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Abstract. The Soil and Water Assessment Tool (SWAT) is a globally applied river basin eco-hydrological model 6 

used in a wide spectrum of studies, ranging from land use change and climate change impacts studies to research for 7 

the development of best water management practices. However, SWAT has limitations in simulating the seasonal 8 

growth cycles for trees and perennial vegetation in the tropics, where rainfall rather than temperature is the dominant 9 

plant growth controlling factor. Our goal is to improve the vegetation growth module of SWAT for simulating the 10 

vegetation variables -such as the leaf area index (LAI) - for tropical ecosystems. Therefore, we present a modified 11 

SWAT version for the tropics (SWAT-T) that uses a straightforward but robust soil moisture index (SMI) - a quo-12 

tient of rainfall (P) and reference evapotranspiration (ETr) – to dynamically initiate a new growth cycle within a pre-13 

defined period. Our results for the Mara Basin (Kenya/Tanzania) show that the SWAT-T simulated LAI corresponds 14 

well with the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI for evergreen forest, savanna grass-15 

land and shrubland. This indicates that the SMI is reliable for triggering a new annual growth cycle. The water bal-16 

ance components (evapotranspiration and streamflow) simulated by the SWAT-T exhibit a good agreement with 17 

remote sensing-based evapotranspiration (ET-RS) and observed streamflow. The SWAT-T model, with the pro-18 

posed vegetation growth module for tropical ecosystems, can be a robust tool for simulating the vegetation growth 19 

dynamics in hydrologic models in tropical regions. 20 

1. Introduction  21 

The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) is a process-oriented, spatially semi-distributed 22 

and time-continuous river basin model. SWAT is one of the most widely applied eco-hydrological models for the 23 

modelling of hydrological and biophysical processes under a range of climate and management conditions (Arnold 24 

et al., 2012; Bressiani et al., 2015; Gassman et al., 2014; van Griensven et al., 2012; Krysanova and White, 2015). 25 

SWAT has been used in many studies in tropical Africa, to investigate the basin hydrology (e.g. Dessu and Melesse, 26 

2012; Easton et al., 2010; Mwangi et al., 2016; Setegn et al., 2009) as well as to study the hydrological impacts of 27 

land use change (e.g. Gebremicael et al., 2013; Githui et al., 2009; Mango et al., 2011) and climate change (Mango 28 

et al., 2011; Mengistu and Sorteberg, 2012; Setegn et al., 2011; Teklesadik et al., 2017). Notwithstanding the high 29 

number of SWAT model applications in tropical catchments, only a few studies discussed the limitation of its plant 30 

growth module for simulating the growth cycles of trees and of perennial and annual vegetation in this region of the 31 

world (Mwangi et al., 2016; Strauch and Volk, 2013; Wagner et al., 2011).  32 
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It is worthwhile to note that phenological changes in vegetation affect the biophysical and hydrological processes in 33 

the basin and thus play a key role in integrated hydrologic and ecosystem modelling (Jolly and Running, 2004; 34 

Kiniry and MacDonald, 2008; Shen et al., 2013; Strauch and Volk, 2013; Yang and Zhang, 2016; Yu et al., 2016). 35 

The Leaf Area Index (LAI) -the area of green leaves per unit area of land- is a vegetation attribute commonly used 36 

in eco-hydrological modelling as it strongly correlates with the vegetation phenological development. Thus, an en-37 

hanced representation of the LAI dynamics can improve the predictive capability of hydrologic models, as already 38 

noted in several studies (Andersen et al., 2002; Yu et al., 2016; Zhang et al., 2009). Arnold et al. (2012) underscored 39 

the need for a realistic representation of the local and regional plant growth processes to reliably simulate the water 40 

balance, the erosion, and the nutrient yields using SWAT. For instance, the LAI and canopy height are needed to 41 

determine the canopy resistance and the aerodynamic resistance, to subsequently compute the potential plant transpi-42 

ration in SWAT. Therefore, inconsistencies in the vegetation growth simulations  could result in uncertain estimates 43 

of the actual evapotranspiration (ET), as noted in Alemayehu et al. (2015).   44 

SWAT utilizes a simplified version of the Environmental Policy Impact Climate (EPIC) crop growth module to 45 

simulate the phenological development of plants, based on accumulated heat units (Arnold et al., 1998; Neitsch et 46 

al., 2011). It uses dormancy, which is a function of daylength and latitude, to repeat the annual growth cycle for 47 

trees and perennials. Admittedly, this approach is suitable for temperate regions. However, Strauch and Volk (2013) 48 

showed that the temporal dynamics of the LAI are not well represented for perennial vegetation (savanna and 49 

shrubs) and evergreen forest in Brazil. Likewise, Wagner et al. (2011) reported a mismatch between the growth 50 

cycle of deciduous forest and the SWAT dormancy period in the Western Ghats (India), and they subsequently 51 

shifted the dormancy period to the dry season.  52 

Unlike temperate regions where the vegetation growth dynamics are mainly controlled by the temperature, the pri-53 

mary controlling factor in tropical regions is the rainfall (i.e. the water availability)  (Jolly and Running, 2004; 54 

Lotsch, 2003; Pfeifer et al., 2012, 2014; Zhang, 2005). A study of Zhang et al. (2005) explored the relationship be-55 

tween the rainfall seasonality and the vegetation phenology across Africa. They showed that the onset of the vegeta-56 

tion green-up can be predicted using the cumulative rainfall as a criterion for the season change. Jolly and Running 57 

(2004) determined the timing of leaf flush in an ecosystem process simulator (BIOME-BGC) after a defined dry 58 

season in the Kalahari, using events where the daily rainfall (P) exceeded the reference evapotranspiration (ETr). 59 

They showed that the modelled leaf flush dates compared well with the leaf flush dates estimated from the Normal-60 

ized Difference Vegetation Index (NDVI). This points to the feasibility of using a proxy derived from P and ETr to 61 

pinpoint a season change in the tropics. Sacks et al. (2010) made a global study of the relations between crop plant-62 

ing dates and temperature, P and ETr, using 30-years climatological values. They noted that in rainfall limited re-63 

gions the ratio of P to ETr is a better proxy for the soil moisture status than is P alone.  Using a soil moisture index 64 

(SMI) derived from the ratio of P to ETr to trigger a new growth cycle in hydrological modelling is appealing be-65 

cause the SMI can be determined a priori.  On the other hand, Strauch and Volk (2013) used the SWAT simulated 66 

soil moisture in the top soil layers to indicate the start of a wet season (SOS) and thus of a new vegetation growth 67 
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cycle. Their results showed an improved simulation of the seasonal dynamics of the LAI and a good match with the 68 

Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day LAI. However, such an approach requires a cali-69 

bration of the SWAT parameters that govern the soil water balance dynamics. The latter is not obvious when only 70 

observed streamflow data are used for the calibration(Yu et al., 2016).  71 

The main objective of this study is to improve the vegetation growth module of SWAT, for trees and perennials in 72 

the tropics. Towards this, the use of the SMI as a dynamic trigger for new vegetation growth cycle within a prede-73 

fined period will be explored. The modified SWAT (SWAT-T) model will be evaluated for the Mara River basin, 74 

using 8-day MODIS LAI and remote sensing-based ET (Alemayehu et al., 2017). Additionally, the model will be 75 

evaluated using observed daily streamflow data.   76 

2. Materials and methods  77 

2.1. The study area  78 

The Mara River, a transboundary river shared by Kenya and Tanzania, drains an area of 13,750 km
2
 (Figure 1a). 79 

This river originates from the forested Mau Escarpment (about 3000 m.a.s.l.). It meanders through diverse agroeco-80 

systems, subsequently crosses the Masai-Mara Game Reserve in Kenya and the Seregenti National Park in Tanzania, 81 

and finally feeds the Lake Victoria. The Amala River and the Nyangores River are its only perennial tributaries. The 82 

Talek River and the Sand River are the two most notable seasonal rivers, stemming from Loita Hills. 83 

Rainfall varies spatially mainly due to its equatorial location and the topography. The rainfall pattern in most part of 84 

the basin is bimodal, with a short rainy season (October-December) driven by convergence and southward migration 85 

of the Intertropical Convergence Zone (ITCZ) and a long rainy season (March-May) driven by south-easterly trades. 86 

In general, rainfall decreases from west to east across the basin, while temperature increases southwards. The Mara 87 

basin is endowed with significant biodiversity features, including moist montane forest on the escarpment, dry up-88 

land forest, scattered woodland and extensive savanna grasslands (Figure 1b). The upper forested basin is dominated 89 

by well drained volcanic origin soils, while the middle and the lower part of the basin is dominated by poorly 90 

drained soil types with high clay content.  91 
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(a) 93 

(b) 94 

 95 

Figure 1 The Mara Basin (a) and its land cover classes (b). Note the sample sites locations (dashed areas) for the major 96 
natural vegetation classes that are used to mask the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf 97 
Area Index (LAI). 98 

2.2. The SWAT model description 99 

SWAT (Arnold et al., 1998, 2012; Neitsch et al., 2011) is a comprehensive, process-oriented and physically-based 100 

eco-hydrological model for river basins. It requires specific information about weather, soil properties, topography, 101 

vegetation, and land management practices in the watershed, to directly simulate physical processes associated with 102 
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water movement, sediment movement, crop growth, nutrient cycling, etc.  In SWAT, a basin is partitioned into sub-103 

basins, using topographic information. The sub-basins, in turn, are subdivided into Hydrological Response Units 104 

(HRUs) that represent a unique combination of land use, soil type and slope class. All the hydrologic processes are 105 

simulated at HRU level on a daily or sub-daily time step. The flows are then aggregated to sub-basin level for rout-106 

ing into a river network (Neitsch et al., 2011). SWAT considers five storages to calculate the water balance: snow, 107 

the canopy storage, the soil profile -with up to ten layers-, a shallow aquifer and a deep aquifer. The global water 108 

balance is expressed as: 109 

 



N

1i

total LossesETQPS  

  ( 1) 

where ΔS is the change in water storage (mm) and N is the time in days. P, Qtotal, ET and Losses are the amounts of 110 

precipitation (mm), the total water yield (mm), the evapotranspiration (mm) and the groundwater losses (mm), re-111 

spectively. The total water yield represents an aggregated sum of the surface runoff, the lateral flow and the return 112 

flow. In this study, the surface runoff is computed using the Soil Conservation Service (SCS) Curve Number (CN) 113 

method (USDA SCS, 1972).  114 

SWAT provides three options for estimating ETr: Hargreaves (Hargreaves et al., 1985), Priestley-Taylor (Priestley 115 

and Taylor, 1972), and Penman-Monteith (Monteith, 1965) (Neitsch et al., 2011). The model simulates evaporation 116 

from soil and plants separately, as described in Ritchie (1972). The potential soil evaporation is simulated as a func-117 

tion of ETr and the LAI. The actual soil water evaporation is estimated by using exponential functions of soil depth 118 

and water content (Neitsch et al., 2011). The simulated LAI is also required to calculate the potential plant transpira-119 

tion, with a formulation that varies depending on the selected ETr method (Alemayehu et al., 2015; Neitsch et al., 120 

2011). The actual plant transpiration (i.e. the plant water uptake) is reduced exponentially for soil water contents 121 

below field capacity. Therefore, the ET refers to the sum of the evaporation from the canopy and from the soil as 122 

well as plant transpiration. 123 

In this study, we use the Penman-Monteith method (Monteith, 1965) to compute the ETr for alfalfa reference crop as 124 

(Neitsch et al., 2011): 125 

 126 

where ETr is the maximum transpiration rate (mm d
-1

), Δ is the slope of the saturation vapour pressure-temperature 127 

curve (kPa ˚C
-1

), 𝐻𝑛𝑒𝑡 is the net radiation (MJ m
-2

 d
-1

), G is the heat flux density to the ground (MJ m
-2

 d
-1

), 𝜌𝑎𝑖𝑟  is 128 

the air density (kg m
-3

), 𝐶𝑝 is the specific heat at constant pressure (MJ kg
-1

 ˚C
-1

), 𝑒𝑧 
0  is the saturation vapour pres-129 

sure of air at height z (kPa), 𝑒𝑧 is the water vapor pressure of air at height z (kPa), γ is the psychrometric constant 130 
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(kPa ˚C
-1

), 𝑟𝑐  is the plant canopy resistance (s m
-1

), and 𝑟𝑎 is the diffusion resistance of the air layer (aerodynamic 131 

resistance) (s m
-1

). The plant growth module in SWAT simulates the LAI and the canopy height, which are required 132 

to calculate the canopy and the aerodynamic resistance. 133 

2.3. The vegetation growth and Leaf Area Index modelling in SWAT 134 

SWAT simulates the annual vegetation growth based on the simplified version of the EPIC plant growth model 135 

(Neitsch et al., 2011). The potential plant phenological development is hereby simulated on the basis of accumulated 136 

heat units under optimal conditions; however, the actual growth is constrained by temperature, water, nitrogen or 137 

phosphorous stress (Arnold et al., 2012; Neitsch et al., 2011). 138 

Plant growth is primarily based on temperature and hence each plant has its own temperature requirements (i.e. 139 

minimum, maximum and optimum). The fundamental assumption of the heat unit theory is plants have a heat unit 140 

requirement that can be quantified and linked to the time of planting and maturity (Kiniry and MacDonald, 2008; 141 

