

Point-by-point response to the Editor (Xuesong Zhang), T. Brussée and two anonymous referee comments and suggestions

General authors note: We very much appreciated all the comments from the editor and the three reviewers. We think the comments help to substantially improve the clarity and the structure of the revised manuscript.

Important changes: Improved methodology section and restructured Results and Discussion part. Additionally, we have added two new Figures (Figure 8). Overall, we have further improved the language throughout the revised manuscript.

Below we provided to a point-by-point response in blue (italics).

Response to the Editor

Comments to the Author:

Overall, I think the manuscript is adding new contributions to improved representation of growth cycle and LAI in the SWAT model.

I think the authors have tried to revise the manuscript according to the comments of the three referees. Many places throughout the manuscript have been improved and clarified. Given the revised form of the manuscript, I recommend the authors further improve the language and make further clarifications. Specifically, I have several comments that I hope the authors will address before re-submission:

Response: We thank the editor for comments and encouraging assessment of the revised manuscript. We further sharpened the revised manuscript language for better readability and clarity. The point-by-point responses are provided below in italics and the changes in the revised manuscript are in blue.

(1) The current title is “An improved SWAT vegetation growth module for tropical ecosystem”. As the study only tested SWAT-T for evergreen forest, Tea, and two types of rangeland/grassland in one river basin, it would be better to make the title more specific. Please think about “An improved SWAT vegetation growth module and its evaluation for three tropical ecosystems”.

Response: The title of the revised manuscript is modified accordingly and it reads as “An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems”

(2) I also agree with T. Brussée and referee #2 that there are still grammar errors and confusing narrative in the manuscript. For example, line 294: “...models differs”; line 11 “...for tropical ecosystem”; line 13 “...reference evapotranspiration (PET)”; line 18: “... with a thermal-based evapotranspiration (ET-RS) estimate and observed streamflow”. It would be helpful if the manuscript will be further proofread.

Response: We further improved the language throughout and we think the revised manuscript is more clear and readable in its current form.

(3) Please consider change the last sentence of the abstract to “The SWAT-T 19 model with the proposed improved vegetation growth module for tropical ecosystem can be a robust tool for simulating vegetation growth dynamics in hydrologic model applications in tropic regions”.

Response: The last sentence of the abstract is updated accordingly that reads as “...The SWAT-T model, with the proposed vegetation growth module for tropical ecosystems, can be a robust tool for simulating the vegetation growth dynamics in hydrologic models in tropical regions.”

(4) Please double check how you addressed comment 1.226-27 from referee 2.

Response: We rephrased the sentence for better clarity and it reads as “To remove the biases in SWAT computed ET_r compared to the observation-based monthly average (1950-2000) ET_r from Trabucco and Zomer (2009), the GLDAS solar radiation were adjusted relatively per month and per sub-basin.”

(5) In caption of Figure 8: change “seasonal LAI” to “monthly LAI”.

Response: Changed accordingly.

(6) The authors’ response to referee #1’s comment “line 175-181...” is not clear. Please specify if “kill operation” is used in the improved growth module.

Response: The response to the referee is further clarified and it reads as “We have moved the literature reviews on the role of soil moisture availability for vegetation growth dynamics in the tropics to the introduction section in the revised manuscript (line 53-71). ”.

There is no any management setting used in the improved growth module. This is specified in the revised manuscript (line 332-333 and in the caption of Figure 4 and Figure 5).

(7) Did the authors make any clarification according to T. Brussée’s comment “Line 97 ‘poorly drained soils cover the plateau’ ...”?

Response: We further clarified the soil type distribution in the study area in the revised manuscript (line 89-91).

Response to T. Brussée

The authors appreciate very much T. Brussée for his time and forwarding interesting reflections and questions.

General reflection:

I liked reading your paper very much, I think your assumptions given for your theory on LAI behaviour are valid and an added value to the SWAT model. They align with my findings on the weaknesses of SWAT in modelling in the tropics.

Response: We are glad to hear this encouraging remark.

What is your opinion on how SWAT calculates the maximum transpiration using the Hargreaves or P-T method, at times when the LAI > 3? Is it realistic that the maximum transpiration remains equal when the LAI is 3 and when the LAI is 4? I refer to the formula for calculating maximum transpiration as you also give in eq.5 of Alemayehu et al (2015):

$$E_t = E'_0 \text{ if } LAI > 3.0 \text{ (m}^2/\text{m}^2\text{)}$$

Response: These are interesting questions. In SWAT when either Hargreaves (Hargreaves et al., 1985) or Priestley-Taylor (Priestley and Taylor, 1972) reference evapotranspiration (PET) method is used, unlike the Penman-Monteith (Monteith, 1965) method, the potential transpiration is computed empirically as function of adjusted daily ET_r and LAI. For land covers with LAI above 3, the daily potential transpiration is equal under similar atmospheric condition. However, the actual plant transpiration is further limited by the actual soil water availability. As far as our experience, if the LAI is represented realistically these ET_r methods can reliably estimate the maximum plant water demand under optimal condition on a given day.

I found it very interesting that you initiate the LAI by using the ratio of P to PET, instead of soil moisture and reading the argument this is a good alteration to what Strauch and Volk (2013) did in their research. Also nice that SWAT-T can better account for climatic variations.

Response: We are happy that you have pointed out the main part of the manuscript.

Line 10-11 “*where the major plant growth controlling factor is the rainfall (via soil moisture) rather than temperature.*” – it seems as if you mean to say that temperature is the preferred plant growth controlling factor, maybe you can cut the sentences up into two sentences: 1) However, SWAT has limitations in simulating the seasonal growth cycles for trees and perennial vegetation in tropics. 2) In the tropics plant growth is mainly controlled by rainfall (via soil moisture), whereas in SWAT plant growth is temperature controlled.

Response: We have rephrased this sentence for better readability in the revised manuscript (lines 8-11) and reads as “However, SWAT has limitations in simulating the seasonal growth cycles for trees and perennial vegetation in the tropics, where rainfall rather than temperature is the dominant plant growth controlling factor.”

Line 57 “Normalized Vegetation Index (NDVI)” – shouldn’t this be: “Normalized Vegetation Difference Index (NDVI)”?

Response: Well spotted. Modified accordingly.

Line 97 “poorly drained soils cover the plateau” I was wondering what you meant with “plateau”. I guess the Mau escarpment?

Response: No, that is referring the landscape in the lower section of the basin. We further improved soil type distribution in the study area for better clarity in the revised manuscript (lines 89-91) that reads as “The upper forested basin is dominated by well drained volcanic origin soils, while the middle and the lower part of the basin is dominated by poorly drained soil types with high clay content.”

Line 192-193 Does this mean that there can be set two starts of the rainfall seasons (SOS) for a bimodal rainfall regime? : So there is an end of the dry season [SOS1] and a beginning of the rainy season [SOS2] for the long rains (for the Mara for example) and there is another end of the dry season [SOS3] and a beginning of the rainy season for the short rains [SOS4] ?

Response: No, there is one phenological cycle per year regardless of the rainfall pattern. Therefore, we need to predefine only two months for the transition months.

Line 196 “*pentad ratio*” – I had never heard of this, I don’t know whether it is a common term (maybe it’s because I am a non-native speaker of English), but to make it easier to read you might also just say “ five day ratio”.

Response: Pentad is a conventional term that refers to five days aggregate. We have now included for further clarity '...5 days...' in the revised manuscript (line 181).

Line 302-306 This trial-and-error process was it done manually or with for example SWAT-CUP? And if so, did you have some sort of a steps that you followed in this procedure? I am curious because personal experience taught me that altering these five LAI parameters in SWAT-CUP or directly in the input .mgt or .plant files, could give pretty random outcomes in terms of LAI curves or PET, and results of altering multiple LAI parameters at the same time are difficult to predict

Response: We did the calibration manually. It is true that manual calibration of distributed hydrological models like SWAT with many parameters is not a trivial task. SWAT plant parameters related to the vegetation growth dynamics were calibrated by comparing with 8-day MODIS LAI timeseries. It is not uncommon to come up with good model performance for the wrong reason and therefore, we used our expert knowledge to guide the trial and error process while adjusting the parameters.

Line 308-309 Do you know why Kilonzo (2014) [Penmann-Monteith] and Mwangi (2016)[Hargreaves] recommend using a minimum LAI for FRSE of respectively 3 and 4? For Mwangi this worked very well. For tropical forest in Brasil this is reasonable, but looking at the mean annual LAI in the FRSE of the Mau escarpment of 2.6 this seems too high of an estimate. I also saw in **figure 7** that you had set the minimum LAI for SWAT-T to about 2.2 and maximum LAI to 5. Was this just for the purpose of giving an example at the same setting as the default or was this also the value as used in your simulations?

Response: Both Kilonzo (2014) and Mwangi et al. (2016) stated that they used literature values for forest LAI. In this study, we used 8-day filtered LAI from 2002-2009 to determine the minimum LAI. Indeed Mwangi et al. (2016) improved SWAT simulated LAI by reducing the Fraction heat unit (FR_{PHU}) to very low values (0.001) and setting the minimum LAI to 3. These changes improved the LAI simulation at the start of new simulation in January every year, however, the minimum LAI during the summer months due to the latitude and daylength dependent dormancy needs to match with the dry season months. Our simulation in Figure 7 was with default SWAT parameters to explore the effect of the modification on the vegetation growth module.

Line 334-336 "We also notice the SWAT-T simulated potential transpiration is consistent while changing the PET method to Hargreaves method in SWAT (results not shown here)." Interesting! Is this also the case for the PET at times where $LAI > 3$? Did you also try using the Priestley-Taylor (P-T)? Personal modelling experience in the region taught me that the annual PET using the P-T method is often lower than when using the Hargreaves or P-M, thus giving a lower AET, thus implicating that there is more water in the catchment system to "play with" as in comparison to the P-M or Hargreaves.

Response: We appreciate the fact that you are sharing your experience. The potential transpiration calculation requires simulated actual LAI and canopy height to compute the canopy resistance and the aerodynamic resistance while using P-M method. The P-T and the HG methods require only simulated LAI to compute the daily potential transpiration. Therefore, realistic representation of the temporal LAI dynamics in SWAT is crucial for reliable potential transpiration. We have shown the inconsistencies in the simulated potential transpiration (i.e. considerable zero values) due to unrealistic LAI simulations using the PM (i.e. data intensive) and the HG (i.e. less data intensive)

methods. We believe that if the seasonal dynamics of the LAI is represented well the potential transpiration computed by one of the PET methods would work well. In fact, the underestimation with the actual ET would affect the water balance. We have reflected these points in the revised manuscript.

Response to Anonymous referee #1

The authors appreciate the anonymous referee for the constructive and valuable comments.

In this manuscript, the authors modify the phenology algorithm of SWAT in simulating tropical vegetation. This work provided some interesting discussion of limitations in SWAT plant module. I have several major concerns about this work. First, writing of this work should be further improved to make it publishable. Second, organization of the introduction and method sections should be changed following requirement of a scholarly journal.

Response: We agree on the need for further improvement on the language and organization. Therefore, we have substantially improved the language and the organization in the revised manuscript. The new changes are marked blue throughout in the revised manuscript.

line 47, what does this mean? do you mean that SWAT could not represent changes deciduous forest?

Response: No, we are referring to the mismatch between the SWAT dormancy period and the dry season, where dormancy is a function of water and temperature stress. According to Wagner et al. (2011) the SWAT simulated LAI for deciduous forest in India is not realistic because the dormancy in SWAT is related to daylength and latitude. As a result the authors shifted the dormancy period in SWAT to the dry season months and hence improved the LAI simulation. As pointed by referee #2, we have further improved this text in the revised manuscript (lines 50-52).

line 55, extra space.

Response: removed.

line 58, for -> of. To simulate

Response: Modified accordingly.

line 59, a rainy season

Response: Updated.

line 67-68 in this sentence should be moved to the method section

Response: We agree with this suggestion. The use of soil moisture index (SMI) to trigger growth in tropics is described in the methodology section of the modified manuscript (page 8, section 2.5).

line 71-81, I expected to see objectives of this work, but the authors are describing their methodology, which should be moved to the next section (method)

Response: We agree the objectives were not clearly stated. The objectives of the research are presented clearly in the revised manuscript (lines 72-74) that reads as "...The objective this study is to improve the vegetation growth module of SWAT model for trees and perennials in the tropics. Towards this the use of the SMI within a predefined transition months as a dynamic trigger for new vegetation growth cycle will be explored. ..."

line 92, a long rainy season

Response: Updated.

line 93, across what?

Response: across the basin. We have added this in the revised manuscript (line 87).

section 2.2.1 was copied from the SWAT manual. I suggest to condense this part significantly, or move it to a supplementary section

Response: This is a brief summary of the vegetation growth modelling in SWAT based on the manual (Neitsch et al., 2011) and published literatures. As suggested, we have considerably reduced the summary in the revised manuscript (lines 135-164).

line 172-173, this is not correct. Kill and dormancy are totally different. If some one use this to regulate phenology, they must have made mistakes.

Response: We agree that “dormancy” and “kill” are different concepts in SWAT. Dormancy is a function of daylength and latitude, and dormancy starts at the shortest day of the year for trees and perennials in tropics. Whereas, the kill operation in SWAT stops plant growth at a specified time using either date calendar or fractional potential heat unit (Neitsch et al. 2011). The default management setting in SWAT has planting/beginning of the growing season and kill/end of the growing season at 0.15 and 1.2 FR_{PHU}, respectively for trees and perennials. The management setting are important for several agroforestry operations.

line 175-181, these discussions should be presented in your Introduction, or the Discussion section

Response: We have moved the literature reviews on the role of soil moisture availability for vegetation growth dynamics in the tropics to the introduction section of the revised manuscript (lines 53-71).

line 183, what are the data source of P and PET?

Response: The P is based on historical local gauge observations in and around the basin. PET is observation based global data from Trabscaou and Zomer (2009). We have added the sources in the revised manuscript (line 187). Note that also in the revised the potential evapotranspiration (PET) term is changed to reference evapotranspiration (ET_r).

line 192-193, remove these two sentences

Response: We disagree with the referee. Because in larger basins there is a variation in climate across the the sub-basins (i.e. watersheds). As a result, there could be difference in seasonality of rainfall and start of the growing season across the watersheds.

line 201-207, do you have any reference to support your rules?

Response: the fundamental rule for the start of new growing season is the SMI (i.e. P/ET_r). When the SMI exceeds a user defined threshold a new growth cycle is triggered within a predefined period annually. This concept is somewhat similar to the Water Requirement Satisfaction Index (WRSI), which is a ratio of actual evapotranspiration to ET_r (Verdin and Kalver 2002). The threshold for the SMI to trigger new growing season is set to 0.5, meaning the rainfall satisfies 50% of the atmospheric water demand (ET_r). Even though this threshold could vary from place to place, growing season in general is defined as the time when average P is greater than half of the average ET_r , (Mcnally et al. 2015). These references are included in the revised manuscript.

line 238, a... site?

Response: The 8-day MODIS LAI has 1000 m spatial resolution and therefore to avoid and/or reduce land –cover class mix during aggregation of pixels, we used selected sample sites (shown in Figure 1b) to mask the MODIS LAI for each representative land-cover classes. We think such approaches improve the reliability of the LAI estimates for each representative land-cover types.

line 242, why lai of 1.5 is removed?

This is based on the long term LAI timeseries during the rainy season (i.e. the peak growing season), whereby the LAI values are above $2.0 \text{ m}^2/\text{m}^2$. Therefore, LAI values during the rainy season below 1.5 are replaced with interpolated values. We have provided this information in the revised manuscript (line 234).

line 245, what break?

Response: This break is referring to unrealistically low LAI values due to noise and cloud contamination. Sudden break in LAI could also happen due to anthropogenic effects (land use change, fire, etc.).

line 253-254, I donot understand how the LAI patterns match precipitation.

Response: For the dominant part of the basin, the long rainy season is from March to May with a peak in April. Also, the basin gets short rain from October to December. On the other hand, we note the LAI seasonal pattern, whereby the lower LAI values are observed in the dry months (July to Sept).

This is supported by a correlation of 0.66 seasonally in the humid part. This is discussed further in the seasonality of LAI and its association with rainfall in the revised manuscript (lines 403-418).

line 259-260, awkward expression. consider to improve

Response: We have improved this in the revised manuscript (lines 256-257) that reads as “ET is one of the major components of a basin water balance that is influenced by the seasonal vegetation growth cycle.”

line 270, change the term 'flow' to stream flow or river discharge through out the manuscript

Response: Modified accordingly.

line 272-273, remove the second period

Response: Removed.

line 285, seasonality of what?

Response: LAI is missing here. We have included this in the revised manuscript (line 403).

line 290-291, I am not convinced that lai reflects changes in rainfall. you need to provide some statistical information here. And what about the correlation between temperature and lai?

Response: There is a fair association between seasonal rainfall and LAI in the humid part with correlation up to 0.66. The correlation (0.81) is even stronger for the lower part of the basin due to the clear seasonality of rainfall, albeit with one month lag. Since temperature is not a limiting factor on vegetation growth in tropics, we did not consider that in our analysis.

line 306-308. very confusing

Response: The minimum LAI for a land cover could vary inter-annually depending on the climatic condition. However, this minimum LAI for each land cover need to be provided in SWAT plant database, meaning the minimum LAI during dormancy for a specific land cover does not change inter-annually and hence it is constant.

line 311 figure 5 only show two land covers. What about the other two?

