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Reply to referee comment 1

This paper deals with the use of inverse modelling of soil water content and soil pressure
measurements for estimating e↵ective hydraulic parameters. Data are obtained from the
ASSESS test site, which is an advanced experimental facility with well-known but complex
soil layering and well-controlled boundary conditions. In particular, the e↵ect of unrep-
resented model errors is investigated, and more importantly procedures are proposed to
account for these model errors within the inversion process. The representation errors
that are considered include uncertain sensor positions, uncertainty in boundary condi-
tions, local heterogeneity, and dimensionality of the model (here: 1D vs. 2D). For the
selected boundary condition (multi-step drainage and imbibition from below), it is found
that small representation errors in sensor position can significantly a↵ect the inverted
material properties. I am strongly supportive of the idea of this study. Many studies typ-
ically stop after a single inverse modelling run. Sometimes the residuals are inspected,
but very rarely the results of inverse modelling are used to improve the model concept
or the system representation. This study explores several representation errors, and the
results seem to indicate that reasonably small changes in system representation can sig-
nificantly improve the data fit and the properties of the residuals. However, I have a few
general concerns and specific comments that I would like to see addressed. Addressing
these comments likely involves moderate to major revisions. In addition, grammar and
spelling should be improved in the revised version.
Reply: We thank the reviewer for the constructive comments and suggestions. The
manuscript was revised accordingly, hence we refer to the revised manuscript.

General Comments

1. The introduction is rather unambitious and does do full justice to the content of the
manuscript. The authors decided to include a second introduction in section 4.3 where
the structural error analysis is introduced. I strongly encourage bringing the idea of
structural error analysis in the beginning of the manuscript to better prepare the reader
for what is coming. The general stance of this extended introduction could be: Analysis
of inverse modelling results to improve models. As already indicated above, I think there
are too few studies that pursue this idea.
Reply: We agree and revised the introduction accordingly.

2. A general concern with the chosen approach is that the same data are used for in-
verse modelling and evaluation of the results. Would it not be much stronger when the
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inversely estimated parameters are tested on an independent dataset? Are such indepen-
dent datasets available for the ASSESS test site? In the current manuscript, improve-
ments in data fit are reported, but this is fully expected because the amount of parameters
was increased at the same time.
Reply: Independent datasets can either be achieved by changing the measurement
method or the experiment setup. The former leads to di↵erent model errors, e.g., due to
di↵erent measurement volumes of di↵erent instruments, and the latter leads to a di↵er-
ent sensitivity of the data on the estimated parameters. Hence, we decided to analyze
datasets of di↵erent instruments separately and to compare the results. Please also note
the reply to comment 5 of SC1.
The improvements are reported so that the readers can judge whether the size of im-
provement is worth the associated additional e↵ort.

3. A short discussion about the transferability of the results to other soil types would also
be useful for the readers. Of course, gradients in water content are steep in ASSESS and
this may significantly impact the importance of accurate sensor positioning. Would the
same insights be obtained when the ASSESS test would have consisted of di↵erent loam
soils? Please comment.
Reply: We agree, that this is an interesting question. Beyond general comments, we
cannot answer it with the given data of the presented case study.

4. The authors decided to not take the classical structure of Introduction, Materials and
Methods, Results and Discussion, Conclusions. For me, the alternative structure is not
really working. For example, part of the results are presented in section 4.3 where the
used methods have not yet been clearly explained. Although I may be purist in this mat-
ter, I would say that this paper would benefit from an organization following the classical
scheme.
Reply: We revised the structure of the manuscript, bringing it closer to the classical
scheme.

Specific Comments

Page 1, Line 1. Abstract should be a single paragraph. In addition, it is customary
to provide the scope of the manuscript with an opening statement. Here, the authors
immediately jump to the aims of the study.
Reply: We revised the abstract and added an introductory sentence.

Page 1, Line 19. Is direct determination really expensive? I would prefer time-consuming
here.
Reply: We changed the wording here.

Page 2, Line 19. Huisman et al. (2010) considered a soil layer on top of the dike mate-
rial.
Reply: We checked the paper again and found that the dike consists of the investigated
material (Fig. 2, 4, 6, 9, and 10).
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Page 2, Line 21. I would like to see more information about the TDR system that was
used. Did the authors rely on automatic waveform analysis, or was this done manually
to obtain more accurate results?
Reply: We added this information in Sect. 2.1 (Page 3, Line 20), Sect. 2.2.4 (Page 6,
Line 2), and Sect. A1.3 (Page 23, Line 1).

Page 2, footnotes. I find it very unusual that the authors use footnotes. Is this possible
and common in HESS? In any case, it seemed to me that much of the information pro-
vided in the footnotes could have easily been integrated in the main text. Please reduce
the amount of footnotes to a minimum.
Reply: We integrated the footnotes in the text.

Page 4, Line 14. One-sentence paragraphs should be avoided.
Reply: We improved the section, such that the one-sentence paragraph is avoided.

Page 6, Line 19. I am not so convinced that a separate section on the implementation is
a good idea. In particular, I do not really like the three very short subsections that now
follow. It makes the text unpleasant to read.
Reply: We decided to separate the more general theory from the case dependent im-
plementation such that the readers can skip or flip through the more general theory and
just read the details on the implementation and do not have to do the sorting themselves.
The three short subsections were introduced for precise referencing.

Page 9, Line 5. I could not follow your implementation of small-scale heterogeneity. Are
you using heterogeneous parameters fields throughout the domain, or is this heterogeneity
only introduced locally? Please clarify.
Reply: We clarified the Sect. A1.4 (Page 23, Line 18).

Page 10, line 12. I know this as global-local approach.
Reply: We updated the description of the 1D setup (Sect. 2.4.1) and don’t use the
wording anymore.

Page 10, line 21. Not sure that standard deviation is appropriate here? Is this not the
expected standard deviation of the residuals (e.g. measurement error).
Reply: We made the sentence more precise (Sect. 2.3.1, Page 8, Line 14).

Figure 7. This figure did not make things clearer for me. Consider deleting.
Reply: We still think that graphically representing the flow of information is useful.

Page 12, Line 5. The start of this section seems out of place. For me, this clearly belongs
to the general introduction (see general comments).
Reply: We revised the introduction accordingly.
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Page 13, Line 20-32. Perhaps I am a purist, but for me this is a result and this is not
a good position in the paper to discuss a result. I would bring this later.
Reply: This is intended as an example to show that the method works. It is thus a
methods piece, not a result.

Figure 9. It would be good to show measured and modelled data in at least one figure.
Here, a third column could be added to the left in addition to the residuals.
Reply: We added the results of the miller and position setup from the 2D case study
to the data in Fig. 4.

Page 15, Line 5. Avoid repetitions. This has already been described four lines ago.
Reply: This comment is unclear to us. We rechecked the paragraph and could not
identify any repetition.

Figure 10. This figure is too complicated. I am not sure how to read it. I am particularly
unsure about the green.
Reply: We removed the indication of the setups in order to simplify the figure.

Page 19, Line 32. It is not so clear how you reached this conclusion. Perhaps this needs
to be emphasized better when discussing the results.
Reply: We separated the Sect. 3 in subsections and clarified the analysis in Sect. 3.1.3.
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Reply to referee comment 2

Dear Editor:
The study is interesting and demonstrates a huge work. However, before it can be trans-
ferred to the HESS step of the journal, I suggest the authors should discuss some key
points and possibly make some changes in the text. I apologize for having been a bit
late with my appraisal, but this also gave me the opportunity to read the comments from
another referee and one discussant. I have listed below one general comment and several
specific remarks, the most significant of which are starred (*).
Reply: We thank the reviewer for the constructive comments and suggestions. The
manuscript was revised accordingly. Hence, we refer to the revised manuscript.

General Comments

As a referee, but also as a reader of studies dealing, among various sources of uncertain-
ties, also with those associated with the locations of sensors that monitor a flow process,
there is always something causing me some concern. When setting up an experimental
test, e↵orts are made reducing errors (especially the systematic errors) and, among other
things, one measures the positions of the various sensors as accurately as possible. I also
understand that this task can be a bit more complicated under field conditions, especially
when inserting the sensors at the greatest soil depths. Therefore and to the benefit of
a wider readership, the authors should justify more why they are interested in this type
of uncertainty. Moreover, I have the feeling that the error in sensor location should be
viewed more as a systematic error rather than a random error. I think that the method
employed by the authors might not be adequate to treat the presence of systematic errors.
Some clarifications and a discussion on this point seem deserving.
Reply: We agree, that e↵orts are made to measure the positions of the various sensors
as accurately as possible. Yet, the surface and/or the subsurface structure may change
with time and requirements for accuracy and precision may change a posteriori. We
clarified this in Sect. A1.4 (Page 23, Line 9).
We agree that the uncertainty in the sensor position is a systematic or structural error.
This is the reason why this uncertainty was represented and the parameter estimation
algorithm was used to propose more consistent positions of the sensors minimizing this
systematic error.

Specific remarks

(*) P.1, L.13. The authors claim that the approximated soil water retention function is
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reasonable close to the inversion results. Actually and allowing for the types of water
flow processes investigated, it would have been more interesting and e↵ective that the
favorable outcome is in terms of the unsaturated hydraulic conductivity function. From
the results depicted in the right plots of Fig.10 and Fig.13, this does not seem the case.
Reply: Lacking direct measurements of the unsaturated hydraulic conductivity at the
position of the TDR sensors, the presented method merely yields an estimate of the
initial hydraulic state and an approximation of the soil water characteristic. The re-
maining parameters for the initial hydraulic conductivity function (Ks and ⌧) are taken
from Carsel and Parrish (1988, 10.1029/WR024i005p00755) and are independent of the
presented measurement data. Hence, the presented method is not applicable to approx-
imate the hydraulic conductivity function.

P.1, L.20-23. On the topic of inverse modeling applied to Soil Hydrology, I suggest citing
the more recent and comprehensive papers by Hopmans et al. (2002) and/or by Vrugt
and Dane (2006). Concerning the lab-scale experiment, the paper by Romano and San-
tini (1999) also treat types of errors of interest for the present study. As for the in-situ
applications, the paper by Romano (1993) can also be in line with some aspects of the
present study.
Reply: We revised the introduction accordingly. Please also note the reply to comment
1 of SC1.

P.1, L.22. The paper by Schneider et al. (2006) was published in HESS, not in Hess-D.
Reply: We corrected the reference.

(*) P.2, L.10-13. It is not clear (at least to me) which processes the authors are talk-
ing about. For example, the sensor position is definitely not a process. Moreover, as
far as I am aware, the previous studies refer to minimum unknown parameters to be
estimated mainly because they employed the classic �2 penalty criterion coupled with
the Levenberg-Marquardt (LM) algorithm. Why do not compare the present results with
those ones whether you use, for example, the DREAM tool developed by Vrugt (2016)?
By doing that way, the paper would be even more interesting since the authors claim of
having developed a modified LM algorithm.
Reply: We agree and changed the formulation (Page 2, Lines 9 – 12).
As the major focus of the manuscript, we investigate the e↵ect of neglected structural
errors which lead to suboptimal results using the �2 penalty criterion. Therefore, we
also use the �2 penalty criterion coupled with the Levenberg-Marquardt algorithm and
quantify the e↵ect of unrepresented model errors by resulting residuals and material
properties of the di↵erent setups (Sect. 2.3 and Sect. 2.4).
In order to compare the best result of the di↵erent setups, we are rather interested
in maximum likelihood instead of its distribution in this work. The former is more
e�ciently found with the Levenberg-Marquardt compared to the DREAM algorithm.
Additionally, if the �2 is used as likelihood function in DREAM, the discussed problem
of neglected processes and uncertainties will remain the same as we use a flat prior in
this study. Also, adding additional material would make the already long manuscript
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even longer.

(*) P.4, L.8-10. Strictly speaking, the ✓-based Richards equation describes the variations
in space (x, y, and z coordinates) and time (t) of the volumetric soil water content.
Then, due to the selected relationship between water content and matric pressure head,
one can retrieve the corresponding variations in h.
Reply: We changed the wording in Sect. 2.2.1 (Page 4, Line 9).

(*) P.19, L.25-27. This is a quite common outcome when modeling of data with a max-
imum likelihood estimator and optimization techniques. I think that this problem should
be addressed in another way. Namely, more in terms of the information content of the
available input datasets. Does the initial information content increase when adding the
additional data? Are the additional data not at all, or weakly, or strongly correlated
among them and with the already available input datasets?
Reply: If the sensors monitor hydraulic dynamics which is not represented perfectly in
the model, the residual will increase as the probability to monitor these model errors is
increased with the number of sensors. In information theory, the information content of
data is often quantified with measures such as the Shannon entropy. In order to apply
these measures, the input data have to be transferred to random data. This requires
knowledge about the general data structure which has to be gained from the data them-
selves. This implies massive practical issues in heterogeneous media. Since the TDR
data monitor the same process at di↵erent positions, the Pearson correlation coe�cient
of the data is mainly positive and depends in particular on the recorded hydraulic dy-
namics. As the materials A and C which are flipped in case I and III, the characteristics
of the monitored hydraulic dynamics changes. Hence, the correlation of these data is
weak in general. The hydraulic state of material B is monitored at a similar position in
cases II and III. Thus, the correlation of the according data increases.

As general and final comment, I should say that the English usage is very good. Never-
theless, the text is hard to follow. I do not have suggestions on this point, but the authors
should make any e↵ort to improve this aspect of the manuscript. Also, sub-section 4.1
might be left out from the manuscript, whereas I do not see the need to have so many
small sub-sections in Section 3. Section 6, albeit being a summary, seems pointless and
ine↵ective, chiefly because it also contains many repetitions. A real concluding remark
section would be more e↵ective, if necessary. Footnotes are rare or even absent in our
scientific literature.
Reply: We revised the general structure of the manuscript. Please note the reply to
comment regarding Page 6, Line 19 of RC1. We also revised Sect. 3 and Sect. 4 to make
them more concise and generally integrated the footnotes into the text.
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Figure 1: Pearson correlation coe�cient for the data used in the 1D study
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Reply to short comment 1

I congratulate the authors to an interesting study at the ASSESS experimental site. I
consider the topic and the discussion manuscript highly relevant and worth to be pub-
lished in HESS. Because of this, I would like to contribute some comments for a revision.
Reply: We thank Conrad Jackisch for the constructive comments and suggestions. The
manuscript was revised accordingly. Hence, we refer to the revised manuscript.

