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1 Introduction

In this document, we respond to each comment raised by the reviewers. The
revised manuscript is attached.

2 Reply to RC1 - John Doherty

We appreciate Dr. Doherty’s encouraging review. We have made substantial re-5

visions to improve the grammar the revised submission. Regarding the choice of
subjective likelihood function, it is possible that a more QOI-focused likelihood
function could be found and applied to yield a greater decrease in QOI-5. The 3-
component likelihood function was selected because it is used widely within the
hydrologic modeling community and we were interested in assessing ”common10

practice” in the simulation of brush management.

3 Reply to RC2 - Patrick Belmont

We appreciate Dr. Belmont’s review and we agree that parameterization is an
often overlooked but critical aspect of model usage.

1. P3 Line 14: Im okay with the authors mostly referring readers to the 201115

paper for information about the study area. However, it would be helpful
to include at least mean annual precipitation and temperature. A brief ex-
planation of the seasonal pattern of rainfall would also be helpful. Readers
should not have to look up another paper for this basic information. We
added a brief description of the average annual rainfall to the manuscript.20

2. P4 Line 12: The technique used to spatially average the precipitation data
should be specified. The precipitation data were combined via arithmetic

∗corresponding author: jwhite@usgs.gov; 1505 Ferguson Lane, Austin TX 78754
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averaging to yield a complete (filled), 5-minute precipitation record for
the model. We added this information to the manuscript

3. P4 Line 18: Did you evaluate how well the NCEP data correspond to25

your instrumental measurements for time periods during which your in-
struments were functioning properly? Documenting the error for days on
which rainfall occurred would be useful. We agree that the NCEP data
may in fact be of lower quality and accuracy compared to the site-specific
precipitation data. We did not specifically evaluate the error in the NCEP30

data, however, we did treat precipitation inputs as uncertain in the anal-
ysis, which should account for error in the NCEP precipitation estimates,
among other errors. We have added this information to the manuscript.

4. P6 Line 30: The authors could provide more explanation of the advantages
and disadvantages of these two types of parameterization. The only advan-35

tage of using the reduced parameterization is the improved computational
demand required to implement an automated calibration. However the
disadvantage of the reduced are numerous, including under-estimation of
uncertainty in quantities of interest (as we show). The full parameteri-
zation requires more sophisticated and programmatic approaches to cali-40

bration, but includes that added benefit of an improved ability to express
model input uncertainty. We have added similar language to the text.

5. P 8 Line 30: Are these midpoint values the same as the default values for
SWAT2012? If so, thats fine: : :its what most modelers would do, but the
authors may want to clarify this point. If not, some justification is needed45

for using these values rather than the default values. The midpoint of the
basin-scale parameters excluded from the reduced parameterization does
not necessarily correspond exactly to the values yielded by ArcSWAT.
However, these midpoint values are still within the range of “acceptable”
as defined by literature sources and site-specific expert knowledge. Addi-50

tionally, for all HRU and precipitation multipliers (the vast majority of
parameters in the full parameterization), the midpoint is 1.0, which es-
sentially removes there affects from the analysis. We have added similar
language to the text.

6. P 9 Line 9: Each of these measures quantify slightly different components55

of model performance. The authors might want to include 1-2 sentences to
explain the differences between the three and advantages of using all three.
We have added a brief description of the utility of NSE, percent bias and
coefficient of determination as an objective function and how using these
three measures together increases their effectiveness at identifying real-60

izations the reproduce several aspects of the conditioning period observed
streamflow.

7. P 10 Line 6: This is still a very large number of realizations. It would
be useful to know how many of them are effectively duplicates of one an-
other. Also, it could be helpful to modify the conditioning measures to65
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select for a narrower range of runs. Each of these realizations were drawn
stochastically from the Prior distribution—Figure 3 in the manuscript
shows how these realizations fit the three conditioning measures. The
number of behavioral realizations is function of the conditioning measures
and the size of the prior ensemble. That is, we could reduce the size of70

the behavioral ensemble by simply reducing the size of the prior ensemble.
Furthermore, we feel the thresholds we selected for the three conditioning
measures are appropriate and also commensurate with current hydrologic
modeling practice. We note that requiring realizations to pass very strict
conditioning measures risks overfitting with respect to the QOIs.75

8. P 11 Line 14: I agree with the authors that the possibility of a net increase
is not entirely unexpected. Recognizing that the cutoff thresholds for the
evaluation measures were somewhat arbitrary (if in line with most other
literature) it would be interesting to know if the realizations that indicate
an increase in ET are eliminated if stricter evaluation measures are ap-80

plied. We agree with Dr. Belmont that an increase in ET following brush
management is not entirely unexpected and that stronger conditioning
(through application of more strict conditioning measure thresholds) may
affect the behavioral distribution of QOI-5. However, as shown on figure
8, conditioning of the full parameterization model has shifted the distri-85

bution slightly towards the positive ET region, although, in general, the
behavioral distribution is only slightly affected by conditioning. There-
fore, we would speculate that “tighter” conditioning measures would not
eliminate the possibility of a simulated net increase in ET following brush
management.90

4 Reply to RC3 - Lieke Melsen

We appreciate the review by Dr. Melsen, especially the remarks regarding the
value of the ET data.

1. Daily discharge observations are used for a catchment of 1.4 km2, I guess
the response time of the catchment is much shorter than this daily time95

step. In this way, probably some essential hydrological processes cannot be
captured in the calibration- procedure. How do you think this affects your
results? We also recognize that our model is operating a lower temporal
frequency than the actual watershed. Indeed, all models of natural sys-
tems are simplifications and must operate at lower spatial and temporal100

frequencies than the natural systems they simulate. However, we would
speculate that this form of model simplification is not adversely affecting
our results for the following reasons:

(a) the focus of the modeling analysis is long-term water budget compo-
nents105
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(b) both parameterizations reproduce observed streamflow acceptably
well

(c) both parameterizations reproduce conditioning and forecast period
verification QOIs

It is possible that higher-resolution conditioning data might condition ad-110

ditional parameters compared to the daily streamflow data. However, this
conditioning is likely limited to parameters that influence high-frequency
runoff generation processes, not necessarily parameters that influence long-
term water budget components.

2. Like I said before, I think it is an interesting study with interesting re-115

sults that is probably representative for many modeling studies in which
the uncertainty is underestimated. I do think, however, that maybe a
more thoughtful calibration could potentially improve the results (I am not
sure, of course; calibration is not a panace. Furthermore, the calibration-
procedure applied in this study is probably representative for current mod-120

eling practice). I would be interested to see this in the discussion of the
paper. We agree with Dr. Melsen that a more “thoughtful” objective
function could possibly yield a narrow behavioral distribution for QOI-5.
However, we specifically select the three conditioning measures formulated
from daily streamflow observations based on their wide-spread use on the125

hydrologic modeling community. We have added some discussion to this
affect to the manuscript.

3. Concerning the sensitivity analysis (p.5, l.28-29); I agree with the au-
thors that selecting model parameters for calibration is often subjective.
However, I think the common path in modeling is to conduct a sensitiv-130

ity analysis (which is the subjective part, because; global or local method?
which parameters to include? what parameter boundaries?), and based
on that identify the parameters for calibration, whereas the authors chose
a different approach; first select the parameters, and after that conduct a
sensitivity analysis. Could you explain why you chose this procedure? Fur-135

thermore, for the readability, I would suggest to move section 2.7 to earlier
in the methods, especially because you start with the sensitivity analysis in
the results. We appreciate this comment and have added to the manuscript
to clarify this process and have reordered the sections of the manuscript.
In short, we chose to use GSA to investigate which (uncertain) model in-140

puts influence the conditioning measures (the calibration), the QOIs (the
purpose of the model) or both. By including most (if not all) uncertain
model inputs in the GSA and investigating both the conditioning and
model purpose (e.g., QOIs) with GSA, practitioners can gain a clearer
understanding of which model inputs are important for reproducing the145

past as well as which model inputs are important to simulate the QOIs.

4. Last point; You have ET data at your disposal. This provides a great op-
portunity to use ET for your calibration. I would be really interested to see

4



how the selection of behavioral parameter sets would be influenced if you
add an ET-criterion, and how this would affect the QOIs related to ET.150

This does not require any additional calculations and potentially you could
make a strong case to increase ET observations in order to improve the
modeling of land-use change impacts (in other words; you could provide
constructive suggestions to decrease the uncertainty. Or not, dependent
on the results). Maybe this extra exercise it not really necessary in or-155

der to provide sufficient body for a paper, but it certainly could provide a
strong message. We agree with Dr Melsen that the conditioning period
ET may provide valuable conditioning of the parameters that influence
QOI-5. We plan to address the value of the ET data for conditioning in
another manuscript focused on dataworth analyses for this modeling anal-160

ysis. However, we have added an additional paragraph to the discussion
that also address the importance and potential value of the ET data.

5 Reply to RC5 - Tammo Steenhuis

We appreciate Dr Steenhuis’ review. While Dr Steenhuis indicated the manuscript
was “poorly written”, we note that the other reviewers did not have issue with165

the construction or organization of the manuscript beyond some minor gram-
matical mistakes. We also note the model was conditioned with streamflow and
validated with ET and streamflow under changed land-use conditions.