Response: The plot for Tea and RNGB are excluded since the observed patterns are similar to FRSE and RNGE, respectively.

line 316. I do not see seasonal variation from figure 5

Response: Figure 5 depicts the seasonal pattern. The seasonal variation is depicted as the range between the maximum and minimum LAI values. In this regard note that the range in LAI that is normalized with the annual average MODIS LAI is more considerable (up to 82%) for grass (RNGE) and shrub cover (RNGB) types.

line 325, in October

Response: Updated accordingly.

line 328, was, first

Response: Modified.

line 329, second

Response: Modified.

line 330, a 8-day scale

Response: updated accordingly.

line 339-341. do not understand what does this mean

Response: We have further sharpened the language in the revised manuscript (lines 328-332) that reads as “Alternatively, all the management setting can be removed (“No mgt”) and vegetation is growing since the start of the simulation. It is worthwhile noting the low LAI values during and following the rainy months (i.e. March -May), suggesting unrealistic growth cycle simulation. Additionally, regardless of the management setting, the vegetation growth cycle resets annually on 28th June due to dormancy.”

line 344, consider to revise

Response: We have modified this in the revised manuscript (lines 313-316).

line 351-353, not clear. consider to revise

Response: We have revised this in the modified manuscript (lines 352-356)

line 361, I do not see improvement in runoff

Response: we did show improvements in simulated LAI but we highlighted the SWAT-T is able to reproduce the observed streamflow.

line 387-389, remove this sentence

Response: We have revised this paragraph.

line 396-406. It is surprising that the authors did not evaluate SWAT ET simulations

Response: We in fact evaluated the SWAT-T simulated ET against ET-RS at 8-day. Since SWAT is not a fully distributed and gridded model, we have not done a pixel level spatial evaluation. Nevertheless, we have depicted the agreement between simulated LAI and ET qualitatively using one rainy month and one dry month from year 2002 at HRU level. Also, we have shown the temporal dynamics of ET using 8 years average monthly ET. However, an ongoing research is investigating on evaluating SWAT simulated ET using spatially distributed remote sensing-based ET.

line 412. Is this a sentence?

Response: We have updated this sentence in the revised manuscript (lines 477-479).

Response to Anonymous referee #2

The authors appreciate the anonymous referee for the constructive and valuable comments. The detailed comments helped to improve the revised manuscript substantially.

The authors develop a new vegetation growth module for tropical ecosystems in SWAT. In particular, they use a soil moisture index to initiate a new growing cycle within two pre-defined months. They evaluate the growth module with regard to LAI, ET, and river discharge with satisfactory results. The topic is of current scientific interest, as several authors have previously outlined that the default vegetation growth for e.g. forests in SWAT is not applicable in the tropics. The manuscript is mostly well prepared. However, the paper would benefit a lot if it was more structured according to the evaluation of the vegetation growth module. In particular, this applies to the results and discussion part. This focus should be set very clearly in a revised version. Moreover, some parts of the manuscript require further, more detailed, or more precise information. The provided comments should be addressed before accepting this manuscript for publication.

Response: The referee summarized succinctly our work and the authors very much appreciate that. We have addressed properly all the comments and suggestions in the revised manuscript and improved the manuscript organization. Below we provided our point-by-point response (blue).

General comments:

- 1) The authors should take a decision on the aim of the manuscript. Do they aim at providing an improved plant growth module for SWAT in the tropics? Or do they aim at showing their adjustment of the model to a specific catchment? Currently, the title reads like the first is the case. However, in many parts the paper reads like the latter is the case. For the first aim the authors need a stronger focus on evaluation of the plant growth model and they need to program the module as flexible and transferable as possible. Right now there are parts that are not immediately transferable to other catchments. The authors are encouraged to sharpen the paper with regard to the first aim. However, if this was not their aim they may also go for the second aim and adjust the title accordingly.

Response: This is an interesting point, thank you! The main goal of this manuscript is to present and demonstrate a methodology on an improved SWAT vegetation growth module for tropical condition. The modified growth module can be applied anywhere in the tropics and a user can also add region specific information such as the transition months (SOS_1 and SOS_2), the number of days for rainfall (P) and reference evapotranspiration (ET_r) aggregation to compute the soil moisture index ($SMI = P/ET_r$) and the minimum SMI threshold for triggering new growth cycle within a predefined period. We therefore have sharpened our revised manuscript in this regard.

2) Clear separation of calibration and validation period is required. This also applies to the calibration of plant parameters. 3) A clear calibration and validation strategy regarding the different parameters used for calibration and validation is needed. E.g. right now, it is not clear which parameter was calibrated first and why?

Response: For the sake of convenience we combined the responses for comments 2 and 3. As noted by the referee, the calibration and evaluation approach was not stated clearly in the manuscript. The revised manuscript has now included a dedicated section (section 2.8.2 lines 289-303) that elaborates on the calibration and evaluation approach.

“...The main purpose of this study is to explore the potential of the SMI to trigger a new vegetation growth cycle for tropical ecosystems. To evaluate the effect of the modification on the SWAT vegetation growth module, we initially inter-compared simulated LAI from the modified (i.e. SWAT-T) and the standard plant growth module with varying management settings. This analysis involved uncalibrated simulations with the default SWAT model parameters, whereby the models thus only differ regarding the way the vegetation growth is simulated and the management settings. It is worth noting that the aim of these simulations is mainly to expose the inconsistencies in the vegetation growth module structure of the original SWAT model. Afterwards, we calibrated the parameters related to the simulation of the LAI, the ET and the streamflow by trial-and-error and expert knowledge for the SWAT-T model. Firstly, the SWAT parameters that control the shape, the magnitude and the temporal dynamics of LAI were adjusted to reproduce the 8-day MODIS LAI for each land cover class. Then, we adjusted the parameters that mainly control the streamflow and ET simulation, simultaneously using the daily observed streamflow and the 8-day ET-RS. One may put forward that the manual adjustment may not be as robust as an automatic calibration as the later explores a larger parameters space. However, the manual calibration is believed to be apt to illustrate the impact of the modification of the vegetation growth cycle and its effect on the water balance components. The SWAT-T model calibration and validation was done for 2002-2005 and 2006-2009, respectively.”

4) LAI is prescribed based on satellite data (1.256). Why is this necessary? This makes the model less flexible and non-transferable to other catchments without following a similar approach.

Response: The results based on LAI prescription is not shown in the manuscript and therefore, we have removed the sentence in the revised manuscript.

5) The third chapter “results and discussion” is sometimes hard to understand as discussion of model parameters and results is mixed with model validation. I strongly suggest reworking the structure and separating the “results” from the “discussion” part.

Response: We accepted this suggestion. As a result, we substantially restructured the “results and discussion” part in the revised manuscript (lines 310-483). Briefly, we have presented uncalibrated LAI simulation results from SWAT growth module with and without modification. The purpose of this section is to highlight the limitations of LAI simulation with the existing SWAT vegetation growth module and the added value of the new SMI based modifications. Afterwards, we have presented calibration and evaluation results for LAI, ET and streamflow are presented back-to back using the calibrated SWAT-T model.

6) Why is it necessary to prescribe the two month in which the growing season starts?

*Response: This is interesting question, thank you! The two months are assumed to represent the transition from the end of the dry season to the beginning of the rainy season. These months are determined based the climatological rainfall (P) and reference evapotranspiration (ET_r) data. The main purpose of these months is to avoid false starts during the dry season short rainfall episodes. These months are in fact defined *a priori* and varies geographically depending on the climate.*

7) It would be very good, if you could validate the modeled begin of the growing season using independent data. Is there any data that you have available to do this?

*Response: In fact, the SOS dates are mainly controlled by the SMI variations and the effect of setting the transition months *a priori* is rather minimal given the season change is not immediately occurring with the start of the first transition month (i.e. SOS_1). These dates can be verified using field data or with SOS dates extracted from remote sensing-based NDVI timeseries. We think it is sufficient to show the simulated inter-annual dynamics of the SOS dates since our study area is a typical data scarce basin and hence such detailed verification would be more interesting in a basins with better forcing data. Therefore, we acknowledge the need for further research in this regard. Yet, we speculate the SOS dates derived using SMI would be reasonable compared to SOS dates derived based on MODIS NDVI since the calibrated SWAT-T model reproduced well the MODIS LAI.*

We have added in the revised manuscript the need of verification of the SOS dates (lines 426-427) that reads as “.....Yet, we acknowledge the need for further verification studies in basins with sufficient forcing data and field measurements.”

Line specific comments:

1.7: SWAT is a hydrologic model. The term “simulator” is not very common for SWAT in the literature. Suggest to replace this by “model” in the whole manuscript.

Response: Modified accordingly throughout the revised manuscript.

1.13: “uses of a simple...” Please improve the language.

Response: We have improved the language in the revised manuscript that reads as (lines 12-13) “....we present a modified SWAT version for the tropics (SWAT-T) that uses a straightforward but robust soil moisture index (SMI)… ”.

1.15: Would be good to include information here, how the dry season is defined.

Response: Given the word limit in the abstract, we could not include extra information on how the transition months are defined. However, we have further elaborated the rationale on how to determine the transition months (SOS_1 and SOS_2) using long-term climatological P and ET_r data in the revised manuscript (line 170-206). In short, the dry season is defined based on climatological P and ET_r data, whereby the ET_r is considerably higher than the P (shown in Figure 2 page 8). Even though the threshold could vary from place to place, growing season in general is defined as the time when average P is greater than half of the average ET_r (McNally et al. 2015).

1.18: “flow” – The authors probably refer to stream flow. Should be more precise throughout the manuscript.

Response: Updated accordingly throughout in the revised manuscript.

1.19: Please include information, which RS-ET was used.

Response: We have slightly modified the text to reflect the type of ET source in the revised manuscript (lines 17-18) ”.... a remote sensing-based evapotranspiration (ET-RS) estimate.....”. Nevertheless, We have provided a brief description in the data in section 2.5 (lines 254-263) about the ET-RS data based on Alemayehu, T., Griensven, A. van, Senay, G. B. and Bauwens, W.: Evapotranspiration Mapping in a Heterogeneous Landscape Using Remote Sensing and Global Weather Datasets: Application to the Mara Basin, East Africa, Remote Sens., 9(4), 390, doi:10.3390/rs9040390, 2017.

1.20: “could be: : :” Please be more precise. In which situations is it useful?

Response: We have updated this in the revised manuscript with information about the applicability of the tool (lines 19-20) that reads as “The SWAT-T model, with the proposed vegetation growth module for tropical ecosystems, can be a robust tool for simulating the vegetation growth dynamics in hydrologic models in tropical regions.”

1.44: Please be more precise, i.e. “dormancy, which is defined as a function of daylength and latitude”.

Response: Thank you. We have updated this in the revised manuscript.

1.47: As I read it, they do not report a shift, but shifted the dormancy period to a prescribed dry season (see p.1786). Please improve the statement.

Response: Thank you for spotting this. We have corrected this in the revised manuscript (lines 50-52) that reads “Likewise, Wagner et al. (2011) reported a mismatch between the growth cycle of deciduous forest in the Western Ghats (India) and the SWAT dormancy period, and they subsequently shifted the dormancy period to the dry season. ”

1.49-55: You are reviewing tropical regions. However the Kalahari has a subtropical climate. Please improve.

Response: We disagree on this comment with the referee. Jolly and Running (2004) used two site Maun and Tshane sites, respectively located at -19.93° and 24.17° latitude to evaluate the BIOME-BGC simulated phenological development. The authors reported tropical climate for the study area (P.307 reference in the manuscript).

1.73: “phonological”

Response: Corrected in the revised manuscript.

1.67-77: These lines include a lot of information on methodology. Please shift the methodological parts to the methodology section.

Response: We agree with this suggestion. We have moved the description of the SMI as a trigger to new growth cycle in the tropics to the methodology section in the modified manuscript.

1.103: "SWAT uses a GIS based interface". Not precise. You can use GIS to prepare input files for SWAT. Please improve.

Response: We have rephrased this in the revised manuscript.

1.126 following: Please add citations for formulas.

Response: We have added Neitsch et al. (2011) in the revised manuscript.

1.128: Grammar.

Response: We have corrected this in the revised manuscript.

1.134: "endo"

Response: Thank you for spotting this. We have corrected this.

1.170-173: This passage is not quiet to the point. SWAT does not offer heat unit scheduling to solve the issue of plant growth in the tropics. In fact, both scheduling options will not help, as long as the temperature dependant dormancy period is still activated. Please improve.

Response: We agree with the referee suggestion. We have further improved the discussion with SWAT management setting and the vegetation growth cycle in the revised manuscript (lines 313-345).

1.190-197: How are SOS1 and SOS2 defined? By a threshold, or by the increase of the SMI? Are they set by the user? If they are set by the user, the model is not as flexible – is this necessary? It should be highlighted in the other parts of the manuscript that the start of the growing season is not fully dynamic but triggered within a pre-defined period.

Response: We appreciate these important questions from the referee. The transition months (i.e. SOS_1 and SOS_2) indicate the end of the dry season and the beginning of the rainy season. These months should be determined using the climatological monthly P and ET_r ratio (i.e. the SMI). In principle during the dry season months the SMI values are low since the ET_r exceeds the P considerably. In

contrast, during the rainy months the SMI values are relatively higher compared to the dry months. McNally et al. (2015) defined growing season as the period of time when average P is greater than half of the average ET_r. Therefore, the user should select the transition months guided by the climatological SMI values. We acknowledge some degree of subjectivity in fixing the months and yet, the climatological transition months from the dry to the rainy season are often known. The aim of fixing the SOS₁ and SOS₂ is to avoid false starts during the dry season due to short spell rainfall episodes. The new growth cycle is triggered dynamically when the SMI exceeded and/or equaled a user defined threshold within these pre-defined months. We have further clarified this in the revised manuscript (lines 176-206).

1.211: Please add a reference for the DEM (also in table 1 & add time period for river discharge in table 1).

Response: We have provided this information in the revised manuscript.

1.217: Please add a reference for the SWAT land use codes, so that non-SWAT users can look these up.

Response: We have provided reference in the revised manuscript.

1.222: Abbreviation “TMPA” is not explained at first mentioning. Please improve.

Response: Updated in the revised manuscript.

1.226-27: Please add some (short) reasoning for this adjustment, so that the reader can understand the idea of this approach without reading the referred paper.

Reponse: We have provided information on the adjustment of SWAT computed ET_r using GLDAS weather data in the revised manuscript. The new text read as (lines 285-287) “....To remove the biases in SWAT computed ET_r compared to the observation-based monthly average (1950-2000) ET_r data from Trabucco and Zomer (2009), the GLDAS solar radiation were adjusted relatively per month and per sub-basin.”

1.237: Which forest biomes? What about others?

Response: This is referring to the validation study on MOD15A2 LAI at Budongo Forest (Uganda) and Kakamega Forest (Kenya) by Kraus (2008). This study did not include other biome types.

1.238: What do you mean by “land cover mix”? 1.238: Grammar. 1.238: Please add the sizes of the homogenous sites.

*Response: land cover mix is referring to the mix of different land cover classes (i.e. forest, grassland...) within 1000m grid resolution of MODIS LAI. We have further improved this part and provided more information in the revised manuscript (lines 229-234). This read as “...We selected relatively homogeneous representative sample sites (i.e. polygons) for evergreen forest (174 km²), tea (123 km²), savanna grassland (136 km²) and shrubland (130 km²) (see **Error! Reference source not found.b**) using the Africover classes and Google Earth images. This is useful to reduce the effect of mixed LAI values from different land cover classes while averaging the coarse scale (i.e. 1 km) MODIS LAI. The MOD15A2 pixels with quality flag 0 (i.e. indicating good quality) were masked using the polygons of the sample covers “...*

1.242: Please provide reasoning for selecting the threshold value 1.5.

Response: This is based on the long term LAI timeseries during the rainy season (i.e. the peak growing season), whereby the LAI values are above 2.0 m²/m². Therefore, LAI values during the rainy season below 1.5 are replaced with interpolated values. We have provided this information in the revised manuscript (line 234).

1.242: Are these gaps resulting from the previous masking?

Response: The gaps are mainly due to cloud contaminations during April mostly.

1.243-245: Sentence not clear. Please improve.

Response: We have further improved this part in the revised manuscript (lines 234-237).

1.266: Is this measured NDVI or remote sensing based? If it is remote sensing derived, are the two products independent from each other?

Response: The NDVI is referring the MODIS product. The thermal-based ET from Alemayehu et al. (2017) is independent of the MODIS NDVI data. Alemayehu et al. (2017) estimated ET using mainly MODIS land surface temperature based on the Operational Simplified Surface Energy Balance (SSEBop) (Senay et al. 2013) algorithm.

1.271-273: Please include how large the gauged headwater area is. Also, add information on when the gaps happen, e.g., at similar times in the year or mainly in one year?

Response: We have provided this information in the revised manuscript (line 266).

1.275: This is not precise and could be misleading. As I understand it, the SMI triggers the growing season within a predefined period of 2 months. Please improve.

Response: Right, the SMI is used to indicate (i.e. trigger) the start of the new growing cycle within a predefined period. We have further clarified this throughout the revised manuscript.

1.275-281: The model calibration and validation strategy is not clear. The authors use stream flow, LAI and ET. However, it is not clear which parameter is used first – or are they combined? Please improve this section.

Response: We have addressed this properly and we provided the response for major comments 2 and 3.

1.287: Peaks in April and August are not shown in Figure 4. Please clarify.

Response: We agree with the referee. Even though the LAI magnitudes are relatively high in April and August, they are not considerably high compared to the rest of the rainy months. This is mainly due to ample rainfall distribution throughout the year. We therefore further improved this in the revised manuscript.

1.291: Please add the “drier months” you are referring to in brackets.

Response: We have modified this accordingly in the revised manuscript.

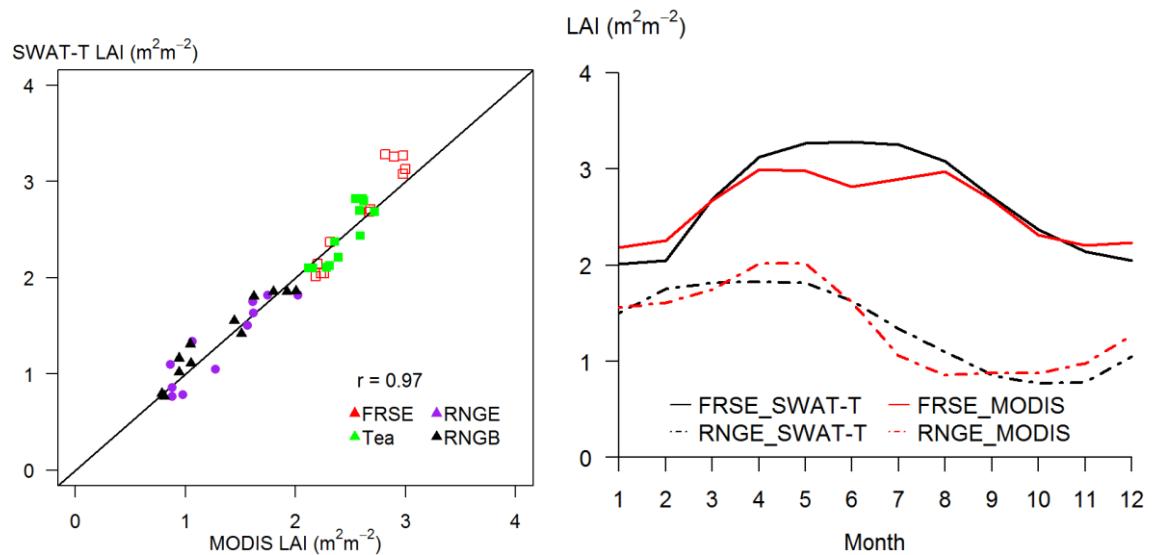
1.285-299: Why are you showing tea in Fig. 4? It is shown but not mentioned here.

