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Abstract. Computer models of hydrologic systems are frequently used to investigate the hydrologic response of land-use

change. If the modeling results are used to inform resource-management decisions, then providing robust estimates of un-

certainty in the simulated response is an important consideration. Here we examine the importance of parameterization, a

necessarily subjective process, on uncertainty estimates of the simulated hydrologic response of land-use change. Specifically,

we apply the soil water assessment tool (SWAT) model to a 1.4 km2 watershed in south Texas to investigate the simulated hy-5

drologic response of brush management (the mechanical removal of woody plants), a discrete land-use change. The watershed

was previously instrumented before and after brush-management activities were undertaken and estimates of precipitation,

streamflow, and evapotranspiration (ET) are available; these data were used to condition and verify the model. The role of

parameterization in brush-management simulation was evaluated by constructing two models, one with 12 adjustable parame-

ters (reduced parameterization) and one with 1,305 adjustable parameters (full parameterization). Both models were subjected10

to global sensitivity analysis, Monte Carlo and generalized likelihood uncertainty estimation (GLUE) conditioning to iden-

tify important model inputs and to estimate uncertainty in several quantities of interest related to brush management. Many

realizations from both parameterizations were identified as “behavorial” in that they reproduce daily streamflow acceptably

well according to Nash-Sutcliffe, percent bias and coefficient of determination. However, the total volumetric ET difference

resulting from simulated brush management remains highly uncertain after conditioning to daily streamflow, indicating that15

streamflow data alone are not sufficient to inform the model inputs that most influence the simulated outcomes of brush

management. Additionally, the reduced-parameterization model grossly underestimates uncertainty in the total volumetric ET

difference compared to the full-parameterization model; total volumetric ET difference is a primary metric for evaluating the

outcomes of brush management. The failure of the reduced-parameterization model to provide robust uncertainty estimates

demonstrates the importance of parameterization when attempting to quantify uncertainty in land-use change simulations.20

1 Introduction

Keywords

– brush management
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– land-use change

– uncertainty analysis

– parameterization

– SWAT

Highlights5

– simulated outcome of brush management, a land-use change, is largely uncertain

– a large number of model inputs influence the simulated outcomes of brush management

– level of parameterization does not affect fit to daily streamflow data

– level of parameterization does affect uncertainty estimates in quantities of interest

An important use of computer models of hydrologic systems is simulation of the hydrologic response of land-use change10

(Fohrer et al., 2001; DeFries and Eshleman, 2004); many modeling analyses have been undertaken in attempt to better under-

stand how changes in land-use may change the timing and quantity of runoff, recharge, and evapotranspiration (See Schilling

et al. (2014); Ahn and Merwade (2017); Chu et al. (2010), among others). Given the uncertainties that exist in nearly ev-

ery hydrologic model input, the potential exists for the simulated outcomes to be highly uncertain, even after conditioning

to streamflow data. Given this potential uncertainty in model outcomes, uncertainty quantification in the simulated results of15

land-use change is an important consideration, especially if simulation results are to be used in resource management decision

making.

Previous research has shown that the subjective process of selecting which model inputs to treat as uncertain (e.g. parameteri-

zation) may affect uncertainty estimates in model outcomes (White et al., 2014). Here we investigate how parameterization may

affect the uncertainty quantification process when simulating a discrete, vegetative land-use change, the mechanical removal20

of woody plants.

Woody plant encroachment into grasslands has been a worldwide phenomena in the past 150 years (Archer et al., 2011).

This encroachment has several ramifications to the ecosystem, including changes to the hydrologic function and response of

the surface-water basins (Archer et al., 2011). Woody species are commonly thought to be a larger consumer of water (by plant

transpiration), in comparison to native grasses (Tennesen, 2008). By removing the woody species and allowing native grasses25

to reestablish in the area (commonly referred to as "brush management"), changes in the hydrology in the watershed might

occur (U.S. Department of Agriculture, 2009).

To that end, many hydrologic modeling analyses have been completed to evaluate the feasibility of brush management to

decrease the quantity of water transpired within a basin. (Ben Wu et al., 2001; Lemberg et al., 2002; Brown and Raines, 2002;

Afinowicz et al., 2005; Bumgarner and Thompson, 2012; Harwell et al., 2016). However, to date (2016), very few, if any, of30

the modeling-based, brush-management feasibility studies have included uncertainty estimation in the simulated hydrologic
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response of brush management, even though substantial uncertainty in other applications of SWAT-based hydrologic modeling

have been reported (Gassman et al., 2014).

