads to more realistic simulations of LAI (see Fig. 10) and slightly improves Bag simulations (Figs. 7-10 

10). In addition, NL does not need to be determinedThe LDAS approach allows sequential integration of LAI observations 

into the model because LAI is directly constrained by the LAI observations.  

Minimizing analysis increments to retrieve estimate MaxAWC is a much more complex approach than IMinverse modelling. 

Overall, MaxAWC retrievalsestimates from the two methods are relatively  consistent (see Sect. 4.5) but IMinverse 

modelling tends to produce smaller values. On the other hand, GY observations show that the simulated vegetation variables 15 

are more realistically simulated after LTLDAS tuning than after IMinverse modelling. The LAI simulations are more 

realistic and Bag simulations are also more realistic (see Figs. 7-10). This can be explained by a better capability of the LDAS 

to use the observations to drive the model trajectory: the sequential assimilation of LAI is able to constrain the simulated 

LAI values.  

Another advantage of LT is that NL does not have to be determined, because LAI is directly constrained by the LAI 20 

observations. It can be shown that the impact of tuning NL in the IMinverse modelling method can be significant. Table 23 

presents MaxAWC and LAI RMSE values obtained from IMinverse modelling when only one parameter, MaxAWC, is 

optimized. Results are shown for five values of NL ranging from 1.05 % to 2.55 %. The number of validated départements 

drops when NL increases, from 16 at NL = 1.05 % to only 3 at NL = 2.55 %. At the same time, the MaxAWC 

retrievalsestimates tend to present smaller values, down to 8840 mm at NL = 2.55 %. This result can be explained by the 25 

fact that larger values of either MaxAWC or NL tend to increase LAImax (Fig. 3).  

Improving the simulation of vegetation variables has a positive impact on the quality of simulated hydrological var iables 

such as evapotranspiration and soil moisture (Szczypta et al., 2012). Therefore, the larger MaxAWC values obtained from 

LTLDAS tuning (12944 mm) are likely to be more realistic than those obtained from IMinverse modelling (11144 mm).  
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5.2. Are MaxAWC retrievalsestimates and simulated peak Bag realistic ? 

Independent MaxAWC estimates confirm that the MaxAWC values obtained from LDAS tuning (12944 mm) are more 

realistic than those obtained from inverse modelling (11144 mm). On the other hand, the two techniques give similar 

median BagX values (Table 1). 

In order to verify the MaxAWC values derived from LAI observations, we extracted MaxAWC values from a map produced 5 

by Institut National de la Recherche Agronomique (INRA) a spatial resolution of 1 km  1 km. This map was established 

using pedotransfer functions based on soil physical properties information such as soil texture, soil depth, bulk density, an d 

organic matter (Al Majou et al., 2008). A given local MaxAWC value corresponds to a soil typological unit (STU). The 1 

km  1 km soil mapping units may contain several STUs and the STU fraction is known. We computed weighted-average 

MaxAWC values for every 35  35 km grid cell. The resulting INRA MaxAWC values of the 45 départements present a 10 

median value of 151 mm and a standard deviation of 54 mm. This confirms that the MaxAWC values obtained from LT 

(12944 mm) are more realistic than those obtained from IM (11144 mm). 

The median peak Bag values are about 1.2 kg m
-2

 in all simulations. This is consistent with total maximum above-ground 

biomass values for cereals, which range between 1.1 and 1.7 kg m
-2

 (e.g. Loubet et al., 2011). Because BagX corresponds to 

the mean Bag above 90 % of the peak Bag value (Sect. 3.4), median BagX values are smaller than peak Bag and do not exceed 1 15 

kg m
-2

 (Table 12). 

5.3. Are LAI satellite data suitable for the optimisation of MaxAWC ? 

Our results show that using disaggregated LAI observations is key.  

The optimization methods used in this study are based on disaggregated LAI satellite data and the quality of the results 

depends on the reliability of the observation dataset. The MaxAWC parameter is a crucial parameter for the senescence 20 

period, between LAImax and harvesting (Fig. 4). Because LAImax is related to a large extent to MaxAWC (Fig. 3d), an 

underestimation of observed maximum LAI values would force the retrieval method to underestimate MaxAWC. 