Neitsch et al., 2011). The total number of heat units required for a plant to reach maturity must be provided by the 142 

user. The plant growth modelling includes the simulation of  the leaf area development, the light interception and the 143 

conversion of intercepted light into biomass, assuming a plant species-specific radiation-use efficiency (Neitsch et 144 

al., 2011). The plant growth model assumes a uniform, single plant species community, thereby plant mixtures such 145 

as trees and grass cannot be simulated in SWAT (Kiniry and MacDonald, 2008). 146 

During the initial period of the growth, the optimal leaf area development is modelled (Neitsch et al., 2011) as: 147 

                 

)fr.llexp(fr

fr
fr

PHU21PHU

PHU
xImLA


  

               (3) 

where frLAImx is the fraction of the plant’s maximum leaf area index corresponding to a given fraction of the poten-148 

tial heat units for the plant, frPHU is the fraction of potential heat units accumulated for the plant on a given day dur-149 

ing the growing season, and l1 and l2 are shape coefficients. Once the maximum leaf area index is reached, the LAI 150 

will remain constant until the leaf senescence begins to exceed the leaf growth.  151 

Afterwards, the leaf senescence becomes the dominant growth process and hence the LAI follows a linear decline 152 

(Neitsch et al., 2011). However, Strauch and Volk (2013) suggested a logistic decline curve instead, in order to 153 

avoid that the LAI drops to zero before entering the dormancy stage. We adopted this change to SWAT2012, 154 

whereby the LAI during leaf senescence for trees and perennials is calculated as (Strauch and Volk, 2013): 155 

)texp(1

LAILAI
LAI minmx




       

(4) 
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where the term used as exponent is a function of time (t), LAImx and LAImin are the maximum and minimum (i.e. 156 

during dormancy) leaf area index, respectively. frPHU,sen is the fraction of the potential heat units for the plant at 157 

which senescence becomes the dominant growth process and frPHU is the fraction of potential heat units accumulated 158 

for the plant on a given day during the growing season. 159 

As detailed in Neitsch  et al. (2011), the daily LAI calculations for perennials and trees are slightly different, as for 160 

the latter the years of development are considered. 161 

For perennials, the LAI for a day i is calculated as: 162 

i1ii LAILAILAI  
                      (5) 

And the change of LAI on day i is calculated as: 163 

 
 ))LAILAI.(5exp(1
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mx1i

mx1i,xImLAi,xImLAi








       

        (6) 

 164 

2.4. The limitation of the annual vegetation growth cycle simulation in SWAT for the tropics 165 

Dormancy, is the period during which trees and perennials do not grow. It is commonly considered to be a function 166 

of latitude and day length.  It is assumed that dormancy starts as the day length nears the minimum day length of the 167 

year. At the beginning of the dormancy period, a fraction of the biomass is converted to residue and the leaf area 168 

index is set to the minimum value (Neitsch et al., 2011), and thereby resets the annual growth cycle. Also, SWAT 169 

offers two management settings options for the start and the end of the growing season, either based on a calendar 170 

date scheduling or based on heat units (the default). 171 

In the tropics, however, dormancy is primarily controlled by precipitation (Bobée et al., 2012; Jolly and Running, 172 

2004; Lotsch, 2003; Zhang et al., 2010; Zhang, 2005). Hence, the default growth module of SWAT cannot realisti-173 

cally represent the seasonal growth dynamics for trees and perennials in the tropics.  174 

2.5. A soil moisture index-based vegetation growth cycle for the tropics 175 

As several studies demonstrated (Jolly and Running, 2004; Zhang, 2005; Zhang et al., 2006),  the water availability 176 

in the soil profile is one of the primary governing factors of the vegetation growth in the tropics.  Thus, we propose 177 
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to implement a soil moisture index (SMI) to trigger a new growth cycle for tropical ecosystems in SWAT within a 178 

predefined period. The SMI is computed as:  179 

rET

P
SMI         

               (7) 

where P and ETr denote daily or aggregated rainfall and reference evapotranspiration (mm d
-1

), respectively. In this 180 

study we used five days (i.e. pentad) aggregated P and ETr to determine the SMI, to assure sufficient soil moisture 181 

availability to initiate a new growth cycle. The SMI is somewhat similar to the Water Requirement Satisfaction 182 

Index (WRSI) (McNally et al., 2015; Verdin and Klaver, 2002), which is a ratio of ET to ETr. 183 

Figure 2 presents the seasonal pattern of SMI, based on long-term precipitation for several gauge stations in the 184 

Mara Basin and ETr data from Trabucco and Zomer (2009). It is apparent from Figure 2 that the dry season (mostly 185 

from June - September) shows low SMI values (less than 0.5). Additionally, these patterns resemble well the long-186 

term monthly average LAI for the savanna ecosystem (the dominant cover in the mid-section of the Mara Basin). In 187 

areas with a humid climate (i.e. the head water regions of the basin), the SMI values are high and the rainfall regime 188 

is different, yet in the relatively drier months (January and February) the SMI is low. As shown in Figure 2, the LAI 189 

and the SMI seasonal dynamics match well, when a lag time of approximately one month is considered. From this, 190 

we conclude that the SMI can be used as a proxy for the start of the wet season (SOS) and hence to trigger the vege-191 

tation growth cycle. This approach enables a dynamic simulation of the growth cycle by SWAT, without the need to 192 

define the exact dates of the beginning and the end of the growing season (the “plant” and “kill” dates). 193 

 194 

Figure 2 The moisture index (SMI) derived from historical precipitation observations (P) across the Mara Basin and  the 195 
global reference evapotranspiration data of Trabucco and Zomer (2009) (ETr). The dotted line represents tha Leaf Area 196 
Index (LAI) for the savanna ecosystem. SOS1 and SOS2 represent the start-of-wet season (SOS) transition months to 197 
trigger growth.  198 
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To avoid false starts of the new growing cycle during the dry season due to short spell rainfall, the end of the dry 199 

season and the beginning of the rainy season (SOS1 and SOS2, respectively) should be provided by the user. These 200 

months are determined using a long-term monthly climatological P to ETr ratio (Figure 2). For a river basin with a 201 

single rainfall regime, a single set of SOS months are required. However, in a basin with multiple rainfall regimes 202 

(i.e. mostly large basin), different sets of SOS months should be provided at sub-basin level. In our study area, two 203 

distinct rainfall regimes are observed and therefore two different SOS months were needed. For most sub-basins 204 