1. If I understand correctly, the authors argue for a retention-dynamics-based identifi-
cation of soil hydraulic material properties based on inverse modelling of an imbibition
and outflow experiment. There have been many studies on the issue of inverse parameter
estimation, which I consider relevant for the MS. This also holds for the discussion of
heterogeneity and unrepresented model errors. I.e. the authors name the validity limits
of the Richards equation but I do not see the conceptual basis of the argumentation for
their approach. Moreover, I suggest to present an independent reference for the found
parameters (e.g. from laboratory analysis) and to include a critical view on the TDR
inferred soil moisture values.
Reply: The manuscript combines two main lines of thoughts: One is concerned with
the estimation of hydraulic material properties on the basis of TDR measurement data
acquired in a complicated subsurface architecture, which was forced with a fluctuating
water table. We agree that this approach is not new and was applied already for many
one-dimensional systems in the laboratory and also some in the field. The introduction
cannot list all of the available literature. Rather it connects to the related literature we
deem most relevant for this manuscript. The other line of thought considers a general
problem in modeling, namely the investigation, which physical processes and uncertain-
ties have to be represented in order to describe the measurement data adequately. As the
true behavior of the system of interest is unknown and since required adequacy depends
on the application at hand, we choose to test di↵erent hypotheses (realized by increas-
ingly complicated models) and analyze their results. We improved the introduction to
better reflect these two lines.
The Richards equation is only valid where water and air phase decouple, i.e. at in-
termediate saturation. At high saturation, water– and air–flow become coupled and a
two–phase formulation is required. Conversely, at low saturation, vapor transport in
the air phase is no more negligible and at least a two–components model is required.
Richards equation is a single–phase model.
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The transfer of laboratory data to field situations is notoriously di�cult. Major chal-
lenges are (i) bringing an undisturbed sample into the laboratory, (ii) representing struc-
tures that are larger than the sample. In our opinion, there thus cannot be such a thing
as an independent reference for a field site.
We assessed the precision from TDR data close to saturation and the accuracy with er-
ror propagation considering uncertainties in porosity and in bulk permittivity (Jaumann,
2012) yielding an uncertainty of 0.007 volumetric water content (Sect. A2.1). This result
is of the same order as the evaluation of Roth et al., (1990, 10.1029/WR026i010p02267).
A major point of critique of the Complex Refractive Index Model (CRIM) concerns that
it is a physically-motivated and not a physically-based model (e.g., Brovelli and Cas-
siani, 2008, 10.1111/j.1365-2478.2008.00724.x). Additionally, other uncertainties such as
the influence of the electrical conductivity on the evaluated water content and on the
temperature model for the permittivity of water as well as the spatial distribution of the
relative permittivity of the soil bulk are neglected in the manuscript.

2. Despite my appreciation of the logical intention of the structure of the MS, I find it
very di�cult to follow. Especially, I could not trace answers to my expectations from the
title and abstract – probably because they became obscured by many detailed side-tracks
and because some promised elements (like GPR data or elaboration on what are model
errors) are not really followed. Maybe a fundamental revision and exhibition of the main
story line could clarify most of the forthcoming points.
Reply: We revised the structure of the manuscript accordingly.

3. What is the reason to use own models, solvers and the LM least squares optimizer
instead of established and tested toolboxes? Is it really matter of the MS to present the
technical details and equations although they are not developed further, taken up or dis-
cussed later on? How can be assured that numerical errors in the code do not bias the
results (see also Clark and Kavetski 2010, 10.1029/2009WR008896)? I can imagine that
the details suit well as appendix and that an explanation of the concept and intention to
use these tools can clarify much of my second concern.
Reply: The solver for the Richards equation (muPhi) is tested, published (Ippisch et
al., 2006, 10.1016/j.advwatres.2005.12.011), and it is, to the best of our knowledge, the
numerically most e�cient solver. The Levenberg-Marquardt algorithm was implemented
according to published literature, because some of the required approaches are not im-
plemented in available toolboxes.
We present only those technical details in the manuscript that are necessary to under-
stand the evaluation procedure, such that the methods are traceable and reconstructible.
The position of the methods section depends on the philosophy of the journal.
Due to the discretization of the problem in space and time, numerical errors are always
existent, essentially balancing computational e↵ort and numerical accuracy. We chose
the grid resolution and meta–parameters given in the manuscript based on a grid con-
vergence analysis.
We adjusted the structure of the manuscript accordingly.
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4. Since heterogeneity is also an issue of scale and conceptual deficiency, I find the
arguments not yet well drawn. What support of the TDR sensors is integrated by the
measurements? How exactly are the estimated positions of the TDR sensors calculated
and how precisely are the real positions known?
Reply: We clarified this issue in Sect. A1.4.
The support of the TDR sensors depends in particular on the sensor design and can be
calculated (Robinson, 2003, 10.2136/vzj2003.4440). For the TDR sensors in ASSESS,
the measurement volume contains a cylinder with a radius of approximately half the
rod distance around the central rod in homogeneous electrical permittivity distribution.
The rod distance of the TDR sensors used in ASSESS is 0.03 m.

5. Since GPR data of the experiment appears to be existing (Klenk et al. 2015 under
review in HESSD doi:10.5194/hessd-12-12215-2015) I do not understand, why it is not
used for the study (although mentioned in the abstract and introduction)? I suppose that
the TDR and GPR data could be a very valuable pair of observations to be compared
directly (as both rely on the rel. electrical permittivity). The strong advantage of GPR
as spatially continuous technique could be related to the local measurement with higher
absolute precision of the TDRs.
Reply: Three single channel time–lapse GPR radargrams were acquired during the
experiment and are currently evaluated for a separate publication. The measurement
data presented in Klenk et al. (2015) were recorded during a di↵erent imbibition and
drainage experiment. The main focus of this manuscript is to quantify the e↵ect of un-
represented model errors on the soil hydraulic material properties and to find consistent
description of TDR measurement data. These data are characterized by a point–scale
measurement volume of the sensors, which is the main reason for the described e↵ect of
uncertainties concerning the sensor position and small-scale heterogeneity. Since such
point–measurements are rather the rule then the exception in most large–scale studies,
the related issues require critical consideration. A rather complementary analysis is re-
quired for the GPR data taking into account the larger measurement volume and GPR
related representation errors. This would blow the limits of a single paper. Please also
note the reply to comment 2 of RC1.

6. Figures 10 and 13 suggest to me, that the observations relate to the portion of the
(sandy) retention curve which is rather linear (and that the strongly non-linear part is
actually only of importance at low matric potential). How is a transfer of the found pa-
rameters to the full retention spectrum validated? Since the ASSESS site is an artificial,
well-defined test bed I would assume that the actual retention properties are known and
that local deviations are mainly due to di↵erences in bulk density. Hence I could imagine
that the authors could use fig. 11 in the methods section to explain their approach in
much more detail and related to specific research hypotheses referring to the retention
properties. At the moment, I find it very di�cult to read figure 9 and 12 and to compare
the 1D and 2D case.
Reply: A transfer of the results to the full retention spectrum can neither be made nor
validated with the available water content data and missing hydraulic potential mea-
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surements. We explained in the reply to comment 1, why no laboratory–based reference
retention properties are known for ASSESS. We think that Fig. 9 is required for the
discussion of the results and is best understood with a direct reference to the application.
We improved the description, how to read these figures in Sect. 2.3.3 (Page 10, Line
17). Please also note the reply to the comment of RC1 concerning Fig. 7 (Fig. 9 in the
unrevised manuscript).

Please find minor comments highlighted in the attached MS file.
Reply: We revised the manuscript considering these comments.
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List of most important changes

(Reference to revised version)

• Major revision of the text

• Footnotes were included in the text

• Introduction: Clarified storyline and perspective

• Restructured Section 2:

Moved application-dependent details of the representation to the appendix A1

• Figure 2: Added face color to indicate 1D studies

• Figure 4: Added simulation of the 2D miller & position setup

• Restructured Section 2.3: Structural error analysis

(includes old Section Parameter estimation)

• Restructured Section 3.1: 1D study: Discuss results in subsubsections

• Restructured Section 3.2: 2D study: Discuss results in subsubsections

• Figures 10 and 11 changed slightly due fixed error in data preprocessing

• Added Section 6: Competing interests

• Added Section A1.3: Evaluation of TDR traces

• Added Section A2: Setup

• Tables 5 and 6: Decreased number of significant digits

• Added Table 7: Parameters of the 2D miller & position setup
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Comment to the marked up version of the

manuscript

As the manuscript was revised completely, the structure and sections changed consid-
erably. Hence, the standard markup tool for latex (latexdi↵) has major problems gen-
erating a marked up version of the manuscript. Please excuse format errors, broken
references to figures, sections, and tables and use the marked up version as a general
indicator for changes.
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Unrepresented model errors - – effect on estimated soil hydraulic
material properties
S. Jaumann1,2 and K. Roth1,3

1Institute of Environmental Physics, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
2HGSMathComp, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
3Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg,
Germany

Correspondence to: S. Jaumann (stefan.jaumann@iup.uni-heidelberg.de)

Abstract. We investigate the quantitative effect of unrepresented (i) sensor position uncertainty, (ii) small scale-heterogeneity,

and (iii) 2D flow phenomena on estimated Unrepresented model errors influence the estimation of effective soil hydraulic

material properties. Therefore, a As the required model complexity for a consistent description of the measurement data is

application–dependent and unknown a priori, we implemented a structural error analysis based on the inversion of increas-

ingly complex models. We show that the method can indicate unrepresented model errors and quantify their effects on the5

resulting materials properties. To this end, a complicated 2D subsurface architecture (ASSESS) was forced with a fluctuating

groundwater table . while Time Domain Reflectometry (TDR) , Ground Penetrating Radar (GPR), and hydraulic potential

measurement devices monitored the hydraulic stateduring the experiment. Since the measurement data are analyzed with an

inversion method, starting close to the measurement data is key. Therefore, we developed a method which estimates the ini-

tial water content distribution by approximating the soil water characteristic on the basis of TDR measurement data and the10

position of the groundwater table. In order to reduce parameter bias due to unrepresented model errors, we implemented a

structural error analysis to identify uncertain model components which have to be included in the parameter estimation. Hence,

focussing on TDR and hydraulic potential data, we realized . In this work, we analyze the quantitative effect of unrepresented

(i) sensor position uncertainty, (ii) small scale-heterogeneity, and (iii) 2D flow phenomena on estimated soil hydraulic material

properties with a 1D and a 2D studywith increasingly complex setups: Starting with estimating effective hydraulic material15

properties, we added the estimation of sensor positions, the estimation of small-scale heterogeneity, or both. The analysis

. The results of these studies with a modified Levenberg-Marquardt algorithm demonstrates demonstrate three main points:

(i) The approximated soil water characteristic for the initial water content distribution is reasonably close to inversion results.

(ii) Although the material properties resulting from fewer sensors are available per material, the larger is the effect of unrep-

resented model errors on the resulting material properties. (ii) The 1D and 2D studies are similar, the 1D studies are likely to20

yield study yields biased parameters due to unrepresented lateral flow. (iii) Representing and estimating sensor positions as

well as small-scale heterogeneity improves small–scale heterogeneity decreased the mean absolute error of the water content

data by more than a factor of

2 to 0.004.
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1 Introduction

Soil hydraulic material properties are essential to advance quantitative understanding of soil water dynamics. Despite decades

of research, direct identification of these properties is expensive time–consuming and near to impossible at larger scales.

Therefore, indirect identification methods, such as inversion methods (??)(Hopmans et al., 2002; Vrugt et al., 2008a), have

been successfully applied to evaluate many experiments starting from lab-scale with One-Step Outflow (Parker et al., 1985),5

Multistep Outflow (Van Dam et al., 1994), and evaporation (Šimůnek et al., 1998; Schneider et al., 2006), up to field scale

studies (Wollschläger et al., 2009; Huisman et al., 2010)lab–scale (e.g., Parker et al., 1985; Van Dam et al., 1994; Šimůnek

et al., 1998; Schneider et al., 2006) up to field–scale studies (e.g., Wollschläger et al., 2009; Huisman et al., 2010). Due to the

multi-scale multi–scale heterogeneity of the soil hydraulic material properties (Nielsen et al., 1973; Gelhar, 1986; Cushman,

1990; Vogel and Roth, 2003), effective material properties have to be identified directly at the scale of interest. Yet, most studies10

focus on 1D subsurface architectures with homogeneous layers, e.g., Abbaspour et al. (2000); Ritter et al. (2003); Mertens et al.

(2006); Wöhling et al. (2008); Wollschläger et al. (2009). Only a few studies, e.g., Abbasi et al. (2004); Palla et al. (2009);

Huisman et al. (2010), estimate material properties of effectively 2D 2d subsurface architectures. Abbasi et al. (2004) con-

ducted an irrigation experiment to estimate soil hydraulic and solute transport properties for a 2D furrow architecture. Based

on subsurface flow hydrographs for eight rain events, Palla et al. (2009) estimated effective soil hydraulic properties for a 2D15

layered coarse grained green roof . Exploiting based on hydrographs. Huisman et al. (2010) estimated soil hydraulic properties

of a homogeneous dike exploiting flat wire Time Domain Reflectometry (TDR) and electrical resistance tomography (ERT)

measurement data recorded during a fluctuating groundwater table experiment, Huisman et al. (2010) estimated soil hydraulic

properties of a homogeneous dike. With increasing computational power in recent years, 1D subsurface architectures were an-

alyzed with ensemble–based parameter estimation methods reaching from Markov Chain Monte Carlo (MCMC) (e.g., Vrugt20

et al., 2008b; Scharnagl et al., 2011; Wöhling and Vrugt, 2011) and data assimilation (e.g., Wu and Margulis, 2011; Li and

Ren, 2011; Erdal et al., 2014) to data driven modeling (e.g., Over et al., 2015).