Response: The tea and the forest are located in the humid and mountainous part of the basin. Therefore, we note comparable seasonal LAI dynamics and hence presented results for forest only. We have updated this in the revised manuscript.

1.302: Again, this is not precise and could be misleading. As I understand it, the SMI triggers the growing season within a predefined period of 2 months. Please improve.

Response: We have updated this accordingly in the revised manuscript.

1.308-310: The authors use long-term MODIS LAI to parameterize the model. It would be much better if these values were derived from the calibration period, so that calibration and validation data are strictly independent. Even though, I do not expect a pronounced change in LAI values in calibration and validation period, I would recommend to only use data from the calibration period for model setup.


Response: This suggestion seems a misunderstanding. We used the MODIS LAI timeseries from 2002-2005 for the calibration and the rest (2006-2009) for validation. Only the minimum LAI and the Potential Heat Unit (PHU) are adjusted based on long-term values and the remaining SWAT parameters related to vegetation growth are adjusted by comparing with the 8-day LAI time series. As mentioned earlier, we substantially restructured the results and discussion part in the revised manuscript.

1.313: Not clear why the authors express the amplitude of simulated LAI as a percentage of the average annual MODIS LAI. Please clarify your validation strategy.

Response: We think the way the manuscript structured created this confusion. As we stated already, the results and discussion has been restructured substantially. We have clarified in the revised manuscript (line 403-418) that the average seasonal pattern of LAI was computed using the calibrated SWAT-T simulation and MODIS LAI from 2002-2009. The average seasonal LAI amplitude is the difference between the peak and the trough LAI values (i.e. the range) and we normalize this value with the mean annual MODIS LAI.

1.316: Why are simulated and remote sensing based LAI not directly compared and shown as later presented in figure 10? That is what the reader would expect at this point. A scatter plot is also useful in this context.

Response: We agreed with the referee suggestion. We have plotted together the seasonal LAI for from MODIS and SWAT together. We have also included a pooled scatter plot of MODIS and SWAT-T simulated seasonal LAI for FRSE, Tea, RNGE and RNGB in the revised manuscript.

Figure 8 The long-term (2002-2009) average monthly LAI pooled scatter plot (left) and temporal dynamics (right). FRSE: evergreen forest; RNGE: grassland; RNGB: shrubland.

1.320-323: This passage can be shifted to a discussion part.

Response: We think discussing the season change dates after LAI seasonality is appropriate.

1.323-325: This is only an effect of your modeling. Can you use this for validation? E.g. by comparing to independent data (e.g. satellite derived) on the beginning of the growing season?

Response: Addressed in the general comment 7 response.

1.337: But with a correct definition of ALAI_MIN it would not be 0, right? Please make clear, what you are validating. This improvement is due to satellite-based improvement of the parameter ALAI_MIN and not because of the improvement of the plant growth module.

Response: Yes, correct ALAI_MIN value to the SWAT plant database would not solve this problem. Yet, the zero LAI values, for instance the forest (FRSE), as simulated in SWAT is not due to wrong prescription of ALAI_MIN in the plant database, rather due to the management settings. The ALAI_MIN is used only when dormancy occurs.

1.332-341: You need to explain your different model setups in more detail. E.g. IGRO=1, will not be understandable for non-SWAT users. Moreover, please use only meaningful model parameterizations. It does not make sense to compare SWAT-T to a model that does not work properly. Many different model setups are irritating. I would suggest to compare SWAT-T to the best possible model parameterization achieved without code changes.

Response: We agree on the fact that comparing different SWAT model LAI simulation with varying management setting and vegetation growth module is not appealing. Nevertheless, such uncalibrated comparisons of LAI simulation are important in shedding light on the inconsistencies of SWAT growth module for trees and perennials in the tropics. To clarify further, the uncalibrated LAI simulations are outputs from the same SWAT model with four different settings:

- 1) standard SWAT vegetation growth module with the default management settings based on heat unit scheduling
- 2) standard SWAT vegetation growth module with the default management settings based on calendar date scheduling
- 3) standard SWAT vegetation growth module with no management settings
- 4) with the modified vegetation growth module with no management settings

The first three option, of course, do not require a code change. Note that there is no difference in the SWAT model parameters for this comparison, their differences are mainly due to the management settings and the modification in the vegetation growth module. We have further sharpened this in the revised manuscript (section 3.1).

1.342-347: Not sure, why this paragraph is provided here. Figure 5 was already discussed before. Moreover, the comparison to an uncalibrated model is not a fair evaluation (see comment above).

Response: The aim of this paragraph is to provide supportive information on rainfall distribution in the basin, which is the dominant controlling factor in vegetation phenology. The redundancy with Figure 5 has been improved with the new rearrangement of the results and discussion part in the revised manuscript.

1.352: “standard SWAT” Please define this and provide a model evaluation for this setup. If this model does not work it is not useful for comparison.

Response: The “standard SWAT” model is referring to SWAT 2012 revision 627 as stated in line 271 in the revised manuscript. As discussed in the earlier comments, the uncalibrated model comparison is to minimize the effect of model parameters in highlighting the inherent limitations with the vegetation growth cycle in the tropics.

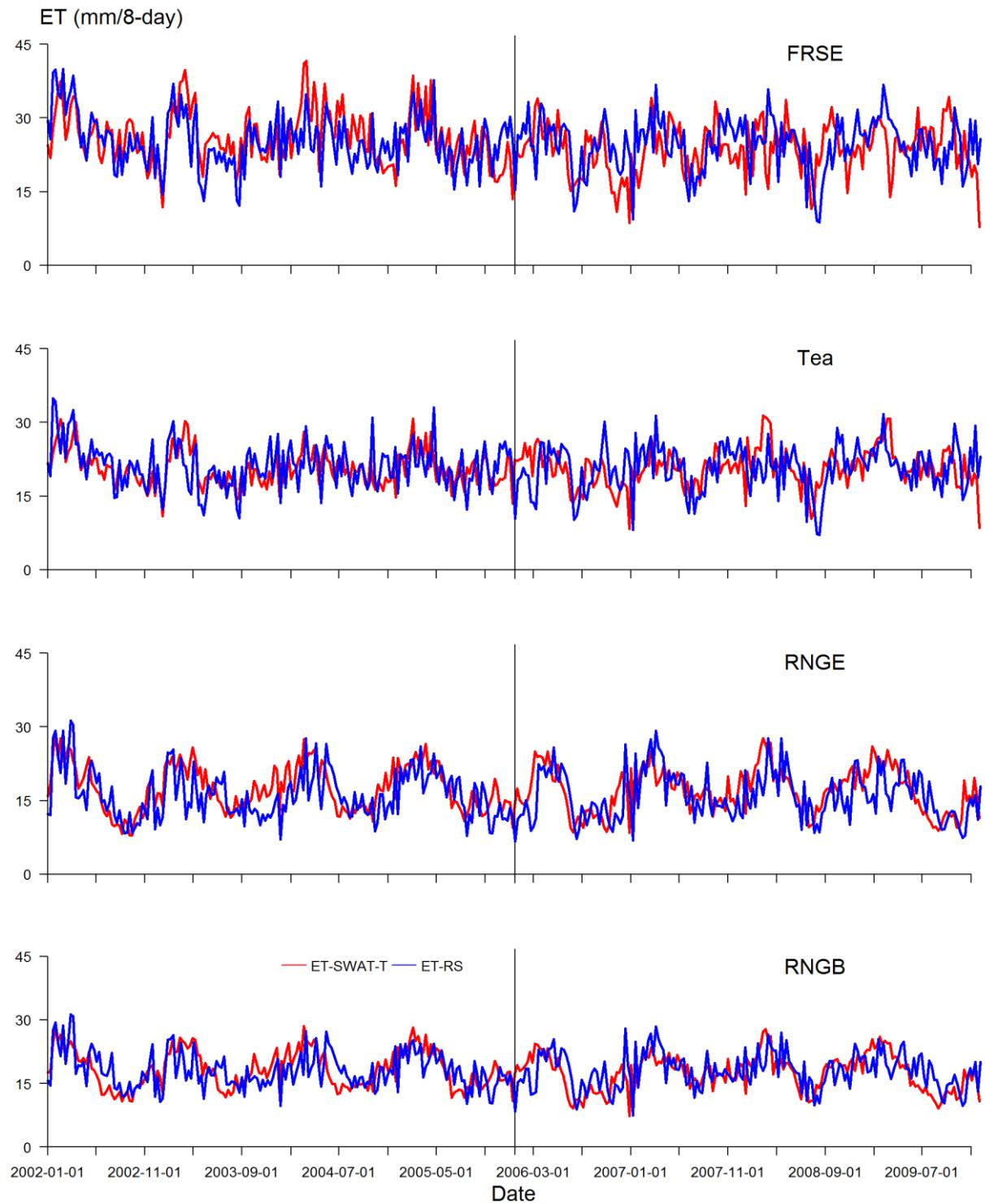
1.353-354: “better realism”. Please improve the language.

Response: We have improved the language in the revised manuscript.

1.354: Did you test for significance?

Response: No significance test but that is to show the considerable reduction in zero potential transpiration. We have changed the wording in the revised manuscript.

1.368: Quantify where possible.


Response: We have improved the result presentations in this part using bias and correlation values in the revised manuscript.

1.363-369: This short paragraph presents some of the most valuable results. Please provide further details here. E.g. in which periods and why do MODIS LAI and simulated LAI not match well, as shown in Fig. 10?

Response: As pointed by the referee, this section is indeed the important part of the manuscript. We have further provided information on the results in the revised manuscript (line 370-389).

1.374-375: It is hard to see from Fig. 11 whether ET values match well as the lines overlap. Please add a scatter plot.

Response: Thank you for the suggestion. We have improved the figures in the revised manuscript (shown below).

Figure 10 The comparison of remote sensing-based evapotranspiration (ET-RS) and SWAT-T simulated ET (ET-SWAT-T) aggregated per land cover classes. Note that for SWAT-T HRU level ET is aggregated per landcover. The vertical black line marks the end of the calibration period and the beginning of the validation period.

1.384: Contradiction to the previous sentence. Do you mean “grassland” instead of “forest”?

Response: Thank you for spotting this. This has been corrected in the revised manuscript.

1.385: But Figure 5 shows a seasonality for both? This is contradictory to the previous sentences. Please clarify.

Response: Thank you again for pointing this out. We have clarified this in the revised manuscript (lines 442-443).

1.387-395: Again the structure is not clear. The authors evaluate parameter values at this point. Why is this needed and presented here? Please provide some justification or remove the paragraph.

Response: The purpose of this paragraph is to provide information on the calibrated SWAT parameters and the higher water use (i.e. ET) by FRSE compared to the other land cover classes. We have moved up this to the first part of section 3.2.3. (Page 20, lines 432-437) in the revised manuscript.

1.404: Sentence not clear. Please improve.

Response: We have rephrased this in the revised manuscript.

1.405: Please quantify the spatial variability.

Response: Since SWAT assumes a uniform, single plant species community per land cover class, thus we do not expect substantial spatial heterogeneity. Therefore, we have provided qualitative visual information using spatial maps on LAI and ET as shown in Figure 11 (page 22).

1.396-406: Why do you not compare the spatial distribution of simulated ET and LAI to the spatial distribution of MODIS based ET and LAI? That could be another valuable comparison that might be more useful than a presentation of modeled values.

Response: This is a good point. However, since SWAT is not a fully distributed model and the HRUs are not square grids direct comparison will not be effective. Furthermore, getting cloud free MODIS LAI for the whole study area is not feasible. Therefore, the aim of the graphs is to show LAI and ET spatial variation (qualitatively) for one rainy month and one dry month.

1.417-452: The conclusion should be shortened so that it only includes the most important conclusion drawn from your study.

Response: Thank you for the suggestion. We have shortened the conclusion in the revised manuscript.

1.432: This sentence is misleading (“default parameters”). As I understand your setup SWAT-T parameters were calibrated. Please clarify.

Response: To demonstrate the added value of the modification in the plant growth module, the LAI simulation were compared for outputs from uncalibrated SWAT model (i.e. Default parameters) using the standard growth module with varying management settings and the modified growth module. Then the SWAT-T was calibrated and evaluated using MODIS LAI, RS-ET and observed streamflow. We noted in general that our manuscript needs improvement in structures. Therefore, the revised manuscript will address clarity issues.

1.434: What do you mean by “potential transpiration”? Potential evapotranspiration?

Response: SWAT computes plant transpiration and soil evaporation separately and their formulation depends on the reference evapotranspiration method. Potential transpiration is referring to the maximum transpiration rate by plants at optimal conditions, i.e. no water, temperature and nutrient stress. However, the potential evapotranspiration (i.e. the reference evapotranspiration in the revised manuscript) is defined as “the amount of water transpired by uniformly grown, 40cm height alfalfa, completely shading the ground and never short of water.

1.435: The results with the other PET method were not shown. Please focus on what you have shown in this paper. If it is important, please include it, if not please remove.

Response: We have excluded this from the conclusion of the revised manuscript.

1.438: Misleading statement regarding SMI initiation of growing season, see also earlier comments. Please improve.

Response: Improved.

1.441: “conformed”

Response: We have improved the language.

1.447-452: This is more suitable for a discussions section. Please shorten or remove.

Response: We removed this from the conclusion.

1.451: “could be: : :” Please be more precise. In which situations is it useful?

Response: Improved.

1.451: “carbon fluxes” Not shown. Please remove.

Response: Removed.

1 **An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems**

2 Alemayehu T.^{1,2*}, van Griensven A.^{1,2} and Bauwens W.¹

3 ¹Vrije Universiteit Brussel (VUB), Department of Hydrology and Hydraulic Engineering, Brussel, Belgium

4 ²IHE Delft Institute for Water Education, Department of Water Science and Engineering, Delft, the Netherlands

5 *Correspondence: t.abitew@un-ihe.org; Tel.: +31-621381512

6 **Abstract.** The Soil and Water Assessment Tool (SWAT) is a globally applied river basin eco-hydrological **model**
7 **used** in a wide spectrum of studies, ranging from land use change and climate change impacts studies to research for
8 the development of best water management practices. However, SWAT has limitations in simulating the seasonal
9 growth cycles for trees and perennial vegetation in the tropics, where rainfall **rather than temperature** is the **dominant**
10 plant growth controlling factor. Our goal is to improve the vegetation growth module of SWAT for simulating the
11 vegetation variables -such as the leaf area index (LAI) - for tropical ecosystems. Therefore, we present a modified
12 SWAT version for the tropics (SWAT-T) that **uses a straightforward** but robust soil moisture index (SMI) - a quo-
13 tient of rainfall (P) and reference evapotranspiration (ET_r) – to **dynamically** initiate a new growth cycle within a pre-
14 defined period. Our results for the Mara Basin (Kenya/Tanzania) show that the SWAT-T simulated LAI corresponds
15 well with the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI for evergreen forest, savanna grass-
16 land and shrubland. **This indicates that the SMI is reliable for triggering a new annual growth cycle.** The water bal-
17 ance components (evapotranspiration and streamflow) simulated by the SWAT-T exhibit a good agreement with
18 remote sensing-based evapotranspiration (ET-RS) and observed streamflow. The SWAT-T model, with the pro-
19 posed vegetation growth module for tropical ecosystems, can be a robust tool **for simulating the vegetation growth**
20 **dynamics in hydrologic models in tropical regions.**

21 **1. Introduction**

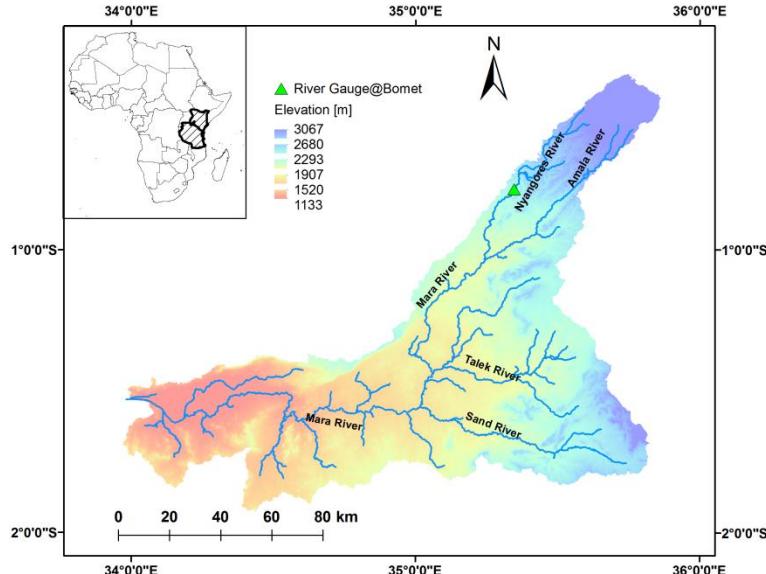
22 The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) is a process-oriented, spatially semi-distributed
23 and time-continuous river basin model. SWAT is one of the most widely applied eco-hydrological models **for the**
24 **modelling of hydrological and biophysical processes under a range of climate and management conditions** (Arnold
25 et al., 2012; Bressiani et al., 2015; Gassman et al., 2014; van Griensven et al., 2012; Krysanova and White, 2015).
26 **SWAT has been used in many studies** in tropical Africa, to investigate the basin hydrology (e.g. Dessu and Melesse,
27 2012; Easton et al., 2010; Mwangi et al., 2016; Setegn et al., 2009) as well as to study the hydrological impacts of
28 land use change (e.g. Gebremicael et al., 2013; Githui et al., 2009; Mango et al., 2011) and climate change (Mango
29 et al., 2011; Mengistu and Sorteberg, 2012; Setegn et al., 2011; Teklesadik et al., 2017). Notwithstanding the high
30 number of SWAT model applications in tropical catchments, only a few studies discussed the limitation of its plant
31 growth module for simulating the growth cycles of trees **and of perennial and annual vegetation** in this region of the
32 world (Mwangi et al., 2016; Strauch and Volk, 2013; Wagner et al., 2011).

