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An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems
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Abstract. The Soil and Water Assessment Tool (SWAT) is a globally applied river basin eco-hydrological model
used in a wide spectrum of studies, ranging from land use change and climate change impacts studies to research for
the development of best water management practices. However, SWAT has limitations in simulating the seasonal
growth cycles for trees and perennial vegetation in the tropics, where rainfall rather than temperature is the dominant
plant growth controlling factor. Our goal is to improve the vegetation growth module of SWAT for simulating the
vegetation variables -such as the leaf area index (LAI) - for tropical ecosystems. Therefore, we present a modified
SWAT version for the tropics (SWAT-T) that uses a straightforward but robust soil moisture index (SMI) - a quo-
tient of rainfall (P) and reference evapotranspiration (ET,) — to dynamically initiate a new growth cycle within a pre-
defined period. Our results for the Mara Basin (Kenya/Tanzania) show that the SWAT-T simulated LAI corresponds
well with the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI for evergreen forest, savanna grass-
land and shrubland. This indicates that the SMI is reliable for triggering a new annual growth cycle. The water bal-
ance components (evapotranspiration and streamflow) simulated by the SWAT-T exhibit a good agreement with
remote sensing-based evapotranspiration (ET-RS) and observed streamflow. The SWAT-T model, with the pro-
posed vegetation growth module for tropical ecosystems, can be a robust tool for simulating the vegetation growth

dynamics in hydrologic models in tropical regions.

1. Introduction

The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) is a process-oriented, spatially semi-distributed
and time-continuous river basin model. SWAT is one of the most widely applied eco-hydrological models for the
modelling of hydrological and biophysical processes under a range of climate and management conditions (Arnold
et al., 2012; Bressiani et al., 2015; Gassman et al., 2014; van Griensven et al., 2012; Krysanova and White, 2015).
SWAT has been used in many studies in tropical Africa, to investigate the basin hydrology (e.g. Dessu and Melesse,
2012; Easton et al., 2010; Mwangi et al., 2016; Setegn et al., 2009) as well as to study the hydrological impacts of
land use change (e.g. Gebremicael et al., 2013; Githui et al., 2009; Mango et al., 2011) and climate change (Mango
et al., 2011; Mengistu and Sorteberg, 2012; Setegn et al., 2011; Teklesadik et al., 2017). Notwithstanding the high
number of SWAT model applications in tropical catchments, only a few studies discussed the limitation of its plant
growth module for simulating the growth cycles of trees and of perennial and annual vegetation in this region of the
world (Mwangi et al., 2016; Strauch and Volk, 2013; Wagner et al., 2011).
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It is worthwhile to note that phenological changes in vegetation affect the biophysical and hydrological processes in
the basin and thus play a key role in integrated hydrologic and ecosystem modelling (Jolly and Running, 2004;
Kiniry and MacDonald, 2008; Shen et al., 2013; Strauch and Volk, 2013; Yang and Zhang, 2016; Yu et al., 2016).
The Leaf Area Index (LAI) -the area of green leaves per unit area of land- is a vegetation attribute commonly used
in eco-hydrological modelling as it strongly correlates with the vegetation phenological development. Thus, an en-
hanced representation of the LAl dynamics can improve the predictive capability of hydrologic models, as already
noted in several studies (Andersen et al., 2002; Yu et al., 2016; Zhang et al., 2009). Arnold et al. (2012) underscored
the need for a realistic representation of the local and regional plant growth processes to reliably simulate the water
balance, the erosion, and the nutrient yields using SWAT. For instance, the LAI and canopy height are needed to
determine the canopy resistance and the aerodynamic resistance, to subsequently compute the potential plant transpi-
ration in SWAT. Therefore, inconsistencies in the vegetation growth simulations could result in uncertain estimates

of the actual evapotranspiration (ET), as noted in Alemayehu et al. (2015).

SWAT utilizes a simplified version of the Environmental Policy Impact Climate (EPIC) crop growth module to
simulate the phenological development of plants, based on accumulated heat units (Arnold et al., 1998; Neitsch et
al., 2011). It uses dormancy, which is a function of daylength and latitude, to repeat the annual growth cycle for
trees and perennials. Admittedly, this approach is suitable for temperate regions. However, Strauch and Volk (2013)
showed that the temporal dynamics of the LAI are not well represented for perennial vegetation (savanna and
shrubs) and evergreen forest in Brazil. Likewise, Wagner et al. (2011) reported a mismatch between the growth
cycle of deciduous forest and the SWAT dormancy period in the Western Ghats (India), and they subsequently

shifted the dormancy period to the dry season.