Being common practice, these studies neglect critical uncertainties , e. g., concerning the input error or small-scale hetero-

geneity, and restrict the number of estimated material parameters to a minimal amount. Our main hypothesis is that this Most

of these studies describe the given data with models chosen upfront with restricted complexity and a minimum number of25

parameters. If the models are too simple, critical uncertainties and processes may be neglected, leading to suboptimal results.

If the models are too complex, the resulting material properties are likely to be application–dependent. In general, the required

model complexity is unknown a priori (Vereecken et al., 2015). Quantitative learning about complicated systems is an iterative

process (Gupta et al., 2008; Box et al., 2015). It starts from the current understanding of the system that is represented with a

model (Clark et al., 2011; Gupta et al., 2012). The optimal experimental design is then based on the model and the resulting30

data are, figuratively speaking, answer of reality to the questions asked through the experiment. Disagreement between the

model and the data reveals incorrect understanding of the system. Consequently, the concepts, decisions, and hypotheses inte-

grated into the model (including evaluation procedures of the data) and the data themselves are revised. If the model predicts

the data accurately and precisely enough, the research objectives are expanded, such that the data cover a larger part of the
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state space. Ultimately, this iterative procedure leads to biased estimates for effective soil hydraulic properties due to neglected

processes. data covering the whole state space and a statistical model–data mismatch corresponding to the data error model. In

general, such data are not available and the application merely requires a limited accuracy and precision. Hence, determining

the sufficient complexity of the model and the data for the required accuracy and precision is the crux.

We show for a 1D and a 2D study, that representing and estimating uncertain model components improves the quality of the5

representation significantly (Sect.3) . These studies are setup according to an uncertainty analysis indicating which uncertain-

ties to represent (Sect.??) . Providing the measurement data (Sect. ??) for this analysis, Time Domain Reflectometry (TDR),

Ground Penetrating Radar (GPR), and hydraulic potential measurement devices monitored the hydraulic system (Sect. ??This

problem can be quantified with a Bayesian total error analysis (BATEA) (Kavetski et al., 2002, 2006) investigating the total

uncertainty space which includes uncertainty in the observed input and responses as well as uncertainty in the model hypoth-10

esis. However, this analysis is computationally intensive if the number of uncertainties is large and required models may not

be available, e.g., for hysteresis. For instance, Bauser et al. (2016) categorized the uncertainties a priori and estimated the most

important ones along with effective material properties using an Ensemble Kalman Filter (EnKF) aiming for a consistent rep-

resentation of reality. The temporal fluctuation of the estimated hydraulic parameters was used to identify a situation in which

the representation of the dynamics is inconsistent. Hence, measurement data acquired during this period of time were merely15

used for state estimation and excluded from parameter estimation to prevent the incorporation of uncertainties in the dynamics

into the estimated parameters.

In this work, we change the perspective and associate the model with our quantitative understanding of reality that is tested

against the given measurement data. To analyze the required model complexity, we prescribe temporally constant material prop-

erties, calculate the maximum likelihood of increasingly complex models and analyze the corresponding structural model–data20

mismatch. We show that this structural error analysis indicates limitations of these models and quantifies the effect of the

respective unrepresented model errors on the material properties. Specifically, we analyze measurement data acquired at the

test site (ASSESS) while it was as forced with a fluctuating groundwater table

2 Methods

Our25

2.1 ASSESS

The approximately 2 m⇥20 m⇥ 4 m large test site ASSESS (Fig. 1) is located near Heidelberg, Germany, and consists of three

different kinds of sand (material A, B, and C) with different grain size distributions (Table 1). Its which are arranged in an

effective 2D subsurface architecture is visualized in Fig. ??. The approximately 2 m⇥ 20 m⇥ 4 m large site is equipped with

3



Figure 1. View of ASSESS site with tensiometer access tube, weatherstation, and groundwater well along the left boundary. The jump in

color reveals different sands that crop out at the surface (figure adapted from Jaumann (2012)).

a weatherstation1, 32 TDR sensors1, one tensiometer (UMS T4-191), and a well to monitor and manipulate the groundwater

table(Fig. 2). The grain size distributions of these materials are presented in Table 1. A geotextile separates the sand from an

approximately 0.1 m thick gravel layer below, which ensures a rapid water pressure distribution and is the only connection of

the connects a groundwater well with the rest of the test site. Below this gravel layer, a concrete layer confines the site. As

the test site is built into a former fodder-silofodder–silo, a concrete L-element L–element serves as additional wall. In order5

to stabilize the material during the construction, it was compacted. Beyond Additional to the compaction interfaces shown in

Fig. ??, GPR measurements, e.g., presented by Klenk et al. (2015), 2, Ground Penetrating Radar (GPR) measurements indicate

even more compaction interfaces (Klenk et al., 2015, Fig. 1b and 6).

We use this site to improve and develop GPR measurement and evaluation methods which increase the quantitative understand-

ing of soil water dynamics. These methods comprise water content measurement (?), estimation of the position of material10

interfaces as well as the effective relative permittivity distribution (Buchner et al., 2012), identification of the appropriate pa-

rameterization type for the hydraulic material properties (Dagenbach et al., 2013), and high precision monitoring of fluctuating

groundwater table and infiltration experiments (Klenk et al., 2015; ?).

The view over ASSESS from 0�19 m shows the tensiometer, the weatherstation, and the groundwater well (left to right) as

well as the color of the different sand types (figure adapted from Jaumann (2012)).15

2.2 Representation

For representing the soil water dynamics in ASSESS during the experiment, we follow the lines presented by Bauser et al.

(2016) and define the representation of a system as a set consisting of: dynamics (mathematical description), subscale physics
1The weatherstation measures precipitation, relative humidity, radiation, wind direction, and wind velocity.
1Each TDR sensor has three rods (length: 0.20 m, diameter: 0.005 m) and is associated with a soil temperature sensor.
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Figure 2. ASSESS features an effective 2D architecture with three different kinds of sand (A, B, and C). The hydraulic state can be manip-

ulated with a groundwater well (white square, at 18.2 m) and is automatically monitored with 32 TDR sensors (dots) and one tensiometer

(black square, at 4.0 m). The color of the dots associates some of the TDR sensors with different cases of the 1D study discussed in Sect. 3.1.

The gravel layer at the bottom of the site ensures a rapid water pressure distribution over the site. An L-element L–element (black polygon,

at 0.4 m) and compaction interfaces (white lines) were introduced during the construction. Additionally to those shown, GPR evidence

indicates additional compaction interfaces. Note the different scales on the horizontal and the vertical axis.

(material properties), forcing (superscale physics), and states.We close this section by discussing the implementation of the

representation

The representation of the hydraulic system also comprises its implementation. In order to separate the more general theoretical

considerations from the application–dependent details, these are not directly given in this section but are gathered in the

appendix A1.5

2.2.1 Dynamics

The Richards equation (Richards, 1931) ,

is the standard model to describe the propagation of the soil water dynamics

@t✓�r · [K(✓)[rhm(✓)� ez]] = 0, (1)

with the time t [s], volumetric water content ✓w [�] in time t [s] with respect to the ✓ [�], matric head hm [m]. The solution of this10

partial differential equation requires the specification of material properties, namely the , unit vector in z-direction ez indicating

the direction of gravity, soil water characteristic ✓w(hm) and the ✓(hm), and hydraulic conductivity function Kw(✓w), which are

(i) highly non-linear, (ii) varying K(✓). The material properties ✓(hm) and K(✓) are required to solve this partial differential

equation. Generally, these material properties are non–linear and vary over many orders of magnitude, (iii) showing hysteretic

behavior, (iv) impossible to determine a priori, and (v) very expensive to measure directly. The unit vector in z-direction ez15

indicates the direction of gravity, typically pointing downwards. .
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2.2.2 Subscale physics

Many heuristic parameterization models exist for the soil hydraulic material properties. We choose the Mualem-Brooks-Corey

parameterization (Brooks and Corey, 1966; Mualem, 1976)Brooks–Corey parameterization (Brooks and Corey, 1966) for the

soil water characteristic ✓(hm), since it describes has been found to describe the materials in ASSESS appropriately (Dagenbach

et al., 2013). Brooks and Corey (1966) parameterized the soil water characteristic ✓w(hm) with a saturated water content5

✓w,s [�], a residual water content ✓w,r [�], a scaling parameter h0 [m] well (Dagenbach et al., 2013). This parameterization

has four parameters: A scaling parameter h0 [m] related to the air entry pressure (h0 < 0 m), the saturated water content

✓s [�], the residual water content ✓r [�], and a shape parameter � [�] related to the pore size distribution (� > 0). In general,

✓(hm) shows hysteretic behavior (Topp and Miller, 1966). Neglecting hysteresis, this the parameterization may be inverted for

✓w,r  ✓w  ✓w,s, leading to Inserting the Brooks-Corey ✓r  ✓  ✓s. This leads to10

hm(✓) = h0

✓
✓� ✓r

✓s � ✓r

◆�1/�

. (2)

Inserting the Brooks–Corey parameterization into the hydraulic conductivity model of Mualem (1976) , yields the Mualem-

Brooks-Corey parameterization yields the parameterization

K(✓) = Ks

✓
✓� ✓r

✓s � ✓r

◆⌧+2+2/�

(3)

for the hydraulic conductivity function15

which includes where Ks [m s�1] is the saturated hydraulic conductivity Kw,0 [m s�1] and a fudge factor⌧ [�] in addition

to the parameters ✓w,r, ✓w,s, and �and ⌧ [�] a heuristic turtuosity factor.

Small-scale Small–scale heterogeneities, i.e. the texture of the porous medium, can be represented with Miller scaling , if the

pore spaces at any two points are assumed geometrically similar (Miller and Miller, 1956). Scaling the macroscopic reference

state h⇤
m(✓w), K⇤

w(✓w) h⇤
m(✓), K⇤(✓) with a local characteristic length ratio of characteristic lengths ⇠ [�], leads to locally20

scaled material functions (Roth, 1995):

hm(✓) = h⇤
m(✓) · ⇠, K(✓) = K⇤(✓)/⇠2. (4)

2.2.3 Forcing

The experiment presented in this work investigates the evolving hydraulic state which is hydraulic state was forced with a

fluctuating groundwater table . The boundary condition is separated into three by pumping water in or out of a groundwater25
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Figure 3. During The position of the experiment groundwater table was measured manually in the groundwater well and automatically

with the tensiometer (Fig. 2) during three different phases (initial drainage, multistep imbibition, and multistep drainage – separated by

the vertical black lines in the figure) , the position of the groundwater table was measured manually in the groundwater well (at 18.2 m)

and automatically with the tensiometer (at 4.0 m)experiment. The pressure gradient between the groundwater well and the test site, i.e.

the tensiometer, drives the water flux. The largest part of this pressure gradient equilibrates approximately within 5 minutes. Afterwards,

the position of the groundwater table still changes, which is due to the long-term equilibration of water content distribution. Note that the

discrete measurement steps reflect the resolution of the tensiometer.

well. The experiment was arranged in three different phases: (i) initial drainage phase, (ii) multistep imbibition phase, and

(iii) multistep drainage phase(Fig. ??). The position of the fluctuating groundwater table is measured manually1 in the ground-

water well (at 18.2 m) and with the tensiometer (at 4.0 m). During the multistep imbibition phase, 17.8 m3 water were pumped

into the groundwater well in 9.6 h. The equilibration steps in between were included . The detailed forcing is presented in

Table 2. Throughout the forcing, equilibration steps were included in between, such that the relaxation of the capillary fringe5

happened within the measurement range volume of the TDR sensors . During the multistep drainage phase, 13.9 m3 were

pumped out of the groundwater well in 5.2 h. The detailed setup of the forcing is presented in Table 2.

2.2.4 State

The experiment

The hydraulic state was monitored in particular with soil temperature, hydraulic potential , TDR, and GPR measurements10

. In this work, we focus on TDR and hydraulic potential measurement data. and water content measurements during the

experiment. The hydraulic potential was assessed via the position of the fluctuating groundwater table. This position was

measured (i) manually in the groundwater well and (ii) automatically with the tensiometer (Fig. 3). The gradient between the

hydraulic potential in the groundwater well and the hydraulic potential in the test site drives the water flux. The largest part

of this gradient equilibrates approximately within 5 minutes. Afterwards, the position of the groundwater table still changes15

1The position of the groundwater table was measured with a measurement band at the rim of the groundwater well.
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Figure 4. The measured water content data for the three different phases (initial drainage, multistep imbibition, and multistep drainage –

separated by the solid vertical black lines in the figure) show a high variability up to and beyond the validity limits of the Richards equation

due to the fluctuating groundwater table (Fig. 3). Hence, in order to avoid effects related to entrapped air and two-phase flow phenomena,

we neglect all data with a volumetric air content smaller than 0.1 (all values above the dashed horizontal lines) based on measured porosities

from core samples. The colored solid lines show the results of the setup miller and position of the 2D study (Sect. 3.2). The data measured

before 12:50 are only used for the initial state estimation (Sect. A1.6).

which is due to the long-term equilibration of the hydraulic state.