1. Streamflow is simulated using the Green and Ampt approach that is likely
marginally sensitive to differences in amount of water evaporated by the170

plants either with trees or without trees. The variation in conductivity due
to crust formation is likely a much more sensitive parameter The other
words overland flow cannot be used for estimating evaporation. Baseflow
could be used, but it is not clear from the article if any baseflow separation
was done. Moreover, overland flow once generated during the most intense175

part of the storm might infiltrate down the hill (Stomph et al 2012) that is
not simulated by SWAT while it may greatly affect the amount of surface
runoff. Finally, the rainfall could be highly variable over the watershed af-
fecting the runoff greatly with the Green and Ampt approach. The authors
took the average precipitation of four stations. At a minimum it should180

have been investigated if using the four precipitation measurements could
have better described the streamflow that the brush management. While Dr.
Steenhuis points to several potential structural problems with SWAT as
well as other potential conceptualizations of the system. Agreed, no model
is perfect and SWAT has limitations that have been well documented185

in the literature. Indeed, one of the focuses of our study was to quan-
tify the uncertainty using common, industry-standard tools/approaches
so that our results have a wider applicability., Nonetheless, several thou-
sand realizations from both the reduced and full parameterization models
that fit the conditioning-period streamflow exceptionally well, according190
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to commonly-accepted metrics. Furthermore, despite these shortcomings,
the behavioral distributions from both parameterizations reproduce the
two verification QOIs well.

2. The authors write Note that many of the most influential parameters,
specifically precipitation multipliers, plant growth parameters, and HRU195

scale parameters, are not in the reduced parameterization and are not in-
cluded in typical hydrologic modeling analyses (Arnold et al., 2012b) Be-
cause other not experienced users do it wrong that is not a good reason not
too include the parameters describing the system. Of course, under these
circumstances the model fails with this reduced parameter set. Using this200

set of parameters does not advance science as is expected from a published
manuscript. Firstly, we do not feel that referring to all of the cited works
in Arnold (2012) as “not experienced” is a fair or constructive comment.
To our knowledge, all of the works cited in Arnold (2012) were subjected
to peer review and are of high quality. As stated in the manuscript, we205

selected the reduced parameterization based on standard, current model-
ing practice. We then show that, indeed, the reduced parameterization is
able to fit the observed conditioning-period streamflow well according to
common metrics. We feel this is a validation of current modeling practice
in as much as the reduced parameterization can reproduce the past. Our210

point is that just because the reduced parameterization reproduces the
past streamflow doesn’t indicate the reduced parameterization model is
acceptable for robust simulation of the QOIs.

3. The authors never question a priori the suitability of the SWAT model
whether there is a chance that the model could simulate differences in215

evaporation based on the streamflow record before going through all the
calculations and essentially proving that the SWAT model was not suitable
for this problem. Would the authors have chosen an appropriate model that
can simulate plant and root development together with evaporation, the
results could be completely different and likely much more accurate. The220

article is all about parameters uncertainty while model uncertainty should
have been investigated as well at a minimum. As previously noted, both
parameterization are able to fit the conditioning-period acceptably well
according to commonly-accepted metrics. Furthermore, the SWAT model
has emerged recently as a popular tool for simulating many hydrologic225

processes (beyond brush management and land-use change) For example,
see https://www.card.iastate.edu/swat articles/citations-list/
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The importance of parameterization when simulating the hydrologic
response of vegetative land cover

::::::::::::::::
land-cover

:
change

Jeremy White1, Victoria Stengel1, Samuel Rendon1, and John Banta1

1U.S. Geological Survey, Austin TX, 78754

Correspondence to: Jeremy White (jwhite@usgs.gov)

Abstract. Computer models of hydrologic systems are frequently used to investigate the hydrologic response of land cover

::::::::
land-cover

:
change. If the modeling results are used to inform resource-management decisions, then providing robust estimates

of uncertainty in the simulated response is an important consideration. Here we examine the importance of parameterization, a

necessarily subjective process, on uncertainty estimates of the simulated hydrologic response of land cover
::::::::
land-cover

:
change.

Specifically, we applied the soil water assessment tool (SWAT) model to a 1.4 km2 watershed in south Texas to investigate5

the simulated hydrologic response of brush management (the mechanical removal of woody plants), a discrete land cover

::::::::
land-cover

:
change. The watershed was instrumented before and after brush-management activities were undertaken and es-

timates of precipitation, streamflow, and evapotranspiration (ET) are available; these data were used to condition and verify

the model. The role of parameterization in brush-management simulation was evaluated by constructing two models, one with

12 adjustable parameters (reduced parameterization) and one with 1,305 adjustable parameters (full parameterization). Both10

models were subjected to global sensitivity analysis ,
:
as

::::
well

::
as

:
Monte Carlo and generalized likelihood uncertainty estimation

(GLUE) conditioning to identify important model inputs and to estimate uncertainty in several quantities of interest related

to brush management. Many realizations from both parameterizations were identified as “behavorial
::::::::
behavioral” in that they

reproduce daily average
:::::
mean streamflow acceptably well according to Nash-Sutcliffe

:::::
model

:::::::::
efficiency

:::::::::
coefficient, percent

bias
:
, and coefficient of determination. However, the total volumetric ET difference resulting from simulated brush manage-15

ment remains highly uncertain after conditioning to daily average
:::::
mean streamflow, indicating that streamflow data alone are

not sufficient to inform the model inputs that most influence the simulated outcomes of brush management. Additionally, the

reduced-parameterization model grossly underestimates uncertainty in the total volumetric ET difference compared to the full-

parameterization model; total volumetric ET difference is a primary metric for evaluating the outcomes of brush management.

The failure of the reduced-parameterization model to provide robust uncertainty estimates demonstrates the importance of20

parameterization when attempting to quantify uncertainty in land cover
:::::::::
land-cover change simulations.

1 Introduction

Keywords

– brush management25
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– land cover
::::::::
land-cover

:
change

– uncertainty analysis

– parameterization

– SWAT

Highlights5

– simulated outcome of brush management, a land cover
:::::::::
land-cover change, is largely uncertain

– a large number of model inputs influence the simulated outcomes of brush management

– level of parameterization does not affect fit to daily
:::::
mean streamflow data

– level of parameterization does affect uncertainty estimates in quantities of interest

An important use of
:::
for computer models of hydrologic systems is simulation of the hydrologic response of land cover10

::::::::
land-cover

:
change (Fohrer et al., 2001; DeFries and Eshleman, 2004); many modeling analyses have been undertaken in attempt

to better understand how changes in land cover may change the timing and quantity of runoff, recharge, and evapotranspiration

(e.g., Schilling et al. (2014); Ahn and Merwade (2017); Chu et al. (2010)). Given the uncertainties that exist in nearly every

hydrologic model input dataset, the potential exists for the simulated outcomes to be highly uncertain, even after conditioning

to streamflow data. Given this potential uncertainty in model outcomes, quantifying uncertainty in the simulated results of land15

cover
::::::::
land-cover

:
change is an important consideration, especially if simulation results are to be used in resource management

decision making.

Previous research has shown that the subjective process of selecting which model inputs to treat as uncertain (e.g. param-

eterization) may affect uncertainty estimates in model outcomes (White et al., 2014). Herein, parameterization refers to the

subjective and necessary process of selecting uncertain model inputs to treat as adjustable in the conditioning process. We20

investigate how parameterization may affect the uncertainty quantification process when simulating a discrete, vegetative land

cover
::::::::
land-cover

:
change, the mechanical removal of woody plants.

Woody plant encroachment into grasslands has been a worldwide phenomena in the past 150 years (Archer et al., 2011).

This encroachment has several ramifications to the ecosystem, including changes to the hydrologic function and response of

the surface-water basins (Archer et al., 2011). Woody species are commonly thought to be a larger consumer
:::::::
consume

::
a

:::::
larger25

:::::::
quantity of water (by plant transpiration) ,

:::::::::::
transpiration) in comparison to native grasses (Tennesen, 2008). By removing the

woody species and allowing native grasses to reestablish in the area (commonly referred to as "brush management"), changes

in the hydrology in the watershed might occur (U.S. Department of Agriculture, 2009).

Many hydrologic modeling analyses have been completed to evaluate the feasibility of applying brush management in order

to decrease the quantity of water transpired within a basin
:::::
given

::::::::
watershed. (Ben Wu et al., 2001; Lemberg et al., 2002; Brown30

and Raines, 2002; Afinowicz et al., 2005; Bumgarner and Thompson, 2012; Harwell et al., 2016). However, to date (2017),
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very few, if any, of the modeling-based, brush management feasibility studies have included uncertainty estimation in the

simulated hydrologic response of brush management, even though substantial uncertainty in other applications of SWAT-based

hydrologic modeling
:::
the

:::
soil

:::::
water

:::::::::
assessment

::::
tool

:::::::
(SWAT)

::::::
model have been reported (Gassman et al., 2014).

To demonstrate the utility of including uncertainty estimation and to investigate how parameterization may affect the re-

liability of a model to resolve the hydrologic outcomes of simulated land cover
:::::::::
land-cover

:
changes, such as brush manage-5

ment, the soil water assessment tool (SWAT) (Arnold et al., 1998) was applied to a 1.4 km2 watershed in South Texas. The

watershed has been the focus of previous investigations (Banta and Slattery, 2011); estimates of
::::
same

:::::::::
watershed

::::::::
assessed

::
in

:::
this

:::::
study

::::
was

::::::
subject

:::
of

:
a
::::::::
previous

:::::::::::
investigation

::
in

:::::
which

::::::::
multiple

:::::
types

::
of

::::
data

:
(precipitation, streamflow, and ET are

available
:::::::::::::::
evapotranspiration [

:::
ET]

:
)
::::
were

::::::::
collected

::::::::::::::::::::::
(Banta and Slattery, 2011). The objectives of this

::
our

:
study are to

:
(1) assess

the reliability of a computer model to simulate pre- and post-treatment water budget components in the context of uncertainty,10

and
:
(2) evaluate the role of model parameterization in the uncertainty estimation process by investigating the number of model

inputs that influence the important model outputs.