33 It is worthwhile to note that phenological changes in vegetation affect the biophysical and hydrological processes in
34 the basin and thus play a key role in integrated hydrologic and ecosystem modelling (Jolly and Running, 2004;
35 Kiniry and MacDonald, 2008; Shen et al., 2013; Strauch and Volk, 2013; Yang and Zhang, 2016; Yu et al., 2016).
36 The Leaf Area Index (LAI) -[the area of green leaves per unit area of land](#)- is a vegetation attribute commonly used
37 in eco-hydrological modelling as it strongly correlates with the vegetation phenological development. Thus, an en-
38 hanced representation of the LAI dynamics can improve the predictive capability of hydrologic models, as already
39 noted in several studies (Andersen et al., 2002; Yu et al., 2016; Zhang et al., 2009). Arnold *et al.* (2012) underscored
40 the need for a realistic representation of the local and regional plant growth processes to [reliably simulate](#) the water
41 balance, the erosion, and the nutrient yields using SWAT. For instance, the LAI and canopy height are needed to
42 [determine the canopy resistance and the aerodynamic resistance](#), to subsequently compute the potential plant transpi-
43 [ration in SWAT](#). Therefore, inconsistencies in the vegetation growth simulations could result in uncertain estimates
44 of the actual evapotranspiration (ET), as noted in Alemayehu *et al.* (2015).

45 SWAT utilizes a simplified version of the Environmental Policy Impact Climate (EPIC) crop growth module to
46 simulate the phenological development of plants, based on accumulated heat units (Arnold et al., 1998; Neitsch et
47 al., 2011). It uses dormancy, which is a function of daylength and latitude, to repeat the annual growth cycle for
48 trees and perennials. Admittedly, this approach is suitable for temperate regions. However, Strauch and Volk (2013)
49 showed that the [temporal dynamics of the LAI](#) are not well represented for perennial vegetation (savanna and
50 shrubs) and evergreen forest in Brazil. Likewise, Wagner et al. (2011) reported a mismatch between the growth
51 cycle of deciduous forest and the SWAT dormancy period in the Western Ghats (India), and they subsequently
52 shifted the dormancy period to the dry season.

53 Unlike temperate regions where the vegetation growth dynamics are mainly controlled by the temperature, the pri-
54 mary controlling factor in tropical regions is the rainfall (i.e. the water availability) (Jolly and Running, 2004;
55 Lotsch, 2003; Pfeifer et al., 2012, 2014; Zhang, 2005). A study of Zhang et al. (2005) explored the relationship be-
56 between the rainfall seasonality and the vegetation phenology across Africa. They showed that the onset of the vegeta-
57 tion green-up can be predicted using the cumulative rainfall as a criterion for the season change. Jolly and Running
58 (2004) determined the timing of leaf flush in an ecosystem process simulator (BIOME-BGC) after a defined dry
59 season in the Kalahari, using events where the daily rainfall (P) exceeded the reference evapotranspiration (ET_r).
60 They showed that the modelled leaf flush dates compared well with the leaf flush dates estimated from the Normal-
61 ized Difference Vegetation Index (NDVI). [This points to the feasibility of using a proxy derived from P and ET_r to](#)
62 [pinpoint a season change in the tropics](#). Sacks et al. (2010) made a global study of the relations between crop plant-
63 ing dates and temperature, P and ET_r, using 30-years climatological values. They noted that in rainfall limited re-
64 gions the ratio of P to ET_r is a better proxy for the soil moisture status than is P alone. Using a soil moisture index
65 (SMI) derived from the ratio of P to ET_r to trigger a new growth cycle in hydrological modelling is appealing be-
66 cause the SMI can be determined *a priori*. [On the other hand](#), Strauch and Volk (2013) used the SWAT simulated
67 soil moisture in the top soil layers to indicate the start of a wet season (SOS) and thus of a new vegetation growth

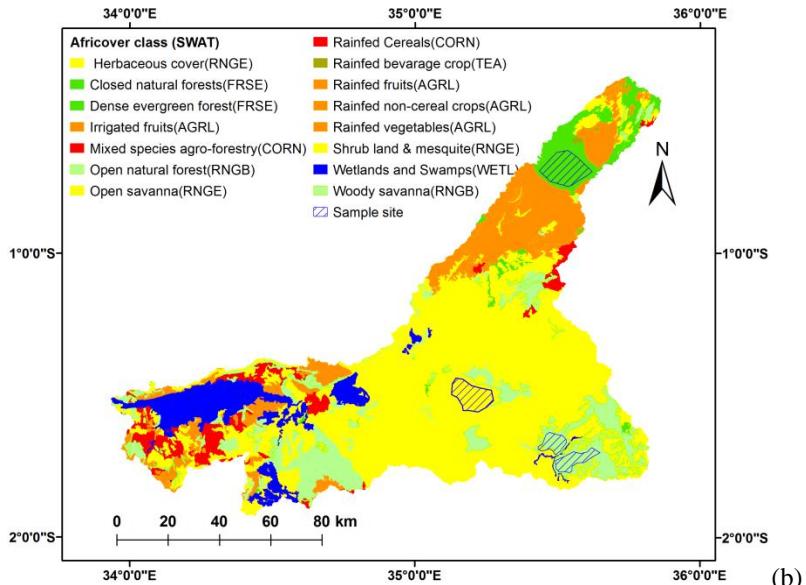
68 cycle. Their results showed an improved simulation of the seasonal dynamics of the LAI and a good match with the
69 Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day LAI. However, such an approach requires a cali-
70 bration of the SWAT parameters that govern the soil water balance dynamics. The latter is not obvious when only
71 observed streamflow data are used for the calibration(Yu et al., 2016).


72 The main objective of this study is to improve the vegetation growth module of SWAT, for trees and perennials in
73 the tropics. Towards this, the use of the SMI as a dynamic trigger for new vegetation growth cycle within a prede-
74 fined period will be explored. The modified SWAT (SWAT-T) model will be evaluated for the Mara River basin,
75 using 8-day MODIS LAI and remote sensing-based ET (Alemayehu et al., 2017). Additionally, the model will be
76 evaluated using observed daily streamflow data.

77 **2. Materials and methods**

78 **2.1. The study area**

79 The Mara River, a transboundary river shared by Kenya and Tanzania, drains an area of 13,750 km² (Figure 1a).
80 This river originates from the forested Mau Escarpment (about 3000 m.a.s.l.). It meanders through diverse agroeco-
81 systems, subsequently crosses the Masai-Mara Game Reserve in Kenya and the Seregenti National Park in Tanzania,
82 and finally feeds the Lake Victoria. The Amala River and the Nyangores River are its only perennial tributaries. The
83 Talek River and the Sand River are the two most notable seasonal rivers, stemming from Loita Hills.


84 Rainfall varies spatially mainly due to its equatorial location and the topography. The rainfall pattern in most part of
85 the basin is bimodal, with a short rainy season (October-December) driven by convergence and southward migration
86 of the Intertropical Convergence Zone (ITCZ) and a long rainy season (March-May) driven by south-easterly trades.
87 In general, rainfall decreases from west to east across the basin, while temperature increases southwards. The Mara
88 basin is endowed with significant biodiversity features, including moist montane forest on the escarpment, dry up-
89 land forest, scattered woodland and extensive savanna grasslands (Figure 1b). The upper forested basin is dominated
90 by well drained volcanic origin soils, while the middle and the lower part of the basin is dominated by poorly
91 drained soil types with high clay content.

92

93

(a)

94

95

96 **Figure 1** The Mara Basin (a) and its land cover classes (b). Note the sample sites locations (dashed areas) for the major
 97 natural vegetation classes that are used to mask the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf
 98 Area Index (LAI).

99 **2.2. The SWAT model description**

100 SWAT (Arnold et al., 1998, 2012; Neitsch et al., 2011) is a comprehensive, process-oriented and physically-based
 101 eco-hydrological model for river basins. It requires specific information about weather, soil properties, topography,
 102 vegetation, and land management practices in the watershed, to directly simulate physical processes associated with

103 water movement, sediment movement, crop growth, nutrient cycling, etc. In SWAT, a basin is partitioned into sub-
 104 basins, using topographic information. The sub-basins, in turn, are subdivided into Hydrological Response Units
 105 (HRUs) that represent a unique combination of land use, soil type and slope class. All the hydrologic processes are
 106 simulated at HRU level on a daily or sub-daily time step. The flows are then aggregated to sub-basin level for rout-
 107 ing into a river network (Neitsch et al., 2011). SWAT considers five storages to calculate the water balance: snow,
 108 the canopy storage, the soil profile -with up to ten layers-, a shallow aquifer and a deep aquifer. The global water
 109 balance is expressed as:

$$\Delta S = \sum_{i=1}^N (P - Q_{\text{total}} - ET - \text{Losses}) \quad (1)$$

110 where ΔS is the change in water storage (mm) and N is the time in days. P , Q_{total} , ET and Losses are the amounts of
 111 precipitation (mm), the total water yield (mm), the evapotranspiration (mm) and the groundwater losses (mm), re-
 112 spectively. The total water yield represents an aggregated sum of the surface runoff, the lateral flow and the return
 113 flow. In this study, the surface runoff is computed using the Soil Conservation Service (SCS) Curve Number (CN)
 114 method (USDA SCS, 1972).

115 SWAT provides three options for estimating ET_r ; Hargreaves (Hargreaves et al., 1985), Priestley-Taylor (Priestley
 116 and Taylor, 1972), and Penman-Monteith (Monteith, 1965) (Neitsch et al., 2011). The model simulates evaporation
 117 from soil and plants separately, as described in Ritchie (1972). The potential soil evaporation is simulated as a func-
 118 tion of ET_r and the LAI. The actual soil water evaporation is estimated by using exponential functions of soil depth
 119 and water content (Neitsch et al., 2011). The simulated LAI is also required to calculate the potential plant transpira-
 120 tion, with a formulation that varies depending on the selected ET_r method (Alemayehu et al., 2015; Neitsch et al.,
 121 2011). The actual plant transpiration (i.e. the plant water uptake) is reduced exponentially for soil water contents
 122 below field capacity. Therefore, the ET refers to the sum of the evaporation from the canopy and from the soil as
 123 well as plant transpiration.

124 In this study, we use the Penman-Monteith method (Monteith, 1965) to compute the ET_r for alfalfa reference crop as
 125 (Neitsch et al., 2011):

$$ET_r = \frac{\Delta(H_{\text{net}} - G) + \rho_{\text{air}} \cdot c_p \cdot [e_z^0 - e_z] / r_a}{\Delta + \gamma \left(1 + \frac{r_c}{r_a} \right)} \quad (126)$$

127 where ET_r is the maximum transpiration rate (mm d^{-1}), Δ is the slope of the saturation vapour pressure-temperature
 128 curve ($\text{kPa} \text{ } ^\circ\text{C}^{-1}$), H_{net} is the net radiation ($\text{MJ m}^{-2} \text{ d}^{-1}$), G is the heat flux density to the ground ($\text{MJ m}^{-2} \text{ d}^{-1}$), ρ_{air} is
 129 the air density (kg m^{-3}), c_p is the specific heat at constant pressure ($\text{MJ kg}^{-1} \text{ } ^\circ\text{C}^{-1}$), e_z^0 is the saturation vapour pres-
 130 sure of air at height z (kPa), e_z is the water vapor pressure of air at height z (kPa), γ is the psychrometric constant

131 $(\text{kPa } ^\circ\text{C}^{-1})$, r_c is the plant canopy resistance (s m^{-1}), and r_a is the diffusion resistance of the air layer (aerodynamic
132 resistance) (s m^{-1}). The plant growth module in SWAT simulates the LAI and the canopy height, which are required
133 to calculate the canopy and the aerodynamic resistance.

134 **2.3. The vegetation growth and Leaf Area Index modelling in SWAT**

135 SWAT simulates the annual vegetation growth based on the simplified version of the EPIC plant growth model
136 (Neitsch et al., 2011). The potential plant phenological development is hereby simulated on the basis of accumulated
137 heat units under optimal conditions; however, the actual growth is constrained by temperature, water, nitrogen or
138 phosphorous stress (Arnold et al., 2012; Neitsch et al., 2011).

139 Plant growth is primarily based on temperature and hence each plant has its own temperature requirements (i.e.
140 minimum, maximum and optimum). The fundamental assumption of the heat unit theory is plants have a heat unit
141 requirement that can be quantified and linked to the time of planting and maturity (Kiniry and MacDonald, 2008;
142 Neitsch et al., 2011). The total number of heat units required for a plant to reach maturity must be provided by the
143 user. The plant growth modelling includes the simulation of the leaf area development, the light interception and the
144 conversion of intercepted light into biomass, assuming a plant species-specific radiation-use efficiency (Neitsch et
145 al., 2011). **The plant growth model assumes a uniform, single plant species community, thereby plant mixtures such**
146 **as trees and grass cannot be simulated in SWAT (Kiniry and MacDonald, 2008).**

147 During the initial period of the growth, the optimal leaf area development is modelled (Neitsch et al., 2011) as:

$$fr_{LAI_{mx}} = \frac{fr_{PHU}}{fr_{PHU} + \exp(l_1 - l_2 \cdot fr_{PHU})} \quad (3)$$

148 where $fr_{LAI_{mx}}$ is the fraction of the plant's maximum leaf area index corresponding to a given fraction of the potential
149 heat units for the plant, fr_{PHU} is the fraction of potential heat units accumulated for the plant on a given day during
150 the growing season, and l_1 and l_2 are shape coefficients. Once the maximum leaf area index is reached, the LAI
151 will remain constant until the leaf senescence begins to exceed the leaf growth.

152 Afterwards, the leaf senescence becomes the dominant growth process and hence the LAI follows a linear decline
153 (Neitsch et al., 2011). However, Strauch and Volk (2013) suggested a logistic decline curve instead, in order to
154 avoid that the LAI drops to zero before entering the dormancy stage. We adopted this change to SWAT2012,
155 whereby the LAI during leaf senescence for trees and perennials is calculated as (Strauch and Volk, 2013):

$$LAI = \frac{LAI_{mx} - LAI_{min}}{1 + \exp(-t)} \quad (4)$$

$$\text{with } t = 12(r - 0.5) \quad \text{and} \quad r = \frac{1 - fr_{PHU}}{1 - fr_{PHU, \text{sen}}} \quad , fr_{PHU} \geq fr_{PHU, \text{sen}}$$

156 where the term used as exponent is a function of time (t), LAI_{mx} and LAI_{min} are the maximum and minimum (i.e.
 157 during dormancy) leaf area index, respectively. $fr_{PHU, \text{sen}}$ is the fraction of the potential heat units for the plant at
 158 which senescence becomes the dominant growth process and fr_{PHU} is the fraction of potential heat units accumulated
 159 for the plant on a given day during the growing season.

160 As detailed in Neitsch *et al.* (2011), the daily LAI calculations for perennials and trees are slightly different, as for
 161 the latter the years of development are considered.

162 For perennials, the LAI for a day i is calculated as:

$$LAI_i = LAI_{i-1} + \Delta LAI_i \quad (5)$$

163 And the change of LAI on day i is calculated as:

$$\Delta LAI_i = (fr_{LA \text{Im } x, i} - fr_{LA \text{Im } x, i-1}) LAI_{\text{mx}} \cdot (1 - \exp(5.(LAI_{i-1} - LAI_{\text{mx}}))) \quad (6)$$

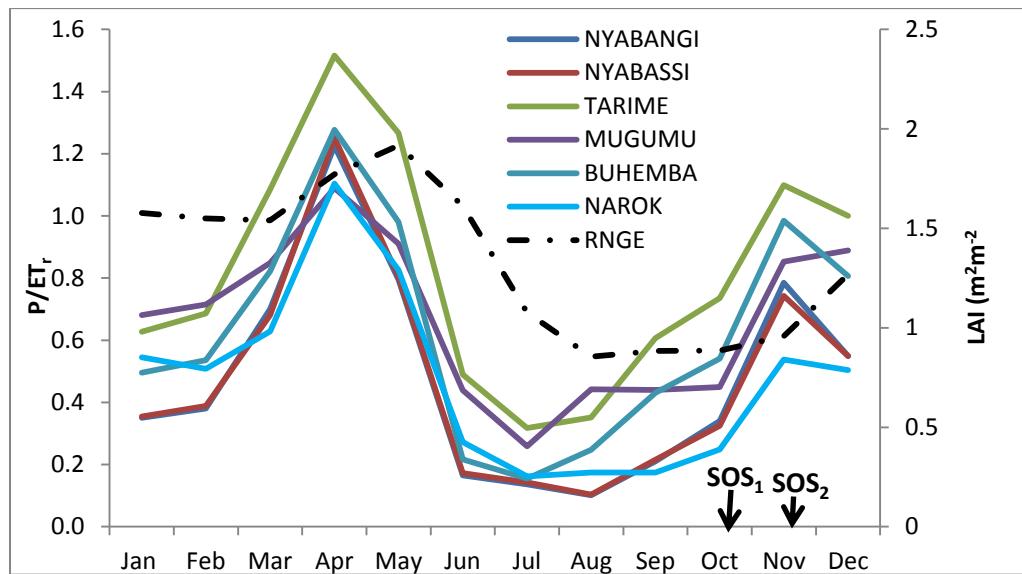
164

165 **2.4. The limitation of the annual vegetation growth cycle simulation in SWAT for the tropics**

166 Dormancy, is the period during which trees and perennials do not grow. It is commonly considered to be a function
 167 of latitude and day length. It is assumed that dormancy starts as the day length nears the minimum day length of the
 168 year. At the beginning of the dormancy period, a fraction of the biomass is converted to residue and the leaf area
 169 index is set to the minimum value (Neitsch *et al.*, 2011), and thereby resets the annual growth cycle. Also, SWAT
 170 offers two management settings options for the start and the end of the growing season, either based on a calendar
 171 date scheduling or based on heat units (the default).