The evaluated relative permittivity The water content data is based on measured TDR traces which yield the relative permittivity
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of the soil "b (Sect. A1.3). This permittivity is converted to water content ✓w with ✓ using the Complex Refractive Index Model

(CRIM) (Birchak et al., 1974):

According to ?, we set

"b(✓,T,�)↵ = ✓ · "w(T )↵ + (�� ✓) · "↵
a + (1��) · "↵

s , (5)

with the geometry parameter ↵ to 0.5↵ = 0.5. In order to apply the CRIM, the porosity �, the relative permittivity of water5

"w, the relative permittivity of air "a, and the relative permittivity of the soil matrix "s have to be known. The relative permit-

tivity of air "a was set to 1.01.0. Assuming that the sand matrix consists mainly of Quartz quartz (SiO2) grains, the relative

permittivity of the soil matrix "s was set to 5.0 (Carmichael, 1989). Corresponding to core-cutter measurements, the porosity

5.0 (Carmichael, 1989). Core samples of the materials A, B, and C was assumed as yielded the porosities 0.41, 0.36, and

0.38, respectively. These values will be assumed for the saturated water content ✓s of the respective materials in the remainder10

of this paper. Following Kaatze (1989), we parameterize the dependency of the relative permittivity of water "w on the soil

temperature T [�C] with

The measured

"w(T ) = 10.01.94404�T ·1.991·10�3

(6)

and use soil temperature measurements near each TDR sensor to determine the according "w.15

The evaluated water content data of those sensors, which TDR sensors that were desaturated during the experiment , are

displayed in Fig. ??. Due to the small measurement volume (Robinson et al., 2003) and the narrow transition zone during

imbibition (Dagenbach et al., 2013; Klenk et al., 2015), the 4. The data show that the experiment is sensitive to complicated

flow phenomena. The measured water content increases fast during the imbibition steps as the groundwater table reaches the

TDR sensor . It is worth noting that if the material is not saturated at the position because of the narrow transition zone of20

sandy materials during imbibition (Dagenbach et al., 2013; Klenk et al., 2015) and the small measurement volume of the TDR

sensor, the sensors (Robinson et al., 2003). During the equilibration phases, for example after the last drainage phase (19:15),

the measured water content either decreases or increases during the equilibration phases, in the unsaturated material either

decreases (e.g., sensor 27) or increases (e.g., sensor 2), depending on the hydraulic state at this position with respect to the

static hydraulic equilibrium. This effect is used in the following evaluation (Sect. 3.1.3).25

We attribute the spread of the water content during saturation mainly to small-scale heterogeneities and quasi saturation

because of small–scale heterogeneity and quasi saturation due to entrapped air (Christiansen, 1944). In order to avoid effects

related to entrapped air and also two-phase flow, all TDR measurement data with an air content below 0.1 0.1 (Faybishenko,

1995) are neglected subsequently.

Due to the fluctuating groundwater table (Fig. ??), the water content measurement data for the three different phases (ini-30

tial drainage, multistep imbibition, and multistep drainage – separated by the vertical black lines in the figure) show a high

variability up to and beyond the validity limits of the Richards equation. In order to avoid effects related to entrapped air and

9



two-phase flow phenomena, we neglect all data with a volumetric air content smaller than 0.1 (all values above the dashed

lines).

2.3 Structural error analysis

2.3.1 Richards equation solver

2.3.1 Orientation of ASSESS5

2.3.1 Boundary condition

2.3.1 Initial state estimation

Since we will use inversion methods for parameter estimation, starting the as near as possible to the measured initial state is

key. Usually, this is achieved with a spin-up phase. However, for some of our investigations, a spin-up phase would exceed the

computational resources available to us1. Hence, we developed a method to estimate the initial water content distribution based10

on TDR measurement data.In the first step, we assume static hydraulic equilibrium and approximate the matric potential at the

position of the TDR sensors with the negative distance of the sensor to the groundwater table. Subsequently, the approximated

matric potential is associated with the measured water content for each sensor. Further, we assume spatially homogeneous and

temporally constant material properties which allows us to group the TDR sensors – together with the approximated matric

potential and the measured water content – by material. For each material, we then fit the parameters h0, �, and ✓w,r of the15

Brooks-Corey parameterization1 to the approximated matric potential and the measured water content (Fig. ??) . This yields

an approximation for the initial water content distribution between the TDR sensors. With the resulting parameter values for

each material, the subsurface material distribution, and the position of

As outlined in Sect. 1, the groundwater table, we can calculate an estimation of the initial water content distribution in AS-

SESS (Fig.??).structural error analysis rests on a basic representation and a general assessment of the respective representation20

errors. Those representation errors, which are investigated in detail, are parameterized and implemented leading to a number

of distinct representations with increasing complexity. Using inversion to estimate optimal parameters for each of the represen-
1Depending on the hydraulic material properties, the 45 h forward simulation of the 2D study presented in Sect. 3.2 took 0.25–1.0 h at low grid resolution.

The parameter estimation for this case took about 3–4 days on a cluster with as many cores as parameters. A proper spin-up phase would at least cover a

month, increasing the simulated time to 45 h+30 · 24 h = 765 h. This would increase the computation time up to a factor of 17, namely 4.25–17.0 h per

forward run and approximately 51–68 days for the inversion on a cluster with as many cores as parameters.
1The saturated water content ✓w,s is assumed to be known from core-cutter measurement data.
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tations allows to analyze (i) the resulting residuals to improve the representations and (ii) effect of unrepresented model errors

on the resulting material properties.

As the parameters for the Brooks-Corey parameterization are derived from measurement data, we may also use them as initial

parameter values for computationally expensive gradient-based inversions Preparing the tools for the method, we start this sec-

tion with the Levenberg–Marquardt algorithm (Sect. 3.2) . The missing initial values for the parameters ⌧ and Kw,0 are taken5

from Carsel and Parrish (1988) in this work1. We will refer to these parameters as initial state material functions in the remain-

der of this work.In particular due to (i) a limited number of TDR sensors, (ii) missing hydraulic potential measurements at the

position of the TDR sensors, and (iii) spatial small-scale heterogeneity present in the materials, structural differences between

the estimation and the measurements occur which indicate limitations of describing ASSESS with effective soil hydraulic

material properties1.10

We use the Brooks-Corey parameterization to estimate the initial water content distribution between the TDR sensors.

Assuming hydraulic equilibrium, we approximate the matric potential hm with the negative distance to the groundwater table

position z0: hm ⇡�(z � z0). For each material, we then use the approximated matric potential at the position of the TDR

sensors and the corresponding water content measurement data to fit the Brooks-Corey parameters. Each dot depicts the mean

of 15 subsequent data points measured in the 4 h preceding the experiment. The according standard deviations are all smaller15

than 0.0017, which indicates (i) that the hydraulic system is relatively equilibrated at the beginning of the experiment and (ii)

that the deviations from the estimation are statistically significant.

The estimated initial water content distribution is based on the TDR measurement data (face color of the circled dots,

Fig. ??). Since the saturated water content ✓w,s is fixed for each material a priori, only TDR sensors in unsaturated material

are shown. Due to the orientation of ASSESS (Sect. ??), the groundwater table is slightly slanted. The black lines indicate20

material interfaces, whereas the white lines indicate compaction interfaces, which were introduced during the construction of

ASSESS. Additionally to those shown, GPR evidence indicates additional compaction interfaces. Note the different scales on

the horizontal and the vertical axis.

2.3.1 Small-scale heterogeneity and TDR measurement volume

In order to represent the small-scale heterogeneity of the material properties, the center of each grid cell is associated with a25

Miller scaling factor that is initialized to 1.0. As the information about the small-scale heterogeneity only enters via the TDR

measurement data, the exact position of each TDR sensor is also associated with a Miller scaling factor. For each TDR sensor,

we implemented a bivariate Gaussian distribution, which determines the scaling factors in the neighborhood of this sensor.

The distribution is centered at the position of the sensor, has a standard deviation of 0.015 m in horizontal 2.3.1) and discuss
1We used the parameter set sand with ⌧ = 0.5 and Kw,0 = 8.3 · 10�5 ms�1.
1Additional insight can be gained by closely investigating the structural deviation of the measured water content of TDR sensors 5, 12, and 29 from the

estimation of the initial state for material B in Fig. ??. Klenk et al. (2015, Fig. 1b and 6) presented GPR measurements, which indicate that at least TDR

sensors 6, 9, 13, 17, and 22 are closely below a compaction interface and thus are experiencing a compacted pore structure. This can explain, why these TDR

sensors measure smaller water content values compared to the ones measured by the TDR sensors 5, 12, and 29.
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the assessment of the representation errors (Sect. 2.3.2) as well as in the vertical direction, and approaches 1.0 with increasing

distance from the TDR sensor. Finally, these distributions determine the Miller scaling factor at the center of each grid cell.

2.3.1 Levenberg–Marquardt

For estimating parameters, we We employ the Levenberg-Marquardt algorithm . We include this locally convergent algorithm

in a local-global approach, in order to analyze the convergence behavior or if no suitable initial parameters are available.5

Therefore, we generate an ensemble of the initial parameter sets with a Latin Hypercube algorithm1. As the sampled ini-

tial parameter sets are uniformly distributed in parameter space, the convergence path and the resulting parameter sets of

the Levenberg-Marquardt algorithm contain much information regarding the convergence radius and the distribution of local

minima.

Our implementation of the Levenberg-Marquardt algorithm1 is mainly for parameter estimation. Our implementation is10

based on Moré (1978), Press (2007), and Transtrum and Sethna (2012) . As it additionally includes some modifications, it is

sketched shortly in the followingtogether with some further modifications.

Assuming (i) M data points mµ (1,2, . . . ,µ, . . . ,M ) mµ (1, . . . ,M ) measured at position xµ featuring a white Gaussian mea-

surement error with standard deviation �µ and (ii) a model f with P parameters p⇡ (1,2, . . . ,⇡, . . . ,P ), 1, . . . ,P ), then the �2

cost function is defined as15

�2(p) =
1

2

MX

µ=1

✓
mµ � f(xµ,p)

�µ

◆2

=
1

2

MX

µ=1

rµ(p)2. (7)

It implicitly This cost function assumes statistically independent random representation errors which residuals rµ that are

normally distributed with zero mean . The standardized residuals rµ and standard deviations �µ (perfect model assumption).

These residuals can be expanded

rµ(p + �p) ⇡ rµ(p) +
PX

⇡=1

Jµ⇡�p⇡ (8)20

with the Jacobi matrix Jµ⇡ = @rµ/@p⇡Jµ⇡ = @rµ/@p⇡ . The Jacobi matrix is assembled numerically with the finite differences

methodwhich allows for trivial parallelization of the required P forward runs. Following Press (2007), the Hessian is approxi-

mated (H⇡ J>J)(H⇡ J>J), assuming that the second term in the derivative cancels out as f(xµ,p) ! mµ f(xµ,p) ! mµ

with increasing number of iterations. For the Gauss-Newton algorithm then follows

�p = �(J>J)�1 ·r�2(p). (9)25

1The sampling algorithm was implemented with the help of the pyDOE package: .
1Our implementation of the Levenberg-Marquardt algorithm is written in C++ and employs the Eigen library (?).
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Since J>J does not always have full rank, the inversion may be ill conditioned ill–conditioned leading to uncontrolled large

steps. One possibility to cope with this issue, is to regularize J>J by adding a diagonal damping matrix D>Dmatrix D>D.

We follow Transtrum and Sethna (2012) and choose this damping matrix, such that the diagonal entry for p⇡ contains the

corresponding maximal diagonal entry of J>J from all previous iterations if this value is larger than a predefined minimal

value (1.01.0) which is used otherwise. The resulting damping matrix is scaled with a parameter � which tunes both the5

amount of regularization and the step size of the parameter update.

Finally, the parameter update �p is calculated via

�p = �(J>J+ � ·D>D)�1 ·r�2(p), (10)

where the linear problem is solved with a Singular Value Decomposition (SVD). If the condition number of the sensitivity

matrix S = J>J+ � ·D>D is larger than a threshold (1012), the linear problem is solved approximately with the Conjugate10

Gradient algorithm by choosing the maximal number of iterations smaller than the number of parameters P . The proposed

parameters at iteration i are finally given as

p

i+1 = p

i + �pi. (11)

The convergence path of the Levenberg-Marquardt Levenberg–Marquardt algorithm is influenced by both the size of the scal-

ing parameter �initial and the choice how to adapt � after each iteration. For In this work, we chose choose �initial = 5.0 and15

applied apply the delayed gratification strategy proposed by Transtrum and Sethna (2012). According to this strategy, � is

decreased by a previously chosen factor (2.02.0) if the parameter update is successful and increased by a larger factor (3.03.0)

if the update is not successful.

The described gradient-based gradient–based algorithm heuristically balances performance and stability. Expanding the stabil-

ity measures, we add an optional damping factor which decreases introduce a damping vector d with entries 2 (0,1] to decrease20

the correction of certain parameters particular parameters via

p

i+1 = p

i + d� �pi, (12)

where � denotes the element–wise Hadamard product. Generally, the entries of the damping vector are set to 1. In order to

delay the improvement for parameters which represent additional model components, we choose the according entries < 1.

This damping factor is intended for parameters representing higher order uncertainties. We use this approach in particular to25

estimate sensor positions and Miller scaling factors along with effective soil hydraulic properties . Therefore, we initialize

sensor positions and (Sect. A1.4). First, these parameters are initialized to neutral values: The modeled sensor positions are

initialized to the measured sensor positions and the Miller scaling factors to neutral values and set the damping factor for these

parameters to 0.1. This reduces 1.0. Subsequently, the damping vector for the associated parameters is set to 0.1, reducing the

applied correction of these parameters to 1010% of the proposed correction by the Levenberg-Marquardt Levenberg–Marquardt30

algorithm. Hence, the main focus of the algorithm is to estimate consistent effective soil hydraulic properties, whereas

The general setup of the parameter estimation for ASSESS (Sect. ??) is explained with Fig. ??. For each of the three

materials, we estimate the Mualem-Brooks-Corey parameters h0, �, Kw,0, ⌧ , and ✓w,r (Sect. 2.2.2). The saturated water content
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✓w,s is assumed to be equal to an estimate for the porosity � based on core-cutter measurements (Sect. 2.2.4). In order to avoid

parameter bias due to input errors, we estimate (i) a constant offset to the Dirichlet boundary condition (Sect. ??) and (ii) the

saturated hydraulic conductivity of the gravel layer. Depending on the setup (Sect. 3), we also estimate TDR and tensiometer

sensor positions as well as the sensor positions and Miller scaling factors at the position of the TDR sensors (??).