1.1 Hydrologic Setting

The brush-management simulation described herein is applied to a 1.4 km2 watershed in the Honeycreek State Natural Area in

South Texas (Figure 1). For a complete description of the study area, see Banta and Slattery (2011)(note
:
.
::::
Note

:
the watershed15

analyzed in this study is referred to as the “treatment watershed” in Banta and Slattery (2011)).

According to Banta and Slattery (2011), long-term average precipitation near the watershed is 34 inches per year and

is equally distributed throughout the calendar year. The watershed generally has gentle slopes (less than 5 percent) with

steeper slopes in the stream channel ravines. The clay
::::
Clay

:
and clay loam soils overlie the Trinity aquifer outcrop ,

::
in

:::
the

:::::::::
watershed;

:::
the

::::::
Trinity

::::::
aquifer

::
is a regional karst aquifer system . Prior to treatment, the study area

::::::::::::::::::::::
(Banta and Slattery, 2011).20

:::::
Before

:::::
brush

:::::::::::
management

::::
was

:::::::::::
implemented,

:::
the

:::::::::
watershed was largely dominated by ashe juniper (Juniperus ashei ). For the

watershed studied in this analysis, approximately
::::::::
Juniperus

:::::
ashei

:::::
(ashe

:::::::
juniper).

:::::::::::::
Approximately 40% of the land covered by

predominately ashe juniper
:::
ashe

::::::
juniper

::::
land

:::::
cover

:
was mechanically cleared

::::
from

:::
the

:::::::::
watershed

:
during calendar year 2004

(Homer et al., 2007). Following ashe juniper
:::
The

::::::::
watershed

:::::::::::
configuration

::::::
before

:::::::
removal

::
of

::::
40%

::
of

:::
the

::::
ashe

::::::
juniper

::
is

:::::::
referred

::
to

::
as

:::
the

::::::::::::
"pre-treatment"

::::::::::::
configuration.

:::::::::
Following

::::::::::
ashe-juniper removal, the land returned to a native rangeland land cover type25

::::::::
land-cover

::::
type

::::::::
(referred

::
to

:::::::::
hereinafter

::
as

:::
the

::::::::::::::
"post-treatment"

::::::::::::
configuration).

2 Model Construction

The SWAT model was used to simulate the hydrologic response of the watershed, including the effects of brush management.

Specifically a SWAT2012 (Arnold et al., 2012b, a) model of the watershed was built using the ArcSWAT tool (Winchell et al.,

2007). The resulting model files were incorporated into the model-independent framework of PEST++ V3 (Welter et al., 2015)30

to facilitate programmatic interaction with the model so that any model input quantity could be treated as a parameter and a

variety of model outputs, including derived and processed quantities, can be included in the modeling analysis.
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2.1 Datasets

Three datasets were needed to apply the ArcSWAT tool (Winchell et al., 2007), which discretized the watershed into hydrologic

response units (HRUs):

– digital elevation model: The 10m National Elevation Dataset (NED) (Maune et al., 2007)

– soil data: The Soil Survey Geographic Database (SSURGO) (Staff, 2016)5

– land-cover type: The National Land Cover Database (NLCD) (Homer et al., 2007)

These three datasets were used within the ArcSWAT tool to find unique land slope/soil/land cover combinations across the

watershed. These unique combinations became HRUs in the SWAT model. Note the
:::
The

:
NED digital elevation model for the

watershed was smoothed with a 4-pixel width averaging kernel to remove apparent artifacts.

As part of a previous study evaluating
::
the

:::::::
previous

:::::
study

::::
that

::::::::
evaluated the effects of brush management at the Honey Creek10

State Natural Area
:::::::::::::::::::::
(Banta and Slattery, 2011), daily total precipitation and evapotranspiration (ET)

::
ET, and daily average

:::::
mean

streamflow were measured during 2001 through 2010
:::::::
2001–10 (Figure 2)(for additional discussion of the methodology .

::::
The

:::::::
methods used to collect the input datasets , see Banta and Slattery (2011))

:::
are

::::::::
described

::
in

:::::::::::::::::::::
Banta and Slattery (2011). The pre-

cipitation data were used as inputs to the SWAT model while
:::::::
whereas

:
the ET and streamflow data were used for conditioning

and model evaluation (described below). Because the SWAT model is sensitive to precipitation intensity, the original 5-minute15

measurements from four precipitation measurement stations in the study area were combined via arithmetic averaging to de-

velop the precipitation input dataset—the averaging was needed to account for missing data due to instrument issues and

:::::
caused

:::
by

:::::::::
instrument

:::::
issues

::
in

:::::
order to form a complete precipitation dataset. The National Centers for Environmental Predic-

tion (NCEP) Climate Forecast System Reanalysis (CFSR) (Saha et al., 2014) Global Weather Database was used in the SWAT

simulation as the input for weather data when on-site precipitation data were not available (Banta and Slattery, 2011). To20

account for errors induced by averaging precipitation data ,
:::
and

:
the use of lower-resolution NCEP precipitation data, we treat

precipitation as uncertain; the treatment of model inputs as uncertain is discussed in detail Parameterization section below
::
in

::
the

::::::::::::::
Parameterization

:::::::
section.

2.2 ArcSWAT

The ArcSWAT tool (Winchell et al., 2007) was used with the previously-described datasets to constructed a SWAT2012 model25

of the watershed. Surface runoff is simulated with SWAT using the Green-Ampt excess rainfall method (Mein and Larson,

1973; Jeong et al., 2010).

The NLCD 2001 (Homer et al., 2007) land-cover data were modified so that areas of mixed brush-rangeland within the

watershed were reclassified as rangeland, which is consistent with site-specific knowledge
:::::::::::::::::::::
(Banta and Slattery, 2011).

The application of the ArcSWAT tool with the previously-described datasets resulted in a model with a single subbasin30

covering the 1.4 km2 watershed
::::
study

::::
area with 47 distinct HRUs (Figure 1). A summary of the HRU characteristics is included
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in
:::::
Table

:::
S1

::
of

:
the supplementary material

:
;
:::
the

:::::::
detailed

:::::
HRU

::::::::::::
characteristics

::::::::
obtained

:::
by

:::::::
applying

::::
the

:::::::::
ArcSWAT

::::
tool

:::
are

:::::::
included

::
in

:::
the

:::::::::
associated

:::
data

::::::
release

:::::::::::::::::
(White et al., 2017).

2.3 Model Configurations

The modeling analysis described herein includes two specific simulation periods that correspond to the pre-treatment and

post-treatment time periods
:::::::::::
configurations:5

– conditioning period: 1 Jan
::::::
January 2002 to 31 Dec

::::::::
December

:
2003 (pre-treatment watershed conditions

:::::::::::
configuration)

– forecast period: 1 Jan
::::::
January 2005 to 31 Dec

::::::::
December

:
2010 (post-treatment watershed conditions

:::::::::::
configuration)

Note that
:::
The conditioning period and forecast period models simulate years 2001 and 2004, respectively; the initial year of

simulation for each model is used as a model warm-up period
:
to
:::::::
remove

:::
any

::::::::
transient

::::::
artifacts

:::::
from

:::::
initial

:::::::::
conditions.

In a typical modeling feasibility study, the model is constructed and calibrated
::::::::::
conditioned to pre-treatment (conditioning10

period) system states, then forecasts are made using the model related to how simulated brush management will affect the

hydrology within the watershed.

Here, two distinct SWAT model datasets were constructedto simulate the
::::::
models

:::::
were

::::::::::
constructed.

::::
The

:::
first

::::::
SWAT

::::::
model

::::::::
simulated

:::
the pre-treatment (conditioning period) and

:::::::::::
configuration

:::
and

::
is

:::::::::
hereinafter

:::::::
referred

::
to

::
as

:::
the

:::::::::::::
“pre-treatment”

::::::
model.

:::
The

::::::
second

::::::
SWAT

::::::
model

::::::::
simulated

:::
the post-treatment (forecast period) watershed conditions

:::::::::::
configuration

::::
and

:
is
::::::::::

hereinafter15

::::::
referred

::
to
:::
as

:::
the

:::::::::::::
“post-treatment”

::::::
model. The only difference between the two

:::::
SWAT models are specific inputs to HRUs 18,

20, 22, 32, which represented the area of watershed that was converted from evergreen forest (e.g., ashe juniper) to rangeland.