Unlike temperate regions where the vegetation growth dynamics are mainly controlled by the temperature, the pri-
mary controlling factor in tropical regions is the rainfall (i.e. the water availability) (Jolly and Running, 2004;
Lotsch, 2003; Pfeifer et al., 2012, 2014; Zhang, 2005). A study of Zhang et al. (2005) explored the relationship be-
tween the rainfall seasonality and the vegetation phenology across Africa. They showed that the onset of the vegeta-
tion green-up can be predicted using the cumulative rainfall as a criterion for the season change. Jolly and Running
(2004) determined the timing of leaf flush in an ecosystem process simulator (BIOME-BGC) after a defined dry
season in the Kalahari, using events where the daily rainfall (P) exceeded the reference evapotranspiration (ET)).
They showed that the modelled leaf flush dates compared well with the leaf flush dates estimated from the Normal-
ized Difference Vegetation Index (NDVI). This points to the feasibility of using a proxy derived from P and ET, to
pinpoint a season change in the tropics. Sacks et al. (2010) made a global study of the relations between crop plant-
ing dates and temperature, P and ET,, using 30-years climatological values. They noted that in rainfall limited re-
gions the ratio of P to ET, is a better proxy for the soil moisture status than is P alone. Using a soil moisture index
(SMI) derived from the ratio of P to ET, to trigger a new growth cycle in hydrological modelling is appealing be-
cause the SMI can be determined a priori. On the other hand, Strauch and Volk (2013) used the SWAT simulated

soil moisture in the top soil layers to indicate the start of a wet season (SOS) and thus of a new vegetation growth
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cycle. Their results showed an improved simulation of the seasonal dynamics of the LAI and a good match with the
Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day LAI. However, such an approach requires a cali-
bration of the SWAT parameters that govern the soil water balance dynamics. The latter is not obvious when only

observed streamflow data are used for the calibration(Yu et al., 2016).

The main objective of this study is to improve the vegetation growth module of SWAT, for trees and perennials in
the tropics. Towards this, the use of the SMI as a dynamic trigger for new vegetation growth cycle within a prede-
fined period will be explored. The modified SWAT (SWAT-T) model will be evaluated for the Mara River basin,
using 8-day MODIS LAI and remote sensing-based ET (Alemayehu et al., 2017). Additionally, the model will be

evaluated using observed daily streamflow data.

2. Materials and methods
2.1. The study area

The Mara River, a transboundary river shared by Kenya and Tanzania, drains an area of 13,750 km? (Figure 1a).
This river originates from the forested Mau Escarpment (about 3000 m.a.s.l.). It meanders through diverse agroeco-
systems, subsequently crosses the Masai-Mara Game Reserve in Kenya and the Seregenti National Park in Tanzania,
and finally feeds the Lake Victoria. The Amala River and the Nyangores River are its only perennial tributaries. The

Talek River and the Sand River are the two most notable seasonal rivers, stemming from Loita Hills.

Rainfall varies spatially mainly due to its equatorial location and the topography. The rainfall pattern in most part of
the basin is bimodal, with a short rainy season (October-December) driven by convergence and southward migration
of the Intertropical Convergence Zone (ITCZ) and a long rainy season (March-May) driven by south-easterly trades.
In general, rainfall decreases from west to east across the basin, while temperature increases southwards. The Mara
basin is endowed with significant biodiversity features, including moist montane forest on the escarpment, dry up-
land forest, scattered woodland and extensive savanna grasslands (Figure 1b). The upper forested basin is dominated
by well drained volcanic origin soils, while the middle and the lower part of the basin is dominated by poorly

drained soil types with high clay content.
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96 Figure 1 The Mara Basin (a) and its land cover classes (b). Note the sample sites locations (dashed areas) for the major
97 natural vegetation classes that are used to mask the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf

98 Area Index (LAI).

99  2.2. The SWAT model description

100
101
102

SWAT (Arnold et al., 1998, 2012; Neitsch et al., 2011) is a comprehensive, process-oriented and physically-based
eco-hydrological model for river basins. It requires specific information about weather, soil properties, topography,
vegetation, and land management practices in the watershed, to directly simulate physical processes associated with
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water movement, sediment movement, crop growth, nutrient cycling, etc. In SWAT, a basin is partitioned into sub-
basins, using topographic information. The sub-basins, in turn, are subdivided into Hydrological Response Units
(HRUs) that represent a unique combination of land use, soil type and slope class. All the hydrologic processes are
simulated at HRU level on a daily or sub-daily time step. The flows are then aggregated to sub-basin level for rout-
ing into a river network (Neitsch et al., 2011). SWAT considers five storages to calculate the water balance: snow,
the canopy storage, the soil profile -with up to ten layers-, a shallow aquifer and a deep aquifer. The global water

balance is expressed as:

N (1)
AS=>"(P—-Qu — ET — Losses)

i=1
where AS is the change in water storage (mm) and N is the time in days. P, Qi ET and Losses are the amounts of
precipitation (mm), the total water yield (mm), the evapotranspiration (mm) and the groundwater losses (mm), re-
spectively. The total water yield represents an aggregated sum of the surface runoff, the lateral flow and the return
flow. In this study, the surface runoff is computed using the Soil Conservation Service (SCS) Curve Number (CN)
method (USDA SCS, 1972).

SWAT provides three options for estimating ET,: Hargreaves (Hargreaves et al., 1985), Priestley-Taylor (Priestley
and Taylor, 1972), and Penman-Monteith (Monteith, 1965) (Neitsch et al., 2011). The model simulates evaporation
from soil and plants separately, as described in Ritchie (1972). The potential soil evaporation is simulated as a func-
tion of ET, and the LAI. The actual soil water evaporation is estimated by using exponential functions of soil depth
and water content (Neitsch et al., 2011). The simulated LAI is also required to calculate the potential plant transpira-
tion, with a formulation that varies depending on the selected ET, method (Alemayehu et al., 2015; Neitsch et al.,
2011). The actual plant transpiration (i.e. the plant water uptake) is reduced exponentially for soil water contents
below field capacity. Therefore, the ET refers to the sum of the evaporation from the canopy and from the soil as

well as plant transpiration.

In this study, we use the Penman-Monteith method (Monteith, 1965) to compute the ET, for alfalfa reference crop as
(Neitsch et al., 2011):

ET - A'(H net _G)+pair'cp'[eg _ez]/ I 168)

A +y.(1+ %)

where ET, is the maximum transpiration rate (mm d*), A is the slope of the saturation vapour pressure-temperature

curve (kPa °C™), H,,, is the net radiation (MJ m? d), G is the heat flux density to the ground (MJ m? d™), pg;, is

the air density (kg m?), C, is the specific heat at constant pressure (MJ kg* °C™), e? is the saturation vapour pres-

sure of air at height z (kPa), e, is the water vapor pressure of air at height z (kPa), y is the psychrometric constant
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(kPa °C™), .. is the plant canopy resistance (s m™), and r, is the diffusion resistance of the air layer (aerodynamic
resistance) (s m™). The plant growth module in SWAT simulates the LAl and the canopy height, which are required

to calculate the canopy and the aerodynamic resistance.

2.3. The vegetation growth and Leaf Area Index modelling in SWAT

SWAT simulates the annual vegetation growth based on the simplified version of the EPIC plant growth model
(Neitsch et al., 2011). The potential plant phenological development is hereby simulated on the basis of accumulated
heat units under optimal conditions; however, the actual growth is constrained by temperature, water, nitrogen or
phosphorous stress (Arnold et al., 2012; Neitsch et al., 2011).

Plant growth is primarily based on temperature and hence each plant has its own temperature requirements (i.e.
minimum, maximum and optimum). The fundamental assumption of the heat unit theory is plants have a heat unit
requirement that can be quantified and linked to the time of planting and maturity (Kiniry and MacDonald, 2008;
Neitsch et al., 2011). The total number of heat units required for a plant to reach maturity must be provided by the
user. The plant growth modelling includes the simulation of the leaf area development, the light interception and the
conversion of intercepted light into biomass, assuming a plant species-specific radiation-use efficiency (Neitsch et
al., 2011). The plant growth model assumes a uniform, single plant species community, thereby plant mixtures such

as trees and grass cannot be simulated in SWAT (Kiniry and MacDonald, 2008).

During the initial period of the growth, the optimal leaf area development is modelled (Neitsch et al., 2011) as:

®)

fr.PHU

frPHU + exp (Il - I2 'frPHU)

where fr_amy is the fraction of the plant’s maximum leaf area index corresponding to a given fraction of the poten-

erA Imx —

tial heat units for the plant, froyy is the fraction of potential heat units accumulated for the plant on a given day dur-
ing the growing season, and |, and |, are shape coefficients. Once the maximum leaf area index is reached, the LAI

will remain constant until the leaf senescence begins to exceed the leaf growth.