172 In the tropics, however, dormancy is primarily controlled by precipitation (Bobée *et al.*, 2012; Jolly and Running,
 173 2004; Lotsch, 2003; Zhang *et al.*, 2010; Zhang, 2005). Hence, the default growth module of SWAT cannot realistically
 174 represent the seasonal growth dynamics for trees and perennials in the tropics.

175 **2.5. A soil moisture index-based vegetation growth cycle for the tropics**


176 As several studies demonstrated (Jolly and Running, 2004; Zhang, 2005; Zhang *et al.*, 2006), the water availability
 177 in the soil profile is one of the primary governing factors of the vegetation growth in the tropics. Thus, we propose

178 to implement a soil moisture index (SMI) to trigger a new growth cycle for tropical ecosystems in SWAT within a
 179 predefined period. The SMI is computed as:

$$SMI = \frac{P}{ET_r} \quad (7)$$

180 where P and ET_r denote daily or aggregated rainfall and reference evapotranspiration ($mm\ d^{-1}$), respectively. In this
 181 study we used five days (i.e. pentad) aggregated P and ET_r to determine the SMI, to assure sufficient soil moisture
 182 availability to initiate a new growth cycle. The SMI is somewhat similar to the Water Requirement Satisfaction
 183 Index (WRSI) (McNally et al., 2015; Verdin and Klaver, 2002), which is a ratio of ET to ET_r .

184 Figure 2 presents the seasonal pattern of SMI, based on long-term precipitation for several gauge stations in the
 185 Mara Basin and ET_r data from Trabucco and Zomer (2009). It is apparent from Figure 2 that the dry season (mostly
 186 from June - September) shows low SMI values (less than 0.5). Additionally, these patterns resemble well the long-
 187 term monthly average LAI for the savanna ecosystem (the dominant cover in the mid-section of the Mara Basin). In
 188 areas with a humid climate (i.e. the head water regions of the basin), the SMI values are high and the rainfall regime
 189 is different, yet in the relatively drier months (January and February) the SMI is low. As shown in Figure 2, the LAI
 190 and the SMI seasonal dynamics match well, when a lag time of approximately one month is considered. From this,
 191 we conclude that the SMI can be used as a proxy for the start of the wet season (SOS) and hence to trigger the vege-
 192 tation growth cycle. This approach enables a dynamic simulation of the growth cycle by SWAT, without the need to
 193 define the exact dates of the beginning and the end of the growing season (the “plant” and “kill” dates).

195 **Figure 2** The moisture index (SMI) derived from historical precipitation observations (P) across the Mara Basin and the
 196 global reference evapotranspiration data of Trabucco and Zomer (2009) (ET_r). The dotted line represents the Leaf Area
 197 Index (LAI) for the savanna ecosystem. SOS₁ and SOS₂ represent the start-of-wet season (SOS) transition months to
 198 trigger growth.

199 To avoid false starts of the new growing cycle during the dry season due to short spell rainfall, the end of the dry
200 season and the beginning of the rainy season (SOS_1 and SOS_2 , respectively) should be provided by the user. These
201 months are determined using a long-term monthly climatological P to ET_r ratio (Figure 2). For a river basin with a
202 single rainfall regime, a single set of SOS months are required. However, in a basin with multiple rainfall regimes
203 (i.e. mostly large basin), different sets of SOS months should be provided at sub-basin level. In our study area, two
204 distinct rainfall regimes are observed and therefore two different SOS months were needed. For most sub-basins
205 October (SOS_1) and November (SOS_2) were used as transitions (Figure 2).

206 **2.6. The adaptation of the SWAT plant growth module in SWAT-T**

207 Based on the rationale elaborated in the preceding sections, we modified the standard SWAT2012 (version 627)
208 plant growth subroutine for basins located between 20° N and 20° S:

- 209 i) If the simulation day is within SOS_1 and SOS_2 for a given HRU and a new growing cycle is not initiated
210 yet, the SMI is calculated as the ratio of P to ET_r .
- 211 ii) If the SMI exceeds or equals a user defined threshold, a new growing cycle for trees and perennials is
212 initiated. Subsequently, FR_{PHU} is set to 0 and the LAI is set to the minimum value. Plant residue decom-
213 position and nutrient release is calculated as if dormancy would occur.
- 214 iii) In case the SMI is still below a user defined threshold at the end of month SOS_2 , a new growing cycle is
215 initiated immediately after the last date of SOS_2 .

216 It is worth noting that the SMI threshold can be set depending on the climatic condition of the basin.

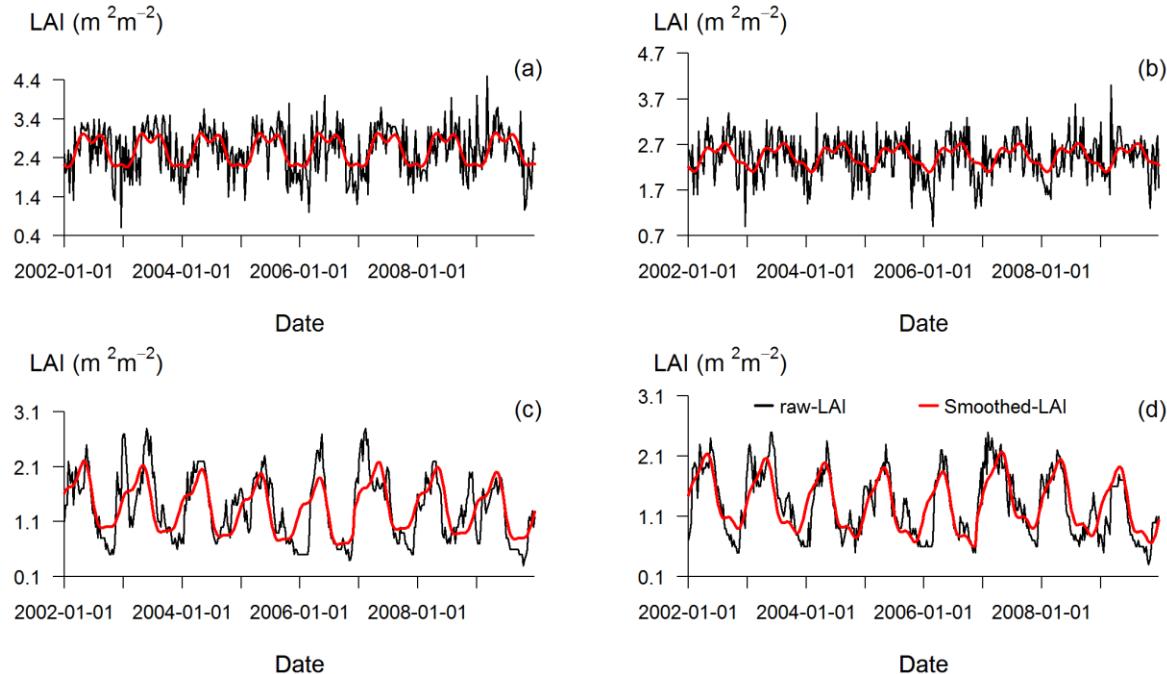
217 **2.7. The data used for the evaluations**

218 *The Leaf Area Index*

219 The remote sensing LAI data used in this study are based on the MODIS TERRA sensor (Table 1). The LAI product
220 retrieval algorithm is based on the physics of the radiative transfer in vegetation canopies (Myneni et al., 2002) and
221 involves several constants (leaf angle distribution, optical properties of soils and wood, and canopy heterogeneity)
222 (Bobée et al., 2012). The theoretical basis of the MODIS LAI algorithm and the validation results are detailed in
223 Myneni et al. (2002). Kraus (2008) validated the MOD15A2 LAI data at Budongo Forest (Uganda) and Kakamega
224 Forest (Kenya) sites and reported an accuracy level comparable to the accuracy of field measurements, indicating
225 the reliability of MOD15A2 LAI.

226 Table 1 Summary of the inputs of the SWAT model and the evaluation datasets.

	Spatial/temporal resolution	Source	Description
Rainfall	5 km / 1-day	Roy et al. (2017)	Bias-corrected satellite rainfall for Mara basin
Climate	25 km / 3-hour	Rondell et al. (2004)	Max. and min. temperature, relative



Land cover classes	30 m	FAO (2002)	Land cover classes for East Africa
DEM	30 m	NASA (2014)	Digital elevation model
Soil classes	1 km	FAO (2009)	Global soil classes
Discharge	Daily (2002-2008)	WRMA (Kenya)	River discharge at Bomet
ET	1 km / 8-day	Alemayehu <i>et al.</i> (2017)	ET maps for Mara basin
MOD15A2	1 km / 8-day	LPDAAC(2014)	Global leaf area index

227

228 We selected relatively homogeneous representative sample sites (i.e. polygons) for evergreen forest (174 km^2), tea
 229 (123 km^2), savanna grassland (136 km^2) and shrubland (130 km^2) (see Figure 1b) using the Africover classes and
 230 Google Earth images. This is useful to reduce the effect of mixed LAI values from different land cover classes while
 231 averaging the coarse scale (i.e. 1 km) MODIS LAI. The MOD15A2 pixels with quality flag 0 (i.e. indicating good
 232 quality) were masked using the polygons of the sample covers. Also, pixels with LAI values less than 1.5 during the
 233 peak growing months (i.e. period with LAI values mostly above 2.0) were removed. Finally, we extracted the 8-day
 234 median LAI time series for each land cover for 2002-2009 and few gaps in the LAI time series were filled using
 235 linear interpolation. Notwithstanding all the quality control efforts, we noted breaks and a high temporal variation in
 236 the LAI time series, due the inevitable signal noise (Figure 3). Verbesselt et al. (2010) developed the Breaks For
 237 Additive Seasonal and Trend (BFAST) method that decomposes the Normalized Vegetation Index (NDVI) time
 238 series into trend, seasonal, and remainder components. The trend and seasonal components comprise information
 239 that is pertinent to phenological developments as well as gradual and abrupt changes, whereas the remainder compo-
 240 nent comprises noise and error information of the series time series. This method has been applied to tropical eco-
 241 systems to identify phenological cycles as well as abrupt changes (DeVries et al., 2015; Verbesselt et al., 2010,
 242 2012). In our study, we used the BFAST tool to extract the seasonal development pattern of LAI while excluding the
 243 noise and error information from the LAI time series. Figure 3 demonstrates the smoothed 8-day LAI time series
 244 using BFAST along with the raw-median LAI values. It is apparent from the smoothed LAI time series that the high
 245 LAI development occurs during the wet months from March to May, suggesting consistency in the smoothed LAI
 246 time series. Therefore, the smoothed LAI time series were used to calibrate and evaluate the SWAT-T model vegeta-
 247 tion growth module for simulating LAI.

248

249 **Figure 3** The 8-day raw-median LAI time series for evergreen forest (a), tea (b), grassland (c) and shrubland (d) sample
 250 sites. The raw-median LAI is smoothed using the Breaks For Additive Seasonal and Trend (BFAST) method (Verbesselt
 251 et al., 2010).

252 *The evapotranspiration*

253 ET is one of the major components of a basin water balance that is influenced by the seasonal vegetation growth
 254 cycle. Thus, remote sensing-based ET estimates can be used to evaluate (calibrate) the SWAT-T model. Alemayehu
 255 et al. (2017) estimated ET for the Mara River basin using several MODIS thermal imageries and the Global Land
 256 Data Assimilation System (GLDAS) (Rodell et al., 2004) weather dataset from 2002 to 2009 at an 8-day temporal
 257 resolution based on the Operational Simplified Surface Energy Balance (SSEBop) algorithm (Senay et al., 2013).
 258 The latter mainly depends on the remotely sensed land surface temperature and the grass reference evapotranspiration
 259 (Senay et al., 2013). Alemayehu et al. (2017) demonstrated that the SSEBop ET for the study area explained
 260 about 52%, 63% and 81% of the observed variability in the MODIS NDVI at 16-day, monthly and annual temporal
 261 resolution. Also, they suggested that the estimated ET can be used for hydrological model parameterization. There-
 262 fore, we used this remote sensing-based ET estimates (hereafter ET-RS) to evaluate the SWAT-T simulated ET at a
 263 land cover level.

264 *Streamflow*

265 Due to the limited availability of observed streamflow, we used daily observed streamflow series (2002-2008) for
 266 the head water region (700 km^2) at the Bomet gauging station. The streamflow dataset is relatively complete, with
 267 about 11% missing data distributed throughout the time series.

268 **2.8. Model set up, calibration and evaluation**

269 **2.8.1. The model set up and data used**

270 The Mara River Basin was delineated using a high resolution (30 m) digital elevation model (DEM) (NASA, 2014)
271 in ArcSWAT2012 (revision 627). The basin was subdivided into 89 sub-basins to spatially differentiate areas of the
272 basin dominated by different land use and/or soil type with dissimilar impact on hydrology. Each sub-basin was
273 further discretized into several HRUs. The model was set up for land use conditions representing the period 2002-
274 2009. The land cover classes for the basin were obtained from the FAO-Africover project (FAO, 2002). As shown in
275 Figure 1b, the dominant portion of the basin is covered by natural vegetation including savanna grassland, shrubland
276 and evergreen forest. These land cover classes were assigned the characteristics of RNGE, RNGB and FRSE, re-
277 spectively in the SWAT plant database (Neitsch et al., 2011). We extracted the soil classes for the basin from the
278 Harmonized Global Soil Database (FAO, 2008). A soil properties database for the Mara River Basin was established
279 using the soil water characteristics tool (SPAW, <http://hydrolab.arsusda.gov/soilwater>).

280 The list of hydro-climatological and spatial data used to derive the SWAT model are presented in Table 1. In situ
281 measurements of rainfall and other climate variables are sparse and thus bias-corrected multi- satellite rainfall analy-
282 sis data from Roy et al. (2017) were used. The bias-correction involves using historical gauge measurements and a
283 downscaling to a 5 km resolution. Detailed information on the bias-correction and downscaling procedures can be
284 found in Roy et al. (2017). The ET_r was computed in SWAT using GLDAS weather data (Rodell et al., 2004)
285 based on the Penman-Monteith (Monteith, 1965) approach. To remove the biases in SWAT computed ET_r compared
286 to the observation-based monthly average (1950-2000) ET_r data from Trabucco and Zomer (2009), the GLDAS
287 solar radiation were adjusted relatively per month and per sub-basin.

288 **2.8.2. Model calibration and evaluation approach**

289 The main purpose of this study is to explore the potential of the SMI to trigger a new vegetation growth cycle for
290 tropical ecosystems. To evaluate the effect of the modification on the SWAT vegetation growth module, we initially
291 inter-compared simulated LAI from the modified (i.e. SWAT-T) and the standard plant growth module with varying
292 management settings. This analysis involved uncalibrated simulations with the default SWAT model parameters,
293 whereby the models thus only differ regarding the way the vegetation growth is simulated and the management
294 settings. It is worth noting that the aim of these simulations is mainly to expose the inconsistencies in the vegetation
295 growth module structure of the original SWAT model. Afterwards, we calibrated the parameters related to the simu-
296 lation of the LAI, the ET and the streamflow by trial-and-error and expert knowledge for the SWAT-T model. First-
297 ly, the SWAT parameters that control the shape, the magnitude and the temporal dynamics of LAI were adjusted to
298 reproduce the 8-day MODIS LAI for each land cover class. Then, we adjusted the parameters that mainly control the
299 streamflow and ET simulation, simultaneously using the daily observed streamflow and the 8-day ET-RS. One may
300 put forward that the manual adjustment may not be as robust as an automatic calibration as the later explores a larger
301 parameters space. However, the manual calibration is believed to be apt to illustrate the impact of the modification

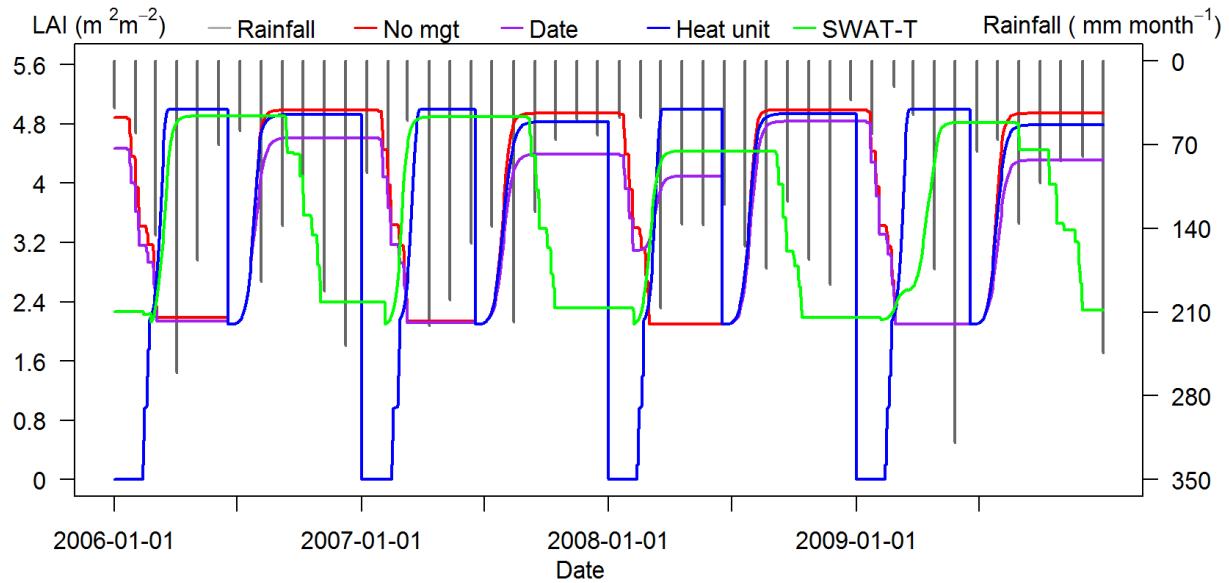
302 of the vegetation growth cycle and its effect on the water balance components. The SWAT-T model calibration and
303 validation was done for 2002-2005 and 2006-2009, respectively.

