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Abstract. The Soil and Water Assessment Tool (SWAT) is a globally applied river basin eco-hydrological simulator 7 

in a wide spectrum of studies, ranging from land use change and climate change impacts studies to research for the 8 

development of best water management practices. However, SWAT has limitations in simulating the seasonal 9 

growth cycles for trees and perennial vegetation in tropics, where the major plant growth controlling factor is the 10 

rainfall (via soil moisture) rather than temperature.  Our goal is to improve the vegetation growth module of the 11 

SWAT model for simulating the vegetation parameters such as the leaf area index (LAI) for tropics. Therefore, we 12 

present a modified SWAT version for the tropics (SWAT-T) that   uses of a simple but robust soil moisture index 13 

(SMI) - a quotient of the rainfall (P) and reference evapotranspiration (PET) - to initiate a new growing season after 14 

a defined dry season. Our results for the Mara Basin (Kenya/Tanzania) show that the SWAT-T simulated LAI corre-15 

sponds well with the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI for evergreen forest, savanna 16 

grassland and shrubs, indicating that the SMI is a reliable proxy to dynamically initiate a new growing cycle. The 17 

water balance components (evapotranspiration and flow) simulated by the SWAT-T exhibit a good agreement with 18 

remote sensing-based evapotranspiration (RS-ET) and observed flow. The SWAT-T simulator with the proposed 19 

improved vegetation growth module for tropical ecosystem could be a robust tool for several applications including 20 

land use and climate change impact studies. 21 

1. Introduction  22 

The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) is a process-oriented, spatially semi-distributed 23 

and time-continuous river basin simulator. SWAT is one of the most widely applied eco-hydrological simulators for 24 

simulating hydrological and biophysical processes under a range of climate and management conditions (Arnold et 25 

al., 2012; Bressiani et al., 2015; Gassman et al., 2014; van Griensven et al., 2012; Krysanova and White, 2015). 26 

Many studies used SWAT in tropical Africa, to investigate the basin hydrology (e.g. Dessu and Melesse, 2012; 27 

Easton et al., 2010; Mwangi et al., 2016; Setegn et al., 2009) as well as to study the hydrological impacts of land use 28 

change (e.g. Gebremicael et al., 2013; Githui et al., 2009; Mango et al., 2011) and climate change (Mango et al., 29 

2011; Mengistu and Sorteberg, 2012; Setegn et al., 2011; Teklesadik et al., 2017). Notwithstanding the high number 30 

of SWAT model applications in tropical catchments, only a few studies underscored the limitation of its plant 31 
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growth module for simulating the growth cycles of trees, perennials and annuals in this region of the world (Mwangi 32 

et al., 2016; Strauch and Volk, 2013; Wagner et al., 2011). 33 

 It is worthwhile to note that phenological changes in the vegetation affect the biophysical and hydrological process-34 

es in the basin hydrology and thus play a key role in integrated hydrologic and ecosystem modeling (Jolly and 35 

Running, 2004; Shen et al., 2013; Strauch and Volk, 2013; Yang and Zhang, 2016; Yu et al., 2016). The Leaf Area 36 

Index (LAI), a vegetation variable commonly used in hydrological modeling, strongly correlates with the phenologi-37 

cal development. Thus, an improved representation of this variable may improve the predictive capability of hydro-38 

logic models, as noted in several studies (Andersen et al., 2002; Yu et al., 2016; Zhang et al., 2009). Arnold et al. 39 

(2012) underscored the need for a realistic representation of the local and regional plant growth processes  in SWAT 40 

due to its effect on the water balance, on the erosion, and on the nutrient yields. 41 

SWAT utilizes a simplified version of the Environmental Policy Impact Climate (EPIC) crop growth module to 42 

simulate the phenological development of plants, based on accumulated heat units (Arnold et al., 1998; Neitsch et 43 

al., 2011). It uses dormancy, a function of daylength and latitude, to repeat the annual growth cycle for trees and 44 

perennials. Admittedly, this approach is suitable for temperate climate zones. However, Strauch and Volk (2013) 45 

showed that the LAI temporal dynamics are not well represented for perennial vegetation (savanna and shrubs) and 46 

evergreen forest in Brazil. Likewise, Wagner et al. (2011) reported a shift in the growth cycle of deciduous forest in 47 

the Western Ghats  (India).  48 

Unlike temperate regions where the vegetation growth dynamics are mainly controlled by the temperature, the pri-49 

mary controlling factor in tropical regions is the rainfall (i.e. the water availability)  (Jolly and Running, 2004; 50 

Lotsch, 2003; Pfeifer et al., 2012, 2014; Zhang, 2005). A study of Zhang et al. (2005) explored the relationship be-51 

tween the rainfall seasonality and the vegetation phenology across Africa. They showed that the onset of the vegeta-52 

tion green-up can be predicted using the cumulative rainfall as a criterion to indicate the season change. Jolly and 53 

Running (2004) determined the timing of leaf flush in an ecosystem process simulator (BIOME-BGC) after a de-54 

fined dry season in the Kalahari , using events where the daily rainfall (P) exceeded the reference evapotranspiration 55 

(PET). They showed that the modeled leaf flush date compared well with the leaf flush dates estimated from the 56 

Normalized Vegetation Index (NDVI), indicating that precipitation and PET are good proxy’s to pinpoint the season 57 

change for tropical ecosystems. Strauch and Volk (2013) used SWAT simulated soil moisture in the top soil layers 58 

with a certain minimum threshold to indicate the start of rainy season (SOS) and thus new vegetation growth cycle 59 

after a defined dry season. Their results showed improvements in the SWAT simulated LAI seasonal dynamics and 60 

reproduced well the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI. However, their approach re-61 

quires calibrating the SWAT parameters for a realistic representation of the soil water balance dynamics often using 62 

observed streamflow. Recently, Yu et al.  (2016)  concluded uncertainty in soil moisture is significantly greater than 63 

streamflow simulations of a calibrated hydrologic model. 64 
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Sacks et al. (2010) studied the relationships between crop planting dates and temperature, P and PET, using 30-year 65 

average climatological values. They noted that in rainfall limited regions the ratio of P to PET is a better proxy for 66 

the soil moisture status than is P alone. Therefore, we employ a simple soil moisture index (SMI) that is based on the 67 

major inputs of SWAT (P and PET) for indicating the SOS. The SMI is determined using a quotient of a 5-day (pen-68 

tad) P to PET. A major advantage of this approach is the fact that the SMI is known a priori and so are the SOS and 69 

the associated start of new vegetation growth cycle. 70 

Remotely sensed information provides crucial information about the dynamics of vegetation (Adole et al., 2016; 71 