To demonstrate the utility of including uncertainty estimation and to investigate how parameterization may affect the relia-

bility of a model to resolve the hydrologic outcomes of simulated land-use changes, such as brush management, the soil water

assessment tool (SWAT) (Arnold et al., 1998) was applied to a 1.4 km2 watershed in South Texas. The watershed has been the5

focus of previous investigations (Banta and Slattery, 2011); estimates of precipitation, streamflow, and ET are available. The

objectives of this study are to 1) verify to reliability of a computer model to simulate pre- and post-treatment water budget

components in the context of uncertainty, and 2) evaluate the role of model parameterization in the uncertainty estimation

process by investigating the number of model inputs that influence the important model outputs, including those outputs used

in the conditioning process as well as those outputs that capture the simulated effects of brush management.10

1.1 Hydrologic Setting

The brush-management simulation described herein is applied to a 1.4 km2 watershed in the Honeycreek State Natural Area

in South Texas (Figure 1). For a complete description of the study area, see Banta and Slattery (2011) (note the watershed

analyzed in this study is referred to as the “treatment watershed” in Banta and Slattery (2011)).

Briefly, the watershed generally has gentle slopes (less than 5 percent) with steeper slopes in the stream channel ravines.15

The clay and clay loam soils overlie the Trinity aquifer outcrop, a regional karst aquifer system. Prior to treatment, the study

area was largely dominated by ashe juniper (Juniperus ashei). After brush management, native grasses naturally re-established

in their place.

Ashe juniper transpires large quantities of water and its dense canopy captures more water as interception storage compared

to herbaceous land cover (Archer et al., 2011). As such, brush management focused on the removal of ashe juniper has been20

studied and implemented at the Honeycreek State Natural Area (Banta and Slattery, 2011). For the watershed studied in this

analysis, approximately 40% of the land covered by predominately ashe juniper was mechanically cleared during calendar year

2004. Following ashe juniper removal, the land returned to a native rangeland land cover type.

2 Model Construction

The SWAT model was used to simulate the hydrologic response of the watershed, including the effects of brush management.25

Specifically a SWAT2012 (Arnold et al., 2012b, a) model of the watershed was built using the ArcSWAT tool (Winchell et al.,

2007). The resulting model files were incorporated into the model-independent framework of PEST++ V3 (Welter et al., 2015)

to facilitate programmatic interaction with the model so that any model input quantity could be treated as a parameter and a

variety of model outputs, including derived and processed quantities, can be included in the analysis.
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2.1 Datasets

Three datasets are needed to apply the ArcSWAT tool (Winchell et al., 2007) to discretize the watershed into hydrologic

response units (HRUs) and subsequently construct the SWAT model inputs for the watershed of interest:

– digital elevation model: The 10m national elevation dataset (NED) (Maune et al., 2007)

– soil data: The soil survey geographic database (SSURGO) (Staff, 2016)5

– land cover type: The national land cover database (NLCD) (Homer et al., 2007)

These three datasets were used programmatically within the ArcSWAT tool to find unique land slope/soil/land cover combi-

nations across the watershed. These unique combinations ultimately became HRUs in the SWAT model. Note the NED digital

elevation model for the watershed was smoothed with a 4-pixel width averaging kernel to remove apparent artifacts.

As part of a previous study evaluating the effects of brush management at the Honey Creek State Natural Area, daily total10

precipitation and evapotranspiration (ET), and average daily streamflow were measured during 2001 through 2010 (Figure 2)

(Banta and Slattery, 2011). These precipitation data were used as inputs to the SWAT model while the ET and streamflow data

were used for conditioning and verification (described below). Because the SWAT model is sensitive to precipitation intensity,

the original 5-minute measurements from four precipitation measurement stations in the study area were averaged together

to develop the precipitation input dataset. For additional discussion of the methodology used to collect the input datasets, see15

Banta and Slattery (2011). The National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis

(CFSR) (Saha et al., 2014) Global Weather Database was used in the SWAT simulation as the input for weather data when

on-site precipiation data were not available due to instrumentation issues (Banta and Slattery, 2011).

2.2 ArcSWAT

The ArcSWAT tool Winchell et al. (2007) was used with the previously-described datasets to constructed a SWAT2012 model20

of the watershed. Surface runoff is simulated with SWAT using the Green-Ampt excess rainfall method (SWAT parameter

IEVENT=3) (Mein and Larson, 1973; Jeong et al., 2010).