From this point of view, using disaggregated LAI observations is key. Figure 11 compares the mean of annual maximum 

values of raw LAI and disaggregated LAI for the 45 départements and for 1225 km
2
 grid cells. Using disaggregated LAI 

increases the observed value of maximum LAI by up to 40% with respect to raw LAI. The mean difference is 0.43 m
2
m

-2
. 25 

This mitigates a marked underestimation of the MaxAWC retrievalsestimates. As shown in Table S32, the MaxAWC values 

obtained from LTLDAS tuning (11038 mm) and from IMinverse modelling (8330 mm) are much lower (15 to 25 %) than 

those retrieved using disaggregated LAI observations. Moreover, the number of validated départements using GY 

observations presenting significant positive correlation is reduced: only 10 and 18 for IMinverse modelling and LTLDAS 

tuning, against 16 and 24 with disaggregated LAI, respectively. Also, peak Bag values (for all 45 départements) are smaller: 30 

1.01 and 1.08 kg m
-2

, against 1.14 and 1.17 kg m
-2

 with disaggregated LAI, respectively.  
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5.4. Can model simulations predict the relative gain or loss of agricultural production during extreme years ? 

The continuous constraint on the model applied by the LDAS on simulated vegetation variables allows the indirect 

representation of adverse effects. This is illustrated in Fig. 7: the negative anomaly of 2007 is much better represented by the 

LDAS than by simple ISBA simulations. 

The observed disaggregated LAI and GY in Fig. 2 show that 2004, 2008, 2009, and 2012 were favourable years for straw 5 

cereal production, while 2001, 2003, 2007, and 2011 were unfavourable years. Unfavourable conditions for straw cereal 

production were caused by droughts, by excess of water, or by a deficit in solar radiation. For example, the 2000-2001 winter 

was characterized by extensive floods and by a deficit of solar irradiance until the end of the spring. These climate events 

markedly affected plant growth especially in northern France (Agreste Bilan, 2001). The 2003 and 2011 years were 

particularly warm, with a marked precipitation deficit at springtime (Agreste Bilan, 2003, 2011)). Concerning 2007, although 10 

climate conditions were favourable to plant growth during spring, extremely wet conditions occurred at the end of the 

growing season. This triggered accessibility issues and disease development (Agreste Bilan, 2007). These processes limiting 

biomass production in response to an excess of water are not represented in the ISBA model. However, the continuous 

constraint on the model applied by the LDAS on simulated vegetation variables allows the indirect representation of these 

adverse effects. This is illustrated in Fig. 7: the negative anomaly of 2007 is much better represented by the LDAS than by 15 

simple ISBA simulations.  

5.56. Can observed LAI characteristics be used to retrieve estimate MaxAWC ? 

We show that satellite-derived LAI observations have potential to map MaxAWC very simply.  

We investigated the use of a simple statistical analysis of the disaggregated LAI observations to retrieve estimate MaxAWC. 

Figure 3 shows that there is a marked relationship between MaxAWC and the simulated LAImax and LAI CV. To what extent 20 

are these relationships observable ? 

In order to answer this question, we used the LTLDAS tuning MaxAWC retrievalsestimates as a reference dataset. We 

compared the observed median annual maximum LAI and LAI CV with MaxAWC. No significant correlation could be 

shown for LAI CV, with R
2
 smaller than 0.2. On the other hand, a very good correlation (R

2
 = 0.70  for all 45 départements) 

was found for median annual maximum LAI (Fig. 12). Using this simple linear regression model, MaxAWC can be 25 

estimated with a RMSE of 28.7 mm. A very similar result is obtained considering only the 24 validated départements for 

LTLDAS tuning. This shows that satellite-derived LAI observations have potential to map MaxAWC very simply. The 

modelled MaxAWC values are given in Table S21 (see Supplement). 

6. Conclusion 

Satellite data are used to optimize a key parameter of the ISBA land surface model for straw cereals in France: the maximum 30 

available soil water content, MaxAWC. Two optimization methods are used. IMInverse modelling consists in minimizing 
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the LAI RMSE and LTLDAS tuning consists in minimizing LAI analyses increments. The added value of the optimization is 

evaluated using simulated above-ground biomass, through its correlation with in situ grain yield observations.  

It is found that disaggregated LAI observations during the senescence are more informative than raw LAI observations and 

than LAI observations during the growing phase. The best results are obtained using LTLDAS tuning: the simulated above-

ground biomass correlates better with gain yields observations, and the retrieved MaxAWC values are more realistic. It is 5 

shown that LDAS simulations can predict the relative gain or loss of agricultural production during extreme years, much 

better than model simulations even after parameter optimization. 

Finally, it is shown that median annual maximum disaggregated LAI observations correlate with MaxAWC 

retrievalsestimates over France. This simple metric derived from LAI observations could be used to map MaxAWC. More 

research is needed to investigate to what extent this conclusion holds for other regions of the world and other vegetation 10 

types.  
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Appendix A 

 

Table A1: Nomenclature.  