Afterwards, the leaf senescence becomes the dominant growth process and hence the LAI follows a linear decline
(Neitsch et al., 2011). However, Strauch and Volk (2013) suggested a logistic decline curve instead, in order to
avoid that the LAI drops to zero before entering the dormancy stage. We adopted this change to SWAT?2012,

whereby the LAI during leaf senescence for trees and perennials is calculated as (Strauch and Volk, 2013):

_ LAl - LAl (4)
1+ exp(—t)

LAI
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1- frPHU

with t=12(r—0.5) and r=
1-fr,

' frPHU 2 frPHU,sen
PHU sen

where the term used as exponent is a function of time (t), LAl and LAl;, are the maximum and minimum (i.e.
during dormancy) leaf area index, respectively. frpyueen IS the fraction of the potential heat units for the plant at
which senescence becomes the dominant growth process and frpyy is the fraction of potential heat units accumulated

for the plant on a given day during the growing season.

As detailed in Neitsch et al. (2011), the daily LAI calculations for perennials and trees are slightly different, as for

the latter the years of development are considered.

For perennials, the LAI for a day i is calculated as:
LAI, = LAI,_, + ALAI, ®)
And the change of LAl on day i is calculated as:

AI-Ali = (erAImx,i _erAImx,i—l)LAI . Q)

mx

1-exp(5.(LAl, — LA, )))

2.4. The limitation of the annual vegetation growth cycle simulation in SWAT for the tropics

Dormancy, is the period during which trees and perennials do not grow. It is commonly considered to be a function
of latitude and day length. It is assumed that dormancy starts as the day length nears the minimum day length of the
year. At the beginning of the dormancy period, a fraction of the biomass is converted to residue and the leaf area
index is set to the minimum value (Neitsch et al., 2011), and thereby resets the annual growth cycle. Also, SWAT
offers two management settings options for the start and the end of the growing season, either based on a calendar

date scheduling or based on heat units (the default).

In the tropics, however, dormancy is primarily controlled by precipitation (Bobée et al., 2012; Jolly and Running,
2004; Lotsch, 2003; Zhang et al., 2010; Zhang, 2005). Hence, the default growth module of SWAT cannot realisti-

cally represent the seasonal growth dynamics for trees and perennials in the tropics.

2.5. A soil moisture index-based vegetation growth cycle for the tropics

As several studies demonstrated (Jolly and Running, 2004; Zhang, 2005; Zhang et al., 2006), the water availability

in the soil profile is one of the primary governing factors of the vegetation growth in the tropics. Thus, we propose
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to implement a soil moisture index (SMI) to trigger a new growth cycle for tropical ecosystems in SWAT within a

predefined period. The SMI is computed as:

7
SM1=—— )
ET

r

where P and ET, denote daily or aggregated rainfall and reference evapotranspiration (mm d*), respectively. In this
study we used five days (i.e. pentad) aggregated P and ET, to determine the SMI, to assure sufficient soil moisture
availability to initiate a new growth cycle. The SMI is somewhat similar to the Water Requirement Satisfaction
Index (WRSI) (McNally et al., 2015; Verdin and Klaver, 2002), which is a ratio of ET to ET,.

Figure 2 presents the seasonal pattern of SMI, based on long-term precipitation for several gauge stations in the
Mara Basin and ET, data from Trabucco and Zomer (2009). It is apparent from Figure 2 that the dry season (mostly
from June - September) shows low SMI values (less than 0.5). Additionally, these patterns resemble well the long-
term monthly average LAI for the savanna ecosystem (the dominant cover in the mid-section of the Mara Basin). In
areas with a humid climate (i.e. the head water regions of the basin), the SMI values are high and the rainfall regime
is different, yet in the relatively drier months (January and February) the SMI is low. As shown in Figure 2, the LAI
and the SMI seasonal dynamics match well, when a lag time of approximately one month is considered. From this,
we conclude that the SMI can be used as a proxy for the start of the wet season (SOS) and hence to trigger the vege-
tation growth cycle. This approach enables a dynamic simulation of the growth cycle by SWAT, without the need to

define the exact dates of the beginning and the end of the growing season (the “plant” and “kill” dates).
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Figure 2 The moisture index (SMI) derived from historical precipitation observations (P) across the Mara Basin and the
global reference evapotranspiration data of Trabucco and Zomer (2009) (ET,). The dotted line represents tha Leaf Area
Index (LAI) for the savanna ecosystem. SOS; and SOS, represent the start-of-wet season (SOS) transition months to
trigger growth.
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To avoid false starts of the new growing cycle during the dry season due to short spell rainfall, the end of the dry
season and the beginning of the rainy season (SOS; and SOS,, respectively) should be provided by the user. These
months are determined using a long-term monthly climatological P to ET, ratio (Figure 2). For a river basin with a
single rainfall regime, a single set of SOS months are required. However, in a basin with multiple rainfall regimes
(i.e. mostly large basin), different sets of SOS months should be provided at sub-basin level. In our study area, two
distinct rainfall regimes are observed and therefore two different SOS months were needed. For most sub-basins
October (SOS;) and November (SOS,) were used as transitions (Figure 2).