Bobée et al., 2012; Zhang, 2005; Zhang et al., 2006). Zhang et al. (2006) produced global maps at 1-km spatial reso-72 

lution of key phonological metrics -such as the start of the growing season- using MODIS. They reported a good 73 

correspondence of the retrieved phenological metrics with in situ measurements. Also, Bobée et al. (2012) found a 74 

good match between the start and the end of the growth season as derived from remote sensing with ground-truth 75 

observations for Sahelian vegetation. Therefore, we use remote sensing-based LAI products to explore the seasonal 76 

LAI dynamics and evaluate the LAI simulated by the modified SWAT model.  77 

In summary, this paper presents a methodology to improve the temporal dynamics of SWAT simulated LAI. The 78 

performance of the modified SWAT simulator to simulate LAI and evapotranspiration (ET) will be evaluated using 79 

MODIS LAI timeseries and remote sensing-based ET while the flow simulation skill will be evaluated using ob-80 

served flow. 81 

2. Materials and methods  82 

2.1. The study area  83 

The Mara River, a transboundary river shared by Kenya and Tanzania, drains an area of 13,750 km
2
 (Figure 1a). 84 

This river originates from the forested Mau Escarpment (about 3000 m.a.s.l.) and meander through diverse agroeco-85 

systems and subsequently crosses the Masai-Mara Game Reserve in Kenya and the Seregenti National Park in Tan-86 

zania and finally feeds the Lake Victoria. The Amala River and the Nyangores River are the only perennial tributar-87 

ies draining the head water region. The Talek River and the Sand River are the two most notable seasonal rivers 88 

stemming from Loita Hills. 89 

Rainfall is highly variable in the Mara Basin. This is mainly due to its equatorial location and its topography. The 90 

rainfall pattern in most part of the basin is bimodal, with a short rainy season (October-December) driven by con-91 

vergence and southward migration of the Intertropical Convergence Zone (ITCZ) and long rainy season (March-92 

May) driven by southeasterly trades. In general, rainfall decreases from west to east across while temperature in-93 

creases southwards in the basin. The Mara basin is endowed with significant biodiversity features through a se-94 

quence of zones from moist montane forest on the escarpment through dry upland forest to scattered woodland and 95 

then the extensive savanna grasslands (Figure 1b). Dark volcanic origin soils are common on the escarpment and 96 

rangelands while shallow soils that drain freely are found lower down. Poorly drained soils cover the plateau. 97 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-104, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 24 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



4 

 

2.2. A brief overview of SWAT  98 

The SWAT (Arnold et al., 1998, 2012; Neitsch et al., 2011) is a comprehensive, process-oriented, semi-distributed 99 

and physically-based eco-hydrological simulator at a river basin scale. The major components include weather, 100 

hydrology, soil temperature and properties, plant growth, nutrients, pesticides, bacteria and pathogens, and land 101 

management. 102 

SWAT uses a GIS based interface that allows using spatial information such as a digital elevation model (DEM) and 103 

land use/land cover and soil maps. In SWAT a basin is partitioned into several sub-basins using topographic infor-104 

mation and the sub-basins, in turn, are subdivided into several Hydrological Response Units (HRUs) with a unique 105 

combination of land use, soil and slope class. Each hydrologic process are simulated at HRU level on a daily or sub-106 

daily time step and aggregated into sub-basin level for routing into a river network (Neitsch et al. 2011). SWAT 107 

considers five storages: snow, canopy storage, the soil profile with up to ten layers, a shallow aquifer and a deep 108 

aquifer to calculate the water balance (Neitsch et al., 2011) using the following equation: 109 

 



t

t
total LossesETQPS

1

 

  ( 1) 

where ΔS is the change in water storage and t is time in days. P, Qtotal, ET and Losses are the daily amounts of precip-110 

itation, the total water yield, the evapotranspiration and the groundwater losses, respectively. The total water yield 111 

represents an aggregated sum of the surface runoff, the lateral flow and the return flow. In this study, the surface 112 

runoff is computed using the SCS curve number procedure (USDA SCS, 1972). SWAT simulates ET i based on the 113 

PET from soil and plants  as described in Ritchie (1972). Therefore, the aggregated ET refers the sum of evaporation 114 

from the canopy and the soil as well as plant transpiration. The reader is referred to Alemayehu et al. (2015) and 115 

Neitsch et al. (2011) for the PET formulations in SWAT. PET is calculated using the Penman-Monteith equation. 116 

2.2.1.  The vegetation growth and Leaf Area Index modeling in SWAT 117 

SWAT simulates the annual vegetation growth based on the simplified version of the EPIC plant growth model 118 

(Neitsch et al., 2011). The potential plant phenological development is hereby simulated on the basis of daily accu-119 

mulated heat units under optimal conditions; however, the actual growth is constrained by temperature, water, nitro-120 

gen or phosphorous stress. The potential biomass production is based on Monteith’s approach while the yield is 121 

computed using a harvest index (Arnold et al., 2012; Neitsch et al., 2011). 122 

Plant growth is primarily based on temperature and hence each plant has its own temperature requirements (i.e. 123 

minimum, maximum and optimum). Plant growth is maintained while the daily mean temperature exceeded and/or 124 

equalled the base temperature with a  rate of growth directly proportional to heat unit (HU) accumulation.HU is 125 

computed as: 126 
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basem TTHU   when basem TT                  (2) 

Where Tm is the mean daily temperature (
0
C) and Tbase is the plant’s minimum temperature for growth (

0
C).  127 

The fundamental assumption in heat unit theory is that plants have a heat unit requirements that can be quantified 128 

and linked to the time of planting to maturity (Neitsch et al., 2011). The total number of heat units required for a 129 

plant to reach maturity must be provided by the user that is calculated: 130 





n

d

HUPHU
1

 

               (3) 

where PHU is the total heat units required for a plant maturity (heat units), HU is the number of heat units accumu-131 

lated on day d where d=1 on the day of planting and n is the number of days required for a plant to reach maturity. 132 

For trees and perennials, the time that the plants begin to develop buds and seeds reach maturation are considered as  133 

the beginning and endo of the growing season. The fraction of PHU (frPHU) accumulated on a given date is calculat-134 

ed: 135 

PHU

HU

fr

d

i
i

PHU


 1

 

               (4) 

The plant growth modeling in SWAT includes simulation of  the leaf area development, light interception and con-136 

version of intercepted light into biomass assuming a plant species-specific radiation-use efficiency (Neitsch et al., 137 

2011). The optimal leaf area development during the initial period of the growth is modeled as: 138 

).exp( 21
Im

PHUPHU

PHU
xLA

frllfr

fr
fr


  