List of symbols 

AS,BagX Scaled anomaly of BagX of a given year (-) 

AS,GY Scaled anomaly of GY of a given year (z score) (-) 

AWC Simulated Available soil Water Content (kg m
-2

) 

Bag Simulated living above-ground biomass (kg of dry matter m
-2

) 

BagX Maximum of simulated living above-ground biomass (kg of dry matter m
-2

) 

CV Coefficient of Variation (%) 

Dmax Maximum leaf-to-air saturation deficit (kg kg
-1

) 

Fs Soil moisture stress function 

gm Mesophyll conductance in well-watered conditions (mm s
−1

) 

GY Annual Grain Yields of crops (kg m
-2

) 

LAI Leaf Area Index (m
2
 m

-2
) 

LDAS Land Data Assimilation System 

LSM Land Surface Model 

MaxAWC Maximum Available soil Water Content (mm or kg m
-2

) 

NIT Photosynthesis-driven plant growth version of ISBA-A-gs 

NL Leaf nitrogen concentration (% of leaf dry mass) 

SLA Specific Leaf Area (m
2
 kg

−1
) 

WUE 
Leaf level Water Use Efficiency (ratio of net assimilation of CO2 to leaf 

transpiration)  

Zr Depth of the root zone layer (m) 

Greek symbols 

ρ Water density (kg m
−3

) 

θ Volumetric soil water content (m
3
 m

−3
) 

θFc Volumetric soil water content at field capacity (m
3
 m

−3
) 

θWilt Volumetric soil water content at wilting point (m
3
 m

−3
) 
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Table 1. Default ISBA parameter values for straw cereals ("C3 crops") in SURFEX V8 for the considered 45 départements.  

Parameter name Symbol Value Units Reference 

Rooting depth Zr 1.5 m  

Soil moisture at wilting point  Wilt 0.12 to 0.28 m
3
 m

-3
  

Soil moisture at field capacity  Fc 0.20 to 0.37 m
3
 m

-3
  

Soil moisture at saturation  Wsat 0.42 to 0.48 m
3
 m

-3
  

Behaviour in dry conditions  drought-avoiding  Calvet et al. (2012) 

Leaf nitrogen concentration (mass-based) NL 1.3 % of dry matter mass Gibelin et al. (2006) 

Maximum air saturation deficit  Dmax 0.05 kg kg
-1

 Gibelin et al. (2006) 

Mesophyll conductance gm 1.75 mm s
-1

 
Canal et al. (2014) 

Cuticular conductance gc 0.25 mm s
-1

 Gibelin et al. (2006) 

Minimum LAI value LAImin 0.3 m² m
-
² Gibelin et al. (2006) 
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Table 12. Impact of the optimization (either inverse modelling -IM- or LDAS tuning -LT-) on parameter values (spatial 

median values ± standard deviation) of the ISBA model (MaxAWC and NL), on the median value of BagX and LAImax, on 

peak simulated Bag, and on the models scores during the senescence period with respect to the disaggregated LAI 

observations. The results are given for the validated départements, i.e. those presenting a significant correlation (p-value < 

0.01) of BagX with Agreste straw cereal grain yield observations. Results for all 45 départements are given in brackets and in 5 

italics. The * symbol indicates results obtained using raw LAI observations (undisaggregated). Results for 15 validated 

départements for both inverse modelling or LDAS tuning are in square brackets. Parameter values resulting from the 

optimization are in bold. Because simulated LAImax and BagX vary from one year to another, spatial median values are based 

on median temporal values across the considered 15 year period. 

 Basic ISBA 
IMInverse 

modelling 
Original LDAS LTLDAS tuning 

Number of départements 

presenting significant positive 

correlations (p-value < 0.01) 

18 

9* 

16 

10* 

21 

18* 

24 

18* 

MaxAWC (mm) 132 ± 2 

(132 ± 2) 

153 ± 40 

(111 ± 44) 

113 ± 40* 

(83 ± 30)* 

[154 ± 40] 

132 ± 2 

(132 ± 2) 

133 ± 46 

(129 ± 44) 

106 ± 42* 

(110 ± 38)* 

[156 ± 40] 

NL (%) 

 

 

1.30 

(constant value) 

 

1.05 ± 0.20 

(1.05 ± 0.20) 

(1.05 ± 0.17)* 

[1.05 ± 0.20] 

1.30 

(constant value) 

1.30 

(constant value) 

BagX (kg m
-2

) 0.99 ± 0.05 

(1.01 ± 0.07) 

0.99 ± 0.03* 

(1.01 ± 0.07)* 

0.96 ± 0.16 

(0.89 ± 0.16) 

0.74 ± 0.15* 

(0.75 ± 0.11)* 

[0.98 ± 0.16] 