October (SOS1) and November (SOS2) were used as transitions (Figure 2). 205 

2.6. The adaptation of the SWAT plant growth module in SWAT-T 206 

Based on the rationale elaborated in the preceding sections, we modified the standard SWAT2012 (version 627) 207 

plant growth subroutine for basins located between 20
0
 N and 20

0 
S:  208 

i) If the simulation day is within SOS1 and SOS2 for a given HRU and a new growing cycle is not initiated 209 

yet, the SMI is calculated as the ratio of P to ETr. 210 

ii) If the SMI exceeds or equals a user defined threshold, a new growing cycle for trees and perennials is 211 

initiated. Subsequently, FRPHU is set to 0 and the LAI is set to the minimum value. Plant residue decom-212 

position and nutrient release is calculated as if dormancy would occur.  213 

iii) In case the SMI is still below a user defined threshold at the end of month SOS2, a new growing cycle is 214 

initiated immediately after the last date of SOS2.  215 

It is worth noting that the SMI threshold can be set depending on the climatic condition of the basin.   216 

2.7. The data used for the evaluations  217 

The Leaf Area Index 218 

The remote sensing LAI data used in this study are based on the MODIS TERRA sensor (Table 1). The LAI product 219 

retrieval algorithm is based on the physics of the radiative transfer in vegetation canopies (Myneni et al., 2002) and 220 

involves  several constants (leaf angle distribution, optical properties of soils and wood, and canopy heterogeneity) 221 

(Bobée et al., 2012). The theoretical basis of the MODIS LAI algorithm and the validation results are detailed in 222 

Myneni et al. (2002). Kraus (2008) validated the MOD15A2 LAI data at Budongo Forest (Uganda) and Kakamega 223 

Forest (Kenya) sites and reported an accuracy level comparable to the accuracy of field measurements, indicating 224 

the reliability of MOD15A2 LAI. 225 

Table 1 Summary of the inputs of the SWAT model and the evaluation datasets. 226 

 Spatial/temporal 

resolution 

Source Description 

Rainfall 5 km / 1-day Roy et al. (2017) Bias-corrected satellite rainfall for 

Mara basin 

Climate 25 km / 3-hour Rondell et al. (2004) Max. and min. temperature, relative 

humidity, wind, solar radiation 
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Land cover classes 30 m FAO (2002) Land cover classes for East Africa 

DEM 30 m NASA (2014) Digital elevation model 

Soil classes 1 km FAO (2009) Global soil classes 
Discharge Daily (2002-2008) WRMA (Kenya)  River discharge at Bomet 

ET 1 km / 8-day Alemayehu et al. (2017)  ET maps for Mara basin 

MOD15A2 1 km  / 8-day LPDAAC(2014) Global leaf area index 

 227 

We selected relatively homogeneous representative sample sites (i.e. polygons) for evergreen forest (174 km
2
), tea 228 

(123 km
2
), savanna grassland (136 km

2
) and shrubland (130 km

2
) (see Figure 1b) using the Africover classes and 229 

Google Earth images. This is useful to reduce the effect of mixed LAI values from different land cover classes while 230 

averaging the coarse scale (i.e. 1 km) MODIS LAI. The MOD15A2 pixels with quality flag 0 (i.e. indicating good 231 

quality) were masked using the polygons of the sample covers. Also, pixels with LAI values less than 1.5 during the 232 

peak growing months (i.e. period with LAI values mostly above 2.0) were removed. Finally, we extracted the 8-day 233 

median LAI time series for each land cover for 2002-2009 and few gaps in the LAI time series were filled using 234 

linear interpolation. Notwithstanding all the quality control efforts, we noted breaks and a high temporal variation in 235 

the LAI time series, due the inevitable signal noise (Figure 3). Verbesselt et al. (2010) developed the Breaks For 236 

Additive Seasonal and Trend (BFAST) method that decomposes the Normalized Vegetation Index (NDVI) time 237 

series into trend, seasonal, and remainder components. The trend and seasonal components comprise information 238 

that is pertinent to phenological developments as well as gradual and abrupt changes, whereas the reminder compo-239 

nent comprises noise and error information of the series time series. This method has been applied to tropical eco-240 

systems to identify phenological cycles as well as abrupt changes (DeVries et al., 2015; Verbesselt et al., 2010, 241 

2012). In our study, we used the BFAST tool to extract the seasonal development pattern of LAI while excluding the 242 

noise and error information from the LAI time series. Figure 3 demonstrates the smoothed 8-day LAI time series 243 

using BFAST along with the raw-median LAI values. It is apparent from the smoothed LAI time series that the high 244 

LAI development occurs during the wet months from March to May, suggesting consistency in the smoothed LAI 245 

time series. Therefore, the smoothed LAI time series were used to calibrate and evaluate the SWAT-T model vegeta-246 

tion growth module for simulating LAI.  247 
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 248 

Figure 3 The 8-day raw-median LAI time series for evergreen forest (a), tea (b), grassland (c) and shrubland (d) sample 249 
sites. The raw-median LAI is smoothed using the Breaks For Additive Seasonal and Trend (BFAST) method (Verbesselt 250 
et al., 2010). 251 

The evapotranspiration 252 

ET is one of the major components of a basin water balance that is influenced by the seasonal vegetation growth 253 

cycle. Thus, remote sensing-based ET estimates can be used to evaluate (calibrate) the SWAT-T model. Alemayehu 254 

et al. (2017) estimated ET for the Mara River basin using several MODIS thermal imageries and the Global Land 255 

Data Assimilation System (GLDAS) (Rodell et al., 2004) weather dataset from 2002 to 2009 at an 8-day temporal 256 

resolution based on the Operational Simplified Surface Energy Balance (SSEBop) algorithm (Senay et al., 2013). 257 

The latter mainly depends on the remotely sensed land surface temperature and the grass reference evapotranspira-258 

tion (Senay et al., 2013). Alemayehu et al. (2017) demonstrated that the SSEBop ET for the study area explained 259 

about 52%, 63% and 81% of the observed variability in the MODIS NDVI at 16-day, monthly and annual temporal 260 

resolution. Also, they suggested that the estimated ET can be used for hydrological model parameterization. There-261 

fore, we used this remote sensing-based ET estimates (hereafter ET-RS) to evaluate the SWAT-T simulated ET at a 262 

land cover level. 263 

Streamflow  264 

Due to the limited availability of observed streamflow, we used daily observed streamflow series (2002-2008) for 265 

the head water region (700 km
2
) at the Bomet gauging station. The streamflow dataset is relatively complete, with 266 

about 11% missing data distributed throughout the time series.  267 
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2.8. Model set up, calibration and evaluation 268 