The available hydraulic potential hwt is measured at the position of the groundwater well x� and at the position of the5

tensiometer x⌧ . The data set, which is measured in the groundwater well, is split according to the measurement times: The

data measured during the forcing phases t' enter the Levenberg-Marquardt algorithm (Sect. 2.3.1) directly, whereas the data

measured during the equilibration phases t✏ are only used as boundary condition for the Richards equation (Sect. 2.2.1). The

bulk relative permittivity "b(xµ, t⌫) and the bulk soil temperature Tb(xµ, t⌫) are measured at the position of the TDR sensors

xµ at times t⌫ . Together with the porosity �(xµ), these data are transferred to water content data (Sect. 2.2.4), which enter10

the initial state estimation (Sect. ??) yielding an initial water content distribution and optional initial parameter values for

the Levenberg-Marquardt algorithm. Additionally, the water content data are also directly used in the Levenberg-Marquardt

algorithm. Dashed grey arrows represent one-time preparation steps, whereas solid orange arrows represent the iterative steps

of the Levenberg-Marquardt algorithm yielding the final material parameters p

final.

2.3.2 Assessment of representation errors15

Quantitative learning about complicated systems is an iterative process (Box et al., 2015; Gupta et al., 2008). Starting from

conceptual ideas, the modeler represents the current understanding of the system with a model incorporating decisions and

underlying hypotheses (Clark et al., 2011; Gupta et al., 2012). The optimal experimental design addressing specific research

objectives is based on the model and thereby on the current understanding of the system. The resulting measurement data

reveal the answer of reality to specific questions posed by the experimentator. By comparing the forecast of the model with the20

measurement data, it can be investigated, how well the questioned behavior of the system is understood quantitatively. Thus,

disagreement between the model and the measurement data reveals incorrect understanding of the system. Consequently,

the concepts, decisions, and hypotheses with respect to the model (including measurement data evaluation procedures) and

the measurement data themselves have to be revised. This leads to an improved model as well as improved measurement data

acquisition and evaluation procedures. If the model predicts the measurement data accurately and precisely enough, the research25

objectives have to be expanded, such that the measurement data cover a larger part of the state space. This step is necessary,

because high model complexity admittedly yields an accurate description of the measurement data, which, however, is forcedly

based on biased and case dependent parameters. Ultimately, this iterative procedure leads to measurement data covering the

whole state space and a statistical model-data mismatch corresponding to the measurement data error model – indicating

complete understanding of reality. In general, however, such measurement data are not available and the application merely30

requires a limited accuracy and precision. Hence, determining the sufficient complexity of the model and the measurement data

for the required accuracy and precision is the crux.By By applying the �2 cost function (Eq. (7)), it is implicitly assumed that
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the model is perfect aside from a white Gaussian noise. This corresponds to complete quantitative understanding of reality and

a Gaussian measurement data error model . Structural model-data error model for the measurement data. Structural model–

data mismatch indicates that this assumption is invalid. One way to quantify this problem is to analyze the total uncertainty

space with a Bayesian total error analysis (BATEA) (Kavetski et al., 2002, 2006). In our case, a Bayesian analysis of the total

uncertainty space is not feasible, primarily due to a lack of models, e.g., for hysteresis. Instead, we neglect highly complicated5

representation errors in the hope that if their representation is necessary, the structural model-data Hence, we have to neglect

such representation errors and trust that the structural model–data mismatch will reveal thisany inadequacy. Table 3 gives an

overview over the treatment of the representation errors considered in this work. The contribution of representation errors,

which could not be quantified or excluded from the measurement data a priori, is parameterized and explicitly estimated. Table

3 gives an overview over the treatment of the considered representation errors. Structural deviations from the measurement data10

or prior estimates Remaining structural model–data mismatch or deviation from the prior for the parameters , which remain

after the optimization, hint at representation errors which should be corrected in the subsequent iteration of the analysis.

The structural error analysis and the assessment of uncertainties results from iterative preliminary evaluations. In order to

showcase the power of the methodand the sensitivity of the fluctuating groundwater table experiment, we shortly present the

results of one of those preliminary evaluations. In this case, the evaluations. To illustrate the method, we present an iteration15

where the orientation of ASSESS (Sect. ??) was not yet compensated for by rotating the geometry and the gravitation vector .

(Sect. A1.2). Considering the structural error analysis, we parameterized and estimated uncertain contributions to components

in the representation. Hence, not only the Mualem-Brooks-Corey Mualem–Brooks–Corey parameters, an offset to the Dirichlet

boundary condition (Sect. A1.5) and the saturated hydraulic conductivity of the gravel layer, but also the position of the TDR

sensors were estimated . (Sect. A1.4). The results presented in Fig. ?? 5 show that the estimated TDR positions display a20

consistent deviation from the measured positionspositions, which were measured relative to the site’s walls, as they compensate

for the orientation of ASSESS. Thus, the position of most TDR sensors on the right is estimated to be higher and the position

of most TDR sensors on the left is estimated to be lower than the measured ones. By estimating the TDR sensor position,

we also incorporated other representation errors into the resulting parameters, such as small-scale small–scale heterogeneities

and eventually a non-represented non–represented evaporation front mostly affecting the estimated position of the upper TDR25

sensors (3, 11, 18, and 25). Hence, this analysis (i) demonstrates the difficulty to separate representation errors and (ii) is able

to identify representation errors which have to be improved subsequently. Being key for the identification of representation

errors, a

2.3.3 Residual analysis

A visual analysis of the standardized residual increases the intuitive understanding of the model-data model–data mismatch30

(e.g., Legates and McCabe, 1999; Ritter and Muñoz-Carpena, 2013). Therefore, We analyze the standardized residual is visu-

alized over time and over the in two ways: (i) The visualization over time highlights the temporal development of the structural

model–data mismatch. (ii) The visualization over theoretical quantiles corresponding to a Gaussian distribution with the stan-

dard deviation of the measurement data . The former visualization highlights the structural model-data mismatch and the latter
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Figure 5. The subsurface architecture of ASSESS (Fig. 2) is shown with a comparison of measured and estimated TDR sensor positions

based on a first evaluation of the hydraulic measurement data. The consistent deviation of the estimated TDR sensor positions reveal an

unrepresented model error: The orientation of ASSESS (Sect. A1.2).

permits easy facilitates the comparison of the standardized residual distribution to the expected Gaussian distribution . Addi-

tionallyof the measurement data. Hence, if the perfect model assumption is true, the probability plot will show a straight line

with slope 1. Yet, probability plots often show a characteristic S–shape (e.g., Fig. 7f): The slope < 1 for small residuals indi-

cates that these residuals are smaller than expected for a Gaussian distribution with the standard deviation of the measurements.

The slope > 1 for large residuals shows that these residuals are larger than expected for the presumed Gaussian distribution.5

Since in this work the theoretical quantiles are based on a Gaussian distribution, the S–shape generally indicates non-Gaussian

distributions.

Additionally to the visual analysis of the standardized residual, statistical measures help to benchmark the model-data model–

data mismatch. As single measures a single measure might be misleading (Legates and McCabe, 1999), we apply (i) the

calculate the root mean square error (eRMS), (ii) the eRMS) and the mean absolute error (eMA), and (iii) the Nash–Sutcliffe10

model efficiency coefficient (eNS) (?).

Comparison of measured and estimated TDR sensor positions based on an exemplary preliminary evaluation of the mea-

surement data. The consistent deviation of the estimated TDR sensor positions reveal an unrepresented model error: The

orientation of ASSESS (Sect. ??). The black lines indicate material interfaces, whereas the grey lines indicate compaction

interfaces, which were introduced during the construction of ASSESS. Additionally to those shown, GPR evidence indicates15

additional compaction interfaces. Note the different scales on the horizontal and the vertical axis.

2.4 Setup
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In this section, we analyze the estimation of effective material properties for ASSESS based on The setup of the parameter

estimation is explained with Fig. 6. For each of the three materials, we estimate the Mualem–Brooks–Corey parameters h0, �,

Ks, ⌧ , and ✓r (Sect. 2.2.2). The saturated water content ✓s is assumed to be equal to an estimate for the porosity � based on core

samples (Sect. 2.2.4). In order to avoid parameter bias due to representation errors, we (i) neglect measurement values with

volumetric air content smaller 0.1 (Sect. 2.2.4), (ii) estimate a constant offset to the Dirichlet boundary condition (Sect. A1.5)5

and the saturated hydraulic conductivity of the gravel layer, and (iii) developed a method to estimate the initial water content

distribution based on TDR measurement data (Sect. A1.6), because a spin-up phase would increase the computation time by

up to a factor of 17. The details concerning the implementation of the TDR sensors and the small–scale heterogeneity with

Miller scaling factors at the position of the TDR sensors are explained in Sect. A1.4.

In order to analyze the effect of the uncertainty of the sensor position, small–scale heterogeneity, and lateral flow on the10

estimated material properties along the lines presented in Sect. 2.3, we implemented a 1D and a 2D study . For each of these

studies, with four different setupswere implemented: : (i) naivebasic: We estimate the hydraulic material properties, an offset

to the Dirichlet boundary condition, and the saturated hydraulic conductivity of the gravel layer. (ii) position: In addition to the

parameters estimated in the naivebasic setup, we also estimate the sensor positions. (iii) miller: In addition to the parameters

estimated in the naivebasic setup, we estimate one Miller scaling factor for each TDR sensor. (iv) miller and position: In15

addition to the parameters estimated in the naivebasic setup, we estimate both the sensor positions and one Miller scaling

factor for each TDR sensor.

For the 1D study, the standardized residuals of the best ensemble member are visualized over time (left) and over the

theoretical quantiles of a Gaussian with the estimated standard deviation of the TDR measurements (0.007) (right). The the

cases are analyzed with four setups naive, position, miller, and miller and position. The more sensors per material are used20

in the inversion, the worse the representation of the naive setup gets. In this case, representing uncertainties with respect to

the sensor position and small-scale heterogeneities improves the representation substantially. The decreasing slope of a linear

fit (thin lines in the probability plots), which is based on the standardized residuals within [�2,2] theoretical quantiles, also

indicates this improvement.

The 1D study consists of three cases (case I, case II, and case III). Together with the material functions resulting from the25

initial state estimation (Sect. ??), we visualize the resulting material functions of the best ensemble member for each setup

(naive, position, miller, or miller and position – denoted by the color close to saturation). For all inversion results, the plot

range is adjusted to the available water content range. The number of water content measurements within intervals of 0.05 is

indicated with histogram bars for each case. The height of these bars is normalized over all figures. The main message of this

figure is, that unrepresented model errors may lead to biased parameters.30

2.4.1 1D study
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Figure 6. In this sketch, we visualize The available hydraulic potential hwt is measured at the uncertainties with respect to (i) bottom of the

material properties, (ii) groundwater well x� and at the TDR sensor position , (iii) of the small-scale heterogeneitytensiometer x⌧ . The data

set, and (iv) which is measured in the groundwater table position. During static phaseswell, these uncertainties can lead is split according to

correlated estimated parametersthe measurement times: The data measured during the equilibration phases t✏ enter the Levenberg–Marquardt

algorithm (Sect. 2.3.1) directly, e.g., whereas the data measured during the forcing phases t' are only used as an incorrect boundary condition

for the Richards equation (Sect. 2.2.1). The bulk relative permittivity "b(xµ, t⌫) and the bulk soil temperature Tb(xµ, t⌫) are measured at the

position of the groundwater table can be compensated by changing h0 and �TDR sensors xµ at times t⌫ . During transient phasesAdditionally

using the porosity �(xµ), however, the addressed uncertain model components have distinct effects on bulk permittivity is transferred to

water content (Sect. 2.2.4). The water content data enter the model, einitial state estimation (Sect. A1.6) yielding an initial water content

distribution and optional initial parameter values for the Levenberg–Marquardt algorithm. g., as � The water content data are also changes

directly used in the conductivity functionLevenberg–Marquardt algorithm. HenceDashed grey arrows represent one–time preparation steps,

whereas solid orange arrows represent the ability iterative steps of the parameter estimation Levenberg–Marquardt algorithm to separate

these uncertain model components depends on yielding the available measurement datafinal material parameters pfinal.

In order to investigate whether the the extent to which the experiment at ASSESS can be described with a 1D model, we set up

three different cases with an increasing number of TDR sensors per material (Table 4): The (Table 4): case ICase I includes

the measurement data of sensor 1 in material C and sensor 2 in material Asensor 1 in material C and sensor 2 in material A,

and thus comprises one sensor per material. The case IICase II includes two sensors per material, namely the sensors 10

sensors 10 and 11 in material C and sensors 12 material C and sensors 12 and 13 in material B. Finally, the material B. case5

IIICase III includes three sensors per material, namely the sensors 25sensors 25, 26, 27 in material A and sensors 28material A

and sensors 28, 29, 30 in material B. Note that material B. Note (i) that the cases are located at different positions in ASSESS

(Fig.??).(Fig. 2) and (ii) that since the hydraulic potential is not measured in the domain covered with these 1D studies, the

respective inversions are only based on the TDR water content measurements.
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As described above, the analysis is organized in four different setups (naivebasic, position, miller, and miller and position).