0.96 ± 0.07 

(0.93 ± 0.11) 

0.88 ± 0.10* 

(0.88 ± 0.13)* 

0.98 ± 0.17 

(0.97 ± 0.17) 

0.74 ± 0.17* 

(0.84 ± 0.17)* 

[1.04 ± 0.14] 

Peak Bag (kg m
-2

) 1.20 ± 0.05 

(1.22 ± 0.07) 

1.22 ± 0.05* 

(1.22 ± 0.07)* 

1.18 ± 0.09 

(1.14 ± 0.13) 

1.01 ± 0.13* 

(1.01 ± 0.11)* 

1.20 ± 0.10 

(1.17 ± 0.14) 

1.12 ± 0.12* 

(1.12 ± 0.16)* 

1.19 ± 0.18 

(1.17 ± 0.18) 

1.01 ± 0.22* 

(1.08 ± 0.19)* 
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[1.23 ± 0.08] [1.26 ± 0.12] 

LAImax (m
2
m

-2
) 3.84 ± 0.29 

(3.84 ± 0.30) 

3.52 ± 0.45* 

(3.73 ± 0.38)* 

3.83 ± 0.47 

(3.59 ± 0.46) 

3.67 ± 0.37* 

(3.42 ± 0.40)* 

[3.85 ± 0.45] 

4.17 ± 0.26 

(3.98 ± 0.3) 

3.91 ± 0.35* 

(3.99 ± 0.39)* 

 

4.15 ± 0.53 

(3.95 ± 0.52) 

3.51 ± 0.61* 

(3.81 ± 0.55)* 

[4.35 ± 0.40] 

LAI RMSE (m
2
m

-2
) 1.6 ± 0.1 

(1.6 ± 0.2) 

1.8 ± 0.3* 

(1.7 ± 0.3)* 

1.4 ± 0.2 

(1.2 ± 0.2) 

1.2± 0.2* 

(1.2 ± 0.2)* 

[1.4 ± 0.2] 

1.2 ± 0.1 

(1.3 ± 0.1) 

1.2 ± 0.1* 

(1.2 ± 0.1)* 

 

1.1 ± 0.2 

(1.1 ± 0.1) 

1.0 ± 0.1* 

(1.1 ± 0.1)* 

[1.2 ± 0.1] 

Median LAI increments (m
2
m

-2
)   0.06 ± 0.28 

(-0.03 ± 0.33) 

-0.21 ± 0.33* 

(-0.21 ± 0.33)* 

-0.01 ± 0.03 

(-0.01 ± 0.03) 

-0.01 ± 0.12* 

(-0.01 ± 0.08)* 

[-0.01 ± 0.03] 

 



28 

 

Table 23. Impact of NL on MaxAWC retrieval using a single-parameter inverse modelling technique. The retrieved median 

MaxAWC and LAI RMSE are given for all 45 départements together with their standard deviation.  

NL (%) 1.05 1.30 1.55 2.05 2.55 

Number of départements presenting significant positive 

correlations (p-value < 0.01) 
16 13 12 6 3 

MaxAWC (mm) 110 ± 44 110 ± 44 99 ± 43 99 ± 41 88 ± 40 

LAI RMSE (m
2
m

-2
) 1.2 ± 0.2 1.2 ± 0.2 1.3 ± 0.2 1.4 ± 0.2 1.5 ± 0.2 
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Figure 1. Straw cereal sites (35 km  35 km) in France in 45 administrative units ("départements"). Colour Triangle and diamond 

symbols show the départements presenting a significant temporal correlation (R2 > 0.41, F-test p-value < 0.01) between Agreste 5 
GY values and (empty blue circles) LAIomax, (red diamonds) both inverse modelling and LDAS tuning, (yellow up triangle) LDAS 

tuning only, (yellow green down triangle) inverse modelling only. The "" symbol indicates départements where no significant 

correlation between biomass simulations and GY could be found.  
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Figure 2. Interannual variability of straw cereals in France: fifteen-year time series (1999-2013) of the mean disaggregated 

satellite-derived LAIomax and of the mean Agreste grain yield (GY) observations for 31 French départements  where LAIomax and 5 
GY are significantly correlated. The fraction of explained variance by the mean LAIomax is R2 = 0.84. 
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Figure 3. Impact of MaxAWC and NL parameters on the annual maximum LAI simulated by ISBA and on its interannual 

variability. The interannual variability is quantified using the coefficient of variation (CV, in %). Mean CV values (across all 45 

départements) are plotted as a function of (a) NL, and (b) MaxAWC, for various values of MaxAWC and NL, respectively. Mean 