Modifications to the input files for the listed HRUs were
::::::
(herein,

:::::::::
references

::
to

::::::
specific

::::::
SWAT

:::::
input

:::::::
variables

:::
are

::::::
shown

::
in

:::
all

::::
caps):

– maximum canopy interception - the CANMX variable in the .HRU input files20

– plant growth cycle - the PLANT_ID and HEAT
:
_UNITS variables in the .MGT input files

::
In

:::
this

::::::
study,

:::::
brush

:::::::::::
management

::
is
:::::::::

simulated
:::
by

:::::::::
modifying

:::
the

:::::::::
maximum

:::::::
canopy

:::::::
storage

:::
and

::::::
inputs

::::
that

::::::
control

::::
the140

::::::::
simulated

::::::
growth

:::::
cycle

:::
for

::
a
::::::::::::
representative

::::
area

::
of

:::
the

::::::::
subbasin

:::::
from

::::::::
evergreen

::::::
forest

::
to

:::::::::
rangeland

:::::::
because

:::
this

::::::::
required

:::
few

::::::::::
assumptions

::::
and

:::::::
allowed

::::::::
injection

::
of

:::
the

:::::::
desired

:::::::::
uncertainty

::::
into

:::
the

:::::::::
simulation

:::::::::
workflow. We modified the maximum

canopy storage and the plant growth aspects of HRUs 18, 20, 22, and 32 since
:::::::
because these inputs directly affect the available

precipitation for partitioning and simulated ET processes, respectively, while plant growth parameters
:::::::
whereas

:::::::::::
plant-growth

:::::::
variables

:
affect the timing and intensity of simulated ET processes related to the annual plant growth

::::::::::
plant-growth

:
cycle. In145

the pre-treatment model, these model inputs were specified to represent ashe juniper land cover for HRUs 18, 20, 22, 32, while

:::::::
whereas in the post-treatment model, these inputs for HRUs 18, 20, 22, 32 were specified to represent rangeland land cover,

effectively capturing the change in the simulated inputs that corresponds to the brush-management operations that occurred

5



during 2004. See the SWAT theory (Neitsch et al., 2011) and input-output documentation (Arnold et al., 2012a) for more

information on these inputs .150

::
the

::::::
model

:::::
inputs

:::::
listed

::
in

:::
the

:::::
.HRU

::::
and

:::::
.MGT

::::
files.

:::

2.4 Parameterization

Parameterization is a critical part of any modeling analysis and has received considerable attention in the literature (Abbaspour5

et al., 2004; Romanowicz et al., 2005; Sexton et al., 2011; Zhenyao et al., 2013; Migliaccio and Chaubey, 2008; Cibin et al.,

2010; Gitau and Chaubey, 2010; Du et al., 2013; Malone et al., 2015; Zhang et al., 2016). In this analysis, we investigated two

parameterization designs:

– reduced parameterization uses the 12 model inputs listed on Table 1 of Arnold et al. (2012b) as
:
to

::::::::
represent

:::::
model

:::::
input

:::::::::
uncertainty.

::::::
These

::
12

::::::
model

:::::
inputs

:::
are the most cited SWAT model inputs chosen for conditioning

:::::
treated

::
as
::::::::::
parameters10

when simulating surface-water runoff and baseflow processes (Table 1). This
:::::::
base-flow

::::::::
processes

:::::::::::::::::::
(Arnold et al., 2012b).

:::
The

:::::::
reduced parameterization was, therefore, representative of many SWAT modeling analyses in the literature. For the

reduced parameterization model, inputs were adjusted at the subbasin scale — that
::::::::
watershed

:::::::::
scale—that

:
is, all 47 HRUs

receive the same value for each of these 12 model inputs . See Table 1for a listing of the reduced parameterization
:::::
(Table

::
1).15

– full parameterization used 1,305 model inputs. It builds on the 12 parameters of the reduced parameterization by

adding unique multiplier parameters at the HRU scale for each of the 12 parameters in Table 1, and also includes many

other model inputs that are not typically adjusted, albeit still uncertain, such as soil properties, and inputs that govern

the simulation of plant growth,
::::
such

:::
as

:::
leaf

::::
area

:::::
index

:::::
(LAI)

::::::::
variables. The full parameterization also includes annual

quartile precipitation multipliers to account for uncertainty and potential bias in precipitation estimates (Leta et al., 2015;20

Renard et al., 2011; Kavetski et al., 2006; Kuczera et al., 2006). See
:::::
Table

::
S1

::
of

:
the Supplementary Material for a listing

:::::::
summary

:
of the full parameterization

:::
and

:::
the

::::::::
associated

::::
data

:::::::
release

:::::::::::::::::::
(White et al., 2017) for

:
a
::::::::
complete

:::::::::
description

:::
of

::
the

::::
full

::::::::::::::
parameterization.

These two parameterizations represent two different approaches to hydrologic modeling. From a computational standpoint,

the reduced parameterization is more desirable, while
:::::::
whereas the full parameterization offers the opportunity for a more25

complete expression of model input uncertainty.

The SWAT input CANMX is of particular importance in simulating brush management because it controls how much

precipitation is available for partitioning, and it is directly affected by land cover
:::::::::
land-cover

:
changes. Therefore, CANMX

potentially exhibits a strong control of the simulated outcomes of brush management. CANMX is not treated as uncertain in

the reduced parameterization as it is not commonly treated as adjustable (Arnold et al., 2012b). However, CANMX is included30

in the full parameterization and as
:
is

:
parameterized as follows

::::::
(herein,

:::::::::
references

::
to

:::::::
specific

:::::::::
parameters

:::
are

:::::
shown

:::
in

:::::
italics):

– the parameter canmx_v represents the maximum canopy storage for evergreen forest land-cover type HRUs;
:
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– the parameter canmxfac_07 represents the portion of canmx_v that is applied to deciduous forest land-cover type HRUs
:
;

:::
and

– the parameter canmxfac_15 represents the portion of canmx_v that is applied to rangeland land-cover type HRUs
:
.

In this way, we can incorporate uncertainty in the values of CANMX for all three land-cover types while also enforcing the

relations we expect for the maximum canopy storage between the land cover types. This treatment for CANMX allows both5

the pre-treatment
::::
pre- and post-treatment models to receive the same parameter values . Since

:::
for

:::
the

::::
same

:::::::::
land-cover

::::::
types.

:::::::
Because HRUs 18, 20, 22 and 32 switch from evergreen land cover to rangeland land cover, the CANMX values assigned

to these HRUs is in harmony with the CANMX values assigned to other HRUs. Note that the
:::
The HRUs-scale multipliers,

named canmx_XX, where XX is the HRU number, still account for HRU-scale variability in CANMX for HRUs of the same

land cover type. The
::
In

:::
the

:::::::
reduced

::::::::::::::
parameterization,

:::
the

:
parameters canmx_v, canmxfac_07 and canmxfac_15 are specified10

values of 13.0 mm, 0.625
:::::
times

::::
13.0

:::
mm

:
(8.13 mm) and 0.25

::::
times

::::
13.0

::::
mm (3.25 mm), respectively, which corresponds to

the midpoint of the respective parameter ranges.

The specified parameter ranges from a
:::::
upper

:::
and

::::::
lower

:::::
bound

:::
of

::::
each

:::::::::
parameter

::::
was

:::::::
defined

:::::
using

:
a
:::::::::::

combination
:::

of

:::::::
literature

::::::
values

:::::::::::::::::::::::::::::::::::::::::::
(Abbaspour, 2015; Douglas-Mankin et al., 2010) and

::::::
expert

::::::::::
knowledge.

:::::::::::
Collectively,

:::
the

::::::
upper

:::
and

::::::
lower

::::::
bounds

::
of

:::::
each

:::::::::
parameter

:::::
forms

::
a
:
multivariate uniform distribution (hereinafter after referred to as the Prior parameter15

distribution), which
:::::::
“Prior”).

:::::::::::
Conceptually,

:::
the

::::::
“Prior”

:
is the distribution of “acceptable” parameter values based on hydrologic

system knowledge. We note that defining a Prior is a necessarily subjective process; the Prior, summarized in the Supplementary

Material, was defined using a combination of literature values (Abbaspour, 2015; Douglas-Mankin et al., 2010) and expert

knowledge. The specified range
:::
The

:::::
upper

::::
and

:::::
lower

:::::
bound

:
of each parameter is summarized in

:::::
Table

::
S1

:::
of the Supplemen-

tary Material
:
;
::::
The

:::::
upper

:::
and

:::::
lower

::::::
bounds

::
of

:::
the

:::::::
reduced

::::::::::::::
parameterization

:::
are

:::::::
distilled

:::
on

::::
Table

::
1.20

Using

2.5
:::::

Model
::::::::
interface

::::
Both

:
the pre- and post-treatment models

:::::
SWAT

:::::::
models

:::::
must

::
be

:::::::::
evaluated

:::::::::
repeatedly

::
to

:::::::
simulate

::::::::::
hydrologic

::::::::
outcomes

:::
of

::

::::
brush

:::::::::::
management

::::
and

:::::::
evaluate

:::
the

:::::::::
importance

::
of

::::::::::::::
parameterization

::
in

::::
said

:::::::::
outcomes.

::
To

::::::::::
accomplish

:::
this

:::::::
repeated

::::::::::
evaluation,

::

:
a
::::::::::::::::
model-independent

::::::::
interface

::
to

::::::
SWAT

::::
was

::::::::::
constructed.

::::
This

::::::::
interface

:::::::::
facilitated

:::
the

:::::::::
translation

::
of

:::::::::
parameter

::::::
values

::::
into

:::
205

::

:::::
SWAT

::::::
model

:::::
inputs

::::
files,

:::
the

:::::::::
execution

::
of

::::
both

:::
the

::::
pre- and the two parameterizations, the

::::::::::::
post-treatment

::::::
SWAT

::::::
models,

::::
and

::

::
the

:::::::::::::
post-processing

:::
of

:::::
SWAT

::::::
model

:::::
output

::::
into

::::::::
quantities

:::
of

::::::
interest.

:::

::
To

:::::::
translate

:::::::::
parameter

:::::
values

::
to
::::::
SWAT

::::::
model

::::
input

:::::
files,

:::::::::
parameters

::::
were

::::::::
assigned

:::
two

:::::::::::::
characteristics:

1.
:::::
Scale:

:
a
:::::
given

:::::::::
parameter

::
is

:::::
either

:::::::
subbasin

:::::
scale

::
or

:::::
HRU

:::::
scale.