2.8.1. The model set up and data used 269 

The Mara River Basin was delineated using a high resolution (30 m) digital elevation model (DEM) (NASA, 2014) 270 

in ArcSWAT2012 (revision 627). The basin was subdivided into 89 sub-basins to spatially differentiate areas of the 271 

basin dominated by different land use and/or soil type with dissimilar impact on hydrology. Each sub-basin was 272 

further discretized into several HRUs. The model was set up for land use conditions representing the period 2002-273 

2009. The land cover classes for the basin were obtained from the FAO-Africover project (FAO, 2002). As shown in 274 

Figure 1b, the dominant portion of the basin is covered by natural vegetation including savanna grassland, shrubland 275 

and evergreen forest. These land cover classes were assigned the characteristics of  RNGE, RNGB and FRSE, re-276 

spectively in the SWAT plant database (Neitsch et al., 2011). We extracted the soil classes for the basin from the 277 

Harmonized Global Soil Database (FAO, 2008). A soil properties database for the Mara River Basin was established 278 

using the soil water characteristics tool (SPAW, http://hydrolab.arsusda.gov/soilwater).  279 

The list of hydro-climatological and spatial data used to derive the SWAT model are presented in Table 1. In situ 280 

measurements of rainfall and other climate variables are sparse and thus bias-corrected multi- satellite rainfall analy-281 

sis data from Roy et al. (2017) were used. The bias-correction involves using historical gauge measurements and a 282 

downscaling to a 5 km resolution. Detailed information on the bias-correction and downscaling procedures can be 283 

found in Roy et al. (2017).  The ETr  was computed in SWAT using GLDAS weather data (Rodell et al., 2004) 284 

based on the Penman-Monteith (Monteith, 1965) approach. To remove the biases in SWAT computed ETr compared 285 

to the observation-based monthly average (1950-2000) ETr data from Trabucco and Zomer (2009), the GLDAS 286 

solar radiation were adjusted relatively per month and per sub-basin.  287 

2.8.2. Model calibration and evaluation approach  288 

The main purpose of this study is to explore the potential of the SMI to trigger a new vegetation growth cycle for 289 

tropical ecosystems. To evaluate the effect of the modification on the SWAT vegetation growth module, we initially 290 

inter-compared simulated LAI from the modified (i.e. SWAT-T) and the standard plant growth module with varying 291 

management settings. This analysis involved uncalibrated simulations with the default SWAT model parameters, 292 

whereby the models thus only differ regarding the way the vegetation growth is simulated and the management 293 

settings. It is worth noting that the aim of these simulations is mainly to expose the inconsistencies in the vegetation 294 

growth module structure of the original SWAT model. Afterwards, we calibrated the parameters related to the simu-295 

lation of the LAI, the ET and the streamflow by trial-and-error and expert knowledge for the SWAT-T model. First-296 

ly, the SWAT parameters that control the shape, the magnitude and the temporal dynamics of LAI were adjusted to 297 

reproduce the 8-day MODIS LAI for each land cover class. Then, we adjusted the parameters that mainly control the 298 

streamflow and ET simulation, simultaneously using the daily observed streamflow and the 8-day ET-RS. One may 299 

put forward that the manual adjustment may not be as robust as an automatic calibration as the later explores a larger 300 

parameters space. However, the manual calibration is believed to be apt to illustrate the impact of the modification 301 

http://hydrolab.arsusda.gov/soilwater
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of the vegetation growth cycle and its effect on the water balance components. The SWAT-T model calibration and 302 

validation was done for 2002-2005 and 2006-2009, respectively. 303 

2.8.3. The model performance metrics 304 

The Pearson correlation coefficient (r) and the Percent of PBIAS (%bias) were used to evaluate the agreement be-305 

tween the simulated and the remote sensing-based estimates of LAI and ET for each land cover class and for the 306 

evaluation of the streamflow simulations. Additionally, the model performance was evaluated using the Kling-Gupta 307 

Efficiency (KGE) (Gupta et al., 2009), which provides a compressive assessment by taking  the variability, the bias 308 

and the correlation into account in a multi-objective sense. 309 

3. Results and discussion 310 

3.1. The consistency assessment of the vegetation growth module without calibration  311 

3.1.1. The LAI simulations  312 

To highlight the added value of the modified vegetation growth module in SWAT-T for simulating the seasonal 313 

growth pattern of trees and perennials, we compared the daily simulated LAI of the standard SWAT2012 (revision 314 

627) model and SWAT-T model. At this stage, the models were uncalibrated (i.e. based on default SWAT parame-315 

ters).  316 

Figure 4 and Figure 5 present the monthly rainfall along with SWAT simulated daily LAI for FRSE and RNGE 317 

using the standard vegetation growth module under different management settings as well as the modified version 318 

(i.e. SWAT-T). In the standard plant growth module whereby the Heat Units management option is selected (“Heat 319 

Unit” in the Figure 4and Figure 5), the start and the end of the vegetation growth cycle occur at the default FRPHU 320 

values of 0.15 and 1.2, respectively. With this management setting, the simulated LAI is zero at the beginning of 321 

each simulation year for both types of vegetation cover, which does not correspond to the reality for FRSE and 322 

RNGE in tropical regions. Strauch and Volk (2013), Kilonzo (2014) and Mwang et al. (2016) reported similar ob-323 

servations. With this respect, it may be noted that Mwang et al. (2016) improved the SWAT LAI simulation for 324 

FRSE by using a FRPHU  value of 0.001 to start the growing season and with a minimum LAI  of 3.0. Yet, this 325 

change is region specific and cannot be transferred.  326 

As shown in Figure 4 and Figure 5, the simulation with the standard SWAT module can be partly improved by using 327 

a date scheduling (“Date”) for the start and the end of the vegetation growth cycle (i.e. instead of Heat Unit). Alter-328 

natively, all the management setting can be removed (“No mgt”) and vegetation is growing since the start of the 329 

simulation. It is worthwhile noting the low LAI values during and following the rainy months (i.e. March -May), 330 

suggesting unrealistic growth cycle simulation.  Additionally, regardless of the management setting, the vegetation 331 

growth cycle resets annually on 28
th

 June due to dormancy. In contrast, the simulated LAI with the modified vegeta-332 
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tion growth module (“SWAT-T”) corresponds with the monthly rainfall distribution, for FRSE and RNGE (see 333 

Figure 4 and Figure 5). We noted similar results for tea and RNGB. 334 

 335 

Figure 4 The daily LAI as simulated standard SWAT plant growth module with different management settings and by 336 
the modified plant growth module (SWAT-T) for evergreen forest (FRSE) using default SWAT parameters. The vertical 337 
lines (black) denote monthly rainfall. See management settings explanations in the texts. 338 

 339 
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Figure 5 The daily LAI as simulated standard SWAT plant growth module with different management settings and by 340 
the modified plant growth module (SWAT-T) for grass (RNGE) using default SWAT parameters. The vertical lines 341 
(black) denote monthly rainfall. See management settings explanations in the texts. 342 