LAImax values (across all 45 départements) are plotted as a function of (c) NL, and (d) MaxAWC, for various values of MaxAWC 5 
and NL, respectively. The dashed lines are obtained using standard average ISBA parameter values (MaxAWC = 132 mm and N L 

= 1.3 %).  
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Figure 4. Mean cost function values vs. MaxAWC across all 45 départements of (a) IMinverse modelling and (b) LTLDAS tuning 

experiments for three different optimisation periods: (red) start of growing period (from 1 March to LAI max date), (green) peak 5 
LAI (dates for which LAI > 0.5 LAImax), (darkblack) senescence (from LAImax date to 31 July). IMInverse modelling is based on 
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the minimization of LAI RMSE (Eq. 110). LTLDAS tuning is based on the minimization of the median LAI analysis increment 

(Eq. 2).  
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Figure 5. Cost function values during the senescence period after vs. before LAI observation integration for all 45 départements: 

(a) LAI RMSE (Eq. 110) for IMinverse modelling, (b) LAI analysis increments (Eq. 2) for LTLDAS tuning. Identity lines are in 

blue.  
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Figure 6. Mean LAI annual cycle of straw cereals over France (45 départements) during the 1999-2013 period: (red line) satellite-

derived observations, (dark dashed line) basic ISBA simulation, (blue dashed line) original LDAS simulation, (solid dark line ) 

IMinverse modelling simulation, (solid blue line) LTLDAS tuning simulation. 5 



37 

 

 

 

Figure 7. Scaled GY observation anomalies (AsGY) and scaled simulated BagX anomalies (AsBagX) after LAI observation integration 

for all 45 départements: (a) IMinverse modelling, (b) LTLDAS tuning. Red lines are for observations, dark lines are for 

simulations, dark dashed line is for the original un-tuned simulations. The fraction of explained variance by AsBagX is R2 = 0.65 for 5 
IMinverse modelling, and 0.82 for LTLDAS tuning. 
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Figure 8. Temporal correlation between AsBagX and AsGY for (red symbols) départements presenting significant positive 

correlations (p-value < 0.01) between simulated BagX and GY and (red and dark symbols) all 45 départements, and for (a) 

IMinverse modelling, (b) LTLDAS tuning.  5 
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Figure 9. As in Fig. 8, except for spatial correlation. 
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Figure 10. IMInverse modelling vs. LTLDAS tuning: (top) mean LAI annual cycle for 15 validated départements with both 

methods from (red line) satellite-derived observations, (dark line) IMinverse modelling, (blue line) LTLDAS tuning; (bottom) 

MaxAWC comparison for (+) all 45 départements (R2 = 0.72) and for (red circles) the 15 common départements (R2 = 0.81). 5 
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Figure 11. Comparison of mean annual LAImax of the raw GEOV1 product and of the disaggregated GEOV1 product.  

 

 5 
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Figure 12. Use of median observed annual maximum of LAI to retrieve MaxAWC for all 45 départements: (a) linear regression 

relationship between maximum LAI and the LTLDAS tuning MaxAWC retrievalsestimates, and (b) MaxAWC estimates derived 

from the statistical model using maximum LAI observations as a predictor vs. the LDAS tuning MaxAWC retrievalsestimates. 5 
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The Copernicus Global Land Service GEOV1 LAI product 

 

Camacho et al. (2013) compared the GEOV1 LAI with in situ LAI observations and with different 

remote sensing products such as MODIS and CYCLOPES. They highlighted that: "The best 

accuracy and precision are observed for the GEOV1 LAI product. GEOV1 provides also very good 

agreement across the whole range of LAI values, with however only a slight underestimation for the 

highest values". They give the following scores for GEOV1 LAI with respect to ground 

observations over 30 crop, grass and forest sites in Europe, Africa and North America: R
2
 = 0.81, 

RMSE = 0.74 m
2
m

-2
. 

 

 

Reference: 

 
Camacho, F., Cernicharo, J., Lacaze, R., Baret, F., and Weiss, M.: GEOV1: LAI and FAPAR 

essential climate variables and FCOVER global time series capitalizing over existing products. 

Part2: Validation and intercomparison with reference products, Remote Sens. Environ., 137, 310–
329, 2013. 
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Key ISBA model parameters 

 

Table S1. Default ISBA parameter values for straw cereals ("C3 crops") in SURFEX V8 for the considered 

45 départements. 