The NLCD 2001 (Homer et al., 2007) land-cover data were modified so that areas of mixed brush-rangeland within the

watershed were reclassified as rangeland, which is consistent with site-specific knowledge.

The application of the ArcSWAT tool with the previously-described datasets resulted in a model with a single subbasin25

covering the 1.4 km2 watershed with 47 distinct HRUs (Figure 1). A summary of the HRU characteristics is included in the

supplementary material.

2.3 Model Configurations

The modeling analysis described herein includes two specific simulation periods that correspond to the pre-treatment and

post-treatment time periods:30
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– conditioning period: 1 Jan 2002 to 31 Dec 2003; pre-treatment watershed conditions; daily streamflow data from this

period were used for conditioning the model inputs.

– forecast period: 1 Jan 2005 to 31 Dec 2010; post-treatment watershed conditions; used for verification and forecasting

the long-term water budget effects of simulated brush management.

Note that conditioning period and forecast period models simulate years 2001 and 2004, respectively; the initial year of5

simulation for each model is used as a model warm-up period.

In a typical modeling feasibility study, the model is constructed and calibrated to pre-treatment (conditioning period) system

states, then forecasts are made using the model related to how simulated brush management will affect the hydrologic function

of the watershed.

Here, two distinct SWAT model datasets were constructed to simulate the pre-treatment (conditioning period) and post-10

treatment (forecast period) watershed conditions. The only difference between the two models are the inputs to HRUs 18, 20,

22, 32; all other inputs remain identical. Together, HRUs 18, 20, 22, 32 represent approximately 40% of the watershed area,

which represents the area of watershed that was converted from evergreen forest (e.g., ashe juniper) to rangeland by brush-

management activities during 2004 (Banta and Slattery, 2011). The only differences in the SWAT model input files of HRUs

18, 20, 22, and 32 between the two models are related to how brush-management operations change two aspects of the SWAT15

model:

– maximum canopy interception - the CANMX variable in the .HRU input files

– plant growth cycle - the PLANT_ID and HEAT UNITS variables in the .MGT input files

We modified the maximum canopy storage and the plant growth aspects of HRUs 18, 20, 22, and 32 since these inputs

directly affect the available precipitation for partitioning and simulated ET processes, respectively. In the pre-treatment model,20

these model inputs were specified to represent ashe juniper land cover for HRUs 18, 20, 22, 32, while in the post-treatment

model, these inputs for HRUs 18, 20, 22, 32 were specified to represent rangeland land cover, effectively capturing the change in

the simulated inputs that corresponds to the brush-management operations that occurred during 2004. See the Parameterization

section for detailed description of how the CANMX variable, as well as variables related to various components of the simulated

growth cycle, were parameterized in the modeling analysis. See the SWAT theory (Neitsch et al., 2011) and input-output25

(Arnold et al., 2012a) documentation for more information on these inputs.

2.4 Parameterization

Herein, we refer to the subjective and necessary process of selecting model inputs to treat as adjustable in the conditioning

process as parameterization. It is a critical part of any modeling analysis and has received considerable attention in the literature

(Abbaspour et al., 2004; Romanowicz et al., 2005; Sexton et al., 2011; Zhenyao et al., 2013; Migliaccio and Chaubey, 2008;30

Cibin et al., 2010; Gitau and Chaubey, 2010; Du et al., 2013; Malone et al., 2015; Zhang et al., 2016). In this analysis, we
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investigate the importance of parameterization for obtaining robust and reliable simulated brush-management outcomes by

evaluating two parameterization designs:

– reduced parameterization uses the 12 model inputs listed on Table 1 of Arnold et al. (2012b) as the most cited SWAT

model inputs chosen for calibration/conditioning when simulating surface-water runoff and baseflow processes (Table

1). This parameterization is, therefore, representative of many SWAT modeling analyses in the literature. For the reduced5

parameterization model, inputs are adjusted at the subbasin scale - all 47 HRUs receive the same value for each of these

12 model inputs.

– full parameterization includes 1,305 model inputs. It builds on the 12 parameters of the reduced parameterization by

adding multiplier parameters at the HRU scale for each of the 12 parameters in Table 1, and also includes many other

model inputs that are not typically adjusted, albeit still uncertain, including additional soil properties, and inputs that10

govern the simulation of plant growth. The full parameterization also includes annual quartile precipitation multipliers

to account for uncertainty and potential bias in precipitation estimates (Leta et al., 2015; Renard et al., 2011; Kavetski

et al., 2006; Kuczera et al., 2006). See the Supplementary Material for a listing of the full parameterization.