2.6. The adaptation of the SWAT plant growth module in SWAT-T

Based on the rationale elaborated in the preceding sections, we modified the standard SWAT2012 (version 627)
plant growth subroutine for basins located between 20° N and 20°S:

i) If the simulation day is within SOS; and SOS, for a given HRU and a new growing cycle is not initiated
yet, the SMI is calculated as the ratio of P to ET,.

i) If the SMI exceeds or equals a user defined threshold, a new growing cycle for trees and perennials is
initiated. Subsequently, FRpyy is set to 0 and the LAI is set to the minimum value. Plant residue decom-
position and nutrient release is calculated as if dormancy would occur.

iii) In case the SMI is still below a user defined threshold at the end of month SOS,, a new growing cycle is

initiated immediately after the last date of SOS,.

It is worth noting that the SMI threshold can be set depending on the climatic condition of the basin.

2.7. The data used for the evaluations

The Leaf Area Index

The remote sensing LAI data used in this study are based on the MODIS TERRA sensor (Table 1). The LAI product
retrieval algorithm is based on the physics of the radiative transfer in vegetation canopies (Myneni et al., 2002) and
involves several constants (leaf angle distribution, optical properties of soils and wood, and canopy heterogeneity)
(Bobée et al., 2012). The theoretical basis of the MODIS LAI algorithm and the validation results are detailed in
Myneni et al. (2002). Kraus (2008) validated the MOD15A2 LAI data at Budongo Forest (Uganda) and Kakamega
Forest (Kenya) sites and reported an accuracy level comparable to the accuracy of field measurements, indicating
the reliability of MOD15A2 LAI.

Table 1 Summary of the inputs of the SWAT model and the evaluation datasets.

Spatial/temporal Source Description
resolution
Rainfall 5 km/ 1-day Roy et al. (2017) Bias-corrected satellite rainfall for
Mara basin
Climate 25 km / 3-hour Rondell et al. (2004) Max. and min. temperature, relative

9



227

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

Land cover classes 30m FAO (2002) Land cover classes for East Africa

DEM 30m NASA (2014) Digital elevation model
Soil classes 1 km FAO (2009) Global soil classes
Discharge Daily (2002-2008) WRMA (Kenya) River discharge at Bomet
ET 1 km/ 8-day Alemayehu et al. (2017)  ET maps for Mara basin
MOD15A2 1 km /8-day LPDAAC(2014) Global leaf area index

We selected relatively homogeneous representative sample sites (i.e. polygons) for evergreen forest (174 km?), tea
(123 km?), savanna grassland (136 km?) and shrubland (130 km?) (see Figure 1b) using the Africover classes and
Google Earth images. This is useful to reduce the effect of mixed LAI values from different land cover classes while
averaging the coarse scale (i.e. 1 km) MODIS LAI. The MOD15A2 pixels with quality flag O (i.e. indicating good
quality) were masked using the polygons of the sample covers. Also, pixels with LAI values less than 1.5 during the
peak growing months (i.e. period with LAI values mostly above 2.0) were removed. Finally, we extracted the 8-day
median LAI time series for each land cover for 2002-2009 and few gaps in the LAI time series were filled using
linear interpolation. Notwithstanding all the quality control efforts, we noted breaks and a high temporal variation in
the LAI time series, due the inevitable signal noise (Figure 3). Verbesselt et al. (2010) developed the Breaks For
Additive Seasonal and Trend (BFAST) method that decomposes the Normalized Vegetation Index (NDVI) time
series into trend, seasonal, and remainder components. The trend and seasonal components comprise information
that is pertinent to phenological developments as well as gradual and abrupt changes, whereas the reminder compo-
nent comprises noise and error information of the series time series. This method has been applied to tropical eco-
systems to identify phenological cycles as well as abrupt changes (DeVries et al., 2015; Verbesselt et al., 2010,
2012). In our study, we used the BFAST tool to extract the seasonal development pattern of LAI while excluding the
noise and error information from the LAI time series. Figure 3 demonstrates the smoothed 8-day LAI time series
using BFAST along with the raw-median LAI values. It is apparent from the smoothed LAI time series that the high
LAI development occurs during the wet months from March to May, suggesting consistency in the smoothed LAl
time series. Therefore, the smoothed LAI time series were used to calibrate and evaluate the SWAT-T model vegeta-

tion growth module for simulating LAI.