               (5) 

where frLAImx is the fraction of the plant’s maximum leaf area index corresponding to a given fraction of potential 139 

heat units for the plant, , and l1 and l2 are shape coefficients. Once the maximum leaf area index is reached, LAI will 140 

remain constant until the leaf senescence begins to exceed the leaf growth. Afterwards, the leaf senescence becomes 141 

the dominant growth process and hence the LAI follows a linear decline (Neitsch et al., 2011). However, Strauch 142 

and Volk (2013) showed the advantage of using a logistic decline curve, to avoid that the LAI drops to zero before 143 

dormancy occurs. Therefore, we adopted this change to SWAT2012 whereby the LAI during leaf senescence for 144 

perennials is calculated as: 145 

)exp(1

min

t

LAILAI
LAI mx




       

(6) 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-104, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 24 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



6 

 

senPHUPHU

senPHU

PHU frfr
fr

fr
randrtwith ,

,

,     
1

1
      )5.0(12  




  

where the term used as exponent is a function of time and t varies from 6 to -6, LAI is the leaf area for a given day 146 

and declines using r as a decline rate, LAImx and LAImin are the maximum and minimum (i.e. during dormancy) leaf 147 

area index, respectively, frPHU,sen is the fraction of growing season (PHU) at which senescence becomes the domi-148 

nant growth process.  149 

As detailed in Neitsch  et al. (2011), the daily LAI calculation for perennials and trees are slightly different. 150 

For perennials, the leaf on day i is calculated as: 151 

 
 )).(5exp(1

..

1

1,Im,Im

mxi

mxixLAixLAi

LAILAI
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
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 152 

While for trees, the leaf area added on day i is calculated: 153 

 154 
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          (8) 

The total leaf area index is calculated: 155 

iii LAILAILAI  1                       (9) 

  
where ΔLAIi is the leaf area added on day i, LAIi and LAIi-l are the leaf area indices for day i and i-1 respectively, 156 

frLAImx,i and frLAImx,i-1 are the fraction of the plant’s maximum leaf area index for day i and i-1, LAImx is the maximum 157 

leaf area index for the plants, yrcur is the age of the tree (years), and yrfulldev is the number of years for tree species to 158 

reach full development (years). 159 

2.2.2. The annual vegetation growth cycle in SWAT and its limitation for the tropics 160 

SWAT assumes that trees and perennial vegetation can go dormant as the daylength nears the minimum daylength 161 

for the year. Dormancy, a function of latitude and daylength, during which plants do not grow, is used to repeat the 162 
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growth cycle each year for trees and perennials. At the beginning of the dormant period, a fraction of the biomass is 163 

converted to residue and the leaf area index is set to the minimum value. Both the fraction of the biomass converted 164 

to residue and the minimum LAI are defined in the plant growth database (Neitsch et al., 2011). Temperature is the 165 

main controlling factor for vegetation growth in temperate region and thus, the dormancy strategy suitable as a 166 

proxy for initiating new growth cycle annually.  In the tropics, however, plants growth dormancy is primarily con-167 

trolled by precipitation (Bobée et al., 2012; Jolly and Running, 2004; Lotsch, 2003; Zhang et al., 2010; Zhang, 2005) 168 

and hence the standard SWAT growth module cannot realistically represent the seasonal growth dynamics for trees 169 

and perennials. In fact, to address this limitation, SWAT offers several management operations to improve the sea-170 

sonality of trees and the perennial growth cycle using either heat units (the default) or calendar date scheduling. The 171 

default management operation in SWAT is scheduled using heat unit fractions, whereby planting (start of growing 172 

season) and kill (end of growing season) operations occur at FRPHU  values of 0.15 and 1.2, respectively.  173 

2.3. A soil moisture index-based vegetation growth cycle for the tropics 174 

Several studties have demonstrated water availability in the soil profile is one of the primary governing factors of 175 

vegetation growth in tropics (Jolly and Running, 2004; Lyamchai et al., 1997; Sacks et al., 2010; Strauch and Volk, 176 

2013; Zhang, 2005; Zhang et al., 2006). The moisture availability (i.e. linked to rainfall) is therefore a realistic proxy 177 

to pinpoint the onset of the new growing season for forest and perennials as noted in Strauch and Volk (2013) as 178 

well. Nonetheless, the soil moisture estimates are not readily available from measurements, while model estimates 179 

of the moisture are also not known a priori. Additionally, Yu et al. (2016) observed a higher uncertainty in soil 180 

moisture simulations than in streamflow simulations. Thus, a simple SMI based on the major inputs of SWAT such 181 

as P and PET could be a viable alternative. Figure 2 presents the SMI pattern for stations across the Mara Basin 182 

using long-term climatological P and PET. It is apparent from Figure 2 that the dry season (mostly from June - Sep-183 

tember) shows low SMI values (less than 0.5). Additionally, these patterns resemble well the long-term monthly 184 

average LAI for the savanna ecosystem (the dominant cover in the mid-section of the Mara Basin). In areas with a 185 

humid climate (i.e. the head water regions of the basin), the SMI values are high and the rainfall regime is different, 186 

yet in the relatively drier months (January and February) the SMI is low. Therefore, we suggest to use the SMI as a 187 

proxy for the SOS and hence to reset the annual vegetation growth cycle. This approach enables SWAT to simulate 188 

the vegetation cycle dynamically without the need for management setting (“plant” and “kill”). 189 

To avoid false starts during the dry season, the end of the dry season and the beginning of the rainy season (SOS1 190 

and SOS2, respectively) are determined using a long-term monthly climatological P to PET ratio (Figure 2). For 191 

river basins with a single rainfall regime, a single set of SOS months can be used across the basin. However, in ba-192 

sins with different rainfall regimes, different SOS months need to be set at sub-basin level. In our study area two 193 

distinct rainfall regimes are observed and therefore two different SOS values were needed. For the major part of the 194 

sub-basins October (SOS1) and November (SOS2) were used as transitions (Figure 2). Additionally, we used the 195 

pentad ratio instead of a single day ratio, to assure the availability of sufficiently high soil moisture content for the 196 

start of a new vegetation growth cycle.  197 
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2.4. SWAT-T: the adaptation of the SWAT plant growth module 198 