The SWAT input CANMX is of particular importance in simulating brush management because it controls how much

precipitation is available for partitioning, and it is directly affected by land cover changes. Therefore, CANMX potentially15

exhibits a strong control of the simulated outcomes of brush management. We chose to treat the CANMX input differently than

other SWAT inputs:

– the parameter canmx_v represents the maximum canopy storage for evergreen forest land-cover type HRUs

– the parameter canmxfac_07 represents the portion of canmx_v that is applied to deciduous forest land-cover type HRUs

– the parameter canmxfac_15 represents the portion of canmx_v that is applied to rangeland land-cover type HRUs20

In this way, we can incorporate uncertainty in the values of CANMX for all three land-cover types while also enforcing the

relations we expect for the maximum canopy storage between the land cover types. This treatment for CANMX allows both

the pre-treatment and post-treatment models to receive the same parameter values. Since HRUs 18, 20, 22 and 32 switch from

evergreen land cover to rangeland land cover, the CANMX values assigned to these HRUs is in harmony with the CANMX

values assigned to other HRUs. Note that the HRUs-scale multipliers, named canmx_XX, where XX is the HRU number, still25

account for HRU-scale variability in CANMX for HRUs of the same land cover type.

CANMX is not treated as uncertain in the reduced parameterization as it is not commonly treated as adjustable (Arnold

et al., 2012b). The parameters canmx_v, canmxfac_07 and canmxfac_15 are specified values of 13.0 mm, 0.625 (8.13 mm) and

0.25 (3.25 mm), respectively, which corresponds to the midpoint of the respective parameter ranges.

These two parameterizations represent two different approaches to hydrologic modeling. As such, we include both of these30

parameterizations in the analysis to facilitate a comparison of how these parameterization approaches perform in the context

of brush-management modeling analyses.
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The specified parameter ranges from a multivariate uniform distribution that we treat as the Prior parameter distribution,

which is the distribution of “acceptable” parameter values based on hydrologic system knowledge. We note that defining a Prior

is a necessarily subjective process; the Prior, summarized in the Supplementary Material, was defined using a combination of

literature values (Abbaspour, 2015; Douglas-Mankin et al., 2010) and expert knowledge.

Using the pre- and post-treatment models and the two parameterizations, the following steps represent a single model forward5

run:

1. construct two“base” tables of HRU-scale inputs where the columns are the SWAT model inputs names and the rows

are the 47 HRUs. Populate these tables with the base input values from the ArcSWAT process for both the pre- and

post-treatment models.

2. for each “value”-type basin-scale parameter, replace the values in the base tables for each corresponding column with10

the parameter value, assigning all HRUs the same value

3. for each “multiplier”-type basin-scale parameter, multiply the corresponding column of the base tables by the parameter

value, scaling all HRUs by the same value

4. apply canmx_v, canmxfac_07 and canmxfac_15 parameters to the CANMX column of both base tables according to the

land-use type of each HRU using the previously-described relation between these parameters.15

5. for each “multiplier”-type HRU-scale parameter, multiply the corresponding row-column location in the base tables by

the parameter value, scaling only a single entry in the table

6. translate the base tables into the appropriate SWAT input files for both the pre-treatment and post-treatment models

7. run the pre-treatment model for the time period 2001 through 2010 (pre-treatment model outputs are needed from 2005-

2010 for calculation of brush-management quantities of interest)20

8. run the post-treatment model for the time period 2004 through 2010

9. post-process both model runs to formulate brush-management quantities of interest and conditioning measures

2.5 Evaluation of Brush Management Simulations

We use uncertainty quantification techniques to investigate how well the previously-described SWAT model simulates the

effects of brush management on long-term water budget components. Specifically, we use Monte Carlo analysis in conjunction25

with GLUE-based (Beven and Binley, 1992) conditioning to construct prior and behavioral distributions of parameters and

several model outputs that are important to simulating the outcomes of brush management. These important outputs, which we

term quantities of interest (QOIs), encompass the simulated pre- and post-treatment long-term water budget components in the

simulated watershed:

7
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– QOI-1: volumetric conditioning-period (pre-treatment) ET-precipitation ratio

– QOI-2: volumetric conditioning-period (pre-treatment) streamflow-precipitation ratio

– QOI-3: volumetric forecast-period (post-treatment) ET-precipitation ratio

– QOI-4: volumetric forecast-period (post-treatment) streamflow-precipitation ratio

– QOI-5: volumetric forecast-period difference between the simulated treated and untreated watershed5

The work of Banta and Slattery (2011) includes daily estimates of ET and streamflow for the watershed during the forecast

(post-treatment) period, which means “measured” values for QOI-1 through QOI-4 are available. Post-treatment streamflow

measurements as well as pre- and post-treatment ET measurements are not available in most real-world applications of model-

ing to support brush management activities. Therefore, we treat QOI-1 through QOI-4 as verification measures to check how

well the model reproduces long-term water-budget components, measures that are related to simulating the feasibility of brush10

management.