:::::::::::::
Subbasin-scale

:::::::::
parameters

:::
are

::::::
applied

:::
to

::
all

:::
47

::::::
HRUs,

:::::::
whereas

::
an

:::::::::
HRU-scale

:::::::::
parameter

::::::
applies

::::
only

::
to

:
a
:::::::
specific

:::::
HRU.

:
30
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2.
:::::
Type:

:
a
:::::
given

::::::::
parameter

::
is
:::::
either

::
a
::::::::::::
multiplier-type

:::::::::
parameter

::
or

::
a
:::::::::
value-type

:::::::::
parameter.

::::::::::::
Multiplier-type

::::::::::
parameters

:::
are

:::::
treated

:::
as

::::::
scaling

::::::
factors

::::::
against

:::
the

:::::::
original

:::::
SWAT

::::::
model

:::::
input

:::::::::
variable(s),

:::::::
whereas

:::::::::
value-type

:::::::::
parameters

:::::::
replace

:::
the

::::::
original

::::::
SWAT

:::::
model

:::::
input

::::::::::
variables(s).

:

:::
The

:
following steps represent a single model forward run:

::::::::
evaluation

::
in

:::
the

::::::
model

::::::::
interface:

:::
215

::

1. Construct two“base” tables of HRU-scale inputs where the columns are the SWAT model inputs names and the rows are

the 47 HRUs (one table for the pre-treatment model and one table for the post-treatment model). Populate these tables

with the base input values from the ArcSWAT process for both the pre- and post-treatment models
:::
tool.

2. for each “value”-type basin-scale
:::
For

::::
each

:::::::::
value-type,

::::::::::::
subbasin-scale

:
parameter, replace the values in the base tables for

each corresponding column with the specified parameter value, assigning all HRUs the same value.10

3. For each “multiplier”-type basin-scale
:::::::::::::
multiplier-type,

::::::::::::
subbasin-scale parameter, multiply the corresponding column of

the base tables by the specified parameter value, scaling all HRUs by the same value.

4. apply
:::::
Apply canmx_v, canmxfac_07 and canmxfac_15 parameters to the CANMX column of both base tables according

to the land cover type of each HRU using the previously-described relation between these parameters.

5. For each “multiplier”-type
:::::::::::::
multiplier-type, HRU-scale parameter, multiply the corresponding row-column location in15

the base tables by the specified parameter value, scaling only a single entry in the table.

6. translate
::::::::
Translate the base tables into the appropriate SWAT input files for both the pre-treatment

:::
pre-

:
and post-treatment

models.

7. apply
:::::
Apply precipitation multiplier parameters and write a new SWAT .PCP input file

:::::::::::::::::
(Arnold et al., 2012a).

8. apply plant growth
:::::
Apply

:::::::::::
plant-growth

:
multiplier parameters and write a new SWAT plant growth

::::::::::
plant-growth

:
database20

file.

9. Run the pre-treatment model for the time period 2001 through 2010 (
:::
the pre-treatment model outputs are needed from

2005-2010
:::::::
2005–10

:
for calculation of brush-management quantities of interest).

10. Run the post-treatment model for the time period 2004 through 2010.

11. Post-process both model runs to formulate brush-management quantities of interest and conditioning measures (de-25

scribed below
::
in

:::
the

:::::::::
Evaluation

::
of

:::::
Brush

:::::::::::
Management

::::::::::
Simulations

::::::
section).

The forward run process was completed many times as part of both the global sensitivity analysis and the uncertainty analysis

::::::::
(described

::
in

:::
the

:::::::::
Evaluation

::
of

:::::
Brush

:::::::::::
Management

:::::::::::
Simulations) . For the reduced parameterization

:
,
:::
the HRU-scale parameters,

precipitation parameters, and plant growth parameters were specified
::::
each

:::::::
assigned

:
a
:
value of 1.0, effectively removing these

parameters
::
the

::::::::
influence

::
of

:::::
these

:::::::::
parameters

:::
on

:::
the

:::::
model

::::::
outputs.30
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2.6 Evaluation of Brush Management Simulations

We used uncertainty quantification techniques to investigate how well the previously-described SWAT models simulate the

effects of brush management on long-term water budget components. Specifically, we use
::::
after

::::::::
applying

:::
the

:::::
global

:::::::::
sensitivity

::::::
analysis

::::::
(GSA)

:::::::
method

::
of

:::::
Morris

::::::::::::::::::::::
(Morris, 1991) (hereinafter

:::::::
referred

::
to

::
as

:::
the

:::::::
“method

::
of

::::::::
Morris”),

:::
we

::::
used Monte Carlo anal-

ysis (MC) in conjunction with Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992) conditioning5

to construct prior and behavioral distributions for several model outputs that are important to simulating the outcomes of brush

management
:
,
:::::
which

:::
we

::::
term

::::::::
quantities

:::
of

::::::
interest

::::::
(QOIs).

2.7
::::::::

Quantities
:::
of

:::::::
Interest

::::::
Output

::::
from

::::
both

:::
the

:::
pre-

:::
and

::::::::::::
post-treatment

::::::
model

:::
was

:::::::::
processed

:::
into

:::::
QOIs

:::
that

:::::::::
encompass

:::
the

::::::::
simulated

::::
pre-

:::
and

::::::::::::
post-treatment

::

::::::::
long-term

:::::
water

::::::
budget

::::::::::
components

::
in

:::
the

::::::::
simulated

:::::::::
watershed:

::::
250

::

– QOI-1:
::::::::
volumetric

:::::::::::::::::
conditioning-period

::::::::::::
(pre-treatment)

::::::::::::::
ET-precipitation

::::
ratio

:

– QOI-2:
::::::::
volumetric

:::::::::::::::::
conditioning-period

::::::::::::
(pre-treatment)

::::::::::::::::::::
streamflow-precipitation

:::::
ratio

– QOI-3:
::::::::
volumetric

:::::::::::::
forecast-period

:::::::::::::
(post-treatment)

::::::::::::::
ET-precipitation

::::
ratio

:

– QOI-4:
::::::::
volumetric

:::::::::::::
forecast-period

:::::::::::::
(post-treatment)

::::::::::::::::::::
streamflow-precipitation

:::::
ratio

– QOI-5:
::::::::
volumetric

:::::::::::::
forecast-period

:::::::::
difference

:::::::
between

:::
the

::::::::
simulated

::::::
treated

:::
and

::::::::
untreated

:::::::::
watershed15

:::
The

:::::
work

::
of

:::::::::::::::::::::::::::::
Banta and Slattery (2011) includes

:::::
daily

:::::
mean

:::::::::
streamflow

::::
and

:::::
daily

::::
total

:::
ET

:::
for

::::
the

:::::::::
watershed

::::::
during

:::
the

::

::::::
forecast

::::::::::::::
(post-treatment)

::::::
period,

:::::
which

:::::
means

::::::::
measured

::::::
values

:::
for

:::::
QOI-1

:::::::
through

:::::
QOI-4

:::
are

::::::::
available.

::::::::::::
Post-treatment

:::::::::
streamflow

::

:::::::::::
measurements

:::
as

::::
well

:::
as

::::
pre-

::::
and

::::::::::::
post-treatment

:::
ET

:::::::::::::
measurements

:::
are

:::
not

::::::::
available

:::
in

:::::
most

:::::::::
real-world

::::::::::
applications

:::
of

::

::::::::
modeling

::
to

::::::
support

:::::
brush

:::::::::::
management

::::::::
activities.

:::::::::
Therefore,

:::
we

::::
treat

:::::
QOI-1

:::::::
through

::::::
QOI-4

::
as

::::::::::
verification

::::::::
measures

::
to

:::::
check

::

:::
how

::::
well

:::
the

::::::
model

:::::::::
reproduces

:::::::::
long-term

:::::::::::
water-budget

::::::::::
components,

::::::::
measures

::::
that

:::
are

::::::
related

::
to

:::::::::
simulating

:::
the

:::::::::
feasibility

::
of

:::
260

::

::::
brush

::::::::::::
management.

::

:::::
QOI-5

::
is

:::
the

:::::::
primary

:::::::
quantity

:::
we

:::
use

::
to

:::::::
evaluate

:::
the

:::::::::::
effectiveness

::
of

:::::
brush

:::::::::::
management:

::::
how

::::
does

:::
the

::::::::
simulated

:::::::::
long-term

::

:::::::::
volumetric

:::
ET

::::::
change

::
as

:
a
:::::
result

::
of

:::::
brush

::::::::::::
management?

:::::
QOI-5

::
is
::::::::
simulated

:::
by

:::::::
running

:::
the

:::
pre-

::::
and

::::::::::::
post-treatment

::::::
models

:::
for

::

::::
2004

::
to

:::::
2010

:::
and

::::::::
summing

:::
the

:::::::::
differences

::
in

:::::::::
simulated

::
ET

::::::::
between

:::
the

:::
two

::::::::::
simulations.

:::

2.8 Monte Carlo and GLUE25

Monte Carlo analysis (MC) (Tarantola, 2005) was used to investigate how
:::
the

::::::
effects

::
of

:
SWAT model input uncertainty

influences
::
on brush-management QOIs. MC was chosen because it employees few assumptions and because the forward model

run time is relatively short.