304 **2.8.3. The model performance metrics**

305 The Pearson correlation coefficient (r) and the Percent of PBIAS (%bias) were used to evaluate the agreement be-
306 tween the simulated and the remote sensing-based estimates of LAI and ET for each land cover class and for the
307 evaluation of the streamflow simulations. Additionally, the model performance was evaluated using the Kling-Gupta
308 Efficiency (KGE) (Gupta et al., 2009), which provides a compressive assessment by taking the variability, the bias
309 and the correlation into account in a multi-objective sense.

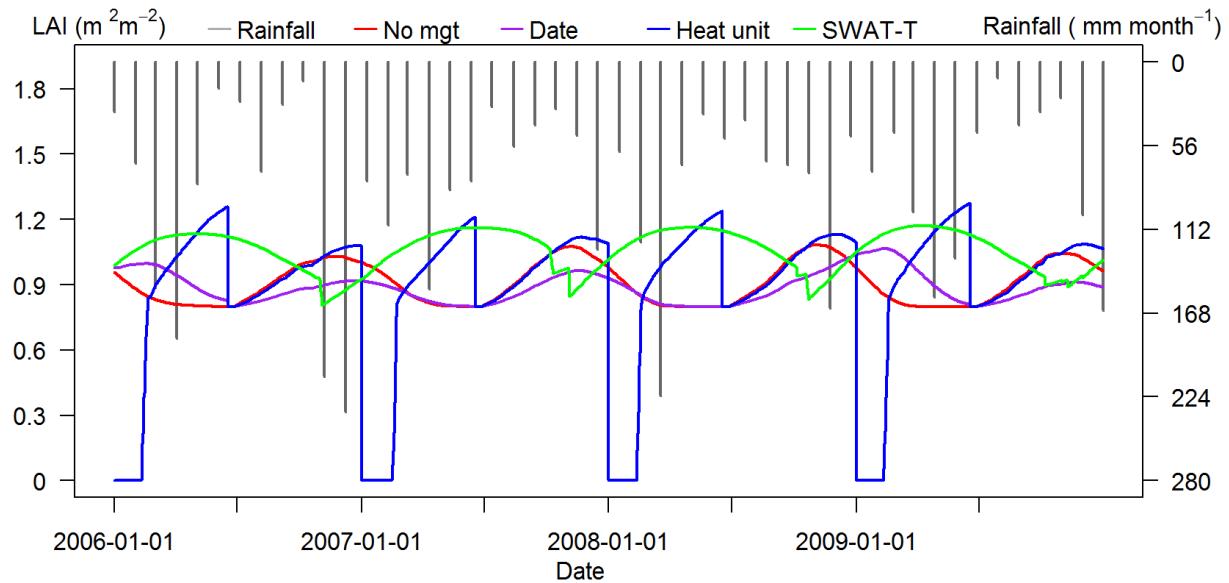
310 **3. Results and discussion**

311 **3.1. The consistency assessment of the vegetation growth module without calibration**


312 **3.1.1. The LAI simulations**

313 To highlight the added value of the modified vegetation growth module in SWAT-T for simulating the seasonal
314 growth pattern of trees and perennials, we compared the daily simulated LAI of the standard SWAT2012 (revision
315 627) model and SWAT-T model. At this stage, the models were uncalibrated (i.e. based on default SWAT parame-
316 ters).

317 Figure 4 and Figure 5 present the monthly rainfall along with SWAT simulated daily LAI for FRSE and RNGE
318 using the standard vegetation growth module under different management settings as well as the modified version
319 (i.e. SWAT-T). In the standard plant growth module whereby the Heat Units management option is selected (“Heat
320 Unit” in the Figure 4 and Figure 5), the start and the end of the vegetation growth cycle occur at the default FR_{PHU}
321 values of 0.15 and 1.2, respectively. With this management setting, the simulated LAI is zero at the beginning of
322 each simulation year for both types of vegetation cover, which does not correspond to the reality for FRSE and
323 RNGE in tropical regions. Strauch and Volk (2013), Kilonzo (2014) and Mwang et al. (2016) reported similar ob-
324 servations. With this respect, it may be noted that Mwang et al. (2016) improved the SWAT LAI simulation for
325 FRSE by using a FR_{PHU} value of 0.001 to start the growing season and with a minimum LAI of 3.0. Yet, this
326 change is region specific and cannot be transferred.

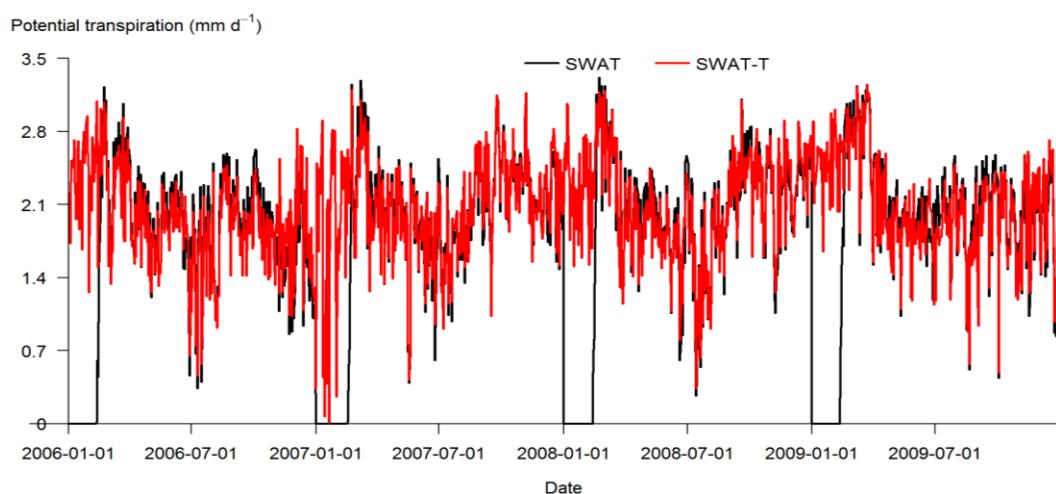

327 As shown in Figure 4 and Figure 5, the simulation with the standard SWAT module can be partly improved by using
328 a date scheduling (“Date”) for the start and the end of the vegetation growth cycle (i.e. instead of Heat Unit). Alter-
329 natively, all the management setting can be removed (“No mgt”) and vegetation is growing since the start of the
330 simulation. It is worthwhile noting the low LAI values during and following the rainy months (i.e. March -May),
331 suggesting unrealistic growth cycle simulation. Additionally, regardless of the management setting, the vegetation
332 growth cycle resets annually on 28th June due to dormancy. In contrast, the simulated LAI with the modified vegeta-

333 tion growth module (“SWAT-T”) corresponds with the monthly rainfall distribution, for FRSE and RNGE (see
 334 Figure 4 and Figure 5). We noted similar results for tea and RNGB.

335

336 **Figure 4** The daily LAI as simulated standard SWAT plant growth module with different management settings and by
 337 the modified plant growth module (SWAT-T) for evergreen forest (FRSE) using default SWAT parameters. The vertical
 338 lines (black) denote monthly rainfall. See management settings explanations in the texts.

339


340 **Figure 5** The daily LAI as simulated standard SWAT plant growth module with different management settings and by
341 the modified plant growth module (SWAT-T) for grass (RNGE) using default SWAT parameters. The vertical lines
342 (black) denote monthly rainfall. See management settings explanations in the texts.

343 **3.1.2. The implication of inconsistent LAI simulation on the water balance components**

344 In SWAT, the LAI is required to compute the potential transpiration, the potential soil evaporation and the plant
345 biomass, among others. For instance, to compute the daily potential plant transpiration, the canopy resistance and
346 the aerodynamic resistance are determined using the simulated LAI and the canopy height, respectively (Neitsch et
347 al., 2011). Therefore, the aforementioned limitations of the annual vegetation growth cycle in the standard SWAT
348 model growth module also influences the simulation of the transpiration. Figure 6 shows a comparison of the daily
349 potential transpiration for RNGE as simulated by SWAT model with the standard and modified vegetation growth
350 module, based on the Penman-Monteith equation. We observe 12% of the standard SWAT simulated daily potential
351 transpiration time series (2002-2009) for RNGE being zero, suggesting a considerable inconsistency. The incon-
352 sistency is considerably reduced when the modified vegetation growth module (SWAT-T) is used (i.e. less than 2%
353 zero values). Similar results are noted for FRSE and RNGB.

354 These findings should not come as a surprise as several studies have shown the effect of the selection of the ET_r
355 method in SWAT on the simulated ET and other water balance components (Alemayehu et al., 2015; Maranda and
356 Anctil, 2015; Wang et al., 2006). Alemayehu et al. (2015) reported substantial differences in both potential and
357 actual transpiration with the choice of the ET_r method using a calibrated SWAT model, which was partly ascribed to
358 the unrealistic LAI growth cycle.

359 We also notice the SWAT-T simulated potential transpiration is consistent regardless of the ET_r method selection in
360 SWAT (results not shown here) and therefore, the improved vegetation growth module in the SWAT-T can reduce
361 the uncertainty arising from the model structure and thus minimize the uncertainties in model simulation outputs.

362

363 **Figure 6 Comparison of Penman-Monteith-based daily potential transpiration simulated by the SWAT-T and the stand-**
364 **standard SWAT models for grassland. Note that the heat unit scheduling is used in the standard SWAT model.**

365 **3.2. The evaluation of the calibrated SWAT-T model**

366 **3.2.1. The performance of the LAI simulation**

367 Table 2 presents the SWAT model parameters that are adjusted during the manual calibration process. Initially, the
368 minimum LAI (ALAI_MIN) for each land cover classes were set based on the long-term MODIS LAI. Also, the
369 PHU was computed using the long-term climatology, as suggested in Strauch and Volk (2013). The shape coeffi-
370 cients for the LAI curve (FRGW₁, FRGW₂, LAIMX₁, LAIMX₂ and DLAI) and the remaining parameters were ad-
371 justed during the calibration period by a trial-and-error process such that the SWAT-T simulated 8-day LAI mimics
372 the MODIS 8-day LAI.

373 Figure 7 presents the comparison of 8-day MODIS LAI with the calibrated SWAT-T simulated LAI aggregated over
374 several land cover classes for the calibration and validation periods. We evaluated the degree of agreement qualita-
375 tively -by visual comparison- and quantitatively -by statistical measures. From the visual inspection it is apparent
376 that the intra-annual LAI dynamics (and hence the annual growth cycle of each land cover class) from the SWAT-T
377 model correspond well with the MODIS LAI data. This observation is supported by correlations as high as 0.94
378 (FRSE) and 0.92 (RNGB) during the calibration period (Table 3). As shown in Table 3, the model also shows a
379 similar performance during the validation period, with low average bias and correlation as high as 0.93 (FRSE).
380 Overall, the results indicate that the SMI can indeed be used to dynamically trigger a new growing season within a
381 pre-defined period.

382 Despite the overall good performance of SWAT-T in simulating the LAI, we observed biases for FRSE and Tea,
383 mainly during the rainy season (see Figure 7 top row). This is partly attributed to the cloud contamination of the
384 MODIS LAI in the mountainous humid part of the basin, as shown in Figure 3a and Figure 3b. Similar observations
385 were also made by Krause (2008). Also, the senescence seems to occur slightly early for Tea (see Figure 3b),
386 whereby we note a mismatch between the SWAT simulated LAI and the MODIS LAI. This suggests the need to
387 further adjust the fraction of total PHU when the leaf area begins to decline (DLAI).

388 Table 2 List of SWAT parameters used to calibrate LAI, ET and streamflow with their default and calibrated values.

Parameter	Parameter definition (unit)	Variable	Default (calibrated)		
			FRSE	RNGE	RNGB
<i>BIO_E</i>	Radiation-use efficiency((kg/ha)/(MJ/m ²))	LAI	15 (17)	34 (10)	34 (10)
<i>BLAI</i>	Maximum potential leaf area index (m ² /m ²)	LAI	5 (4.0)	2.5 (3.5)	2 (3.5)
<i>FRGW₁</i>	Fraction of PHU corresponding to the 1 st point on the optimal leaf area development curve	LAI	0.15 (0.06)	0.05 (0.2)	0.05 (0.2)
<i>LAIMX₁</i>	Fraction of BLAI corresponding to the 1 st point	LAI	0.7	0.1	0.1

	on the optimal leaf area development curve		(0.15)	(0.1)	(0.1)
<i>FRGW</i> ₂	Fraction of PHU corresponding to the 2 nd point on the optimal leaf area development curve	LAI	0.25 (0.15)	0.25 (0.5)	0.25 (0.5)
<i>LAIMX</i> ₂	Fraction of BLAI corresponding to the 2 nd point on the optimal leaf area development curve	LAI	0.99 (0.30)	0.7 (0.99)	0.7 (0.99)
<i>DLAI</i>	Fraction of total PHU when leaf area begins to decline	LAI	0.99 (0.30)	0.35 (0.99)	0.35 (0.99)
<i>T_OPT</i>	Optimal temperature for plant growth (°C)	LAI	30 (25)	25 (30)	25 (30)
<i>T_BASE</i>	Minimum temperature for plant growth (°C)	LAI	0 (5)	12 (5)	12 (5)
<i>ALAI_MIN</i>	Minimum leaf area index for plant during dormant period (m ² .m ²)	LAI	0.75 (2.0)	0 (0.75)	0 (0.75)
<i>PHU</i>	Total number of heat units needed to bring plant to maturity	LAI	1800 (3570)	1800 (4100)	1800 (4100)
<i>SOL_Z</i> ¹	Soil layer depths (mm)	ET	300 [1000] (480 [1600])	300[1000] (480 [1600])	300[1000] (480 [1600])
<i>SOL_AWC</i> ²	Soil available water (mm)	ET/flow	0.26-0.31 [0.27-0.29]	0.26-0.31 [0.27-0.29]	0.26-0.31 [0.27-0.29]
<i>ESCO</i>	Soil evaporation compensation factor (-)	ET	0.95 (0.88)	0.95 (1)	0.95 (1)
<i>EPCO</i>	Plant uptake compensation factor (-)	ET	1 (1)	1 (1)	1 (1)
<i>GSI</i>	Maximum stomatal conductance at high solar radiation and low vapor pressure deficit (m.s ⁻¹)	ET	0.002 (0.006)	0.005 (0.0035)	0.005 (0.004)
<i>REVAPMN</i>	Depth of water in the aquifer for revap (mm)	ET	750 (100)	750 (100)	750 (100)

<i>CN2³</i>	Initial SCS curve number II value (-)	flow	55 [70]	69 [79]	61 [74]
			(38 [48])	(81 [92])	(71 [87])
<i>SURLAG</i>	Surface runoff lag time (day)	flow	4(0.01)	4(0.01)	4(0.01)
<i>ALPHA_BF</i>	Baseflow recession constant (day)	flow	0.048	0.048	0.048
			(0.2)	(0.2)	(0.2)
<i>GWQMN</i>	Shallow aquifer minimum level for base flow	flow	1000	1000	1000
			(50)	(50)	(50)
<i>GW_REVAP</i>	Groundwater 'revap' coefficient (-)	ET	0.02	0.02	0.02
			(0.1)	(0.02)	(0.02)
<i>RCHRG_DP</i>	Deep aquifer percolation fraction (-)	flow	0.05	0.05	0.05
			(0.3)	(0.1)	(0.1)

389 ¹SOL_Z values for the top [and lower] soil layers depth

390 ²SOL_AWC values range for the top [and lower] soil layers depending on soil texture and bulk density

391 $^{3}\text{CN}2$ values for soil hydrologic group B[C]

392

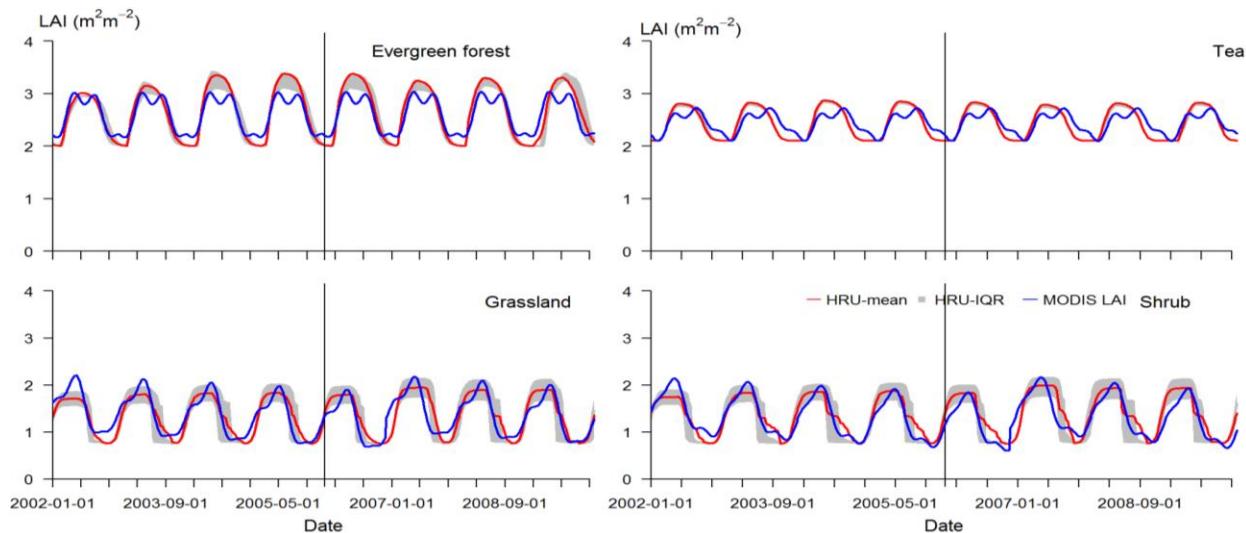
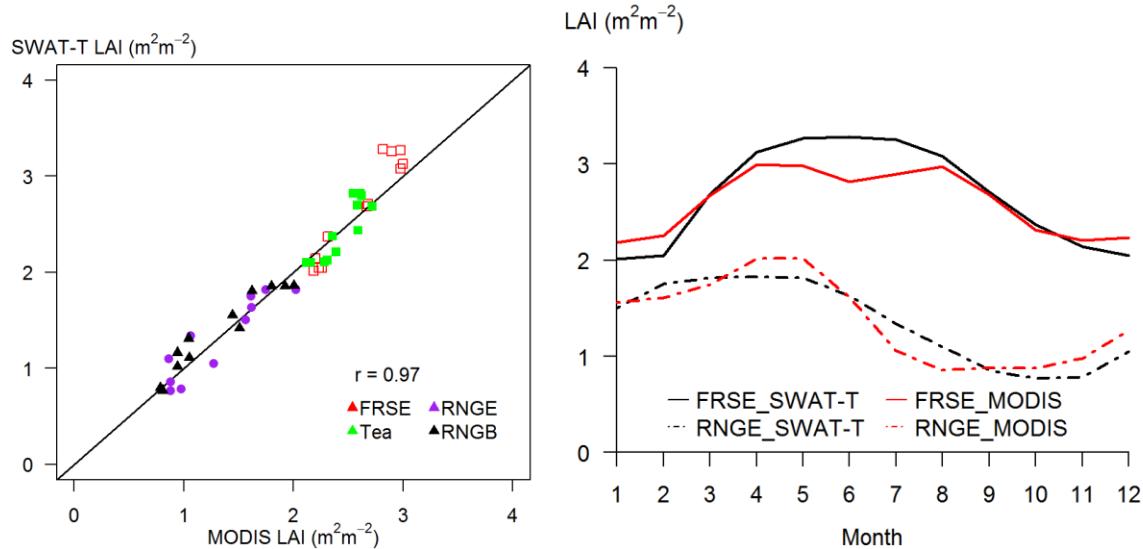


Figure 7 The MODIS LAI and the SWAT-T model simulated HRU weighted aggregated 8-day LAI time series (2002-2009). The grey sheds indicate the boundaries of the 25th and 75th percentiles. The vertical line marks the end of the calibration period and the beginning of the validation period.