Based on the rationale elaborated in the preceding sections, we modified the standard SWAT2012 (version 627) 199 

plant growth subroutine for basins located between 20
0
 N and 20

0 
S:  200 

i) If the simulation day is within SOS1 and SOS2 for a given HRU and a new growing cycle is not initiated 201 

yet, the SMI is calculated as the ratio of the pentad P to  PET; 202 

ii) If the SMI exceeds or equals 0.5, a new growing cycle for trees and perennials is initiated. Subsequent-203 

ly, FRPHU is set to 0 and the LAI is set to the minimum value (ALAI_MIN). Plant residue decomposi-204 

tion and nutrient release is calculated as if dormancy would occur.  205 

iii) In case the SMI is still below the threshold (i.e. 0.5) at the end of month SOS2, a new growing cycle is 206 

initiated immediately after the last date of SOS2.  207 

It is worth noting that SMI threshold could be raised or lowered depending on the climatic condition of the basin. 208 

2.5. Model set up, calibration and evaluation 209 

2.5.1. The model set up and data used 210 

The Mara River Basin was delineated using a high resolution (30 m) digital elevation model (DEM) in 211 

ArcSWAT2012 (revision 627). The basin was subdivided into 89 sub-basins to spatially differentiate areas of the 212 

basin dominated by different land use and or soil with dissimilar impact on hydrology. Each sub-basin was further 213 

discretized into several HRUs, which represent unique combinations of soil, land use and slope classes. The model 214 

was set up for conditions representing the period 2002-2009. The land cover classes for the basin were obtained 215 

from FAO-Africover project (FAO, 2002). Generally speaking, as shown in Figure 1b, the dominant portion of the 216 

basin is covered by natural vegetation including savanna grassland (RNGE), shrubland (RNGB) and evergreen for-217 

est (FRSE). We extracted the soil classes for the basin from the Harmonized Global Soil Database (FAO, 2008). A 218 

soil properties database for the Mara River Basin was established using the soil water characteristics tool (SPAW, 219 

http://hydrolab.arsusda.gov/soilwater).  220 

Table 1 presents the list of hydro-climatological and spatial data used to derive, calibrate and evaluate the SWAT 221 

model. In situ measurements of rainfall and other climate variables are sparse and thus bias-corrected TMPA satel-222 

lite rainfall data (Roy et al., 2017) were used. The bias-correction involves using historical gauge measurements and 223 

a downscaling to a 5 km resolution. Detailed information on the bias-correction and downscaling procedures can be 224 

found in Roy et al. (2017). Weather data needed to compute the  PET was obtained from the Global Land Data As-225 

similation System (GLDAS) (Rodell et al., 2004). To improve the consistency of the PET estimates we adjusted at 226 

sub-basin level the solar radiation on average by 1.4% based on a method suggested in Alemayehu et al. (2017). 227 

 228 
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2.5.2. Data for model evaluation  230 

The Leaf Area Index 231 

The MOD15A2 LAI data used in this work is based on the MODIS TERRA sensor (version 5). This 8-day compo-232 

site product is provided at a 1 km
2
 spatial resolution. The theoretical basis of the MODIS LAI product algorithm and 233 

the validation results are detailed in Myneni et al. (2002). The LAI product is based on biome-specific algorithms, 234 

involving several constants (leaf angle distribution, optical properties of soils and wood, and canopy heterogeneity) 235 

(Myneni et al., 2002). Kraus (2008) reported a fair agreement of MOD15A2 LAI data with field measurements for 236 

two East African forest biomes. 237 

To reduce the effect of land cover mix on the LAI magnitude, we selected a representative homogenous sample sites 238 

for evergreen forest, tea, savanna grassland and shrub land cover classes (see Figure 1b) using the Africover classes 239 

and Google Earth images. Subsequently, the MOD15A2 LAI was masked using polygons of the sample covers. To 240 

minimize the impacts of clouds, we used pixels with quality flag 0 as well as removed pixels with LAI values less 241 

than 1.5 during the peak growing season. In the presence of gaps in the LAI time series, gaps were filled using linear 242 

interpolation. Subsequently, we extracted the 8-day median LAI time series for each land cover for 2002-2009. Due 243 

to the high frequency variability and the inevitable signal noise, the progression of LAI development from the start 244 

of the growing season to the dry season are often influenced by sudden breaks. Verbesselt et al. (2010) developed 245 

the Breaks For Additive Seasonal and Trend (BFAST) method that decomposes the Normalized Vegetation Index 246 

(NDVI) time series into trend, seasonal, and remainder components. The trend and seasonal components comprise 247 

information pertinent to phenological developments as well as gradual and abrupt changes whereas the reminder 248 

component comprises noise and error information of the time series. This method has been applied to tropical eco-249 

systems to identify phenological cycles as well as abrupt changes (DeVries et al., 2015; Verbesselt et al., 2010, 250 

2012). In our study, we used the BFAST tool to extract the seasonal development pattern of LAI while excluding the 251 

noise and error information from the LAI time series. Figure 3 demonstrates the smoothed 8-day LAI time series 252 

using BFAST along with the raw-median LAI values. It is apparent from the smoothed LAI time series that the 253 

intra-annual variation of the LAI development is consistent with the seasonal rainfall pattern. Therefore, the 254 

smoothed LAI time series  were used in two ways: i) to calibrate and evaluate the SWAT-T model for simulating the 255 

LAI ii) incorporating the 8 years average of the first week (8-day) LAI for each month (i.e. prescription) to initialize  256 

the LAI in SWAT-TRS month-by-month. 257 

The evapotranspiration 258 

 ET is one of the major components in a basin water balance and closely linked with land cover classes and their 259 

growth cycle. Thus, remote sensing-based ET estimates can be used to evaluate (calibrate) the SWAT-T model. 260 

Alemayehu et al. (2017) estimated ET for the Mara River basin using several MODIS thermal imageries and the 261 

GLDAS global weather dataset from 2002 to 2009 at a 8-day temporal resolution based on the Simplified Surface 262 

Energy Balance operational (SSEBop) algorithm (Senay et al., 2013). The SSEBop mainly depends on the remotely 263 
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sensed land surface temperature and the grass reference evapotranspiration (Senay et al., 2013). Alemayehu et al. 264 

(2017) demonstrated that the SSEBop ET explained about 52%, 63% and 81% of the observed variability in the 265 

NDVI at 16-day, monthly and annual temporal resolution. Also, they suggested that the estimated ET can be used 266 

for hydrological model parameterization. We note the resemblance in the seasonal pattern of the MODIS LAI ana-267 

lyzed in this study with the SSEBop ET, hereafter referred as remote sensing-based ET (RS-ET). Therefore, we used 268 

this dataset to evaluate the SWAT simulated ET at land cover level. 269 

Flow  270 

Due to the limited availability of observed flow, the SWAT model was calibrated (2002 - 2005) and validated (2006 271 