QOI-5 is the primary quantity we use to evaluate the effectiveness of brush management: how does the simulated long-term

volumetric ET change as a result of brush management. QOI-5 is simulated by running the pre- and post-treatment SWAT

models for the time period 2004 to 2010 and summing the differences in simulated ET between the two simulations. Note

the only difference between the pre-treatment and post-treatment models is the simulated land cover and CANMX values for15

HRUs 18, 20, 22, and 32.

2.6 Monte Carlo and GLUE

Monte Carlo analysis (MC) (Tarantola, 2005) was used to investigate how SWAT model input uncertainty influences brush-

management QOIs. MC was chosen because it employees few assumptions and because the forward model run time is relatively

short. Furthermore, the GLUE method of Beven and Binley (1992) was used to condition the MC prior ensembles into behav-20

ioral ensembles. The combined MC-GLUE analysis provides estimates of parameter and QOI uncertainty, as well as estimates

of the worth of the conditioning data to reduce QOI uncertainty.

To perform the MC analysis, a one-million parameter set ensemble was drawn using the prior, uniform distribution for each

of 1,305 elements of the full parameterization using the python module pyEMU (White et al., 2016) (See the Supplementary

Material for the upper and lower bound of each parameter). Once the prior parameter ensemble was constructed, the SWEEP25

utility of the PEST++ software suite was used to run the pre- and post-treatment SWAT models for each of the one million

realized parameter sets in a distributed, parallel environment using the steps outlined previously. The result of this process

yielded one million values for each of the conditioning measures and brush-management QOIs.

The reduced parameterization was evaluated in a similar fashion. The full parameterization prior ensemble was modified so

that the value of parameters not included in reduced parameterization were fixed at the midpoint of the associated range. The30

resulting prior ensemble was then also evaluated using the SWEEP utility in a distributed parallel environment, yielding one

million values for each of the conditioning measures and brush-management QOIs.
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Once the prior ensembles of both the reduced and full parameterizations were evaluated, the GLUE method of Beven

and Binley (1992) was used to condition the prior ensembles. The GLUE method was selected because it accommodates a

subjective likelihood function, which allows the conditioning process to be flexible and can simultaneously accommodate

several criteria. Following Moriasi et al. (2007), we selected the following conditioning measures, which are based on daily

mean streamflow, to form the behavioral ensemble:5

– CM-1 conditioning-period (pre-treatment) Nash-Sutcliffe efficiency > 0.75

– CM-2 conditioning-period (pre-treatment) percent bias < 5%

– CM-3 conditioning-period (pre-treatment) coefficient of determination (R2) > 0.85

These conditioning measures are widely used to judge a hydrologic model’s ability to reproduce observed daily streamflow

(Moriasi et al., 2007). Realizations in the each of prior ensembles that satisfied all three of these criteria are designated as “be-10

havioral” and, taken together, comprise the reduced and full parameterization behavioral ensembles, respectively. The behav-

ioral ensembles represent parameter realizations that repsect the Prior but that also reproduce daily average stream flow accept-

ably well according to the three conditioning measures. That is, each parameter set in the full- and reduced-parameterization

ensembles can be considered “calibrated” in that each of these parameter sets fit the data.

2.7 Global Sensitivity Analysis15

Given the drastic difference in the number of parameters between the reduced (12) and full (1,305) parameterizations, the

interested reader may be wondering how many of members of the reduced and full parameterizations influence either the

conditioning measures or the QOIs or both. In an effort to address this question, we employed the global sensitivity analysis

(GSA) method of Morris (Morris, 1991), which is known as a “one-at-a-time” GSA method; each parameter is varied, in turn,

across the specified range, effectively sampling the sensitivity of QOIs and conditioning measures across parameter space. We20

used the model independent implementation of the method of Morris (Morris, 1991) encoded in GSA utility of the PEST++

software suite (Welter et al., 2015) with 20 discretization points across the range of each parameter.