The naivebasic setup is adjusted for the 1D studies, such that not only the material functions of the materials with sensors, but

also the saturated conductivity of the third material 1 (material A in case II and material C in case III) are estimated for case II

and case IIIcase II and case III. The other setups remain accordingly. We use the manually measured groundwater table data

as Dirichlet boundary condition. Uncertainties concerning the position of the sensors and the subsurface material interfaces5

(Sect. ??) directly translate to uncertainties in the boundary condition. Accounting for the orientation of ASSESS (Sect. ??),

we add a constant offset to the Dirichlet boundary condition for each case (case I: -0.02 , case II: -0.05 , case III: -0.12 ). In

order to minimize the input error, we also estimate this offset in the inversion.If TDR sensor positions are estimated, these are

initialized to the measured position. Similarly, the Miller scaling factors are initialized to 1.0. The forward simulations were

calculated on a grid with 1⇥400 cells on 1.9 m and 10�8 as limit of the Newton solver (Sect. ??). Following Jaumann (2012),10

the standard deviation of the TDR measurements is assumed as 0.007.Since the hydraulic potential is not measured within the

domain of these Further details concerning the implementation of the 1D studies, the inversions are only based on the TDR

water content measurements.study are given in Sect. A2.1.

For each of the different setups, we ran an ensemble of 20 inversions starting from Latin-Hypercube Latin–Hypercube sampled

initial parameter sets . In in order to analyze the convergence behavior. The sampling algorithm was implemented with the15

help of the pyDOE package (https://github.com/tisimst/pyDOE). For each setup, we only analyze the ensemble member with

minimal �2 in the subsequent evaluation. The according statistical measures (eRMS, eMA, and eNS) are given in Table 5. Here,

we only refer to the eMA, because the eRMS and the eNS are behaving accordingly if not stated differently.

Combining the data of all applied TDR sensors,

2.4.2 2D study20

In this study, we expand the investigated domain to 2D and analyze the performance of the improved representation. To this

end, we set up four different setups basic, position, miller, and miller and position as described above. Since the position of

both the tensiometer and the groundwater well is in the modeled domain, we use the hydraulic potential measurement data as

well as the TDR measurement data in this study. Thus, the

3 Results and discussion25

3.1 1D study

3.1.1 Objectivity of the measurement data

The standardized residual for each case is presented in Fig. ??.Investigating the resulting standardized residuals of Fig. 7 com-

bining the resulting data of all applied TDR sensors. Investigating them for case I, it is striking that all setups describe the
1Material A in case II and material C in case III
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measurement data qualitatively equally well. Since the estimation of the material properties is only based on one sensor per

material in this case, the material parameterization offers enough freedom to describe the measurement data. Hence, it also

describes accommodates unrepresented model errors, such as the sensor position and small-scale small–scale heterogeneities.

Therefore, additional representation and estimation of TDR sensor positions or Miller scaling factors do not lead to further

improvement. The largest residuals occur during highly transient phases. Compared to the measurement data, the simulated5

imbibition phase is too slow for sensor 1 sensor 1 and too fast for sensor 2. sensor 2. Also the simulated drainage phase is

too slow for sensor 1 sensor 1 and drainage behavior of sensor 2 sensor 2 is consistently wrong. This structural model-data

model–data mismatch hints at unrepresented model errors due to the restriction to a 1D domain. Yet1D domain, which is fur-

ther discussed in Sect. 3.1.3. Still, the residuals of all setups are smaller than 5 5 standard deviations, which translates to 3.5 %

a volumetric water content of 0.035.10

We noted in section 2.3 that by applying the �2 cost function, we implicitly assume that the model can describe the measure-

ment data up to a white Gaussian noise. However, this is generally not the case, because the measurement error may include

a bias (accuracy and precision) and the representation might neglect processes in the dynamics, for example. Inspecting the

probability plots of the three cases, we spot a characteristic S-shape: The slope < 1 for small residuals indicates that the

precision of the simulation is smaller than the standard deviation of the Gaussian distribution with the standard deviation of15

the TDR measurements. The slope > 1 for large residuals shows that these residuals are larger than the presumed Gaussian

distribution. Generally, the S-shape indicates non-Gaussian distributions. Since the large residuals are of structural instead of

random nature and because the large residuals The large residuals are not random and preferably occur in transient phases, we

attribute them mainly . We attribute them to missing processes in the dynamics or to biased parameters. As the curves in the

probability plot are basically centered at the origin, a significant constant bias in the residuum can be excluded. The according20

statistical measures are given in Table 5.

The eMA of the naivebasic setup increases in case II, because there are two sensors per material and the effective material

parameterization can not completely compensate for the small-scale small–scale heterogeneity at the position of both sensors .

Consistentlysimultaneously. Consequently, representing the small-scale small–scale heterogeneity improves the description of

the measurement data. As before, the largest residuals occur during the highly transient phases, especially during the drainage25

phase. Except for two outliers, the residuals stay smaller than 5 5 standard deviations here as well. Considering three sensors

per material in case III, the eMA increases even further in the naivebasic setup. Consequently, representing small-scale small–

scale heterogeneities and uncertainties in the sensor position in the miller and position setup improves the eMA by more than a

factor of 2.

??,30

3.1.2 Separation of uncertain model components

Comparing the resulting material properties of the evaluated ensemble members are visualized for the respective materi-

als.Comparing the results of the for the different cases and setups (Fig. 8), we notice a vertical shift in the that the resulting

soil water characteristic for functions are shifted within each material. It seems reasonable to attribute this vertical shift to

20
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Figure 7. For the 1D study, the standardized residuals of the best ensemble member are visualized over time (left) and over the theoretical

quantiles of a Gaussian with the estimated standard deviation of the TDR measurements (0.007) (right). The cases are analyzed with four

setups basic, position, miller, and miller and position. The more sensors per material are used in the inversion, the worse the representation

of the basic setup gets. In this case, representing uncertainties with respect to the sensor position and small–scale heterogeneities improves

the representation substantially. The decreasing slope of a linear fit (thin lines in the probability plots), which is based on the standardized

residuals within [�2,2] theoretical quantiles, also indicates this improvement.

the high number of estimated uncertain model components (Sect. 2.4), because during During static phases and if only few

measurement sensors are available, these the parameters for the estimated uncertain model components (Sect. 2.4) can be

correlated(Fig. ??). . However, during transient phases and if a larger number of measurement sensors is available, the distinct

properties of these uncertain model components are more clearly pronounced , for example as the Brooks-Corey parameter

� and the Miller scaling factors also influence the hydraulic conductivity.If monitored close enough with TDR sensors and5

hydraulic potential measurements, the parameter estimation algorithm can separate the effects better leading to a more unique

solution (Sect. 3.2). In order to further analyze this vertical shift, we (Fig. 9 and Sect. 3.2.3).
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We also ran the inversions without estimating the offset to the Dirichlet boundary condition (Sect. A1.5), which are not shown

here. Besides destabilizing the convergence of the Levenberg-Marquardt algorithmdue to the increased input errorLevenberg–

Marquardt algorithm, this fully transfers the uncertainty in the boundary condition to the sensor position. Hence, those setups

, which setups that estimate the sensor position , clearly outperform the others. It is worth noting that not estimating the offset

to the Dirichlet boundary condition Additionally, this does not remove the vertical shift of the soil water characteristics.5

Hence, as the given measurement data are merely sensitive to the curvature of the soil water characteristic, we will mainly

focus on its curvature, e.g., when comparing the inversion results with the initial state material functions in the subsequent

evaluation.

3.1.3 Lateral flow

The three cases cover the three materials at different locations in ASSESS and are based on distinct measurement data with10

respect to both quantity and measurement data range.

This is most evident for material A which is located at the bottom of ASSESS and nearly saturated in case I whereas it is at the

top and rather dry in case III (colored dots in Fig. ??). Thus, also Fig. 2). To illustrate that this leads to a different sensitivity

on the unrepresented model errorshave different effects. Subsequently, we highlight one example which is most pronounced

during the final equilibration phase. In case III, the water content at position of the TDR sensors 25, 26, and 27 is higher than15

in static hydraulic equilibrium, leading to a drainage flux and a decrease in water content (Fig. 4). However, in case I, the at the

position of TDR sensor 2, the water content increases as the sensor monitors the relaxation of the capillary fringeleading to an

increasing water content. Due to lateral flow, this data includes the relaxation of the whole test site. The different characteristic

behavior of the measurement data during the equilibration phase is shown in Fig.??. the different hydraulic properties of the

materials in ASSESS, this relaxation also includes unrepresented lateral flow.20

In order to minimize the structural model-data mismatch during the model–data mismatch during this equilibration phase, the

parameter estimation algorithm increases the hydraulic conductivity to compensate for the non-represented non–represented

lateral flow with additional vertical flow from above the sensor. This interpretation is supported by the fact that the Hence, the

hydraulic conductivity of case I is larger than the hydraulic conductivity for both the case III and for the 2D study, which is

discussed in subsequent section.Material B is in the middle of ASSESS and thus the Sect. 3.2.4.25

The measurement data of material B used in the inversions of case II and case III are based on comparable measurement data.

Thereforedo not emphasize the relaxation of the capillary fringe strongly. Hence, we expect that the effect of the unrepresented

lateral flow is not as significant as for material A leading to relatively congruent resulting material functions. This expectation

is confirmed by the results, except for the two setups in those setups of case II, in which no Miller scaling factor was estimated.

These setups show a deviating larger curvature of the soil water characteristic and of the hydraulic conductivity function . This30

effect which is explained in more detail in the subsequent section. Regarding material CSect. 3.2.4 in more detail. Additionally,

we can identify both effects – the vertical shift and the deviating curvature the previously discussed shift of the soil water

characteristic . (Sect. 3.1.2).
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Figure 8. The estimated material functions of the best ensemble member are shown for each of the three cases (case I, case II, and case III)

and the four setups of the 1D study. Additionally, we present the material functions resulting from the initial state estimation (Sect. A1.6).

The plot range is adjusted to the available water content range for all inversion results. The number of water content measurements within

intervals of 0.05 is indicated with histogram bars for each case. The height of these bars is normalized over all figures in this work. The

main message of this figure is, that unrepresented model errors may lead to biased hydraulic parameters. In particular, this can be seen by

comparing the hydraulic conductivity K of material A for the cases I and III.

Similarly as for material B, the inversions for material C are not strongly influenced by the relaxation of capillary fringe. The

large uncertainty in the saturated hydraulic conductivity reflects the low sensitivity of the measurement data on this parameter

due to the lack of measurements influenced by the saturated material C. Although the initial parameter sets for the 1D inversions

were Latin Hypercube sampled, the
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Figure 9. The estimation of uncertain model components can lead to correlated estimated parameters, e.g., as an incorrect position of the

groundwater table (z0) can be compensated by changing h0 and � during static phases. During transient phases, however, the components

have distinct effects, e.g., as � also changes the conductivity function. Hence, the ability of the parameter estimation algorithm to separate

these uncertainties depends on the available measurement data. Also, the more sensors are available, the fewer uncertain model components

can be compensated simultaneously by the parameterization.

3.1.4 Quality of the initial state material functions

The curvature of the soil water characteristic for the inversion results is reasonably close the initial state material functions

which (Sect. A1.6), although the initial parameter sets for the 1D inversions were Latin Hypercube sampled. This allows to

use the latter to initialize gradient-based the initial state material functions to initialize gradient–based inversion methods.

The estimate of the initial state material function for material C material C deviates strongest from the inversion result results5

compared to the other two materials, since in material C material C only few sensors are available to assess the form of the

capillary fringe. Naturally, the better the available number of TDR sensors is spread over the water content range, the better

the fit of the initial state parameters gets(Sect. ??). . Iteratively restarting the inversion using the previous inversion results as

initial state material functions is likely to improve the representation. Since Kw,0 Ks and ⌧ are prescribed a priori and are not

estimated for not estimated along with the initial water content distribution but prescribed a priori, the hydraulic conductivity10

functions associated with the initial state show large deviations from the inversion results.

In summary, we demonstrated that the more sensors per material are used in the inversion, the larger the probability gets to

observe states (and model errors) which can not be described accurately and precisely enough with the naive setup. Naturally,

this increases the size of the structural model-data mismatch. Hence, in order to avoid biased parameters, significant model

errors have to be represented. The estimation of TDR sensor positions and Miller scaling factors constitutes a major step15

in this direction, as this decreased the eMA by more than a factor of 2 in the case with most sensors per material. Due the

low number of TDR sensors monitoring transient phases and the lack of hydraulic potential measurement data, the Levenberg-

Marquardt algorithm was not able to completely separate the estimated uncertain model components. This effect becomes most
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evident in the discussed vertical shift of the soil water characteristic. We found that the restriction to a 1D domain leads to an

overestimation for the hydraulic conductivity function of material Adue to unrepresented lateral flow. Finally, we observed that

the initial state material functions are reasonably close to the inversion results to use them as initial values for gradient-based

inversion methods.