3.1.2. The implication of inconsistent LAI simulation on the water balance components 343 

In SWAT, the LAI is required to compute the potential transpiration, the potential soil evaporation and the plant 344 

biomass, among others. For instance, to compute the daily potential plant transpiration, the canopy resistance and 345 

the aerodynamic resistance are determined using the simulated LAI and the canopy height, respectively (Neitsch et 346 

al., 2011). Therefore, the aforementioned limitations of the annual vegetation growth cycle in the standard SWAT 347 

model growth module also influences the simulation of the transpiration.  Figure 6 shows a comparison of the daily 348 

potential transpiration for RNGE as simulated by SWAT model with the standard and modified vegetation growth 349 

module, based on the Penman-Monteith equation. We observe 12% of the standard SWAT simulated daily potential 350 

transpiration time series (2002-2009) for RNGE being zero, suggesting a considerable inconsistency. The incon-351 

sistency is considerably reduced when the modified vegetation growth module (SWAT-T) is used (i.e. less than 2% 352 

zero values). Similar results are noted for FRSE and RNGB. 353 

These findings should not come as a surprise as several studies have shown the effect of the selection of the ETr 354 

method in SWAT on the simulated ET and other water balance components (Alemayehu et al., 2015; Maranda and 355 

Anctil, 2015; Wang et al., 2006). Alemayehu et al. (2015) reported substantial differences in both potential and 356 

actual transpiration with the choice of the ETr method using a calibrated SWAT model, which was partly ascribed to 357 

the unrealistic LAI growth cycle.  358 

We also notice the SWAT-T simulated potential transpiration is consistent regardless of the ETr method selection in 359 

SWAT (results not shown here) and therefore, the improved vegetation growth module in the SWAT-T can reduce 360 

the uncertainty arising from the model structure and thus minimize the uncertainties in model simulation outputs.  361 

 362 
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Figure 6 Comparison of Penman-Monteith-based daily potential transpiration simulated by the SWAT-T and the stand-363 
ard SWAT models for grassland. Note that the heat unit scheduling is used in the standard SWAT model.  364 

3.2. The evaluation of the calibrated SWAT-T model  365 

3.2.1. The performance of the LAI simulation 366 

Table 2 presents the SWAT model parameters that are adjusted during the manual calibration process. Initially, the 367 

minimum LAI (ALAI_MIN) for each land cover classes were set based on the long-term MODIS LAI. Also, the 368 

PHU was computed using the long-term climatology, as suggested in Strauch and Volk (2013). The shape coeffi-369 

cients for the LAI curve (FRGW1, FRGW2, LAIMX1, LAIMX2 and DLAI) and the remaining parameters were ad-370 

justed during the calibration period by a trial-and-error process such that the SWAT-T simulated 8-day LAI mimics 371 

the MODIS 8-day LAI.  372 

Figure 7 presents the comparison of 8-day MODIS LAI with the calibrated SWAT-T simulated LAI aggregated over 373 

several land cover classes for the calibration and validation periods. We evaluated the degree of agreement qualita-374 

tively -by visual comparison- and quantitatively -by statistical measures. From the visual inspection it is apparent 375 

that the intra-annual LAI dynamics (and hence the annual growth cycle of each land cover class) from the SWAT-T 376 

model correspond well with the MODIS LAI data. This observation is supported by correlations as high as 0.94 377 

(FRSE) and 0.92 (RNGB) during the calibration period (Table 3). As shown in Table 3, the model also shows a 378 

similar performance during the validation period, with low average bias and correlation as high as 0.93 (FRSE). 379 

Overall, the results indicate that the SMI can indeed be used to dynamically trigger a new growing season within a 380 

pre-defined period.  381 

Despite the overall good performance of SWAT-T in simulating the LAI, we observed biases for FRSE and Tea, 382 

mainly during the rainy season (see Figure 7 top row). This is partly attributed to the cloud contamination of the 383 

MODIS LAI in the mountainous humid part of the basin, as shown in Figure 3a and Figure 3b.  Similar observations 384 

were also made by Krause (2008). Also, the senescence seems to occur slightly early for Tea (see Figure 3b), 385 

whereby we note a mismatch between the SWAT simulated LAI and the MODIS LAI. This suggests the need to 386 

further adjust the fraction of total PHU when the leaf area begins to decline (DLAI). 387 

Table 2 List of SWAT parameters used to calibrate LAI, ET and streamflow with their default and calibrated values. 388 

 

Parameter 

 

Parameter definition (unit) 

 

Variable 

Default (calibrated) 

FRSE RNGE RNGB 

BIO_E Radiation-use efficiency((kg/ha)/(MJ/m2)) LAI 15 (17) 34 (10) 34 (10) 

BLAI Maximum potential leaf area index (m2/m2) LAI 5 (4.0) 2.5 (3.5) 2 (3.5) 

FRGW1 Fraction of PHU corresponding to the 1st point 

on the optimal leaf area development curve 

LAI 
0.15 (0.06) 0.05 (0.2) 

0.05 (0.2) 

 
LAIMX1 

Fraction of BLAI corresponding to the 1st point 
LAI 0.7 0.1 0.1 
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on the optimal leaf area development curve (0.15) (0.1) (0.1) 

FRGW2 
Fraction of PHU corresponding to the 2nd point 

on the optimal leaf area development curve 

LAI 0.25 

(0.15) 

0.25 

(0.5) 

0.25 

(0.5) 

LAIMX2 
Fraction of BLAI corresponding to the 2nd point 

on the optimal leaf area development curve 

LAI 0.99 

(0.30) 

0.7 

(0.99) 

0.7 

(0.99) 

DLAI 
Fraction of total PHU when leaf area begins to 

decline 

LAI 0.99 

(0.30) 

0.35 

(0.99) 

0.35 

(0.99) 

T_OPT Optimal temperature for plant growth (ºC) LAI 30 (25) 25 (30) 25 (30) 

T_BASE Minimum temperature for plant growth (ºC) LAI 0 (5) 12 (5) 12 (5) 

ALAI_MIN 
Minimum leaf area index for plant during 

dormant period (m2.m2) 

LAI 0.75 

(2.0) 

0 

(0.75) 

0 

(0.75) 

PHU 
Total number of heat units needed to bring   

plant to maturity 

LAI 1800 

(3570) 

1800 

(4100) 

1800 

(4100) 

SOL_Z1 Soil layer depths (mm) 

ET 

300 [1000] 

(480 [1600]) 

300[1000] 

(480 [1600]) 

300[1000] 

(480 

[1600]) 

SOL_AWC2 Soil available water (mm) 