3 Results

The application of the GSA method of Morris Morris (1991) reveals a considerable number of model inputs that influence

the conditioning measures as well as the designated brush-management QOIs. Furthermore, the combined MC-GLUE analysis25

reveals a relatively large discrepancy in the estimated range of QOI-5 between the full and reduced parameterization models.

3.1 Global Sensitivity Analysis

Of the 1,305 model inputs treated as parameters, the method of Morris analysis indicates only 194 parameters are non-

influential to the 3 conditioning measures and 5 brush-management QOIs (See the Supplementary Material for a complete

9
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summary of the GSA results, including a table of the 5 most influential parameters for each QOI and conditioning measure).

Note that many of the most influential parameters, specifically precipitation multipliers, plant growth parameters, and HRU-

scale parameters, are not in the reduced parameterization and are not included in typical hydrologic modeling analyses (Arnold

et al., 2012b).

3.2 Monte Carlo5

The Monte Carlo and associated GLUE-based conditioning process (MC-GLUE) yielded 7,155 and 6,846 realizations that

comprise the behavioral ensembles for the reduced and full parameterizations, respectively. These behavioral realizations re-

produce the pre-treatment daily streamflow data acceptably well according to the three conditioning measures. The prior and

behavioral relation among the three conditioning measures for both parameterizations can be seen graphically on Figure 3. Fig-

ure 3 shows the conditioning measure results from running the full- and reduced-parmaeterization 1-million member ensembles10

each of the three conditioning measures. The diagonal panes of Figure 3 show the histograms of each of the 3 conditionng mea-

sures, while the off-diagonal panes showthe relation between conditioning measures. Parameter realizations within the hatched

boxes on Figure 3 collectively form the behavioral ensembles for both the full- and reduced-parameterization.

3.2.1 Verification QOIs

The prior and behavioral ensembles of reduced and full parameterizations bracket, at the 95% confidence level, the measured15

value for verification QOI-1, QOI-2 and QOI-3 (Figures 4, 5, and 6). However, the measured value for QOI-4, volumetric

forecast-period (post-treatment) streamflow-precipitation ratio, was not captured by either behavioral distribution or the prior

distribution of the reduced parameterization (Figure 7).

In general, for both parameterizations, the behavioral distributions for ET-based QOIs (QOI-1 and QOI-3) are similar to

the respective prior distributions; conditioning has slightly shifted the distributions towards larger values of precipitation-ET20

ratios but has not substantially decreased the width of the distributions. The similiarity between prior and behavioral ensembles

indicates the conditioning process has not changed uncertainty that exists in model simulated ET. However, QOIs related to

streamflow (QOI-2 and QOI-4) have markedly different behavioral distributions compared to priors, indicating considerable

conditioning of streamflow-sensitive parameters.

3.2.2 forecast QOI25

The prior uncertainty in the QOI-5, the simulated total forecast-period ET difference between the treated and untreated wa-

tershed, was substantially larger for the full parameterization compared to the reduced parameterization (Figure 8): the full

parameterization model yielded a prior uncertainty that ranged from approximately -7.5% to +0.5% while the reduced param-

eterization prior uncertainty ranged from approximately -4.1% to -2.1%. Note a negative ET difference indicates a decrease

in ET as a result of simulated brush management. The larger range yielded by the full parameterization is a direct outcome of30

specifying more uncertain parameters that influence QOI-5.

10
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The behavioral uncertainty in QOI-5 yielded by the full parameterization is similar to the prior, but shifted slightly towards

positive values, ranging from -6.2 to +0.5 (Figure 8 A). Only slight differences between the prior and behavioral distributions

for the full parameterization, again, indicate the selected conditioning process did not substantially change the reliability in

simulated long-term changes in ET as a result of brush management. Conversely, QOI-5 behavioral uncertainty from the re-

duced parameterization is substantially different than the prior and included values only in the range -2.5 to -2.0. We attribute5

the differences in QOI-5 distributions between the full and reduced parameterizations to the model error generated by using a

reduced set of parameters to represent SWAT model input uncertainty. Note the prior distribution for the reduced parameteri-

zation was also non-parametric compared to the full parameterization counterpart, a numerical artifact we also attribute to the

model error induced by the reduced parameterization.