10



248

249
250
251

252

253
254
255
256
257
258
259
260
261
262
263

264

265
266
267

LAI (m ?m ?)

4.7

3.7
2.7 ifta

1.7

0.7 T T T T T T T
2002-01-01 2004-01-01 2006-01-01 2008-01-01

Date Date

LAl (m *m?)
3.1

— raw-LAl — Smoothed-LAl (d)

2002-01-01 2004-01-01 2006-01-01 2008-01-01 2002-01-01 2004-01-01 2006-01-01 2008-01-01
Date Date

Figure 3 The 8-day raw-median LAI time series for evergreen forest (a), tea (b), grassland (c) and shrubland (d) sample
sites. The raw-median LAI is smoothed using the Breaks For Additive Seasonal and Trend (BFAST) method (Verbesselt
et al., 2010).

The evapotranspiration

ET is one of the major components of a basin water balance that is influenced by the seasonal vegetation growth
cycle. Thus, remote sensing-based ET estimates can be used to evaluate (calibrate) the SWAT-T model. Alemayehu
et al. (2017) estimated ET for the Mara River basin using several MODIS thermal imageries and the Global Land
Data Assimilation System (GLDAS) (Rodell et al., 2004) weather dataset from 2002 to 2009 at an 8-day temporal
resolution based on the Operational Simplified Surface Energy Balance (SSEBop) algorithm (Senay et al., 2013).
The latter mainly depends on the remotely sensed land surface temperature and the grass reference evapotranspira-
tion (Senay et al., 2013). Alemayehu et al. (2017) demonstrated that the SSEBop ET for the study area explained
about 52%, 63% and 81% of the observed variability in the MODIS NDVI at 16-day, monthly and annual temporal
resolution. Also, they suggested that the estimated ET can be used for hydrological model parameterization. There-
fore, we used this remote sensing-based ET estimates (hereafter ET-RS) to evaluate the SWAT-T simulated ET at a

land cover level.
Streamflow

Due to the limited availability of observed streamflow, we used daily observed streamflow series (2002-2008) for
the head water region (700 km?) at the Bomet gauging station. The streamflow dataset is relatively complete, with

about 11% missing data distributed throughout the time series.

11



268

269

270
271
272
273
274
275
276
277
278
279

280
281
282
283
284
285
286
287

288

289
290
291
292
293
294
295
296
297
298
299
300
301

2.8. Model set up, calibration and evaluation
2.8.1. The model set up and data used

The Mara River Basin was delineated using a high resolution (30 m) digital elevation model (DEM) (NASA, 2014)
in ArcSWAT?2012 (revision 627). The basin was subdivided into 89 sub-basins to spatially differentiate areas of the
basin dominated by different land use and/or soil type with dissimilar impact on hydrology. Each sub-basin was
further discretized into several HRUs. The model was set up for land use conditions representing the period 2002-
2009. The land cover classes for the basin were obtained from the FAO-Africover project (FAO, 2002). As shown in
Figure 1b, the dominant portion of the basin is covered by natural vegetation including savanna grassland, shrubland
and evergreen forest. These land cover classes were assigned the characteristics of RNGE, RNGB and FRSE, re-
spectively in the SWAT plant database (Neitsch et al., 2011). We extracted the soil classes for the basin from the
Harmonized Global Soil Database (FAO, 2008). A soil properties database for the Mara River Basin was established
using the soil water characteristics tool (SPAW, http://hydrolab.arsusda.gov/soilwater).

The list of hydro-climatological and spatial data used to derive the SWAT model are presented in Table 1. In situ
measurements of rainfall and other climate variables are sparse and thus bias-corrected multi- satellite rainfall analy-
sis data from Roy et al. (2017) were used. The bias-correction involves using historical gauge measurements and a
downscaling to a 5 km resolution. Detailed information on the bias-correction and downscaling procedures can be
found in Roy et al. (2017). The ET, was computed in SWAT using GLDAS weather data (Rodell et al., 2004)
based on the Penman-Monteith (Monteith, 1965) approach. To remove the biases in SWAT computed ET, compared
to the observation-based monthly average (1950-2000) ET, data from Trabucco and Zomer (2009), the GLDAS

solar radiation were adjusted relatively per month and per sub-basin.