Parameter name Symbol Value Units 
Reference 

Rooting depth Zr 1.5 m 
 

Soil moisture at wilting point  Wilt 0.12 to 0.28 m
3
 m

-3
  

Soil moisture at field capacity  Fc 0.20 to 0.37 m
3
 m

-3
  

Soil moisture at saturation  Wsat 0.42 to 0.48 m
3
 m

-3
  

Behaviour in dry conditions  drought-avoiding  Calvet et al. (2012) 

Leaf nitrogen concentration (mass-
based) 

NL 1.3 
% of dry 
matter mass 

Gibelin et al. (2006) 

Maximum air saturation deficit  Dmax 0.05 kg kg
-1

 Gibelin et al. (2006) 

Mesophyll conductance gm 1.75 mm s
-1

 
Canal et al. (2014) 

Cuticular conductance gc 0.25 mm s
-1

 Gibelin et al. (2006) 

Minimum LAI value LAImin 0.3 m² m
-
² Gibelin et al. (2006) 

 

References: 

 

Calvet, J.-C., Lafont, S., Cloppet, E., Souverain, F., Badeau, V., and Le Bas, C.: Use of agricultural 

statistics to verify the interannual variability in land surface models: a case study over France with 

ISBA-A-gs, Geosci. Model Dev., 5, 37–54, doi:10.5194/gmd-5-37-2012, 2012. 

 

Canal, N., Calvet, J.-C., Decharme, B., Carrer, D., Lafont, S., and Pigeon, G.: Evaluation of root 

water uptake in the ISBA-A-gs land surface model using agricultural yield statistics over France, 

Hydrol. Earth Syst. Sci., 18, 4979–4999, 2014. 

 

Gibelin, A.-L., Calvet, J.-C., Roujean, J.-L., Jarlan, L., and Los, S. O.: Ability of the land surface 

model ISBA-A-gs to simulate leaf area index at the global scale: Comparison with satellites 

products, J. Geophys. Res., 111, D18102, doi:10.1029/2005JD006691, 2006. 
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Disaggregated satellite LAI vs. grain yield observations 
 

 
 
Figure S1. Number of départements presenting a significant correlation (R

2
 > 0.41, F-test p-value < 

0.01) between GY and the mean annual maximum disaggregated LAI derived from satellite 

observations (LAIomax). The LAIomax value corresponds to the mean LAI values above a given 

fraction of the observed maximum annual LAI (LAIomax threshold). Results are shown for five area 

size values. The red circle indicates a configuration for 31 départements: area size of 1225 km
2
 (35 

km  35 km) and a LAIomax threshold of 50 %. 
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Characteristics of the 45 départements 35 km  35 km grid cells 
 
 

Table S2. Fraction of straw cereals given by ECOCLIMAP (Faroux et al., 2013), median satellite-

derived LAImax, maximum Bag simulated by ISBA, retrieved MaxAWC using LDAS tuning, 

modelled MaxAWC using a statistical model based on median satellite-derived LAImax, INRA 

MaxAWC estimates from pedotransfer functions (Al Majou et al., 2008). The simulated BagX of the 

24 highlighted départements present a significant correlation with Agreste GY observations. 

Département  Longitude Latitude 
Straw 

cereals 
(%) 

Observed
LAImax 
(m

2 
m

-2
) 

Maximum 
Bag 

(kg m
-2

) 

LDAS 
MaxAWC 

(mm) 

Modelled 
MaxAWC 

(mm) 

INRA 
MaxAWC 
(mm) 