397 **Table 3 Summary of the performance metrics for the SWAT-T for simulating LAI, ET and streamflow. Note that the**
 398 **performance for LAI and ET refers to 8-day aggregated data whereas daily streamflow data are considered.**

LAI calibration (validation)				ET calibration (validation)				Streamflow calibration (validation)	
	FRSE	Tea	RNGE	FRSE	Tea	RNGE	RNGB	Flow	
r	0.94 (0.93)	0.83 (0.83)	0.89 (0.86)	0.92 (0.88)	0.71 (0.68)	0.67 (0.64)	0.72 (0.77)	0.66 (0.72)	0.72 (0.76)
%bias	1.5 (0)	0.1 (0.2)	-3.7 (-0.4)	-1.3 (4.6)	3.7 (6.6)	-1.7 (0.5)	7.8 (11)	1.2 (2.9)	3.5 (15.5)
KGE	0.50 (0.62)	0.42 (0.44)	0.86 (0.85)	0.88 (0.86)	0.71 (0.67)	0.62 (0.62)	0.69 (0.74)	0.66 (0.72)	0.71 (0.71)

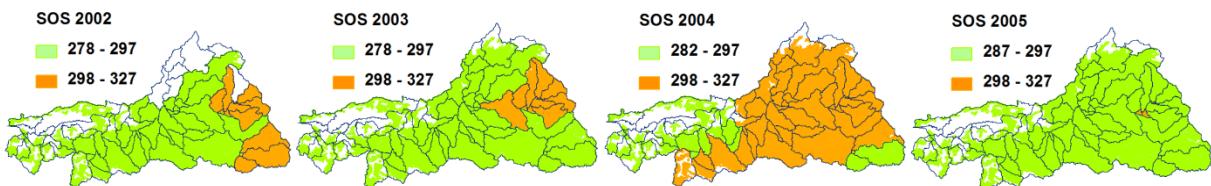

399

400 **3.2.2. The seasonal vegetation growth pattern**

401 The seasonal patterns of the LAI for FRSE, Tea, RNGE and RNGB are analysed using 8-day aggregated LAI data
 402 time series (2002-2009) from the calibrated SWAT-T model and MODIS LAI. Generally, and not surprisingly, the
 403 seasonal dynamics of the SWAT-T simulated LAI and the MODIS LAI agree well (Figure 8 left) with a pooled
 404 correlation of 0.97.

405 As shown in Figure 8 (right), the SWAT-T simulated monthly average LAI shows a higher seasonal variation as
 406 compared to the variation observed from MODIS LAI for FRSE; the peak-to-trough difference of the SWAT-T data
 407 is about 48% of the average annual MODIS LAI, while the amplitude is 31% for the MODIS data. The seasonal
 408 variation from MODIS LAI is comparable with the results of Myneni *et al.* (2007) who noted 25% seasonal varia-
 409 tion in the Amazon forest. We also notice a correlation of 0.66 between the seasonal LAI and the rainfall in the
 410 humid part of the basin. Our observations are in agreement with Kraus (2008), who reported an association of the
 411 LAI dynamics for forest sites located in Kenya and Uganda with inter-annual climate variability.

412 In the part of the basin where there is a marked dry season, the LAI exhibits a notable seasonal variation, with an
 413 amplitude that is up to 79% of the mean annual LAI ($1.4 \text{ m}^2/\text{m}^2$) for RNGE. Unlike the LAI of FRSE and Tea in the
 414 humid part, the seasonal rainfall pattern is strongly correlated ($r = 0.81$) with lagged LAI for RNGE and RNGB.
 415 This result is in agreement with several studies that noted that the LAI dynamics for natural ecosystems in the Sub-
 416 Saharan Africa are associated with the rainfall distribution pattern (Bobée *et al.*, 2012; Kraus *et al.*, 2009; Pfeifer *et*
 417 *al.*, 2014).



418

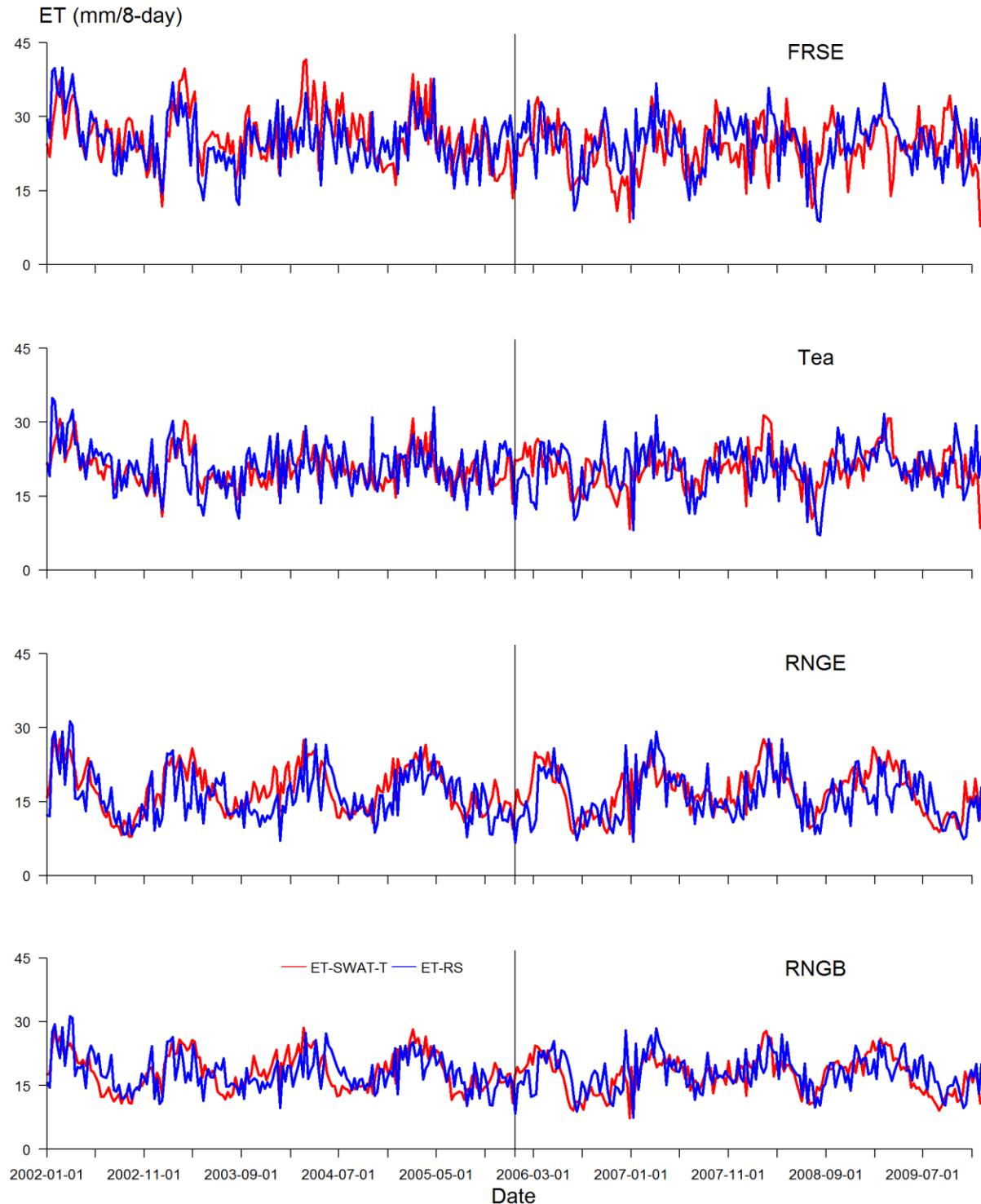
419 **Figure 8** The long-term (2002-2009) average monthly LAI pooled scatter plot (left) and temporal dynamics (right).
420 FRSE: evergreen forest; RNGE: grassland; RNGB: shrubland.

421 In addition to improving the seasonal dynamics of LAI in SWAT without the need of management settings, the SMI
422 accounts for the year-to-year shifts in the SOS due to climatic variations. This is particularly important for long-term
423 land use change and climate change impact studies. Figure 9 demonstrates the year-to-year shifts as well as the spa-
424 tial variation of the SOS dates for part of the Mara River Basin dominated by savanna grassland. Generally, the
425 season change tends to occur in the month of October (i.e. Julian date 278-304). Yet, we acknowledge the need of
426 further verification studies in basins with sufficient forcing data and field measurements.

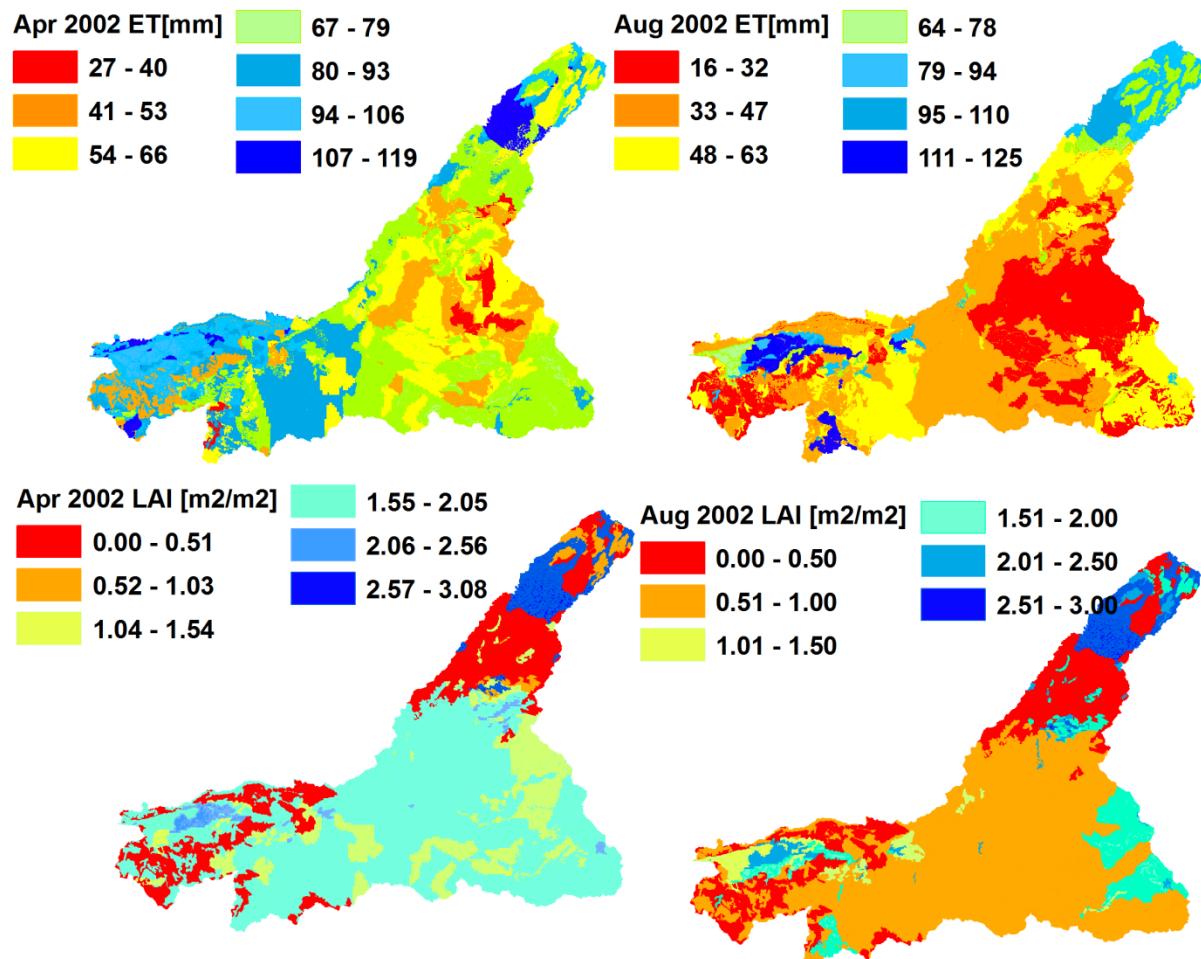
427

428
429

Figure 9 The inter-annual and spatial variation of the start of the rainy season for the savanna vegetation in the Mara River basin for 2002-2005. Note that HRU level Julian dates are used and the sub-basins are overlaid.


430

3.2.3. The spatial simulation of the evapotranspiration


431 As presented in Table 2, several SWAT parameters were calibrated by comparing SWAT-T model simulated ET
432 with ET-RS. The higher water use by FRSE as compared to other land cover classes is reflected by a lower ESCO,
433 and a higher GW_REVAP and GSI (Table 2). The lower ESCO indicates an increased possibility of extracting soil
434 water to satisfy the atmospheric demand at a relatively lower soil depth. Also, the higher GW_REVAP points to an
435 increased extraction of water by deep-rooted plants from the shallow aquifer or pumping. Similar findings were
436 reported by Strauch and Volk (2013).

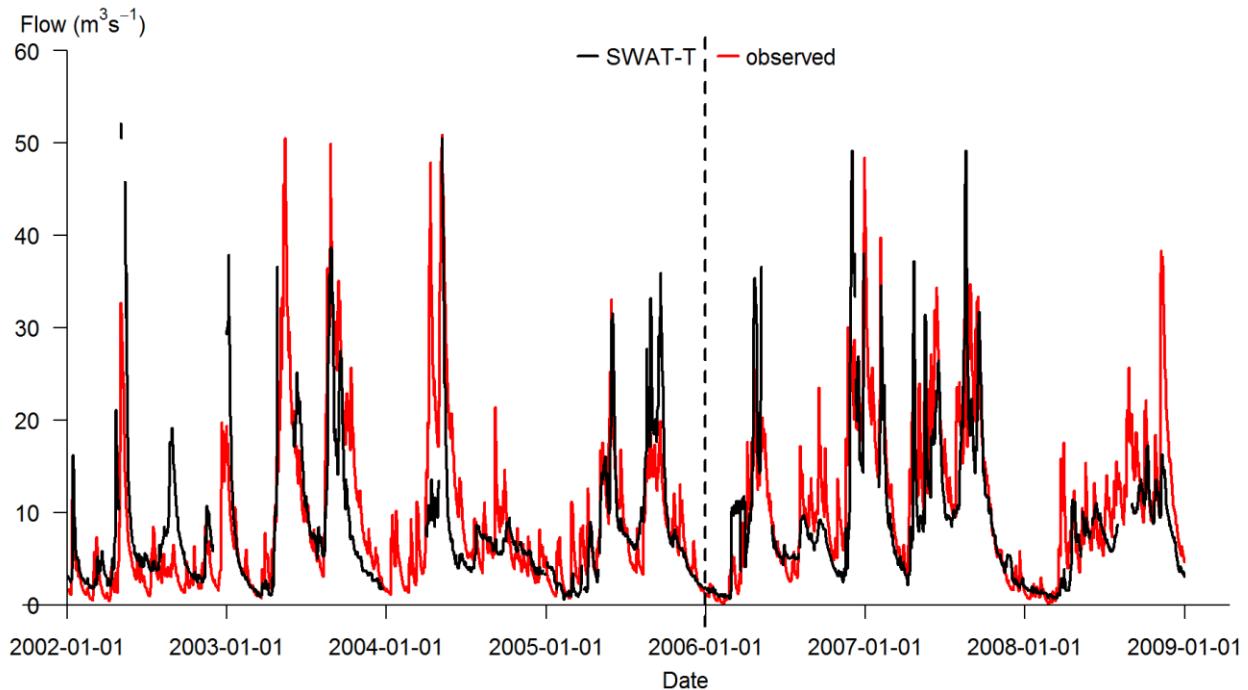
437 Figure 10 presents the comparison of 8-day ET-RS and SWAT-T simulated ET for the calibration (2002 - 2005)
438 and validation (2006 - 2009) periods for FRSE, Tea, RNGE and RNGB. Visually, the ET simulated by the SWAT-T
439 fairly agrees with the ET-RS for all the covers. As shown in Table 3, the statistical performance indices show a
440 modest performance in simulating ET for the dominant cover types in the basin. The average model biases for the
441 simulated ET ranges from 7.8% (RNGE) to 1.2% (RNGB) during the calibration period. Additionally, the correlation
442 between 8-day ET from the SWAT-T and the ET-RS varies from 0.67 (Tea) to 0.72 (grassland). Overall, we
443 notice similar performance measures during the calibration and validation period, suggesting a fair representation of
444 the processes pertinent to ET.