2.8.2. Model calibration and evaluation approach

The main purpose of this study is to explore the potential of the SMI to trigger a new vegetation growth cycle for
tropical ecosystems. To evaluate the effect of the modification on the SWAT vegetation growth module, we initially
inter-compared simulated LAI from the modified (i.e. SWAT-T) and the standard plant growth module with varying
management settings. This analysis involved uncalibrated simulations with the default SWAT model parameters,
whereby the models thus only differ regarding the way the vegetation growth is simulated and the management
settings. It is worth noting that the aim of these simulations is mainly to expose the inconsistencies in the vegetation
growth module structure of the original SWAT model. Afterwards, we calibrated the parameters related to the simu-
lation of the LAI, the ET and the streamflow by trial-and-error and expert knowledge for the SWAT-T model. First-
ly, the SWAT parameters that control the shape, the magnitude and the temporal dynamics of LAl were adjusted to
reproduce the 8-day MODIS LAl for each land cover class. Then, we adjusted the parameters that mainly control the
streamflow and ET simulation, simultaneously using the daily observed streamflow and the 8-day ET-RS. One may
put forward that the manual adjustment may not be as robust as an automatic calibration as the later explores a larger

parameters space. However, the manual calibration is believed to be apt to illustrate the impact of the modification
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of the vegetation growth cycle and its effect on the water balance components. The SWAT-T model calibration and
validation was done for 2002-2005 and 2006-2009, respectively.

2.8.3. The model performance metrics

The Pearson correlation coefficient (r) and the Percent of PBIAS (%bias) were used to evaluate the agreement be-
tween the simulated and the remote sensing-based estimates of LAl and ET for each land cover class and for the
evaluation of the streamflow simulations. Additionally, the model performance was evaluated using the Kling-Gupta
Efficiency (KGE) (Gupta et al., 2009), which provides a compressive assessment by taking the variability, the bias

and the correlation into account in a multi-objective sense.

3. Results and discussion
3.1. The consistency assessment of the vegetation growth module without calibration
3.1.1. The LAI simulations

To highlight the added value of the modified vegetation growth module in SWAT-T for simulating the seasonal
growth pattern of trees and perennials, we compared the daily simulated LAI of the standard SWAT2012 (revision
627) model and SWAT-T model. At this stage, the models were uncalibrated (i.e. based on default SWAT parame-

ters).

Figure 4 and Figure 5 present the monthly rainfall along with SWAT simulated daily LAl for FRSE and RNGE
using the standard vegetation growth module under different management settings as well as the modified version
(i.e. SWAT-T). In the standard plant growth module whereby the Heat Units management option is selected (“Heat
Unit” in the Figure 4and Figure 5), the start and the end of the vegetation growth cycle occur at the default FRpny
values of 0.15 and 1.2, respectively. With this management setting, the simulated LAI is zero at the beginning of
each simulation year for both types of vegetation cover, which does not correspond to the reality for FRSE and
RNGE in tropical regions. Strauch and Volk (2013), Kilonzo (2014) and Mwang et al. (2016) reported similar ob-
servations. With this respect, it may be noted that Mwang et al. (2016) improved the SWAT LAI simulation for
FRSE by using a FRpyy value of 0.001 to start the growing season and with a minimum LAI of 3.0. Yet, this

change is region specific and cannot be transferred.

As shown in Figure 4 and Figure 5, the simulation with the standard SWAT module can be partly improved by using
a date scheduling (“Date™) for the start and the end of the vegetation growth cycle (i.e. instead of Heat Unit). Alter-
natively, all the management setting can be removed (“No mgt”) and vegetation is growing since the start of the
simulation. It is worthwhile noting the low LAI values during and following the rainy months (i.e. March -May),
suggesting unrealistic growth cycle simulation. Additionally, regardless of the management setting, the vegetation

growth cycle resets annually on 28" June due to dormancy. In contrast, the simulated LAI with the modified vegeta-
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tion growth module (“SWAT-T”) corresponds with the monthly rainfall distribution, for FRSE and RNGE (see

Figure 4 and Figure 5). We noted similar results for tea and RNGB.
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Figure 4 The daily LAI as simulated standard SWAT plant growth module with different management settings and by
the modified plant growth module (SWAT-T) for evergreen forest (FRSE) using default SWAT parameters. The vertical
lines (black) denote monthly rainfall. See management settings explanations in the texts.
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Figure 5 The daily LAI as simulated standard SWAT plant growth module with different management settings and by
the modified plant growth module (SWAT-T) for grass (RNGE) using default SWAT parameters. The vertical lines
(black) denote monthly rainfall. See management settings explanations in the texts.