Yvelines (78) 1.63 48.89 76 5.66 1.31 196 205 178 ± 34 

Cher (18) 1.86 47.17 68 5.89 1.31 178 218 129 ± 23 

Seine et Marne (77) 3.26 48.82 92 5.40 1.33 176 191 178 ± 34 

Somme (80) 2.39 49.97 100 5.17 1.32 176 178 66 ± 13 

Essonne (91) 2.28 48.32 95 5.11 1.30 176 175 207 ± 12 

Val d’Oise (95) 1.73 49.18 83 5.03 1.31 176 171 66 ± 13 

Marne (51) 3.71 49.32 93 4.97 1.26 166 167 102 ± 8 

Aisne (02) 3.06 49.83 98 4.38 1.26 156 135 207 ± 50 

Eure (27) 0.53 49.17 52 4.93 1.30 156 165 207 ± 56 

Nord (59) 3.29 50.04 100 4.85 1.34 156 161 207 ± 50 

Loir et Cher (41) 1.53 47.96 95 4.50 1.19 154 141 207 ± 12 

Loiret (45) 2.07 48.18 90 4.44 1.24 154 138 207 ± 12 

Meuse (55) 5.43 48.71 55 5.33 1.17 154 187 72 ± 45 

Orne (61) 0.76 48.67 54 5.09 1.25 154 174 178 ± 34 

Pas de Calais (62) 2.95 50.19 100 4.39 1.30 154 135 207 ± 50 

Sarthe (72) 0.78 47.95 75 4.68 1.25 154 151 178 ± 34 

Yonne (89) 3.24 47.53 51 5.03 1.24 154 171 72 ± 8 

Eure et Loir (28) 1.85 48.10 88 4.23 1.19 150 127 207 ± 12 

Ardennes (08) 4.16 49.60 76 4.16 1.17 133 123 66 ± 13 

Indre et Loir (37) 0.58 47.66 73 3.88 1.20 133 107 151 ± 35 

Nièvre (58) 3.13 47.45 49 4.69 1.23 132 152 72 ± 8 

Oise (60) 3.06 49.68 71 4.54 1.23 132 144 207 ± 50 

Vendée (85) -1.04 46.40 62 3.28 1.12 129 74 124 ± 0 

Maine et Loire (49) 0.16 47.51 18 2.97 0.93 122 57 72 ± 35 

Meurthe et Moselle (54) 5.90 49.20 66 5.15 1.14 121 177 72 ± 45 

Indre (36) 1.13 46.95 70 3.98 1.10 111 113 77 ± 28 

Moselle (57) 6.23 49.19 35 5.29 1.15 110 185 162 ±25 

Haute Marne (52) 4.78 48.65 37 3.73 1.05 104 99 179 ± 37 

Deux Sèvres (79) 0.01 46.14 76 3.12 1.01 100 66 68 ± 13 

Haute Saone (70) 5.47 47.49 34 4.20 1.05 99 125 151 ± 9 

Vienne (86) 0.72 46.58 66 3.68 1.03 99 96 72 ± 32 

Aude (11) 2.09 43.21 49 2.76 0.92 98 46 164 ± 25 

Charente Maritimes (17) -0.92 46.04 63 3.03 1.02 97 61 66 ± 24 

Charente (16) 0.11 46.07 60 3.07 0.96 89 63 66 ± 24 

Cote d’Or (21) 5.14 47.21 68 4.15 0.99 78 122 151 ± 9 

Allier (03) 3.22 46.09 45 3.69 1.17 77 97 84 ± 7 

Dordogne (24) 0.57 44.71 14 2.86 0.88 66 51 84 ± 27 

Puy de Dôme (63) 3.21 45.94 65 3.81 1.07 66 104 122 ± 4 

Haute Garonne (31) 1.79 43.57 92 2.46 0.76 55 29 84 ± 27 

Jura (39) 5.34 46.99 46 3.22 0.84 55 71 151 ± 9 

Saône et Loire (71) 5.02 46.92 35 3.38 0.87 55 80 151 ± 9 

Tarn (81) 1.79 43.64 70 2.39 0.74 55 25 84 ± 27 

Ariège (09) 1.30 43.28 26 3.23 0.91 44 72 84 ± 27 

Gers (32) 1.00 43.71 76 2.65 0.78 44 40 84 ± 43 

Tarn et Garonne (82) 1.00 43.85 47 2.52 0.76 44 33 140 ± 26 
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Impact of the optimization 

 

Table S3. Impact of the optimization (either inverse modelling or LDAS tuning) on parameter 

values (spatial median values ± standard deviation) of the ISBA model (MaxAWC and NL), on the 

median value of BagX and LAImax, on peak simulated Bag, and on the models scores during the 

senescence period with respect to the disaggregated LAI observations. The results are given for the 

validated départements, i.e. those presenting a significant correlation (p-value < 0.01) of BagX with 

Agreste straw cereal grain yield observations. Results for all 45 départements are given in brackets 

and in italics. The * symbol indicates results obtained using raw LAI observations 

(undisaggregated). Results for 15 validated départements for both inverse modelling or LDAS 

tuning are in square brackets. Parameter values resulting from the optimization are in bold. Because 

simulated LAImax and BagX vary from one year to another, spatial median values are based on 

median temporal values across the considered 15 year period. 

 Basic ISBA 
Inverse 

modelling 
Original LDAS LDAS tuning 

Number of départements 
presenting significant positive 
correlations (p-value < 0.01) 

18 
9* 

16 
10* 

21 
18* 

24 
18* 

MaxAWC (mm) 132 ± 2 
(132 ± 2) 

153 ± 40 
(111 ± 44) 
113 ± 40* 
(83 ± 30)* 
[154 ± 40] 

132 ± 2 
(132 ± 2) 

133 ± 46 
(129 ± 44) 
106 ± 42* 

(110 ± 38)* 
[156 ± 40] 

NL  
(%) 
 
 

1.30 
(constant value) 

 

1.05 ± 0.20 
(1.05 ± 0.20) 
(1.05 ± 0.17)* 
[1.05 ± 0.20] 