3.2 2D study5

In this section, we expand the investigated domain to

3.2.1 Objectivity of the measurement data

For the 2D and analyze the performance of study, the number of sensors is comparable to the improved representation. To this

end, we set up a number of hydraulic material parameters. Therefore, estimating sensor positions and Miller scaling factors

increases the total number of parameters and thus the computational cost considerably (basic: 17, position: 41, miller: 41,10

miller and position: 65). The total number of analyzed TDR sensors increased to 25, corresponding to 5, 12, 8 TDR sensors

for the materials A, B, C, respectively. In the 1D study, the residuals increased considerably during transient phases reaching

up to 5 standard deviations in the miller and position setup (except for 3 outliers). Due to the larger number of considered TDR

sensors in the 2D studywhich includes the four different setups naive, position, miller, and miller and position as described

above1. Since the position of both the tensiometer and the groundwater well is within in the modeled domain, we use the15

hydraulic potential measurement data as well as the TDR measurement data in this study. Thus, the the measurement data

cover more architectural situations and thus more complicated flow phenomena. In particular there are more transient phases

observed than in the 1D studies. Therefore, we expect that (i) the resulting parameters are more objective (not shown, however),

(ii) the standardized residuals at least in the positionbasic setup is adjusted, such that both the positions of TDR sensors and

the tensiometer are estimated. Considering that the ensemble members of the increase, and (iii) estimating sensor positions and20

Miller scaling factors improve the description of the TDR data significantly. The standardized residuals confirm the last two

expectations (Fig. 10). However, similar to the 1D studyconverged reasonably close to the initial state material functions, the

inversions , even the residuals of the miller and position setup still reach more than 5 standard deviations for the 2D study are

directly initialized with these parameters.The 2D simulations in this work are calculated on a grid with 100 ⇥ 100 grid cells

covering 19.1 m ⇥ 1.9 m. The limit of the Newton solver is set to 10�8 representation.25

In order to understand this deviation in more detail, we investigate the remaining structural model–data mismatch during the

final drainage and equilibration phases between 30� 40 h. The largest residuals occurring during the drainage phase around

30 h come from the TDR sensors 6, 9, 13, and 17. We identified that these sensors are located close to a compaction interface
1Some TDR sensors are located close to or even below the groundwater table. Therefore, the position and the Miller scaling factor could not be estimated

for all TDR sensors. No position was estimated for sensors 7, 8, 14, 15, 16, 23, 24, 31, and 32. No Miller scaling factor was estimated for sensors 8, 14, 15,

16, 23, 24, 31, and 32.
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(Sect. ??). Like for the 1D studies, we choose 0.007 as the standard deviation of the TDR measurements. The standard deviation

of the tensiometer (0.025 m) is assessed from A1.6). Hence, the accuracy (± 5 hPa) as specified by the manufacturer1. Lacking

an independent estimate for the accuracy of the manual groundwater table position measurement, we employ the accuracy of

material interfaces in ASSESS large residuals indicate that this horizontal compaction layer is not correctly represented with a

point–scale representation of the small–scale heterogeneity. The largest residuals during the final equilibration phase between5

30� 40 h come from TDR sensors 2 and 22 close to the capillary fringe. We attribute them to unrepresented processes in the

dynamics, such as hysteresis or 3D flow (Sect. ??).Same as for the tensiometer, this leads to a standard deviation of 0.025 m.

3.2.2).

For the 2D study, the number of sensors is comparable to the number of hydraulic material parameters. Therefore, estimating10

sensor positions and Miller scaling factors increases the total number of parameters and thus the computational cost consider-

ably: The Due to the persisting large residuals during transient phases, the probability plot (Fig. 10b) displays a characteristic

S–shaped curve for the TDR data (Sect. 2.3.3). The large residuals during transient phases are evidently different from the small

residuals during static phases. This is corroborated by a linear fit based on the residuals within [�2,2] theoretical quantiles. For

both the miller and the miller and position setuphas more than 3 times the number of parameters1 of the naive setup. The total15

number of evaluated TDR sensors1 increased to 25. Hence, the measurement data cover more complicated flow phenomena

compared to the 1D studies. Therefore, we expect that (i), the fits yield a slope < 1, indicating that distribution of the resulting

parameters are more reliable and (ii) the description small residuals is more narrow than a Gaussian with a standard deviation

of 0.007. This standard deviation is a measure that includes both precision and accuracy. We calculated the precision of the

evaluated measurement data with a cubic spline fit yielding a precision of 0.001, 0.007 m, 0.006 m for the water content, ten-20

siometer, manual groundwater position data, respectively. With complete quantitative understanding (Sect. 2.3), the standard

deviation of the residuals would correspond to this precision. Lacking ground truth, the accuracy of the measurement data is

worse for 2D compared to 1D. The standardized residuals visualized in Fig. ?? confirm this expectation and demonstrate that –

similar to the 1D study– representing sensor position and small-scale heterogeneity uncertainty improves the description of the

TDR data. Still, the probability plot (Fig. ??b) displays a characteristic S-shaped curve for the TDR data highlighting persisting25

large residuals during transient phases . unknown a priori and may depend on the hydraulic state. In this study, its estimated

contribution dominates the size of the standard deviations. Our results show that the model can represent static phases better

than highly transient phases and that the accuracy of the measurement data is higher than estimated a priori. The statistical

measures for the water content data given in Table 6 reveal that the eMA of the naivebasic setup merely increases by less than a

factor of 2 compared to the 2 compared to case III of the 1D studyand that estimating . Estimating sensor positions and Miller30

scaling factors improves the description of the TDR measurement data by more than a factor of 2 leading to a eMA of 0.0034.
1In order to transfer the given uniform distribution with range ± 5 hPa⇡± 0.05 m to a Gaussian distribution, we associate this range with the 2�

interval of a Gaussian (5 % to 95 %). This leads to an approximate standard deviation of (0.05 m · 2)/4 = 0.025 m.
1Number of estimated parameters for the different setups: naive: 17, position: 41, miller: 42, miller and position: 66.
1We evaluated 5, 12, 8 TDR sensors for the materials A, B, C.
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3.2.2 Hydraulic potential

The description of the hydraulic potential measurement data , however, does exclusively improve data only improves in those

setups, in which the sensor position is estimated and the general (Fig. 10 and Table 6). Also the temporal structure of the

model-mismatch model–mismatch does not change significantly . Due to the large input flux during the experiment, a correct

representation of the manually measured groundwater table data is impossible in 2D. As soon as the quasi-equilibrium between5

the well and the site is exceededwith the different setups. The data show a gradient of the hydraulic pressure between the

tensiometer and the groundwater well during the forcing phases (Fig. 3). Considering symmetry, we also assume this gradient

of the hydraulic potential in the neglected third dimension. Hence, the forcing via the groundwater well instantiates leads to

a 3D water flux . The pressure difference between the tensiometer and the groundwater table in the well (Fig. ??) shows that

the site is not in quasi-equilibrium during the forcing. Thus, we expect that the simulation predicts during the experiment.10

This makes a correct representation of the groundwater table impossible in 2D. Consequently, the simulation should predict

a higher position of the groundwater table in the well during imbibition phases and a lower groundwater table during the

drainage phases. This expectation is confirmed by the standardized residuals shown in Fig. ??. The structural model-data

Fig. 10. Thus, the structural model–data mismatch of the tensiometer data indicates that employing the groundwater table as

Dirichlet boundary condition overestimates the forcing in the simulation. Therefore, the simulated hydraulic pressure during15

the imbibition is larger than the measured one which leads to negative residuals. As expected, this behavior reverses during

drainage phases. Since each

3.2.3 Separation of uncertain model components

3.2.4 Effect of unrepresented model errors

Each setup is started from the same initial material functionfunctions (Sect. A1.6). Therefore, the difference between the20

resulting material properties of the setups (Fig. ??) (Fig. 11) is a direct consequence of the representation of uncertainties

in the sensor position and small-scale heterogeneities.A more intuitive understanding can be gained for example by closely

investigating small–scale heterogeneities.

To investigate this, consider the initial state estimation for material B shown in Fig. ??. Fig. A2. The measurement data of the

sensors 5, 12, and 29 which are approximately 0.6 m above groundwater table considerably deviate from the estimated function25

considerably. In order to cope with this deviation, the least squares least–squares fit for the initial state draws the estimated

soil water characteristic to higher water contents. Due to the rigidity of the Brooks-Corey Brooks–Corey parameterization, this

causes an overestimation of the water content at the position of the sensors 0.8 and 1.4 m above the groundwater table (sensors

28 and 18). As soon as If the uncertainty in sensor position and small-scale small–scale heterogeneities are represented in the

model, the outlying measurement data can be described without altering the effective material properties.30

The 2D study is based on an increased number of water content measurements, additional hydraulic potential measurements,

and a more complicated flow phenomena compared to the previously discussed 1D study (Sect. 3.1). This improves the ability

of the Levenberg-Marquardt algorithm to separate the estimated uncertain model components. Solely for material A, the setups
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show a vertical shift in the soil water characteristic. This can be explained with the relatively low number of water content

measurements monitoring transient phases. Although the number of measurements in the dynamical water content range of

material A is comparable to that of material C, Fig. ?? shows that fewer sensors monitor the transient phases in material A

compared to material C.Although the It is worth noting, that although the uncertainty of the measured grain size distribution

(Table 1) is large, the resulting material properties confirm these measurements to the extent, the measurements in that material5

A is the finest of all materials and that and the properties of materials B and C are similar.

4 Summary and Conclusions

We presented a fluctuating groundwater table experiment in a complicated and We applied a structural error analysis on a

representation of the effectively 2D architecture (ASSESS), which was monitored with TDR, GPR, and hydraulic potential

measurement devices. This kind of experiment provides high variability of the measured water content up to and beyond the10

validity limits of the Richards equation.Using inversion methods for parameter estimation, it is key to start the simulations

close to the measurement data. Hence, we employed the Brooks-Corey parameterization to estimate the water content between

the TDR sensors. Therefore, we assumed hydraulic equilibrium and approximated the hydraulic potential with the negative

distance to the groundwater table ASSESS. Subsequently, we associated the approximated hydraulic potential at the position

of the TDR sensors with the measured water content and fitted Brooks-Corey parameters for each material. With the result-15

ing parameters, we calculated an estimate for the initial water content distribution.We implemented a structural error analysis

which is based on the insight that the structural model-data This representation includes TDR and hydraulic potential mea-

surement data which were acquired during a fluctuating groundwater table experiment. Based on the assumption that structural

model–data mismatch indicates incomplete quantitative understanding of reality. We demonstrated that the method can detect

significant unrepresented model errors, such as the inclined architecture of ASSESS.However, as the sufficient complexity of20

the model and the measurement data for the required accuracy and precision are unknown a priori, we analyzed the effect of

unrepresented model errors by implementing different setups of the , we implemented a 1D and a 2D studies with increasing

model complexity. In these setups, the model complexity was gradually increased starting study organized in different setups

with increasingly complex models. Starting with the estimation of effective hydraulic material properties and adding we added

the estimation of sensor positions, small-scale small–scale heterogeneity, or both. It was demonstrated that the structural error25

analysis can indicate significant unrepresented model errors, such as the slope of the ASSESS test site.

In order to investigate, whether the soil water movement at ASSESS can be described with We showed that estimated mate-

rial properties resulting from a 1D model, we created three cases with increasing number of sensors per material located at

distinct positions in ASSESS. For each case, we generated an ensemble of Latin-Hypercube sampled initial parameters for

the Levenberg-Marquardt algorithm. Since the resulting material properties of the best inversions are reasonably close to the30
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parameters estimated for the initial water content distribution, these may also be used as initial parameters for gradient-based

optimization algorithms. We found that with an increasing number of sensors per material, study are biased due to unrep-

resented lateral flow. Analyzing representations with increasing data quantity, it was also found that the fewer sensors are

available per material, the structural model-data mismatch increased for those setups, in which only the effective material

propertieswere estimated. Representing stronger is the influence of the unrepresented model errors on the estimated material5

properties. We illustrated, that the more complicated flow phenomena are represented, the better uncertain model components

can be separated by the parameter estimation algorithm leading to more reliable material properties. Generally, representing

sensor position uncertainty and small-scale heterogeneities, however, small–scale heterogeneity improved the description of

the measurement data significantly in the cases with more than one sensor per material. We showed that also due to unrep-

resented lateral flow, the resulting material properties of 1D cases are likely to be biased. Since all setups water content data10

quantitatively in setups with many sensors. Yet, the residuals of the water content data still reach more than 5 standard de-

viations during transient phases (Fig. 10). We attribute this to remaining representation errors in the dynamics, forcing, and

compaction interfaces.

In order to minimize the error in the initial state, we developed a method to estimate the initial water content distribution based

on TDR measurements and an approximation of hydraulic head which additionally yields an approximation of the soil water15

characteristic. We found, that this approximation is reasonably close to inversion results and that the according parameters can

be used as initial parameters for gradient–based optimization. Since all the inversions of the 2D study were initialized with the

parametersestimated for the initial water content distribution, the difference between the resulting material functions show are

initialized with these parameters, the comparison of the results directly display the quantitative effect of the according unrep-

resented model errors . Representing sensor position uncertainty and small-scale heterogeneities improved the description of20

the water content data significantly, as this decreased the associated eMA by more than a factor of 2 to 0.0034on the estimated

material properties.

Since the three approaches (i) initial state estimation, (ii) 1D inversion, and (iii) 2D inversion yield similar allow to estimate

effective hydraulic material parameters, we finally discuss their levels of improving the quantitative understanding of soil water25

dynamics.

The initial state estimation requires at least three water content measurements per material over the full water content range

and the position of the groundwater table to estimate the parameters for soil water characteristic for one specific equilibrated

hydraulic state. The method does not estimate the other parameters Kw,0 Lacking direct measurements of the unsaturated

hydraulic conductivity, the method cannot estimate the remaining parameters Ks and ⌧ required to model soil water dynamics.30

Additionally, it is highly susceptible to uncertainties related to the sensor position and small-scale small–scale heterogeneities.

Yet, the method is fast (few seconds on a local machine) and suitable to provide initial parameters for gradient-based gradient–

based inversion methods.

The 1D inversions are comparably fast (minutes up to hours on a local machine) and can represent transient states. They allow

to estimate all necessary hydraulic material parameters In contrast to the initial state estimation, 1D inversions can estimate all35
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parameters of the material functions. However, due to unrepresentable lateral flow , the resulting parameters are likely to be

biasedmore complicated flow phenomena including lateral flow can not be represented. This leads to biased parameters.

The unique characteristics of the 2D inversions (days on a cluster with same number of cores as parameters) is the ability to

represent lateral flow phenomena which are typically monitored with a high number of sensors. Hence, the consistency of the

representation is implicitly checked. Of Therefore, we expect that of the three approaches discussed, this the closest one to5

reality. Therefore, we expect one yields the most reliable material propertieshere. Still, unrepresented model errors , such as

including 3D flow phenomena during strong forcing, may lead to biased resulting parameters.

5 Data availability

The underlying measurement data is available at http://ts.iup.uni-heidelberg.de/data/jaumann-roth-2017-hess.zip
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Appendix A: Details of the implementation

A1 Representation

A1.1 Richards equation solver

A1.2 Orientation of ASSESS15

A1.3 Evaluation of TDR traces

A1.4 Sensor position and small–scale heterogeneity

The numerical solution of the Richards equation (Eq. 1) is discretized in space with a rectangular structured grid (Sect. A1.1).