- 2008) for the head water region only, using daily flow. The selected periods for the calibration and validation peri-272 

od have about 11% missing gaps.  273 

2.6. The model performance metrics 274 

The main purpose of this study is to explore the potential of the SMI as a proxy to repeat the annual vegetation 275 

growth cycle for the tropical ecosystem. The parameters related to the simulation of the LAI, the ET and the flow 276 

are calibrated manually by trial-and-error and expert knowledge. Both the Pearson correlation coefficient (r) and the 277 

Percent of PBIAS (%bias) were used to evaluate the agreement between the simulated and the remote sensing-based  278 

estimates of LAI and ET for each land cover class and the flow at the Bomet gauge station. Additionally, the models 279 

performance was evaluated using the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009), which provides a com-280 

pressive assessment by taking into account of the variability, the bias and the correlation in a multi-objective sense. 281 

3. Results and discussion  282 

3.1. The characterization of the vegetation growth dynamics  283 

3.1.1. The vegetation seasonality based on MODIS data 284 

Figure 4 presents the seasonality of the evergreen forest, tea, savanna grass and shrub cover types using 8-day 285 

MODIS LAI time series in the Mara Basin. The long-term mean annual LAI for evergreen forest is about 2.6 m
2
/m

2
 286 

with peaks in April and August. As shown in Figure 4a, the seasonal LAI dynamics show (to some extent) a season-287 

al variation with an amplitude (peak-to-trough difference) equal to 31% of the annual mean LAI. This seasonal vari-288 

ation is comparable with the results of Myneni et al. (2007) who noted 25% seasonal variation in the Amazon forest. 289 

We note that the seasonal LAI dynamics of the evergreen forest reflects well the seasonal rainfall pattern, with a low 290 

LAI during the dryer months. Our results are in agreement with Kraus (2008), that reported similar findings for 291 

forest sites located in Kenya and Uganda. Additionally, Kinyanjui (2010) analyzed the NDVI in the Mau forest 292 

complex, that includes the forested part of this study, and marked the association of the rainfall pattern and the 293 

NDVI.  294 
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In the part of the basin where there is a marked dry season, the seasonal LAI dynamics exhibit a notable variation, 295 

with amplitude (i.e. peak-to-trough difference) that is 85% of the mean annual LAI of 1.4 for savanna grass. As 296 

shown in Figure 4 c and d, low LAI values correspond with the dry months of July - Sept. These observations are 297 

consistent with Zhang et al. (2005) who observed a vegetation growth seasonality that reflects the seasonal rainfall 298 

pattern in East Africa. 299 

3.1.2. The vegetation seasonality simulated by SWAT-T  300 

As described in section 2.3, the vegetation growth cycle (and thus the LAI) in the SWAT-T model is simulated dy-301 

namically by using a SMI to annually trigger a new growing season. Hereby the evolution of the LAI follows a 302 

sigmodal pattern, mainly controlled by the daily accumulated heat unit. Table 2 summarizes the list of SWAT model 303 

parameters that control the vegetation growth dynamics. The shape coefficients for the LAI curve (FRGW1, FRGW2, 304 

LAIMX1, LAIMX2 and DLAI) are adjusted by a trail-and-error process such that the SWAT-T simulated LAI mimics 305 

the MODIS LAI. In reality, the minimum LAI (ALAI_MIN) for each cover type varies inter-annually, depending on 306 

the climatic condition; however, this value is fixed in SWAT and need to be provided for each plant (in the plant 307 

database). Thus, ALAI_MIN is set to 2.0, 0.75 and 0.75 for FRSE, RNGE and RNGB, respectively based on the 308 

long-term MODIS LAI (Table 2). Additionally, the optimal temperature and the base temperature in the plant data-309 

base are adjusted, as shown in Table 2. 310 

Figure 5 presents the average seasonal variation of LAI as simulated by the SWAT-T model between 2002-2009.  311 

The SWAT-T simulated LAI shows a higher seasonal variation as compared to the variation observed from MODIS 312 

LAI for evergreen forest and tea. The amplitude of the evergreen forest is about 47.7% of the average annual 313 

MODIS LAI.    314 

The  SWAT-T simulated LAI for RNGE (RNGB) peaks in April with amplitude range of about 77% (82%) of the 315 

average annual MODIS LAI of 1.4 (1.3) m
2
/m

2
 (Figure 5). Overall, the LAI values simulated by the modified 316 

SWAT model tend to reflect the rainfall seasonality pattern. Our results are in agreement with several studies that 317 

noted that the LAI dynamics for natural ecosystem in the Sub-Saharan Africa are associated with the rainfall distri-318 

bution pattern (Bobée et al., 2012; Kraus et al., 2009; Pfeifer et al., 2014).  319 

One of the advantages of the SMI as a proxy to pinpoint the SOS is not only to trigger a new growth cycle dynami-320 

cally (i.e. without any management setting) but also the fact that it accounts for the year-to-year shifts in the SOS 321 

due to climatic variations. This is particularly important for long-term land use change and climate change impact 322 

studies. Figure 6 demonstrates the year-to-year shifts as well as the spatial variation in the SOS dates for part of the 323 

Mara River Basin dominated by savanna grassland. Generally, the season change tends to occur in the month of 324 

October (i.e. Julian date 278-304).  325 
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3.2. The assessment of the improvements of the Leaf Area Index simulation module 326 

The improvement in the modified SWAT model to simulate the vegetation growth cycle and LAI progression for 327 

trees and perennials were assessed in two ways. Firstly, we compared the daily LAI as simulated by the standard 328 

SWAT2012 (revision 627) under different management settings with the modified version. Secondly, an evaluation 329 

was carried out using remotely sensed MOD15A2 LAI time series at 8-day scale. 330 

3.2.1. Evaluation of the vegetation growth module improvement  331 

Figure 7 and Figure 8 present the simulated daily LAI for FRSE and RNGE for different management operations 332 

along with the rainfall. The purpose of this comparison is to highlight the effect of the model structure changes on 333 

the simulated LAI with the default SWAT parameters. The PHU requirement for FRSE and RNGE are set to 3570 334 

and 4100, respectively. The default management setting in SWAT is scheduled using heat unit fractions (Heat unit), 335 

whereby planting and kill operations occur at FRPHU  0.15 and 1.2, respectively. With this operation, the simulated 336 

LAI is zero at the beginning of each simulation year for all types of vegetation cover (which does not coincide with 337 

the dry season). As shown in Figure 7 and Figure 8, this can be partly improved using a date scheduling (Date) for 338 

the plant and kill operations (i.e. instead of Heat unit). Additionally, all the setting are removed (no mgt) and the 339 

land covers are set to land cover growing (IGRO=1) mode. As a result, the growth cycle resets every year on June, 340 

28 (Figure 7 and Figure 8).  341 

The forested head-water region experiences a unimodal rainfall regime, with March-August being the rainy season. 342 