1.30 
(constant value) 

1.30 
(constant value) 

BagX  
(kg m

-2
) 

0.99 ± 0.05 
(1.01 ± 0.07) 
0.99 ± 0.03* 

(1.01 ± 0.07)* 

0.96 ± 0.16 
(0.89 ± 0.16) 
0.74 ± 0.15* 

(0.75 ± 0.11)* 
[0.98 ± 0.16] 

0.96 ± 0.07 
(0.93 ± 0.11) 
0.88 ± 0.10* 

(0.88 ± 0.13)* 

0.98 ± 0.17 
(0.97 ± 0.17) 
0.74 ± 0.17* 

(0.84 ± 0.17)* 
[1.04 ± 0.14] 

Peak Bag  
(kg m

-2
) 

1.20 ± 0.05 
(1.22 ± 0.07) 
1.22 ± 0.05* 

(1.22 ± 0.07)* 

1.18 ± 0.09 
(1.14 ± 0.13) 
1.01 ± 0.13* 

(1.01 ± 0.11)* 
[1.23 ± 0.08] 

1.20 ± 0.10 
(1.17 ± 0.14) 
1.12 ± 0.12* 

(1.12 ± 0.16)* 

1.19 ± 0.18 
(1.17 ± 0.18) 
1.01 ± 0.22* 

(1.08 ± 0.19)* 
[1.26 ± 0.12] 

LAImax  
(m

2
m

-2
) 

3.84 ± 0.29 
(3.84 ± 0.30) 
3.52 ± 0.45* 

(3.73 ± 0.38)* 

3.83 ± 0.47 
(3.59 ± 0.46) 
3.67 ± 0.37* 

(3.42 ± 0.40)* 
[3.85 ± 0.45] 

4.17 ± 0.26 
(3.98 ± 0.3) 
3.91 ± 0.35* 

(3.99 ± 0.39)* 
 

4.15 ± 0.53 
(3.95 ± 0.52) 
3.51 ± 0.61* 

(3.81 ± 0.55)* 
[4.35 ± 0.40] 

LAI RMSE  
(m

2
m

-2
) 

1.6 ± 0.1 
(1.6 ± 0.2) 
1.8 ± 0.3* 

(1.7 ± 0.3)* 

1.4 ± 0.2 
(1.2 ± 0.2) 
1.2± 0.2* 

(1.2 ± 0.2)* 
[1.4 ± 0.2] 

1.2 ± 0.1 
(1.3 ± 0.1) 
1.2 ± 0.1* 

(1.2 ± 0.1)* 
 

1.1 ± 0.2 
(1.1 ± 0.1) 
1.0 ± 0.1* 

(1.1 ± 0.1)* 
[1.2 ± 0.1] 

Median LAI increments  
(m

2
m

-2
) 

  0.06 ± 0.28 
(-0.03 ± 0.33) 
-0.21 ± 0.33* 

(-0.21 ± 0.33)* 

-0.01 ± 0.03 
(-0.01 ± 0.03) 
-0.01 ± 0.12* 

(-0.01 ± 0.08)* 
[-0.01 ± 0.03] 
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Impact of LAI assimilation on GPP 

 

Figure S2. GPP scores based on the FLUXNET-MTE product (Jung et al., 2009) calculated from 1 

May to 31 July over the 1999-2013 period for all 45 départements: (left) original LDAS and (right) 

tuned LDAS vs. basic ISBA simulations; (top) R², (middle) RMSE and (bottom) mean bias.  Red 

circles are for 6 départements in southwestern France, marquedly impacted by LDAS tuning: 

Ariège, Dordogne, Gers, Haute-Garonne, Tarn, and Tarn-et-Garonne. 

 
 

Reference: 

 
Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy 

covariance observations: validation of a model tree ensemble approach using a biosphere model, 

Biogeosciences, 6, 2001–2013, doi:10.5194/bg-6-2001-2009, 2009. 
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Figure S3. Impact of LAI assimilation at the Gers département straw cereal spot on (top) 10-day 

LAI values, (middle) scaled yearly maximum above-ground biomass anomalies, (bottom) daily GPP 

values, from 1999 to 2013; (red line) observations,  (black dashed line) original LDAS, (black solid 

line) LDAS tuning.  

 

 

 

 

 

 

For original LDAS and LDAS tuning at the Gers département straw cereal spot: 

 

LAI RMSE values are 0.66 and 0.59 m
2
 m

-2
, respectively, 

 

Maximum above-ground biomass R
2
 values are 0.09 and 0.47, respectively, 

 

GPP RMSE values are 245 and 202 µg m
-2

 s
-1

, respectively. 

 

 