Generally, the simulated value for the modeled position of a sensor is bilinearly interpolated from the simulated values at the

center of the surrounding grid cells. Due to measurement uncertainties and subsidence after the construction, Antz (2010) and20

Buchner et al. (2012) assess the uncertainty concerning positions of sensors and material interfaces in ASSESS to ± 0.05 m

with respect to the model. However, since imbibition fronts can be very steep in sandy soils (Dagenbach et al., 2013; Klenk

et al., 2015) and the measurement volume of the applied sensors is small, fluctuating groundwater table experiments are very

sensitive to the sensor position. Hence, we (i) enable the parameter estimation algorithm (Sect. 2.3.1) to estimate the sensor

positions and (ii) implement the measurement volume of the TDR sensors by averaging the simulation data within a measure-25

ment radius of 0.015 m.
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A1.5 Boundary condition

A1.6 Initial state estimation

Since we use an inversion method for parameter estimation (Sect. 2.4), starting as near as possible to the measured initial state

is key. Usually, this is achieved with a spin–up phase, which is computationally very expensive, however. Hence, we developed

a method to estimate the initial water content distribution based on TDR measurement data.5

In the first step, we assume static hydraulic equilibrium and approximate the matric potential at the measured position of the

TDR sensors with the negative distance of this position to the groundwater table. Subsequently, the approximated matric poten-

tial is associated with the measured water content for each sensor. Further, we assume spatially homogeneous and temporally

constant material properties which allows us to group the data of the TDR sensors by material, together with the approximated

matric potential and the measured water content. For each material, we then fit the parameters h0, �, and ✓r of the Brooks–10

Corey parameterization to the approximated matric potential and the measured water content (Fig. A2). The saturated water

content ✓s is assumed to be known from core samples. This yields an approximation for the initial water content distribution

between the TDR sensors. With the resulting parameter values for each material, the subsurface material distribution, and the

position of the groundwater table, we can calculate an estimation of the initial water content distribution in ASSESS (Fig. A3).

As the parameters for the Brooks–Corey parameterization are derived from static measurement data, we may use them as15

initial parameter values for computationally expensive gradient–based inversions of dynamic measurement data (Sect. 2.4.2).

The missing initial parameter values ⌧ = 0.5 and Ks = 8.3 · 10�5 m s�1 are taken from Carsel and Parrish (1988). We refer to

these parameter sets as initial state material functions in this work.

In particular due to (i) a limited number of TDR sensors, (ii) missing hydraulic potential measurements at the position of the

TDR sensors, and (iii) spatial small–scale heterogeneity present in the materials, structural deviations between the estimation20

and the measurements occur, which indicate limitations of describing ASSESS with effective soil hydraulic material properties.

A2 Setup

A2.1 1D study

A2.2 2D study25

The 2D simulations in this work are calculated with a grid resolution of 0.2 m⇥ 0.02 m. The limit of the Newton solver is set to

10�8 (Sect. A1.1). Like for the 1D studies, we choose 0.007 as the standard deviation of the TDR measurements. The standard

deviation of the tensiometer (0.025 m) is assessed from the accuracy (± 5 hPa) as specified by the manufacturer. In order to

transfer the given uniform distribution with range ± 5 hPa ⇡± 0.05 m to a Gaussian distribution, we associate this range with

the 2� interval of a Gaussian (5 % to 95 %). This leads to an approximate standard deviation of (0.05 m · 2)/4 = 0.025 m.30

Lacking an independent estimate for the accuracy of the manual groundwater table position measurement, we employ the accu-

31



racy of material interfaces in ASSESS (Sect. A1.5). Same as for the tensiometer, this leads to a standard deviation of 0.025 m.

Some TDR sensors are located close to or even below the groundwater table. Therefore, the position and the Miller scaling

factor could not be estimated for TDR sensors. Hence, no position was estimated for sensors 7, 8, 14, 15, 16, 23, 24, 31, and

32 and no Miller scaling factor was estimated for sensors 8, 14, 15, 16, 17, 23, 24, 31, and 32.
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The standardized residuals of the 2D study are visualized over time (left) and in a probability plot (right) for all TDR and hydraulic

potential sensors. The color associates the results with the four setups of the study (naive, position, miller, and miller and position). Same

as for the 1D study, the standard deviation for the TDR measurement data is chosen as 0.007. We choose the standard deviation for both the

manual measurements in the groundwater well and the tensiometer measurement data as 0.025 m. The representation of uncertainties with

respect to the sensor positions and small-scale heterogeneities improves the description of the TDR data significantly. The decreasing slope

of a linear fit (thin lines in the probability plots), which is based on the standardized residuals within [�2,2] theoretical quantiles, also

indicates this improvement. The structural model-data mismatch for the hydraulic potential data is mainly due to (i) uncertainties

concerning the position of the tensiometer and (ii) unrepresented 3D flow phenomena.
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Figure 10. The standardized residuals of the 2D study are visualized over time (left) and in a probability plot (right) for all TDR and hydraulic

potential sensors. The color associates the results with the four setups of the study (basic, position, miller, and miller and position). Same

as for the 1D study, the standard deviation for the TDR measurement data is chosen as 0.007. We choose the standard deviation for both

the manual measurements in the groundwater well and the tensiometer measurement data as 0.025 m. The representation of uncertainties

with respect to the sensor positions and small–scale heterogeneities improves the description of the TDR data quantitatively. The decreasing

slope of a linear fit (thin lines in the probability plots), which is based on the standardized residuals within [�2,2] theoretical quantiles, also

indicates this improvement. The structural model–data mismatch for the hydraulic potential data is mainly due to (i) uncertainties concerning

the position of the tensiometer and (ii) unrepresented 3D flow phenomena.
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We show the resulting material functions for all three materials involved in the 2D study which is analyzed with four setups (naive,

position, miller, and miller and position). The plot range is adjusted to the available water content range for each material. The line width

of the 2D inversion results corresponds to two times the formal standard deviation of the hydraulic parameters. The height of the histogram

bars denotes the number of available water content measurements and is normalized over all figures. Since the inversions for all setups are

initialized with the material functions resulting from the initial state estimation (Sect. ??), the difference between the results is directly

linked to the estimation of sensor positions and small-scale heterogeneities. For direct comparison, the results of the 1D study are also

visualized.
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Figure 11. We show the resulting material functions for all three materials involved in the 2D study which is analyzed with the four setups

basic, position, miller, and miller and position. The plot range is adjusted to the available water content range for each material. The height

of the histogram bars denotes the number of available water content measurements and is normalized over all figures in this work. Since

the inversions for all setups are initialized with the material functions resulting from the initial state estimation (Sect. A1.6), the difference

between the results is directly linked to the estimation of sensor positions and small–scale heterogeneities. For direct comparison, the results

of the 1D study are also shown.
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Figure A1. The evaluation of a TDR trace is based on the detection of the inflection points caused by the probe head and the end of the rod.

This is done automatically after calculating of the first temporal derivative of the trace. Parabolas are fitted to the maxima of the temporal

derivative to increase the precision of the evaluated signal travel time.
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Figure A2. We use the Brooks–Corey parameterization to estimate the initial water content distribution between the TDR sensors. As-

suming hydraulic equilibrium, we approximate the matric potential hm with the negative distance to the groundwater table position z0:

hm ⇡�(z� z0). For each material, we then use the approximated matric potential at the position of the TDR sensors and the corresponding

water content measurement data to fit the Brooks–Corey parameters. Each dot depicts the mean of 15 subsequent data points measured in

the 4 h preceding the experiment. The according standard deviations are all smaller than 0.002, which indicates (i) that the hydraulic system

is relatively equilibrated at the beginning of the experiment and (ii) that the deviations from the estimation are statistically significant.
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Figure A3. The estimated initial water content distribution is based on the TDR measurement data (Fig. A2, shown as face color of the

circled dots). Since the saturated water content ✓s is fixed for each material a priori, only TDR sensors in unsaturated material are shown.

Due to the orientation of ASSESS (Sect. A1.2), the groundwater table is slightly slanted. The black lines indicate material interfaces, whereas

the white lines indicate compaction interfaces, which were introduced during the construction of ASSESS. Note the different scales on the

horizontal and the vertical axis.
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Table 1. The grain size distribution in percent by weight displays the different granularity of the materials A, B, and C of ASSESS

(G. Schukraft, personal communication, Institute of Geography, Heidelberg University, 2010). Whereas the composition of the materials

B and C is similar, material A features a higher percentage of fine sand. Since the mechanical wet analysis is time-consuming and laborious,

only material B was sampled twice. Thus, 80 g out of approximately 400 Mg were sampled. Due to rounding, the sum of the values is not

always 100.100.

grain size range A B1 B2 C

gravel total 2� 63 mm [%] 2 5 4 5

sand total 63� 2000 µm [%] 97 96 95 95

coarse 630� 2000 µm [%] 10 24 20 17

medium 200� 630 µm [%] 65 64 68 72

fine 63� 200 µm [%] 22 8 7 6

silt total 2� 63 µm [%] 0 0 0 0

clay total < 2 µm [%] 0 0 0 0

Table 2. During the experiment, ASSESS was forced with a fluctuating groundwater table. Therefore, 17.8 m3 17.8 m3 of water were

pumped in and 14.7 m3 14.7 m3 were pumped out of the groundwater well. For the calculation of the according flux and equivalent height

of the water column �heq, the surface area of ASSESS was approximated with 80 m280 m2. All times are given in UTC.

phase time start time end duration [min] water volume [m3] flux [10�6 ms�1] �heq [m]

initial drainage 12:55:00 13:20:00 25 �0.7649 �6.4 �0.01

multistep imbibition

14:20:00 18:50:00 270 8.3900 6.4 0.10

20:35:00 23:10:00 155 4.7809 6.4 0.06

07:25:00 09:55:00 150 4.6361 6.4 0.06

multistep drainage

12:35:00 14:00:00 85 �3.9970 �9.8 �0.05

15:00:00 16:10:00 70 �3.1709 �9.4 �0.04

16:40:00 19:15:00 155 �6.7299 �9.0 �0.08
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Table 3. This overview includes specification whether the considered model error is represented and explicitly estimated within the scope of

this study.

model error represented estimated

local non-equilibrium 7 7

hysteresis 7 7

numerical error 7 7

orientation of ASSESS 3 7

initial state 3 7

entrapped air 3 7

boundary condition 3 3

sensor position 3 3

small-scale small–scale heterogeneity 3 3

material properties 3 3

Table 4. The 1D study comprises three different cases which investigate the three materials with increasing number of TDR sensors per

material at different locations in ASSESS (Fig(Fig. 2). ??). Note that each material is covered twice.

case sensors materials position [m]

I 1 & 2 C, A 16.1616.16

II 10, 11 & 12, 13 C, B 10.9510.95

III 25, 25, 27 & 28, 29, 30 A, B 1.261.26
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Table 5. In order to analyze the results of the 1D study, the performance of the best ensemble members for each case and for each setup are

benchmarked with statistical measures. With increasing numbers of included TDR sensors per material, the statistical measures for the naive

basic setup indicate worse description of the measurement data. However, estimating the position and the Miller scaling factor for each TDR

sensor, improves description of the measurement data significantly according to the statistical measures.

case setup eRMS eMAeNS

I

I

naive basic 0.0043 0.004 0.0033 1.000.003

I position (p) 0.0037 0.004 0.0028 1.000.003

I miller (m) 0.0045 0.005 0.0035 1.000.004

I m & p 0.0037 0.004 0.0028 1.000.003

II

II

naive basic 0.0067 0.007 0.0034 0.960.003

II position (p) 0.0053 0.005 0.0030 0.980.003

II miller (m) 0.0042 0.004 0.0027 0.990.003

II m & p 0.0042 0.004 0.0029 0.990.003

III

III

naive basic 0.0090 0.009 0.0056 0.960.006

III position (p) 0.0062 0.006 0.0040 0.980.004

III miller (m) 0.0054 0.005 0.0031 0.980.003

III m & p 0.0043 0.004 0.0023 0.990.002

Table 6. For each setup of the 2D study, the results are benchmarked with statistical measures. Similar to the 1D study, estimating the sensor

position and the Miller scaling factors improves the statistical measures related to the water content significantly. The statistical measures

for the hydraulic potential which describe position of the groundwater table including both the tensiometer and the groundwater well data

improve only for setups in which the sensor positions are estimated.

water content water table

setup eRMS eMA eNS eRMS eMA eNS

naive basic 0.0156 0.017 0.0099 0.011 0.92 0.04 0.036 0.030 0.990.03

position (p) 0.0098 0.011 0.0063 0.006 0.97 0.02 0.028 0.023 0.990.02

miller (m) 0.0073 0.008 0.0047 0.005 0.98 0.03 0.036 0.031 0.990.03

m & p 0.0059 0.006 0.0034 0.004 0.99 0.02 0.022 0.02
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Table 7. We present the effective hydraulic material parameters obtained with the setup miller and position of the 2D study. The formal

standard deviations of the parameter estimation are given with the understanding that these are specific to the applied algorithm and will

change for different algorithm parameters. The estimation for the saturated hydraulic conductivity of the gravel layer and for the offset to the

Dirichlet boundary condition are 10�0.728±0.006 m s�1 and �0.034± 0.001 m, respectively.

material 0.018 h0 [m] 1.00� [�] Ks [m s�1] ⌧ [�] ✓r [�] ✓s [�]

A �0.184± 0.005 1.94± 0.07 10�4.212±0.004 0.33± 0.07 0.025± 0.004 0.41

B �0.174± 0.004 2.54± 0.06 10�3.77±0.02 0.78± 0.05 0.035± 0.001 0.36

C �0.159± 0.004 3.28± 0.02 10�3.70±0.02 0.74± 0.06 0.026± 0.002 0.38
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