In contrast, a bimodal rainfall regime prevails (March-May and October-December) on the remaining part of the 343 

basin. The LAI that is simulated with an uncalibrated model that uses the standard version of SWAT vegetation 344 

growth module does not reflect well the seasonality of rainfall in the basin. In contrast, the simulated LAI using the 345 

SWAT-T model (i.e. the modified vegetation growth module) tends to follow the seasonal rainfall pattern well (see 346 

Figure 5). 347 

Figure 9 depicts the comparison of SWAT and SWAT-T simulated daily potential transpiration timeseries for grass-348 

land based on the Penman-Monteith approach. The limitations of the LAI growth cycle in the standard SWAT mod-349 

el also influences the simulation of potential plant transpiration, where a zero potential transpiration is observed 350 

during the growing season. In this regard, we observe 14% (12%) zero daily potential transpiration for evergreen 351 

forest (grassland) between 2002-2009 using the standard SWAT whilst this reduces to about 2% (0)  using SWAT-352 

T. and hence better realism. These results indicate the structural improvements in the plant growth module and 353 

hence better realism and significantly reduced inconsistent zero potential transpiration values. We also notice the 354 

SWAT-T simulated potential transpiration is consistent while changing the PET method to Hargreaves method in 355 

SWAT (results not shown here). Several studies have shown the effect of PET method selection in SWAT on simu-356 

lated ET and other water balance components (Alemayehu et al., 2015; Maranda and Anctil, 2015; Wang et al., 357 

2006). Alemayehu et al. (2015) reported significant differences in both potential and actual transpiration with the 358 

choice of PET method using calibrated SWAT model, which partly ascribed to the unrealistic LAI  growth cycle. 359 
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Therefore, the improved vegetation growth cycle in the SWAT-T will reduce the uncertainty arising from the mod-360 

ule structure and thus minimize the uncertainty in simulated ET and runoff.  361 

3.2.2. Performance of the LAI simulation 362 

Figure 10 presents the comparison of 8-day MODIS LAI with the LAI simulated by the calibrated SWAT-T aggre-363 

gated over several land cover classes. We evaluated the degree of agreement qualitatively -by visual comparison- 364 

and quantitatively -by statistical measures.  From the visual inspection it is apparent that the intra-annual LAI dy-365 

namics (and hence the annual growth cycle of each land cover class) from the SWAT-T model correspond well with 366 

the MODIS LAI data. This indicates that the SMI can indeed be used as a proxy to dynamically trigger a new grow-367 

ing season. This is further supported by a high correlation and a minimal average bias, as shown in Table 3, for most 368 

of the cover types.  369 

3.3. The spatial simulation of the evapotranspiration 371 

Table 4 presents the list of SWAT parameters related to flow and evapotranspiration that were adjusted during the 372 

manual calibration. Figure 11presents the 8-day ET-RS and SWAT-T simulated for the calibration (2002 - 2005) 373 

and validation (2006 - 2009) periods for evergreen forest, tea, grassland and shrubs. Visually, the ET simulated by 374 

the SWAT-T fairly agrees with the RS-ET for all the covers. As shown in Table 3, the statistical performance indi-375 

ces show a modest performance in simulating ET for the dominant cover types in the basin. The average model 376 

biases for the simulated ET ranges from 7.8% (grassland) to 1.2% (shrub) during the calibration period. Additional-377 

ly, the correlation between 8-day ET from the SWAT-T and the RS-ET varies from 0.67 (tea) to 0.72 (grassland). 378 

Overall, we mark similar performance measures during the calibration and validation period, suggesting a fair repre-379 

sentation of the processes pertinent to ET. 380 

The variability of the evapotranspiration is controlled by several -biotic and abiotic- factors. The 8-day ET time 381 

series as simulated by the SWAT-T model illustrates the variation in the temporal dynamics of ET in the study area. 382 

For land cover types located in the humid part of the basin (evergreen forest and tea) there is no clear temporal pat-383 

tern (Figure 11). In contrast, the areas covered by evergreen forest and shrubs show a clear seasonality in the simu-384 

lated ET. These observations are consistent with the seasonality of the simulated LAI, as shown in Figure 5. 385 

The SWAT model parameters were adjusted by trial and error with the objective of improving the agreement be-387 

tween the SWAT-T simulated ET and the RS-ET. Perhaps, this may not be as robust as an automatic calibration as 388 

the latter explores a larger parameters space. However, the manual calibration is sufficient to illustrate the impact of 389 

the modification on the vegetation growth cycle and its effect on the water balance components. The higher water 390 

use by evergreen forest as compared to other land cover classes is reflected by a lower ESCO, and a higher 391 

GW_REVAP and GSI (Table 4). The lower ESCO indicates an increased possibility of extracting soil water to satis-392 

fy the atmospheric demand at a relatively lower soil depth. The higher GW_REVAP points to an increased extrac-393 
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tion of water by capillary rise and deep-rooted plants from the shallow aquifer. Similar findings were reported by 394 

Strauch and Volk  (2013). 395 

The improvements in the seasonality of the annual growth cycle in the SWAT-T model is also noted by a realistic 396 

spatial and temporal representation of ET and LAI (Figure 12 and Figure 13). Figure 12 (upper row) exhibits the 397 

monthly ET at HRU level for the wettest month (April) and driest month (August) in 2002. The lower portion of the 398 

basin, with dominant savanna cover, experiences a monthly ET between 16 and 63 mm in August and between 41 399 

and 93 mm in April. These estimates are also well reflected in the spatial distribution of the average monthly simu-400 

lated LAI (Figure 12 lower row). We notice that the linear relationship between ET and LAI is stronger, in general, 401 

for grassland and shrubs than for evergreen forest and tea. The lower correlation for tea and evergreen forest could 402 

be partly attributed to the high evaporation contribution of the wet soil, as the upper portion of the basin receives 403 

ample rainfall year round. In this part, it is worth noting the tea harvest operation and hence low transpiration and 404 

high evaporation contribution. We also note that during the wet month the spatial variability of ET is higher than 405 

that of the LAI (Figure 12). 406 

3.4. The performance of the flow simulations  407 

Figure 14 presents the comparison of daily SWAT-T simulated flow with observation for the calibration and valida-408 

tion periods. Visually, the simulated hydrograph fairly reproduced the observation. The average biases of the 409 