To perform the MC analysis, a one-million parameter set ensemble was drawn using the prior, uniform distribution
::::
from

::
the

:::::::
“Prior” for each of 1,305 elements of the full parameterization using the python module pyEMU (White et al., 2016)(See30
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the Supplementary Material for the .
:::::
Note

:::
the

:
upper and lower bound of each parameter )

::
are

::::::::
provided

::
in

:::
the

::::
data

:::::::
release

:::::::::::::::::::
(White et al., 2017) and

:::
are

::::::::::
summarized

:::
in

:::::
Table

::
S1

::
in
:::
the

:::::::::::::
Supplementary

:::::::
Material. Once the prior parameter ensemble was

constructed, the SWEEP utility of the PEST++ software suite
::::::::::::::::
(Welter et al., 2015) was used to run the pre- and post-treatment

SWAT models for each of the one million realized parameter sets in a distributed, parallel environment using the steps outlined

previously
::::::::
described

::
in
::::

the
::::::
Model

::::::::
Interface

::::::
section. The result of this process yielded one million values for each of the5

conditioning measures and brush-management QOIs.

The reduced parameterization was evaluated in a similar fashion. The full parameterization
:::::::::::::::::
full-parameterization

:
prior en-

semble was modified so that the value of parameters
::::
each

::::::::
parameter

::::
that

::::
was not included in reduced parameterization were

:::
was

:
fixed at the

:::::
value

::::::::::
representing

:::
the

:
midpoint of the associated

:::::::::
parameter’s

:
range. In this way, parameters not included in

the full parameterization were treated as if they were not in the analysis and are instead “fixed” or “known” model inputs–just10

::::::::::
inputs—just as they would be treated in a modeling analysis that only adjusted the 12 inputs of the reduced parameterization.

Note that while
:::::::
Whereas

:
the midpoint values of the fixed parameters may not be “best” in the sense that they reduce model-

to-measurement misfit, they are nonetheless centered within the range of plausibility as described by the prior parameter

distribution
::::::
“Prior”.

The reduced parameterization
::::::::::::::::::::
reduced-parameterization

:
prior ensemble was also evaluated using the SWEEP utility in a15

distributed parallel environment, yielding one million values for each of the conditioning measures and brush-management

QOIs.

Once the prior ensembles of both the reduced and full parameterizations were evaluated, the GLUE method of Beven

and Binley (1992) was used to condition the prior ensembles. The GLUE method was selected because it accommodates a

subjective likelihood function, which allows the conditioning process to be flexible and can simultaneously accommodate20

several criteria
::::::::::::::::::::
(Beven and Binley, 1992). In this study, the behavior

::::::::
behavioral

:::::::::
parameter

:
ensembles are a subset of prior

::::::::
parameter

:
ensembles which meet three criteria (also known

:::::
herein

:::::::
referred

::
to

:
as conditioning measures). Following Moriasi

et al. (2007), we selected the following conditioning measures, which are based on daily average
:::::
mean streamflow, to form the

behavioral ensemble:

– CM-1 conditioning-period (pre-treatment) Nash-Sutcliffe efficiency
:::::
model

::::::::
efficiency

:::::::::
coefficient

::::::
(NSE) > 0.7525

– CM-2 conditioning-period (pre-treatment) percent bias < 5%

– CM-3 conditioning-period (pre-treatment) coefficient of determination (R2) > 0.85

These conditioning measures are widely used to judge a hydrologic model’s ability to reproduce observed daily average

::::
mean

:
streamflow (Moriasi et al., 2007). Briefly, NSE is a statistic that determines the relative magnitude of simulated residual

variance to the observed variance
:::::::::::::::::::::
(Nash and Sutcliffe, 1970). Percent bias measures the tendency of the model to systematically30

over or under simulate the observed data, while
::::::
whereas

:
the coefficient of determination measures the colinearity between

simulated and observed pairs. By using all three of these conditioning measures simultaneously, we are seeking inputs to the

model that
::
the

:::::::::
parameter

::::::::::
realizations

:::
that

::::::
“best” reproduce different facets of the observed streamflow data

:::
are

::::::::
identified.
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Realizations in the each of
::::
each

::
of

:::
the

:
prior ensembles that satisfied all three of conditioning measures are designated as

“behavioral” and, taken together, comprise the reduced and full parameterization behavioral ensembles, respectively. The
:::::
These

behavioral ensembles represent parameter realizations that respect the Prior
::::::
“Prior” but that also reproduce daily average stream

flow
::::
mean

::::::::::
streamflow

:
acceptably well according to the three conditioning measures. That is, each parameter set

:::::::::
realization

in the full- and reduced-parameterization
:::::::::
behavioral ensembles can be considered “calibrated” in that each of these parameter5

sets
:::::::::
realizations results in simulated daily average

::::
mean

:
streamflow that acceptably match the observed data according to the

three conditioning measures.

2.9 Global Sensitivity Analysis

Given the drastic
::::
large

:
difference in the number of parameters between the reduced (12) and full (1,305) parameterizations,

the interested reader may be wondering how many of members of the reduced and full parameterizations influence either the10

conditioning measures or the QOIs or both. In an effort to address this question, we employed the global sensitivity analysis

(GSA) method of Morris (Morris, 1991) , which is known as
:::::
which

::
is a “one-at-a-time” GSA method; each parameter is varied,

in turn, across the specified range, effectively sampling the sensitivity of QOIs and conditioning measures across parameter

space. We used the model independent implementation of the method of Morris (Morris, 1991) encoded in GSA utility of the

PEST++ software suite (Welter et al., 2015)
::::::::::::::::::::::::::::
(Morris, 1991; Welter et al., 2015) with 20 discretization points across the range15

of each parameter.

2.10 Quantities of Interest

There are several quantities, derived from simulation results, which we term quantities of interest (QOIs), that encompass the

simulated pre- and post-treatment long-term water budget components in the simulated watershed:

volumetric conditioning-period (pre-treatment) ET-precipitation ratio volumetric conditioning-period (pre-treatment) streamflow-precipitation20

ratio volumetric forecast-period (post-treatment) ET-precipitation ratio volumetric forecast-period (post-treatment) streamflow-precipitation

ratio volumetric forecast-period difference between the simulated treated and untreated watershed

The work of Banta and Slattery (2011) includes daily average streamflow and daily total ET for the watershed during the

forecast (post-treatment) period, which means “measured” values for QOI-1 through QOI-4 are available. Post-treatment

streamflow measurements as well as pre- and post-treatment ET measurements are not available in most real-world applications

of modeling to support brush management activities. Therefore, we treat QOI-1 through QOI-4 as verification measures

to check how well the model reproduces long-term water-budget components, measures that are related to simulating the330

feasibility of brush management.

QOI-5 is the primary quantity we use to evaluate the effectiveness of brush management: how does the simulated long-term

volumetric ET change as a result of brush management. QOI-5 is simulated by running the pre- and post-treatment SWAT

models for the time period 2004 to 2010 and summing the differences in simulated ET between the two simulations. Note

the only difference between the pre-treatment and post-treatment models is the simulated land cover and CANMX values for335

HRUs 18, 20, 22, and 32.
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3 Results

The application of the GSA method of Morris Morris (1991)
:::::::::::::
(Morris, 1991) reveals a considerable number of model inputs

::

that influence the conditioning measures as well as the designated brush-management QOIs. Furthermore, the combined
:::::
Monte

::

::::
Carlo

::::
and

:::::::::
associated

:::::::::::
GLUE-based

::::::::::
conditioning

:::::::
process

:
(MC-GLUE

:
) analysis reveals a relatively large difference in the esti-

:::
340

::

mated range of QOI-5 between the full
::::::
reduced

:::
and

::::
full

::::::::::::::
parameterization

::::::
models.

:::

3.1
:::::

Global
::::::::::
Sensitivity

:::::::
Analysis

::
Of

:::
the

:::::
1,305

:::::
model

:::::
inputs

::::::
treated

::
as

::::::::::
parameters,

:::
the

::::::
method

::
of

::::::
Morris

:::::::
analysis

:::::::
indicates

::::
only

::::
194

:::::::::
parameters

:::
are

::::::::::::
non-influential

::
to

::
the

:::::
three

::::::::::
conditioning

::::::::
measures

::::
and

:::
five

::::::::::::::::
brush-management

::::
QOIs

::::
(See

:::
the

:::::::::::::
Supplementary

:::::::
Material

:::
for

:
a
::::::::
complete

::::::::
summary

::
of

:::
the

::::
GSA

:::::::
results,

::::::::
including

:
a
:::::
table

::
of

:::
the

::::
five

::::
most

:::::::::
influential

:::::::::
parameters

:::
for

:::::
each

::::
QOI

:::
and

:::::::::::
conditioning

:::::::
measure

:
[
:::::
Tables

::
S2

:
and reduced parameterization models

:::
S3]

:
).
:::::

Note
::::
that

:::::
many

::
of

::::
the

::::
most

:::::::::
influential

::::::::::
parameters,

::::::::::
specifically

:::::::::::
precipitation10

:::::::::
multipliers,

:::::
plant

::::::
growth

::::::::::
parameters,

:::
and

:::::::::
HRU-scale

::::::::::
parameters,

:::
are

:::
not

::
in

:::
the

:::::::
reduced

::::::::::::::
parameterization

:::
and

:::
are

:::
not

::::::::
included

::
in

:::::
typical

::::::::::
hydrologic

::::::::
modeling

:::::::
analyses

::::::::::::::::::
(Arnold et al., 2012b).