ET/flow 0.26-0.31 

[0.27-0.29] 

(0.18-0.21 

[0.18-0.20]) 

0.26-0.31 

[0.27-0.29] 

(0.18-0.21 

[0.18-0.20]) 

0.26-0.31 

[0.27-0.29] 

(0.18-0.21 

[0.18-0.20]) 

ESCO Soil evaporation compensation factor (-) 

ET 0.95 

(0.88) 

0.95 

(1) 

0.95 

(1) 

EPCO Plant uptake compensation factor (-) 

ET 1 

(1) 

1 

(1) 

1 

(1) 

GSI 
Maximum stomatal conductance at high solar 

radiation and low vapor pressure deficit (m.s-1) 

ET 0.002 

(0.006) 

0.005 

(0.0035) 

0.005 

(0.004) 

REVAPMN Depth of water in the aquifer for revap (mm) 

ET 750 

(100) 

750 

(100) 

750 

(100) 
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CN23 Initial SCS curve number II value (-) 

flow 55 [70] 

(38 [48]) 

69 [79] 

(81 [92]) 

61 [74] 

(71 [87]) 

SURLAG Surface runoff lag time (day) flow 4(0.01) 4(0.01) 4(0.01) 

ALPHA_BF Baseflow recession constant (day) 

flow 0.048 

(0.2) 

0.048 

(0.2) 

0.048 

(0.2) 

GWQMN Shallow aquifer minimum level for base flow 

flow 1000 

(50) 

1000 

(50) 

1000 

(50) 

GW_REVAP Groundwater ‘revap’ coefficient (-) 

ET 0.02 

(0.1) 

0.02 

(0.02) 

0.02 

(0.02) 

RCHRG_DP Deep aquifer percolation fraction (-) 

flow 0.05 

(0.3) 

0.05 

(0.1) 

0.05 

(0.1) 

1
SOL_Z values for the top [and lower] soil layers depth  389 

2
SOL_AWC values range for the top [and lower] soil layers depending on soil texture and bulk density 390 

3
CN2 values for soil hydrologic group B[C] 391 

 392 

 393 

Figure 7 The MODIS LAI and the SWAT-T model simulated HRU weighted aggregated 8-day LAI time series (2002-394 
2009). The grey sheds indicate the boundaries of the 25th and 75th percentiles. The vertical line marks the end of the cali-395 
bration period and the beginning of the validation period.  396 
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Table 3 Summary of the performance metrics for the SWAT-T for simulating LAI, ET and streamflow. Note that the 397 

performance for LAI and ET refers to 8-day aggregated data whereas daily streamflow data are considered. 398 

 

LAI calibration (validation) ET calibration (validation) Streamflow calibration (vali-

dation) 

 

FRSE Tea RNGE RNGB FRSE Tea RNGE RNGB Flow 

r 0.94 (0.93) 0.83 (0.83) 0.89 (0.86) 0.92 (0.88) 0.71 (0.68) 0.67 (0.64) 0.72 (0.77) 0.66 (0.72) 0.72 (0.76) 

%bias 1.5 (0) 0.1 (0.2) -3.7 (-0.4) -1.3 (4.6) 3.7 (6.6) -1.7 (0.5) 7.8 (11) 1.2 (2.9) 3.5 (15.5) 

KGE 0.50 (0.62) 0.42 (0.44) 0.86 (0.85) 0.88 (0.86) 0.71 (0.67) 0.62 (0.62) 0.69 (0.74) 0.66 (0.72) 0.71 (0.71) 

 399 

3.2.2. The seasonal vegetation growth pattern  400 

The seasonal patterns of the LAI for FRSE, Tea, RNGE and RNGB are analysed using 8-day aggregated LAI data 401 

time series (2002-2009) from the calibrated SWAT-T model and MODIS LAI. Generally, and not surprisingly, the 402 

seasonal dynamics of the SWAT-T simulated LAI and the MODIS LAI agree well (Figure 8 left) with a pooled 403 

correlation of 0.97. 404 

 As shown in Figure 8 (right), the SWAT-T simulated monthly average LAI shows a higher seasonal variation as 405 

compared to the variation observed from MODIS LAI for FRSE; the peak-to-trough difference of the SWAT-T data 406 

is about 48% of the average annual MODIS LAI, while the amplitude is 31% for the MODIS data. The seasonal 407 

variation from MODIS LAI is comparable with the results of Myneni et al. (2007) who noted 25% seasonal varia-408 

tion in the Amazon forest.  We also notice a correlation of 0.66 between the seasonal LAI and the rainfall in the 409 

humid part of the basin. Our observations are in agreement with Kraus (2008), who reported an association of the 410 

LAI dynamics for forest sites located in Kenya and Uganda with inter-annual climate variability.    411 

In the part of the basin where there is a marked dry season, the LAI exhibits a notable seasonal variation, with an 412 

amplitude that is up to 79% of the mean annual LAI (1.4 m
2
/m

2
) for RNGE. Unlike the LAI of FRSE and Tea in the 413 

humid part, the seasonal rainfall pattern is strongly correlated (r = 0.81) with lagged LAI for RNGE and RNGB. 414 

This result is in agreement with several studies that noted that the LAI dynamics for natural ecosystems in the Sub-415 

Saharan Africa are associated with the rainfall distribution pattern (Bobée et al., 2012; Kraus et al., 2009; Pfeifer et 416 

al., 2014).   417 
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 418 

Figure 8  The long-term (2002-2009) average monthly LAI pooled scatter plot (left) and temporal dynamics (right).  419 
FRSE: evergreen forest; RNGE: grassland; RNGB: shrubland. 420 

In addition to improving the seasonal dynamics of LAI in SWAT without the need of management settings, the SMI 421 

accounts for the year-to-year shifts in the SOS due to climatic variations. This is particularly important for long-term 422 

land use change and climate change impact studies. Figure 9 demonstrates the year-to-year shifts as well as the spa-423 

tial variation of the SOS dates for part of the Mara River Basin dominated by savanna grassland. Generally, the 424 

season change tends to occur in the month of October (i.e. Julian date 278-304).  Yet, we acknowledge the need of 425 

further verification studies in basins with sufficient forcing data and field measurements.  426 

 427 

Figure 9 The inter-annual and spatial variation of the start of the rainy season for the savanna vegetation in the Mara 428 
River basin for 2002-2005. Note that HRU level Julian dates  are used and the sub-basins are overlaid. 429 