SWAT-T model simulated daily flow compared observations  are 3.5 and 15.5% during the calibration and valida-410 

tion periods, respectively (Table 3). The degree of correspondence between daily observed and simulated flows 411 

results a good correlation during calibration 0.72 and validation 0.76 periods. Additionally, the overall comprehen-412 

sive assessment using KGE reveals a good performance of the SWAT-T model in simulating the daily flows. Gener-413 

ally, the model tends to underestimate the baseflow and this is more pronounced during the validation period. This is 414 

probably associated with the overestimation of the ET for evergreen forest (6.6%) during the validation, since ET 415 

has a known effect on the groundwater flow.  416 

4. Summary and conclusions 417 

We presented an innovative approach to improve the simulation of the annual growth cycle for trees and perennials -418 

and hence improve the representation of the evapotranspiration- for tropical conditions in SWAT. The robustness of 419 

the changes made to the standard SWAT2012 version 627 have been assessed by comparing the model outputs with 420 

remotely sensed 8-day composite LAI data, as well as with RS-ET data. Towards this, we presented a simple but 421 

robust soil moisture index (SMI), a quotient of rainfall (P) and reference evapotranspiration (PET), to trigger a new 422 

growing season after a defined dry season. The new growing season starts when the SMI index exceeds or equals 423 

0.5, meaning 50% or more of the atmospheric water demand is satisfied. To assure the availability of sufficient soil 424 

water for a new growing season, we used the pentad P and PET to compute the SMI. Therefore, we have modified 425 

the plant growth model of the standard SWAT model (SWAT-T) to simulate the vegetation growth cycle and hence 426 
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the LAI dynamically (with no management setting) using the SMI as a proxy for the season change. The Moderate 427 

Resolution Imaging Spectroscopy (MODIS) LAI time series (2002-2009) at 8-day has been used to evaluate the LAI 428 

simulated by the SWAT-T. Additionally, the overall performance of the SWAT-T model for simulating flow and 429 

evapotranspiration (ET) has been compared with observed flow and remote sensing-based ET (RS-ET). 430 

The structural improvements in the LAI simulation have been demonstrated by comparing simulation of LAI using 431 

standard SWAT and SWAT-T with default parameters. The results indicated that the modified module structure for 432 

the vegetation growth exhibits temporal progression patterns that are consistent with the seasonal rainfall pattern. 433 

Further, we note better consistency in the simulated potential transpiration for perennial and trees regardless of the 434 

choice of the PET method, suggesting the usefulness of the improved LAI temporal dynamics in reducing the model 435 

structural uncertainty.  436 

Our results show that the calibrated SWAT-T simulated LAI corresponds well with the MODIS LAI for various land 437 

cover classes in the Mara Basin, indicating the realistic representation of the start of the new growing season using 438 

the SMI. Our results also demonstrated the year-to-year variation of the start of the new growing seasons, due to the 439 

variability in the P and PET.   440 

The improvement in the vegetation growth cycle in SWAT is conformed with a good agreement of simulated ET 441 

with RS-ET, particularly for the grassland. Additionally, the daily flow simulated with the SWAT-T mimics well the 442 

observed flows for the Nyangores River. In general, the SWAT-T model shows a good skill in simulating the major 443 

water balance components. Previous SWAT modeling studies, e.g. Mango et al. (2011) reported poor performance 444 

of SWAT in the study area for the same location and period. Therefore, we believe that the good performance 445 

demonstrated in this paper is partly attributed to the improvement in the vegetation growth cycle.  446 

This research used bias-corrected satellite P and PET derived from global weather data as forcing. Given the inher-447 

ent errors in the input data, we acknowledge the inevitable influence on the model performance and simulation out-448 

puts. However, we believe that the quality of the input data used is sufficient to evaluate the plant growth module 449 

modifications in SWAT on the LAI seasonal development and the water balance components. The SWAT-T devel-450 

oped in this study could be a robust tool for simulating water and carbon fluxes as well as various land use and cli-451 

mate change impact studies in tropical ecosystems.  452 
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6. Data Availability 458 

 The modified SWAT simulator for Tropics is available upon request from the first author. 459 
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Table 1 Summary of the inputs of the SWAT model and the evaluation datasets. 611 

 Spatial/temporal 

resolution 

Source Description 

Rainfall 5 km / 1-day Roy et al. (2017) Bias-corrected satellite rainfall for 

Mara basin 

Climate 25 km / 3-hour Rondell et al. (2004) Max. and min. temperature, relative 

humidity, wind, solar radiation 

Land cover classes 30 m FAO (2002) Land cover classes for East Africa 

DEM 30 m NASA Elevation model 

Soil classes 1 km FAO (2009) Global soil classes 

Discharge daily local ministry  River discharge at Bomet 

ET 1 km / 8-day Alemayehu et al. (2017)   ET maps for Mara basin 

MOD15A2 500 m / 8-day NASA Global LAI 

 612 

Table 2 Summary of the SWAT parameters that control the vegetation growth and the LAI with their default and cali-613 
brated values. 614 

 Parameter definition (unit) 

Default (calibrated) 

FRSE RNGE RNGB 

BIO_E Radiation-use efficiency((kg/ha)/(MJ/m
2
)) 15 (17) 34 (10) 34 (10) 
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BLAI Maximum potential leaf area index (m
2
/m

2
) 5 (4.0) 2.5 (3.5) 2 (3.5) 

FRGW1 
Fraction of PHU corresponding to the 1

st
 point on the 

optimal leaf area development curve 

0.15 

(0.06) 

0.05 

(0.2) 

0.05 

(0.2) 

LAIMX1 
Fraction of BLAI corresponding to the 1

st 
point on the 

optimal leaf area development curve 

0.7 

(0.15) 

0.1 

(0.1) 

0.1 

(0.1) 

FRGW2 
Fraction of PHU corresponding to the 2

nd
 point on the 

optimal leaf area development curve 

0.25 

(0.15) 

0.25 

(0.5) 

0.25 

(0.5) 

LAIMX2 
Fraction of BLAI corresponding to the 2

nd 
point on the 

optimal leaf area development curve 

0.99 

(0.30) 

0.7 

(0.99) 

0.7 

(0.99) 

DLAI Fraction of total PHU when leaf area begins to decline 

0.99 

(0.30) 

0.35 

(0.99) 

0.35 

(0.99) 

T_OPT Optimal temperature for plant growth (ºC) 30 (25) 25 (30) 25 (30) 

T_BASE Minimum temperature for plant growth (ºC) 0 (5) 12 (5) 12 (5) 

ALAI_MIN 
Minimum leaf area index for plant during dormant 

period (m
2
.m

2
) 

0.75 

(2.0) 

0 

(0.75) 

0 

(0.75) 

PHU 
Total number of heat units needed to bring   plant to 

maturity 

1800 

(3570) 

1800 

(4100) 

1800 

(4100) 