3.2 Monte Carlo

The Monte Carlo and associated GLUE-based conditioning process (MC-GLUE )
:::::::
analysis yielded 7,155 and 6,846 realiza-350

tions (out of the 1 million member prior ensembles) that comprise
:::::::
compose the behavioral ensembles for the reduced and

full parameterizations, respectively. These behavioral realizations
:::::::::
ensembles reproduce the pre-treatment daily average

:::::
mean

streamflow data acceptably well according to the three conditioning measures. The
:::::::
relation

::
of prior and behavioral relation

among
::::::::
ensembles

::
to
:

the three conditioning measures for both
:::
the

:::::::
reduced

:::
and

:::
full

:
parameterizations can be seen graphically

on Figure 3. Figure 3 shows the conditioning measure results from running the full- and reduced-parameterization 1-million355

member ensembles each of the three conditioning measures. The diagonal panes of Figure 3 show the histograms of each

of the 3
::::
three

:
conditioning measures, while

::::::
whereas

:
the off-diagonal panes showthe

::::
show

:::
the

:
relation between conditioning

measures. Parameter realizations within the hatched boxes on Figure 3 collectively form the behavioral ensembles for both the

full-
::::::
reduced

:
and reduced-parameterization.

:::
full

::::::::::::::
parameterization.

::::
360

::

3.3 Global Sensitivity Analysis25

Of the 1,305 model inputs treated as parameters, the method of Morris analysis indicates only 194 parameters are non-influential

to the 3 conditioning measures and 5 brush-management QOIs (See the Supplementary Material for a complete summary of

the GSA results, including a table of the 5 most influential parameters for each QOI and conditioning measure). Note that many

of the most influential parameters, specifically precipitation multipliers, plant growth parameters, and HRU-scale parameters,365

are not in the reduced parameterization and are not included in typical hydrologic modeling analyses (Arnold et al., 2012b).
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3.2.1 Verification QOIs

In general, for both
:::
the

:::::::
reduced

:::
and

:::
full

:
parameterizations, the behavioral distributions for ET-based QOIs (QOI-1 and QOI-

3) are similar to the respective prior distributions; conditioning has slightly shifted the distributions towards larger values of

precipitation-ET ratios but has not substantially decreased the width of the distributions. The similarity between prior and

behavioral ensembles
::::::::::
distributions

:
indicates the conditioning process has not changed

::
the

:
uncertainty that exists in model5

simulated ET. The prior and behavioral ensembles
::::::::::
distributions

:
of reduced and full parameterizations bracket , at the 95%

confidence level, the
:::
the measured value for verification QOI-1, QOI-2 and QOI-3

::
at

:::
the

::::
95%

:::::::::
confidence

::::
level

:
(Figures 4, 5,

and 6).

QOIs related to streamflow (QOI-2 and QOI-4) have markedly different behavioral distributions compared to priors
::::
prior

::::::::::
distributions, indicating considerable conditioning of streamflow-sensitive parameters. The measured value for QOI-4 ,

:
(volumetric10

forecast-period ([post-treatment) ] streamflow-precipitation ratio, was not captured )
::::
was

:::
not

::::::::
bracketed

::
at
:::
the

:::::
95%

:::::::::
confidence

::::
level by either behavioral distribution or the prior distribution of the reduced parameterization (Figure 7).

3.2.2 forecast
:::::::
Forecast

:
QOI

The prior uncertainty in the QOI-5 , the simulated
:::
(the

::::::::
simulated

:::::::::
difference

:::::::
between

:::
the

:
total forecast-period ET difference

between the treated and untreated watershed,
::
in

:::
the

::::
pre-

:::
and

::::::::::::
post-treatment

:::::::
models)

:
was substantially larger for the full pa-15

rameterization compared to the reduced parameterization (Figure 8): the reduced parameterization prior uncertainty ranged

from approximately -4.1 % to -2.1%while ,
::::::::

whereas the full parameterization model yielded a prior uncertainty that ranged

from approximately -7.5 % to +0.5%. Note a negative ET difference indicates a decrease in ET as a result of simulated brush

management. The larger range yielded by the full parameterization is a direct outcome of specifying more uncertain parameters

that influence QOI-5.20

QOI-5 behavioral uncertainty from the reduced parameterization is substantially different than the prior and included values

only in the range
:::::::::
uncertainty;

:::
the

:::::
95%

:::::::::
confidence

::::::
interval

::
of

:::
the

:::::::
reduced

::::::::::::::
parameterization

:::::::::
behavioral

::::::::::
distribution

:::::
ranges

:::::
from

-2.5 to -2.0
::
%. The behavioral uncertainty in

:::::::::
distribution

:::
of QOI-5 yielded by the full parameterization is similar to the prior

:::::::::
distribution, but shifted slightly towards positive values, ranging

:
;
:::
the

::::
95%

::::::::::
confidence

:::::::
interval

::
of

:::
the

::::
full

::::::::::::::
parameterization

::::::::
behavioral

::::::::::
distribution

::::::
ranges

:
from -6.2 to +0.5

:
%

:
(Figure 8A

:
a). Only slight differences between the prior and behavioral25

distributions for the full parameterization, again, indicate the selected conditioning process did not substantially change the

reliability in simulated long-term changes in ET as a result of brush management. We attribute the differences in QOI-5

distributions between the full and reduced
::::::
reduced

::::
and

:::
full

:
parameterizations to the model error generated by using a reduced

set of parameters to represent SWAT model input uncertainty. Note the prior distribution for the reduced parameterization was

also non-parametric compared to the full parameterization counterpart, a numerical artifact we also attribute to the model error30

induced by the reduced parameterization.
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4 Discussion

The full-parameterization behavioral distribution of QOI-5 included a range of possible outcomes from a net decrease to

a slight net increase in the ET component of the long-term water budget (Figure 8). This is a direct outcome of
:::::
range

::
of

:::::::
possible

::::::::
outcomes

::::::
stems

::::
from

:
the number of model inputs that were identified as uncertain and treated as parameters

in the MC-GLUE analysis. The possibility of a net increase in ET following brush management is not an unexpected or5

unprecedentedresult
::::::::::::
unprecedented. Harwell et al. (2016) showed a net decrease in surface-water yield following simulated

brush-management activities for one of their simulated subbasins. Furthermore, we have demonstrated that conditioning

/calibration of a hydrologic model to daily average
::::
mean

:
streamflow does not necessarily increase the reliability of forecasts

made with the model.

We must stress that the results of our analysis can not be directly extrapolated to hydrologic settings that are dissimilar to
::

the one described herein. However, this study has clearly demonstrated
:::
This

:::::
study

:::::::::::
demonstrates

:
the importance of robust un-

::

certainty quantification to support simulations of brush management, and, more generally, simulating the hydrologic outcomes
::

of land cover
:::::::::
land-cover change. Without uncertainty quantification, the results

::::::::
simulated

::::::::
outcomes of simulating brush man-

:::
410

::

agement are simply a single point
:::::
single

:::::
points

:
on the behavioral

::::
QOI distributions, which conveys no information related to

::

the reliability of the model results. The failure of the reduced-parameterization model to provide robust uncertainty estimates
::

demonstrates the importance of parameterization when attempting to quantify uncertainty in land cover
::::::::
land-cover

:
change

::

simulations.
:::
The

::::::
results

::
of

::::
our

::::::
analysis

::::::
should

:::
not

:::
be

::::::
directly

:::::::::::
extrapolated

::
to

:::::
other

:::::::::
hydrologic

::::::
settings

::::
that

:::
are

:::::::
different

:::::
from

::

::
the

::::
one

::::::::
described

::::::
herein.

:::
415

::

The MC-GLUE analysis showed that using a reduced parameterization to represent model input uncertainty leads to a

misrepresentation and critical underestimation of the uncertainty in QOI-5, leading to artificially high confidence that brush-20

management activities will decrease the ET component of the water budget by approximately 2.0 to 2.5%. By including a more

representative and complete set of parameters to capture
:::::::
represent

:
model input uncertainty, the resulting QOI-5 uncertainty

estimate more appropriately conveys the reliability in the modeled outcome of brush management.

A clear link between level of parameterization and uncertainty estimates for the simulated results of brush management has

been demonstrated, and issues , such
::::
such

::
as

:
underestimation of uncertainty and numerical artifacts , are shown to be associ-25

ated with a reduced parameterization. Furthermore, the results of applying the GSA method of Morris (Morris, 1991) revealed

more than 1,100 model inputs that were identified as uncertain and that also influence conditioning measures, QOIs or both.

Following Sexton et al. (2011), parameters that influence the QOIs must be included in the uncertainty analysis, even if said

parameters do not influence the likelihood function (e.g.,
:::
they

:
are not “identified” by the conditioning data). The demonstrated

issues with the level of parameterization raise questions related to the concept of “overparameterization” (Jakeman and Horn-30

berger, 1993) in the context of simulating the hydrologic outcomes of land cover
:::::::::
land-cover

:
change. Each of the inputs that

were selected for adjustment in the full-parameterization model were deemed uncertain at the start of the modeling analysis;

while
:::::::
whereas other practitioners may choose different prior distributions and/or ranges for these parameters, we doubt any

practitioners would state these model inputs are known with absolute certainty.
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There are two avenues to reduce QOI-5 uncertainty: either
::
(1)

:
collect information directly about the model inputs

::::
input

:::::::
variables

:
that most influence QOI-5–reduce

::::::::::
QOI-5—that

:::
is,

::::::
reduce

:
the prior uncertainty of the parameters that represent

these inputs—or
:::::
inputs

::
or

:::
(2) collect additional hydrologic observations that, through conditioning, reduce the uncertainty of

parameters that influence QOI-5. We recognize that the ET observation data used to formulate QOI-1 could in fact be used

as a condition measure. Given the similarity between QOI-1 and QOI-5, it is possible that
::
the

:
conditioning period ET data5

would
:::::
could

::
be

::::
used

:::
to further condition several parameters that influence QOI-5, thereby reducing the behavioral uncertainty

of QOI-5. However, these
::
the

:::::::::::::::::
conditioning-period ET data provide a valuable validation of the model’s performance

:
, and using

these data as a conditioning measure would provide unique and atypical conditioning.