3.2.3. The spatial simulation of the evapotranspiration 430 

As presented in Table 2, several SWAT parameters were calibrated by comparing SWAT-T model simulated ET 431 

with ET-RS.  The higher water use by FRSE as compared to other land cover classes is reflected by a lower ESCO, 432 

and a higher GW_REVAP and GSI (Table 2). The lower ESCO indicates an increased possibility of extracting soil 433 

water to satisfy the atmospheric demand at a relatively lower soil depth. Also, the higher GW_REVAP points to an 434 

increased extraction of water by deep-rooted plants from the shallow aquifer or pumping. Similar findings were 435 

reported by Strauch and Volk  (2013). 436 
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 Figure 10 presents the comparison of 8-day ET-RS and SWAT-T simulated ET for the calibration (2002 - 2005) 437 

and validation (2006 - 2009) periods for FRSE, Tea, RNGE and RNGB. Visually, the ET simulated by the SWAT-T 438 

fairly agrees with the ET-RS for all the covers. As shown in Table 3, the statistical performance indices show a 439 

modest performance in simulating ET for the dominant cover types in the basin. The average model biases for the 440 

simulated ET ranges from 7.8% (RNGE) to 1.2% (RNGB) during the calibration period. Additionally, the correla-441 

tion between 8-day ET from the SWAT-T and the ET-RS varies from 0.67 (Tea) to 0.72 (grassland). Overall, we 442 

notice similar performance measures during the calibration and validation period, suggesting a fair representation of 443 

the processes pertinent to ET.  444 

The variability of the ET is controlled by several biotic and abiotic factors. The 8-day ET time series as simulated by 445 

the SWAT-T model illustrates the variation of the temporal dynamics of ET in the study area. For land cover types 446 

located in the humid part of the basin (FRSE and tea) there is no clear temporal pattern (Figure 10). In contrast, the 447 

areas covered by RNGE and RNGB show a clear seasonality of the simulated ET. These observations are consistent 448 

with the seasonality of the simulated LAI, as discussed section 3.2.2. 449 
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 450 

Figure 10 The comparison of remote sensing-based evapotranspiration (ET-RS) and SWAT-T simulated ET (ET-SWAT-451 
T) aggregated per land cover class. Note that for SWAT-T HRU level ET is aggregated per land cover. The vertical black 452 
lines mark the end of the calibration period and the beginning of the validation period. 453 
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To shed light on the consistency of SWAT-T simulated LAI and ET, we selected simulation outputs at HRU level 454 

for April and August (Figure 11 and Figure 12). Figure 11 (upper row) exhibits the monthly ET at HRU level for the 455 

wet month (April) and the dry month (August) in 2002. The lower portion of the basin, with dominant savanna cov-456 

er, experiences a monthly ET between 16 and 63 mm/month in August and between 41 and 93 mm/month in April. 457 

These estimates are also well reflected in the spatial distribution of the average monthly simulated LAI (Figure 11 458 

lower row). We notice that the linear relationship between ET and LAI is stronger, in general, for grassland and 459 

shrubs than for evergreen forest and tea. The lower correlation for tea and evergreen forest could be partly attributed 460 

to the high evaporation contribution of the wet soil, as the upper portion of the basin receives ample rainfall all year 461 

round. Also, the tea harvesting activities in the upper part of the basin is not taken into account in the model. Finally, 462 

we observe that during the wet month the spatial variability of ET is higher than that of the LAI (Figure 11). Further 463 

comparison research is needed to evaluate the added value of the improved vegetation growth module on spatial ET 464 

simulations compared to remote sensing-based ET. This will be addressed in our ongoing research on ET evaluation. 465 

 466 

Figure 11 SWAT-T simulated monthly ET (upper row) and LAI (lower row) for April (wet) and August (dry) 2002 at 467 
HRU level. 468 
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 469 

Figure 12 The average seasonal and spatial distribution of ET (2002-2009) in the Mara Basin, as simulated by the SWAT-470 
T model at HRU level. 471 

3.2.4. The performance of the streamflow simulations  472 

Figure 13 presents the comparison of daily SWAT-T simulated streamflow with observed streamflows, for the cali-473 

bration and validation periods. Visually, the simulated hydrograph fairly reproduced the observations. The average 474 

biases of the SWAT-T simulated streamflow as compared to observations amounts to 3.5 and 15.5% during the 475 

calibration and validation periods, respectively (Table 3). The correlation is about 0.72 (0.76) during calibration 476 

(validation) period. A KGE of 0.71 points to the overall ability of the calibrated SWAT-T model to reproduce the 477 

observed streamflow. However, the model tends to underestimate the baseflow and this is more pronounced during 478 

the validation period. This is partly associated with the overestimation of the ET for evergreen forest (6.6%) during 479 

the validation, since ET has a known effect on the groundwater flow.  480 
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 481 

Figure 13 Observed and simulated flows for the Nyangores River at Bomet.  482 

4. Summary and conclusions 483 

We presented an innovative approach to improve the simulation of the annual growth cycle for trees and perennials -484 

and hence improve the simulation of the evapotranspiration and the streamflow- for tropical conditions in SWAT. 485 

The robustness of the changes made to the standard SWAT2012 version 627 have been assessed by comparing the 486 

model outputs with remotely sensed 8-day composite Moderate Resolution Imaging Spectroscopy (MODIS) LAI 487 

data, as well as with remote sensing-based evapotranspiration (ET-RS) and observed streamflow data. Towards this, 488 

we presented a straightforward but robust soil moisture index (SMI), a quotient of rainfall (P) and reference evapo-489 

transpiration (ETr), to trigger a new growing season within a defined period. The new growing season starts when 490 

the SMI index exceeds or equals a certain user defined threshold.  491 

The structural improvements of the LAI simulation have been demonstrated by comparing uncalibrated SWAT 492 

model simulations of the LAI using the modified (i.e. SWAT-T) and the standard SWAT vegetation growth module. 493 

The results indicate that the modified module structure for the vegetation growth exhibits temporal progression 494 

patterns that are consistent with the seasonal rainfall pattern in the Mara Basin. Further, we note a better consistency 495 

of the SWAT-T simulated potential transpiration for perennials and trees, suggesting the usefulness of the vegetation 496 

growth module modification in reducing the model structural uncertainty. Our calibrated SWAT-T model results 497 

also show that the calibrated SWAT-T simulated LAI corresponds well with the MODIS LAI for various land cover 498 

classes with correlations of up to 0.94, indicating the realistic representation of the start of the new growing season 499 

using the SMI within a pre-defined period. The improvement of the vegetation growth cycle in SWAT is also sup-500 
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ported by a good agreement of the simulated ET with ET-RS, particularly for the grassland. Additionally, the daily 501 

streamflows simulated with the SWAT-T mimic well the observed streamflows for the Nyangores River. Therefore, 502 

the SWAT-T developed in this study can be a robust tool for simulating the vegetation growth dynamics in a con-503 

sistent way in hydrologic model applications.  504 
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