3.1.2. The implication of inconsistent LAI simulation on the water balance components

In SWAT, the LAl is required to compute the potential transpiration, the potential soil evaporation and the plant
biomass, among others. For instance, to compute the daily potential plant transpiration, the canopy resistance and
the aerodynamic resistance are determined using the simulated LAI and the canopy height, respectively (Neitsch et
al., 2011). Therefore, the aforementioned limitations of the annual vegetation growth cycle in the standard SWAT
model growth module also influences the simulation of the transpiration. Figure 6 shows a comparison of the daily
potential transpiration for RNGE as simulated by SWAT model with the standard and modified vegetation growth
module, based on the Penman-Monteith equation. We observe 12% of the standard SWAT simulated daily potential
transpiration time series (2002-2009) for RNGE being zero, suggesting a considerable inconsistency. The incon-
sistency is considerably reduced when the modified vegetation growth module (SWAT-T) is used (i.e. less than 2%

zero values). Similar results are noted for FRSE and RNGB.

These findings should not come as a surprise as several studies have shown the effect of the selection of the ET,
method in SWAT on the simulated ET and other water balance components (Alemayehu et al., 2015; Maranda and
Anctil, 2015; Wang et al., 2006). Alemayehu et al. (2015) reported substantial differences in both potential and
actual transpiration with the choice of the ET, method using a calibrated SWAT model, which was partly ascribed to

the unrealistic LAI growth cycle.

We also notice the SWAT-T simulated potential transpiration is consistent regardless of the ET, method selection in
SWAT (results not shown here) and therefore, the improved vegetation growth module in the SWAT-T can reduce

the uncertainty arising from the model structure and thus minimize the uncertainties in model simulation outputs.
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Figure 6 Comparison of Penman-Monteith-based daily potential transpiration simulated by the SWAT-T and the stand-
ard SWAT models for grassland. Note that the heat unit scheduling is used in the standard SWAT model.

3.2. The evaluation of the calibrated SWAT-T model
3.2.1. The performance of the LAI simulation

Table 2 presents the SWAT model parameters that are adjusted during the manual calibration process. Initially, the
minimum LAI (ALAI_MIN) for each land cover classes were set based on the long-term MODIS LAI. Also, the
PHU was computed using the long-term climatology, as suggested in Strauch and Volk (2013). The shape coeffi-
cients for the LAI curve (FRGW;, FRGW,, LAIMX;, LAIMX, and DLAI) and the remaining parameters were ad-
justed during the calibration period by a trial-and-error process such that the SWAT-T simulated 8-day LAI mimics
the MODIS 8-day LAl

Figure 7 presents the comparison of 8-day MODIS LAI with the calibrated SWAT-T simulated LAI aggregated over
several land cover classes for the calibration and validation periods. We evaluated the degree of agreement qualita-
tively -by visual comparison- and quantitatively -by statistical measures. From the visual inspection it is apparent
that the intra-annual LAI dynamics (and hence the annual growth cycle of each land cover class) from the SWAT-T
model correspond well with the MODIS LAI data. This observation is supported by correlations as high as 0.94
(FRSE) and 0.92 (RNGB) during the calibration period (Table 3). As shown in Table 3, the model also shows a
similar performance during the validation period, with low average bias and correlation as high as 0.93 (FRSE).
Overall, the results indicate that the SMI can indeed be used to dynamically trigger a new growing season within a

pre-defined period.

Despite the overall good performance of SWAT-T in simulating the LAI, we observed biases for FRSE and Tea,
mainly during the rainy season (see Figure 7 top row). This is partly attributed to the cloud contamination of the
MODIS LAI in the mountainous humid part of the basin, as shown in Figure 3a and Figure 3b. Similar observations
were also made by Krause (2008). Also, the senescence seems to occur slightly early for Tea (see Figure 3b),
whereby we note a mismatch between the SWAT simulated LAI and the MODIS LAI. This suggests the need to
further adjust the fraction of total PHU when the leaf area begins to decline (DLAI).

Table 2 List of SWAT parameters used to calibrate LAI, ET and streamflow with their default and calibrated values.

Default (calibrated)

Parameter Parameter definition (unit) Variable FRSE RNGE RNGB
BIO_E Radiation-use efficiency((kg/ha)/(MJ/m?)) LAI 15 (17) 34 (10) 34 (10)
BLAI Maximum potential leaf area index (m?/m?) LAI 5 (4.0) 2.5(3.5) 2 (3.5)
FRGW, Fraction of PHU corresponding to the 1% point LAI 0.15 (0.06) 0.05 (0.2) 0.05 (0.2)

on the optimal leaf area development curve

LAIMX, 0.7 0.1 0.1

Fraction of BLAI corresponding to the 1%