4 Discussion10

The full-parameterization behavioral distribution of QOI-5 included a range of possible outcomes from a net decrease to a slight

net increase in the ET component of the long-term water budget (Figure 8). This is a direct outcome of the number of model

inputs that were identified as uncertain and treated as parameters in the MC-GLUE analysis. The possibility of a net increase

in ET following brush management is not an unexpected or unprecedented result. Harwell et al. (2016) showed a net decrease

in surface-water yield following simulated brush-management activities for one of their simulated subbasins. Furthermore, the15

range of outcomes yielded for QOI-5 is an important result for resource managers in hydrologic settings similar to the one

herein: modeling alone may not be able to provide the level of confidence needed to support a risk-based decision to undertake

costly brush management. Furthermore, we have demonstrated that conditioning/calibration of a hydrologic model to daily

streamflow data does not necessarily increase the reliability of forecasts made with the model.

We must stress that the results of our analysis can not be directly extrapolated to hydrologic settings that are dissimilar to20

the one described herein. However, this study has clearly demonstrated the importance of robust uncertainty quantification

to support simulations of brush management, and, more generally, simulating the hydrologic outcomes of land use change.

Without uncertainty quantification, the results of simulating brush management are simply a single point on the behavioral

distributions, which conveys no information related to the reliability of the model results. Given the cost associated with

watershed- and basin-scale brush management, it is critical to provide a conservative and robust estimate of uncertainty in25

the modeled outcomes of brush management; an estimate of the possible ineffectiveness of brush management is likely more

valuable than a "best-fit" modeled outcome of brush management.

The MC-GLUE analysis showed that using a reduced parameterization to represent model input uncertainty leads to a

misrepresentation and critical underestimation of the uncertainty in QOI-5, leading to artificially high confidence that brush-

management activities will decrease the ET component of the water budget by approximately 2.0 to 2.5% . By including a more30

representative and complete set of parameters to capture model input uncertainty, the resulting QOI-5 uncertainty estimate more

appropriately conveys the reliability in the modeled outcome of brush management.
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A clear link between level of parameterization and uncertainty estimates for the simulated results of brush management has

been demonstrated, and issues, such underestimation of uncertainty and numerical artifacts, are shown to be associated with a

reduced parameterization. Furthermore, the results of applying the GSA method of Morris (Morris, 1991) revealed more than

1,100 model inputs that were identified as uncertain and that also influence conditioning measures, QOIs or both. Following

Sexton et al. (2011), parameters that influence the QOIs must be included in the uncertainty analysis, even if said parameters5

do not influence the likelihood function (e.g., are not “identified” by the conditioning data). The demonstrated issues with the

level of parameterization raise questions related to the concept of “overparameterization” (Jakeman and Hornberger, 1993) in

the context of simulating the hydrologic outcomes of land-use change. Each of the inputs that were selected for adjustment

in the full-parameterization model were deemed uncertain at the start of the modeling analysis; while other practitioners may

choose different prior distributions and/or ranges for these parameters, we doubt any practitioners would state these model10

inputs are known with absolute certainty.

We recognize that specifying how brush management is simulated requires some subjectivity, which is part of the necessary

subjectivity inherent in environmental modeling, and we recognize that others have used different strategies to simulated brush

management with SWAT. In this study, brush management is simulated by modifying the maximum canopy storage and inputs

that control the simulated growth cycle for a representative area of the subbasin from evergreen forest to rangeland because15

this required few assumptions and allowed injection of the desired uncertainty into the simulation workflow. However, if a

different strategy is selected, and a realistic estimate of uncertainty is included in the implementation of the strategy, it is likely

the simulated outcome of brush management will be similar to the results found herein.

5 Conclusions

An analysis of the ability of the SWAT model to forecast how brush management affects long-term water balance within a20

watershed has been undertaken. The analysis relies on measured streamflow and independently-derived evapotranspiration

estimates to condition the parameterized model inputs as well provide a verification of the model’s performance during the

forecast period. The method of Morris (Morris, 1991) global sensitivity analysis (GSA) technique was used to investigate

model input influence on conditioning measures and brush-management quantities of interest (QOIs). Following the GSA,

Monte Carlo and GLUE analyses were used to estimate the uncertainty of brush-management QOIs for the reduced and full25

parameterization schemes, respectively.

The analysis reveals the importance of robust uncertainty quantification when simulating the outcomes of brush management,

especially as it relates to how the model is parameterized. Failure to specify a complete and encompassing parameterization is

shown to lead to an underestimation of uncertainty in simulated brush-management outcomes, which may lead to suboptimal

water resource decision making.30

Given the number of identified uncertain model inputs and the associated specified uncertainty in said inputs, the model-

simulated change in long-term ET in the watershed is largely uncertain and includes a range of possible outcomes from a net

negative to a slightly net positive change in long-term ET component of the water budget. The resulting uncertainty in one
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of the primary metrics of brush-management effectiveness underscores the importance of robust and conservative uncertainty

quantification. Watersheds with different hydrologic response characteristics will obliviously behave differently, but, if model-

ing is used to evaluate brush-management outcomes, robust uncertainty quantification is needed to place the model results in a

representative context.