We recognize that specifying how brush management is simulated requires some subjectivity, which is part of the necessary440

subjectivity inherent in environmental modeling, and we recognize that others have used different strategies to simulated brush

management with SWAT. In this study, brush management is simulated by modifying the maximum canopy storage and inputs

that control the simulated growth cycle for a representative area of the subbasin from evergreen forest to rangeland because

this required few assumptions and allowed injection of the desired uncertainty into the simulation workflow.

5 Conclusions

This study provided an analysis of the ability of the
:
a
:
SWAT model to forecast how brush management affects

:::
the

:
long-15

term water balance within a watershedhas been undertaken. The analysis relies on measured streamflow and independently-

derived evapotranspiration estimates to condition the parameterized model inputs as well provide a verification of the model’s

performance during the forecast period. The global sensitivity analysis method of Morris (Morris, 1991) global sensitivity

analysis (GSA) technique was used to investigate model input influence on conditioning measures and brush-management

quantities of interest (QOIs). Following the GSA
::::::
method

::
of

::::::
Morris, Monte Carlo and GLUE analyses were used to estimate the20

uncertainty of brush-management QOIs for the reduced and full parameterization schemes, respectively.

The
:::
Our analysis reveals the importance of robust uncertainty quantification when simulating the outcomes of brush man-

agement, especially as it relates to how the model is parameterized. Failure to specify a complete and encompassing parame-

terization is shown to lead to an underestimation of uncertainty in simulated brush-management outcomes, which may lead to

suboptimal water resource decision making.25

Given the number of identified uncertain model inputs and the associated specified uncertainty in said inputs, the model-

simulated change in
::
the

:
long-term ET in the watershed is largely uncertain and includes a range of possible outcomes from a

net negative to a slightly net positive change in long-term ET component of the water budget. The resulting uncertainty in one

of the primary metrics of brush-management effectiveness underscores the importance of robust and conservative uncertainty

quantification. Watersheds with different hydrologic response characteristics will obliviously behave differently, but, if model-30

ing is used to evaluate brush-management outcomes, robust uncertainty quantification is needed to place the model results in a

representative context.
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6 Code availability

The python scripts used to generate the prior ensembles and to post-process the ensembles are included in the model archive.465

6 Data availability

The ET, precipitation and streamflow data used for conditioning and verification are available for download as the appendices

to Banta and Slattery (2011) at the U. S. Geological Survey Publication Warehouse ()

The model archive for this analysis includes all

:
A
::::
data

::::::
release

:::
that

::::::::
supports

::
the

::::::::
analyses

::::::::
presented

:::::
herein

::
is

:::::::
available

::
at https://doi.org/10.5066/F7WH2NGR

::::::::::::::::
(White et al., 2017).

:::
The

::::
data

::::::
release

:::::::
includes

:
files and data used as part of this study and is available for download at !!!to be released concurrent

with publication!!!. The model archive includes:
::::::
needed

::
to

::::::::
reproduce

::::
our

:::::::
analyses,

:::::::::
including:

1. ESRI ArcMAP 10.2.2 project that includes the ArcSWAT version 2012.10.2.18 project used to create the base model10

2. base SWAT2012 input files generated by the ArcSWAT tool

3. PEST++ interface files including python pre- and post-processing scripts

:::
The

:
comma-separated value files of parameters and QOIs for prior ensembles of both the full and reduced parameterizations

::

::::
used

::
in

:::
the

::::::::
reduced

:::
and

::::
full

::::::::::::::
parameterization

::::::
Monte

:::::
Carlo

::::
can

:::
be

::::::::
generated

:::::
from

:::
the

:::::
files

:::::::
provided

:::
in

:::
the

::::
data

:::::::
release

::

::::::::::::::::
(White et al., 2017).

::::
The

:::
ET,

:::::::::::
precipitation,

:::
and

:::::::::
streamflow

::::
data

::::
used

:::
for

::::::::::
conditioning

:::
and

::::::::::
verification

:::
are

:::::::
available

:::
for

::::::::
download

::

::
as

:::
the

:::::::::
appendixes

::
to

:::::::::::::::::::::::
Banta and Slattery (2011) at

:::
the

::::
U.S.

:::::::::
Geological

::::::
Survey

::::::::::
Publication

:::::::::
Warehouse

::
(http://pubs.usgs.gov/sir/

::

2011/5226/
:
)

:::
480

::

Supplementary Material include: HRU summary table parameter description table GSA method of Morris top 5 list GSA

method of Morris summary table
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Figure 1. Study area and watershed location. The 47 HRUs yielded by the ArcSWAT tool (Winchell et al., 2007). The model inputs of

HRUs 18, 20, 22, and 32
:::::::
(stippled

::::::
pattern) were modified to simulate the brush-management activities.

::::::::::::::
Streamflow-gaging

:::::
station

:::::
(U.S.

::::::::
Geological

::::::
Survey

::::::::::::::
streamflow-gaging

:::::
station

:::::::::
08167353)

:
is
:::

on
::
an

:::::::
unnamed

::::::
stream.

::::
Base

::::
map

::::
from

::::
U.S.

:::::::::
Geological

:::::
Survey

::::::
digital

::::
data,

::::::
1:24,000

::::::::
Universal

::::::::
Transverse

:::::::
Mercator

::::::::
projection,

::::
Zone

:::
15

::::
North

::::::::
American

:::::
Datum

::
of

:::::
1983.
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Figure 2. Summary of (a) precipitation, (b) streamflow, and (c) evapotranspiration used in the modeling analysis. Accumulated values for the

conditioning and forecast period are shown in heavy black lines. Precipitation, streamflow and evapotranspiration estimates are from Banta

and Slattery (2011).
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Figure 3. Values of conditioning measures for the full (gray) and reduced (blue) parameterizations. The diagonal panes (([a)], (b)[
:
c], and

(c[
:
f]) ) show distribution of each conditioning measure; the off-diagonal panes (([b)], ([d) ] and ([e]) ) show the relation between respective

conditioning measures. The hatched boxes mark the 3-dimensional behavioral region; realizations within the hatched boxes comprise the

behavioral ensembles of each parameterization.
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Figure 4. Quantity of interest QOI-1: Simulated conditioning period (pre-treatment) ET as a percentage of precipitation. The prior and

behavioral distributions of
:::
95%

:::::::::
confidence

::::::::::::::
intervals—defined

::
by

:::
the

:::::::::
confidence

:::::
limits

:::::::
(CL)—of

:
both model parameterizations capture

:::::
bracket

:
the measured value. However, the conditioning process has little affect on uncertainty as the behavioral distribution is similar to the

prior distribution.
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Figure 5. Quantity of interest QOI-2: Simulated conditioning period (pre-treatment) streamflow as a percentage of precipitation. The effects

of the conditioning process can be seen as large reduction in the range of the behavioral distribution compared to the prior distribution. The

prior and behavioral distributions for model parameterizations bracket the measured value.
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Figure 6. Quantity of interest QOI-3: Simulated forecast period (post-treatment) ET as a percentage of precipitation. All 95% confidence

intervals capture
:::::
bracket

:
the measured value. However, the conditioning process has done little to decrease uncertainty as the behavioral

distributions are similar to the prior distributions for both model parameterizations.
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Figure 7. Quantity of interest QOI-4: Simulated forecast period (post-treatment) streamflow as a percentage of precipitation. Both the

parameterizations appear to have been “overfit” with respect to this QOI as both behavioral distributions do not capture
:::::

bracket the measured

value
::
at

::
the

::::
95%

::::::::
confidence

::::
level.
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Figure 8. Quantity of interest QOI-5:Simulated difference in total forecast period (post-treatment) ET volume as a result of brush man-

agement. Negative values indicate a decrease in ET as a result of brush management. The reduce parameterization yields a much narrower

confidence interval compared to the full parameterization.

Table 1. Summary of parameters used in the reduced parameterization. These 12 inputs were selected from Table 1 in Arnold et al. (2012b)

and are adjusted at the sub-basin scale.

control file name
:::::::
Parameter

:
type

:::
Type

:
lower

::::
Lower

:
bound upper bound

::::
Upper

:::::
Bound

:
description

::::::::
Description

:
(with units if applicable)

alpha_bf_v value 0.10 0.50 subbasin baseflow alpha factor ( 1
days

1⁄d)

cn2_r multiplier 0.50 1.50 subbasin soil moisture condition II curve number

epco_v value 0.50 0.98 subbasin plant uptake compensation factor

esco_v value 0.50 0.98 subbasin soil evaporation compensation factor

gw_delay_v value 10.00 300.00 subbasin groundwater delay time (days)

gw_revap_v value 0.02 0.40 subbasin groundwater ’revap’ coefficient

gwqmn_v value 500 4000 subbasin groundwater threshold return flow depth (mm)

ov_n_r multiplier 0.50 1.50 subbasin overland flow Manning’s ’n’

rchrg_dp_v value 0.25 0.75 subbasin deep aquifer percolation factor

revapmn_v value 100 1000 subbasin groundwater threshold ’revap’ depth (mm)

sol_awc_1_r multiplier 1.00 5.00 subbasin soil available water capacity ( mm
mm

mm⁄mm)

surlag_v value 2.00 12.00 subbasin surface runoff lag coefficient
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