 615 

Table 3 Summary of the performance metrics for the SWAT-T for simulating LAI, ET and flow. Note that the for LAI 616 

and ET the performance is at 8-day whilst daily for flow. 617 

 

LAI calibration (validation) ET calibration (validation) Flow calibration (validation) 

 

FRSE Tea RNGE RNGB FRSE Tea RNGE RNGB Flow 

r 0.94 (0.93) 0.83 (0.83) 0.89 (0.86) 0.92 (0.88) 0.71 (0.68) 0.67 (0.64) 0.72 (0.77) 0.66 (0.72) 0.72 (0.76) 

%bias 1.5 (0) 0.1 (0.2) -3.7 (-0.4) -1.3 (4.6) 3.7 (6.6) -1.7 (0.5) 7.8 (11) 1.2 (2.9) 3.5 (15.5) 

KGE 0.50 (0.62) 0.42 (0.44) 0.86 (0.85) 0.88 (0.86) 0.71 (0.67) 0.62 (0.62) 0.69 (0.74) 0.66 (0.72) 0.71 (0.71) 

 618 

Table 4   List of the manually calibrated SWAT parameters. 619 
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Parameter Definition (unit) 

Initial (calibrated) 

FRSE RNGE RNGB 

SOL_Z
1 

Soil layer depths (mm) 

300 [1000] 

(480 [1600]) 

300[1000] 

(480 [1600]) 

300[1000] 

(480 [1600]) 

SOL_AWC
2 

Soil available water (mm) 

0.26-0.31 [0.27-0.29] 

(0.18-0.21 [0.18-

0.20]) 

0.26-0.31 [0.27-0.29] 

(0.18-0.21 [0.18-

0.20]) 

0.26-0.31 [0.27-0.29] 

(0.18-0.21 [0.18-0.20]) 

ESCO 
Soil evaporation compensation 

factor (-) 

0.95 

(0.88) 

0.95 

(1) 

0.95 

(1) 

EPCO 
Plant uptake compensation factor 

(-) 

1 

(1) 

1 

(1) 

1 

(1) 

GSI 

Maximum stomatal conductance 

at high solar radiation and low 

vapor pressure deficit (m.s
-1

) 

0.002 

(0.006) 

0.005 

(0.0035) 

0.005 

(0.004) 

REVAPMN 
Depth of water in the aquifer for 

revap (mm) 

750 

(100) 

750 

(100) 

750 

(100) 

CN2
3 Initial SCS curve number II value 

(-) 

55 [70] 

(38 [48]) 

69 [79] 

(81 [92]) 

61 [74] 

(71 [87]) 

SURLAG Surface runoff lag time (day) 4(0.01) 4(0.01) 4(0.01) 

ALPHA_BF Baseflow recession constant (day) 

0.048 

(0.2) 

0.048 

(0.2) 

0.048 

(0.2) 

GWQMN 
Shallow aquifer minimum level 

for base flow 

1000 

(50) 

1000 

(50) 

1000 

(50) 

GW_REVAP 
Groundwater ‘revap’ coefficient 

(-) 

0.02 

(0.1) 

0.02 

(0.02) 

0.02 

(0.02) 

RCHRG_DP 
Deep aquifer percolation fraction 

(-) 0.05 0.05 0.05 
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(0.3) (0.1) (0.1) 

1
SOL_Z values for the top [and lower] soil layers depth  620 

2
SOL_AWC values range for the top [and lower] soil layers depending on soil texture and bulk density 621 

3
CN2 values for soil hydrologic group B[C] 622 

 623 

 624 

(a) 625 

 626 
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(b) 627 

Figure 1 Location of the Mara Basin (a) and its land cover classes (b). Note the sample sites location for the major natural 628 
vegetation classes that are used to mask the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index 629 
(LAI). 630 

 631 

 632 

Figure 2 The climatological moisture index (SMI) for meteorological stations across the Mara Basin and the mean Leaf 633 
Area Index (LAI) for the savanna ecosystem (dotted line). SOS1 and SOS2 represent the start-of-months (SOS) to trigger 634 
growth whenever 50% of the atmospheric demand is exceeded or equalled.  635 
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Figure 3 The 8-day raw-median LAI time series for evergreen forest (a), tea (b), grass (c) and shrub (d) sample sites. The 637 
raw-median LAI is smoothed using the Breaks For Additive Seasonal and Trend (BFAST) method (Verbesselt et al., 638 
2010). 639 

 640 

Figure 4 The seasonal variability of the LAI using the 8-day MOD15A2 time series for 2002-2009. The boxplots present 641 
the median LAI and Interquartile Range for each month; the solid lines depict the smoothed seasonal LAI. 642 

 643 
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Figure 5 The seasonal pattern of the SWAT-T simulated LAI (2002-2009) for evergreen forest and grassland.  644 

 645 

Figure 6 The inter-annual and spatial variation of the start of the rainy season for the savanna vegetation in the Mara 646 
River basin for 2002-2005. Note that Julian dates are used and the mapping is done at HRU scale. 647 

 648 

Figure 7 The LAI as simulated by the SWAT-T and the standard SWAT models for different management setting for 649 
evergreen forest using default SWAT parameter values. See management setting explanations in the texts. 650 
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 651 

Figure 8 The LAI as simulated by the SWAT-T and the standard SWAT models for different management setting for 652 

grassland using default SWAT parameter values. See management setting explanations in the texts. 653 

 654 

Figure 9 Inter-comparison of Penman-Monteith-based daily potential transpiration simulated by SWAT-T and SWAT 655 
models for grassland. Note that the heat unit scheduling is used in SWAT model.  656 

 657 
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 658 

Figure 10 The MODIS LAI and the SWAT-T model simulated HRU weighted aggregated 8-day LAI time series (2002-659 
2009). The gray sheds indicate the boundaries of the 25th and 75th percentiles. The vertical line marks the end of the cali-660 
bration period and the beginning of the validation period.  661 

 662 

Figure 11 The comparison of RS-ET and SWAT-T simulated ET. Note that for SWAT-T HRU level ET is aggregated per 663 
landcover. The gray sheds indicate the boundaries of the 25th and 75th percentiles. The vertical line marks the end of the 664 
calibration period and the beginning of the validation period. 665 
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 666 

Figure 12 SWAT-T simulated monthly ET (upper row) and LAI (lower row) for April (wet) and August (dry) 2002 at 667 
HRU level. 668 
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 669 

Figure 13 The average seasonal and spatial distribution of ET (2002-2009) in the Mara Basin, as simulated by the SWAT-670 
T model at HRU level. 671 

 672 
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 673 

Figure 14 Observed and simulated flows for the Nyangores River at Bomet.  674 

 678 
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