6 Code availability5

The python scripts used to generate the prior ensembles and to post-process the ensembles are included in the model archive.

7 Data availability

The ET, precipitation and streamflow data used for conditioning and verification are available for download as the appendices

to Banta and Slattery (2011) at the U.S. Geological Survey Publication Warehouse (http://pubs.usgs.gov/sir/2011/5226/)

The model archive for this analysis includes all files and data used as part of this study and is available for download at !!!to10

be released concurrent with publication!!!. The model archive includes:

– ESRI ArcMAP 10.2.2 project that includes the ArcSWAT version 2012.10.2.18 project used to create the base model

– base SWAT2012 input files generated by the ArcSWAT tool

– PEST++ interface files including python pre- and post-processing scripts

– comma-separated value files of parameters and QOIs for prior ensembles of both the full and reduced parameterizations15

Supplementary Material include:

– HRU summary table

– parameter description table

– GSA method of Morris top 5 list

– GSA method of Morris summary table20
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Figure 1. Study area and watershed location. The 47 HRUs yielded by the ArcSWAT tool (Winchell et al., 2007). The model inputs of HRUs

18, 20, 22, and 32 were modified to simulate the brush-management activities.
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Figure 2. Summary of (a) precipitation, (b) streamflow, and (c) evapotranspiration used in the modeling analysis. Accumulated values for the

conditioning and forecast period are shown in heavy black lines. Precipitation, streamflow and evapotranspiration estimates are from Banta

and Slattery (2011).

15

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-111, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 1 March 2017
c© Author(s) 2017. CC-BY 3.0 License.



Figure 3. Values of conditioning measures for the full (gray) and reduced (blue) parameterizations. The diagonal panes ((a), (b), and (c))

show distribution of each conditioning measure; the off-diagonal panes ((b), (d) and (e)) show the relation between respective conditioning

measures. The hatched boxes mark the 3-dimensional behavioral region; realizations within the hatched boxes comprise the behavioral

ensembles of each parameterization.
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Figure 4. Quantity of interest QOI-1: Simulated conditioning period (pre-treatment) ET as a percentage of precipitation. The prior and

behavioral distributions of both model parameterizations capture the measured value. However, the conditioning process has little affect on

uncertainty as the behavioral distribution is similar to the prior distribution .
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Figure 5. Quantity of interest QOI-2: Simulated conditioning period (pre-treatment) streamflow as a percentage of precipitation. The effects

of the conditioning process can be seen as large reduction in the range of the behavioral distribution compared to the prior distribution. The

prior and behavioral distributions for model parameterizations bracket the measured value.
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Table 1. Summary of parameters used in the reduced parameterization. These 12 inputs were selected from Table 1 in Arnold et al. (2012b)

and are adjusted at the sub-basin scale.

control file name type lower bound upper bound description (with units if applicable)

alpha_bf_v value 0.10 0.50 subbasin baseflow alpha factor ( 1
days )

cn2_r multiplier 0.50 1.50 subbasin soil moisture condition II curve number

epco_v value 0.50 0.98 subbasin plant uptake compensation factor

esco_v value 0.50 0.98 subbasin soil evaporation compensation factor

gw_delay_v value 10.00 300.00 subbasin groundwater delay time (days)

gw_revap_v value 0.02 0.40 subbasin groundwater ’revap’ coefficient

gwqmn_v value 500 4000 subbasin groundwater threshold return flow depth (mm)

ov_n_r multiplier 0.50 1.50 subbasin overland flow Manning’s ’n’

rchrg_dp_v value 0.25 0.75 subbasin deep aquifer percolation factor

revapmn_v value 100 1000 subbasin groundwater threshold ’revap’ depth (mm)

sol_awc_1_r multiplier 1.00 5.00 subbasin soil available water capacity ( mm
mm )

surlag_v value 2.00 12.00 subbasin surface runoff lag coefficient

Author contributions. S. Rendon and V. Stengel gathered datasets and applied the ArcSWAT tool to prepared the SWAT model input files

with help from J. Banta. J White subjected the ArcSWAT model inputs files to the global sensitivity analysis and combined Monte Carlo

GLUE analysis. J. White prepared the manuscript with contributions from all coauthors.
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