445 The variability of the ET is controlled by several biotic and abiotic factors. The 8-day ET time series as simulated by
446 the SWAT-T model illustrates the variation of the temporal dynamics of ET in the study area. For land cover types
447 located in the humid part of the basin (FRSE and tea) there is no clear temporal pattern (Figure 10). In contrast, the
448 areas covered by RNGE and RNGB show a clear seasonality of the simulated ET. These observations are consistent
449 with the seasonality of the simulated LAI, as discussed section 3.2.2.

454 To shed light on the consistency of SWAT-T simulated LAI and ET, we selected simulation outputs at HRU level
 455 for April and August (Figure 11 and Figure 12). Figure 11 (upper row) exhibits the monthly ET at HRU level for the
 456 wet month (April) and the dry month (August) in 2002. The lower portion of the basin, with dominant savanna cov-
 457 er, experiences a monthly ET between 16 and 63 mm/month in August and between 41 and 93 mm/month in April.
 458 These estimates are also well reflected in the spatial distribution of the average monthly simulated LAI (Figure 11
 459 lower row). We notice that the linear relationship between ET and LAI is stronger, in general, for grassland and
 460 shrubs than for evergreen forest and tea. The lower correlation for tea and evergreen forest could be partly attributed
 461 to the high evaporation contribution of the wet soil, as the upper portion of the basin receives ample rainfall all year
 462 round. Also, the tea harvesting activities in the upper part of the basin is not taken into account in the model. Finally,
 463 we observe that during the wet month the spatial variability of ET is higher than that of the LAI (Figure 11). Further
 464 comparison research is needed to evaluate the added value of the improved vegetation growth module on spatial ET
 465 simulations compared to remote sensing-based ET. This will be addressed in our ongoing research on ET evaluation.

466

467 Figure 11 SWAT-T simulated monthly ET (upper row) and LAI (lower row) for April (wet) and August (dry) 2002 at
 468 HRU level.



469

470 **Figure 12 The average seasonal and spatial distribution of ET (2002-2009) in the Mara Basin, as simulated by the SWAT-T**
 471 **model at HRU level.**

472 **3.2.4. The performance of the streamflow simulations**

473 Figure 13 presents the comparison of daily SWAT-T simulated streamflow with observed streamflows, for the cali-
 474 bration and validation periods. Visually, the simulated hydrograph fairly reproduced the observations. The average
 475 biases of the SWAT-T simulated streamflow as compared to observations amounts to 3.5 and 15.5% during the
 476 calibration and validation periods, respectively (Table 3). **The correlation is about 0.72 (0.76) during calibration**
 477 **(validation) period. A KGE of 0.71 points to the overall ability of the calibrated SWAT-T model to reproduce the**
 478 **observed streamflow.** However, the model tends to underestimate the baseflow and this is more pronounced during
 479 the validation period. This is partly associated with the overestimation of the ET for evergreen forest (6.6%) during
 480 the validation, since ET has a known effect on the groundwater flow.

481

482 **Figure 13 Observed and simulated flows for the Nyangores River at Bomet.**

483 **4. Summary and conclusions**

484 We presented an innovative approach to improve the simulation of the annual growth cycle for trees and perennials -
 485 and hence improve the simulation of the evapotranspiration and the streamflow- for tropical conditions in SWAT.
 486 The robustness of the changes made to the standard SWAT2012 version 627 have been assessed by comparing the
 487 model outputs with remotely sensed 8-day composite Moderate Resolution Imaging Spectroscopy (MODIS) LAI
 488 data, as well as with remote sensing-based evapotranspiration (ET-RS) and observed streamflow data. Towards this,
 489 we presented a straightforward but robust soil moisture index (SMI), a quotient of rainfall (P) and reference evapo-
 490 transpiration (ET_r), to trigger a new growing season within a defined period. The new growing season starts when
 491 the SMI index exceeds or equals a certain user defined threshold.

492 The structural improvements of the LAI simulation have been demonstrated by comparing uncalibrated SWAT
 493 model simulations of the LAI using the modified (i.e. SWAT-T) and the standard SWAT vegetation growth module.
 494 The results indicate that the modified module structure for the vegetation growth exhibits temporal progression
 495 patterns that are consistent with the seasonal rainfall pattern in the Mara Basin. Further, we note a better consistency
 496 of the SWAT-T simulated potential transpiration for perennials and trees, suggesting the usefulness of the vegetation
 497 growth module modification in reducing the model structural uncertainty. Our calibrated SWAT-T model results
 498 also show that the calibrated SWAT-T simulated LAI corresponds well with the MODIS LAI for various land cover
 499 classes with correlations of up to 0.94, indicating the realistic representation of the start of the new growing season
 500 using the SMI within a pre-defined period. The improvement of the vegetation growth cycle in SWAT is also sup-

501 ported by a good agreement of the simulated ET with ET-RS, particularly for the grassland. Additionally, the daily
502 streamflows simulated with the SWAT-T mimic well the observed streamflows for the Nyangores River. Therefore,
503 the SWAT-T developed in this study can be a robust tool for simulating the vegetation growth dynamics in a con-
504 sistent way in hydrologic model applications.

505 **5. Acknowledgments**

506 We would like to thank Tirthankar Roy, the University of Arizona, for providing bias-corrected satellite rainfall
507 products. We also would like to thank the Water Resource Management Authority (WRMA) of Kenya for the provi-
508 sion of streamflow data. The technical help on FORTRAN coding from Befekadu Woldegeorgis, Vrije Universiteit
509 Brussel, is very much appreciated.

510 **6. Data Availability**

511 The modified SWAT model for Tropics is available upon request from the first author.

512 **7. References**

513 Alemayehu, T., van Griensven, A. and Bauwens, W.: Evaluating CFSR and WATCH Data as Input to SWAT for the
514 Estimation of the Potential Evapotranspiration in a Data-Scarce Eastern-African Catchment, *J. Hydrol. Eng.*, 21(3),
515 5015028, doi:10.1061/(ASCE)HE.1943-5584.0001305, 2015.

516 Alemayehu, T., Griensven, A. van, Senay, G. B. and Bauwens, W.: Evapotranspiration Mapping in a Heterogeneous
517 Landscape Using Remote Sensing and Global Weather Datasets: Application to the Mara Basin, East Africa,
518 *Remote Sens.*, 9(4), 390, doi:10.3390/rs9040390, 2017.

519 Allen, R. G., Pereira, L. S., Raes, D. and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water
520 requirements-FAO Irrigation and drainage paper 56., Rome., 1998.

521 Andersen, J., Dybkjaer, G., Jensen, K. H., Refsgaard, J. C. and Rasmussen, K.: Use of remotely sensed precipitation
522 and leaf area index in a distributed hydrological model, *J. Hydrol.*, 264(1–4), 34–50, doi:10.1016/S0022-
523 1694(02)00046-X, 2002.

524 Arnold, J. G., Srinivasan, R., Muttiah, R. S. and Williams, J. R.: Large area hydrologic modeling and assessment
525 part I: model development, *J. Am. Water Resour. Assoc.*, 34(1), 73–89, doi:10.1111/j.1752-1688.1998.tb05961.x,
526 1998.

527 Arnold, J. G., D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White, R. Srinivasan, C. Santhi, R. D. Harmel,
528 A. van Griensven, M. W. Van Liew, N. Kannan and M. K. Jha: SWAT: Model Use, Calibration, and Validation,

529 Trans. ASABE, 55(4), 1491–1508, doi:10.13031/2013.42256, 2012.

530 Bobée, C., Ottlé, C., Maignan, F., De Noblet-Ducoudré, N., Maugis, P., Lézine, A. M. and Ndiaye, M.: Analysis of
531 vegetation seasonality in Sahelian environments using MODIS LAI, in association with land cover and rainfall, J.
532 Arid Environ., 84, 38–50, doi:10.1016/j.jaridenv.2012.03.005, 2012.

533 Bressiani, D. de A., Gassman, P. W., Fernandes, J. G., Garbossa, L. H. P., Srinivasan, R., Bonumá, N. B. and
534 Mendiondo, E. M.: A review of soil and water assessment tool (SWAT) applications in Brazil: Challenges and
535 prospects, Int. J. Agric. Biol. Eng., 8(3), 1–27, doi:10.3965/j.ijabe.20150803.1765, 2015.

536 Dessu, S. B. and Melesse, A. M.: Modelling the rainfall-runoff process of the Mara River basin using the Soil and
537 Water Assessment Tool, Hydrol. Process., 26(26), 4038–4049, doi:10.1002/hyp.9205, 2012.

538 DeVries, B., Verbesselt, J., Kooistra, L. and Herold, M.: Robust monitoring of small-scale forest disturbances in a
539 tropical montane forest using Landsat time series, Remote Sens. Environ., 161, 107–121,
540 doi:10.1016/j.rse.2015.02.012, 2015.

541 Easton, Z. M., Fuka, D. R., White, E. D., Collick, a. S., Biruk Ashagre, B., McCartney, M., Awulachew, S. B.,
542 Ahmed, a. a. and Steenhuis, T. S.: A multi basin SWAT model analysis of runoff and sedimentation in the Blue
543 Nile, Ethiopia, Hydrol. Earth Syst. Sci., 14(10), 1827–1841, doi:10.5194/hess-14-1827-2010, 2010.

544 FAO: Africover Regional Land Cover Database, <http://www.africover.org>, 2002.

545 FAO/IIASA/ISRIC/ISSCAS/JRC: Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA,
546 Laxenburg, Austria., 2009.

547 FAO, I.-C.: Harmonized World Soil Database (version 1.0), FAO, Rome, Italy and IIASA, Laxenburg, Austr.,
548 2008.

549 Gassman, P. W., Sadeghi, A. M. and Srinivasan, R.: Applications of the SWAT Model Special Section: Overview
550 and Insights, J. Environ. Qual., 43(1), 1, doi:10.2134/jeq2013.11.0466, 2014.

551 Gebremicael, T. G., Mohamed, Y. A., Betrie, G. D., van der Zaag, P. and Teferi, E.: Trend analysis of runoff and
552 sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and
553 landuse maps, J. Hydrol., 482, 57–68, doi:10.1016/j.jhydrol.2012.12.023, 2013.

554 Githui, F., Mutua, F. and Bauwens, W.: Estimating the impacts of land-cover change on runoff using the soil and
555 water assessment tool (SWAT): case study of Nzoia catchment, Kenya / Estimation des impacts du changement
556 d'occupation du sol sur l'écoulement à l'aide de SWAT: étude du cas du bassin, Hydrol. Sci. J., 54(5), 899–908,
557 doi:10.1623/hysj.54.5.899, 2009.

558 van Griensven, a., Ndomba, P., Yalew, S. and Kilonzo, F.: Critical review of SWAT applications in the upper Nile
559 basin countries, *Hydrol. Earth Syst. Sci.*, 16(9), 3371–3381, doi:10.5194/hess-16-3371-2012, 2012.

560 Gupta, H. V, Kling, H., Yilmaz, K. K. and Martinez, G. F.: Decomposition of the mean squared error and NSE
561 performance criteria: Implications for improving hydrological modelling, *J. Hydrol.*, 377(1–2), 80–91,
562 doi:10.1016/j.jhydrol.2009.08.003, 2009.

563 Jolly, W. M. . and Running, S. W.: Effects of precipitation and soil water potential on drought deciduous phenology
564 in the Kalahari, *Glob. Chang. Biol.*, 10(3), 303–308, doi:10.1046/j.1529-8817.2003.00701.x, 2004.

565 Kilonzo, F.: Assessing the Impacts of Environmental Changes on the Water Resources of the Upper Mara, Lake
566 Victoria Basin. PhD Thesis, Vrije Universiteit Brussel (VUB), 2014.

567 Kiniry, J. and MacDonald, J.: Plant growth simulation for landscape-scale hydrological modelling, *Hydrol. Sci.*,
568 53(October 2008), 1030–1042, doi:10.1623/hysj.53.5.1030, 2008.

569 Kraus, T.: Ground-based Validation of the MODIS Leaf Area Index Product for East African Rain Forest
570 Ecosystems., 2008.

571 Kraus, T., Schmidt, M., Dech, S. W. and Samimi, C.: The potential of optical high resolution data for the assessment
572 of leaf area index in East African rainforest ecosystems, *Int. J. Remote Sens.*, 30(19), 5039–5059, doi:Doi
573 10.1080/01431160903022878, 2009.

574 Krysanova, V. and White, M.: Advances in water resources assessment with SWAT—an overview, *Hydrol. Sci. J.*,
575 (August), 1–13, doi:10.1080/02626667.2015.1029482, 2015.

576 Lotsch, A.: Coupled vegetation-precipitation variability observed from satellite and climate records, *Geophys. Res.*
577 Lett., 30(14), 1774, doi:10.1029/2003GL017506, 2003.

578 LPDAAC: Land Processes Distributed Active Archive Center (LPDAAC) of NASA, [online] Available from: url:
579 https://lpdaac.usgs.gov/data_access/data_pool (Accessed 5 December 2014), 2014.

580 Mango, L. M., Melesse, a. M., McClain, M. E., Gann, D. and Setegn, S. G.: Land use and climate change impacts
581 on the hydrology of the upper Mara River Basin, Kenya: results of a modeling study to support better resource
582 management, *Hydrol. Earth Syst. Sci.*, 15(7), 2245–2258, doi:10.5194/hess-15-2245-2011, 2011.

583 Maranda, B. and Anctil, F.: SWAT Performance as Influenced by Potential Evapotranspiration Formulations in a
584 Canadian Watershed, *Trans. ASABE*, 58(6), 1585–1600, doi:10.13031/trans.58.11290, 2015.

585 McNally, A., Husak, G. J., Brown, M., Carroll, M., Funk, C., Yatheendradas, S., Arsenault, K., Peters-Lidard, C.

586 and Verdin, J. P.: Calculating Crop Water Requirement Satisfaction in the West Africa Sahel with Remotely Sensed
587 Soil Moisture, *J. Hydrometeorol.*, 16(1), 295–305, doi:10.1175/JHM-D-14-0049.1, 2015.

588 Mengistu, D. T. and Sorteberg, a.: Sensitivity of SWAT simulated streamflow to climatic changes within the
589 Eastern Nile River basin, *Hydrol. Earth Syst. Sci.*, 16(2), 391–407, doi:10.5194/hess-16-391-2012, 2012.

590 Monteith, J. L.: Evaporation and the environment, The state and movement of water in living organisms, in XIXth
591 symposium, Cambridge University Press, Swansea., 1965.

592 Mwangi, H. M., Julich, S., Patil, S. D., McDonald, M. a. and Feger, K.-H.: Modelling the impact of agroforestry on
593 hydrology of Mara River Basin in East Africa, *Hydrol. Process.*, n/a-n/a, doi:10.1002/hyp.10852, 2016.

594 Myneni, R. ., Hoffman, S., Knyazikhin, Y., Privette, J. ., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith,
595 G. ., Lotsch, A., Friedl, M., Morisette, J. ., Votava, P., Nemani, R. . and Running, S. .: Global products of vegetation
596 leaf area and fraction absorbed PAR from year one of MODIS data, *Remote Sens. Environ.*, 83(1–2), 214–231,
597 doi:10.1016/S0034-4257(02)00074-3, 2002.

598 Myneni, R. B., Yang, W., Nemani, R. R., Huete, A. R., Dickinson, R. E., Knyazikhin, Y., Didan, K., Fu, R., Negron
599 Juarez, R. I., Saatchi, S. S., Hashimoto, H., Ichii, K., Shabanov, N. V., Tan, B., Ratana, P., Privette, J. L., Morisette,
600 J. T., Vermote, E. F., Roy, D. P., Wolfe, R. E., Friedl, M. a, Running, S. W., Votava, P., El-Saleous, N., Devadiga,
601 S., Su, Y. and Salomonson, V. V: Large seasonal swings in leaf area of Amazon rainforests, *Proc. Natl. Acad. Sci.*,
602 104(12), 4820–4823, doi:10.1073/pnas.0611338104, 2007.

603 NASA: United States Geological Survey Earth Explorer. Available online: <http://earthexplorer.usgs.gov/> (accessed
604 on 9 Sept 2015)., [online] Available from: <http://earthexplorer.usgs.gov/>, 2014.

605 Neitsch, S. L., Arnold, J. G., Kiniry, J. R. and Williams, J. R.: Soil & Water Assessment Tool Theoretical
606 Documentation Version 2009.Texas Water Resources Institute Technical Report No. 406 Texas A&M University
607 System College Station, TX,pp. 647., 2011.

608 Pfeifer, M., Gonsamo, A., Disney, M., Pellikka, P. and Marchant, R.: Leaf area index for biomes of the Eastern Arc
609 Mountains: Landsat and SPOT observations along precipitation and altitude gradients, *Remote Sens. Environ.*,
610 118(2012), 103–115, doi:10.1016/j.rse.2011.11.009, 2012.

611 Pfeifer, M., Lefebvre, V., Gonsamo, A., Pellikka, P. K. E., Marchant, R., Denu, D. and Platts, P. J.: Validating and
612 linking the GIMMS leaf area index (LAI3g) with environmental controls in tropical Africa, *Remote Sens.*, 6(3),
613 1973–1990, doi:10.3390/rs6031973, 2014.

614 Ritchie, J. T.: Model for predicting evaporation from a row crop with incomplete cover, *Water Resour. Res.*, 8(5),
615 1204–1213, doi:10.1029/WR008i005p01204, 1972.

616 Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B.,
617 Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D. and Toll, D.: The Global Land Data
618 Assimilation System, *Bull. Am. Meteorol. Soc.*, 85(March), 381–394, doi:10.1175/BAMS-85-3-381, 2004.

619 Roy, T., Serrat-Capdevila, A., Gupta, H. and Valdes, J.: A platform for probabilistic Multimodel and Multiproduct
620 Streamflow Forecasting, *Water Resour. Res.*, (3), 1–24, doi:10.1002/2016WR019752, 2017.

621 Sacks, W. J., Deryng, D., Foley, J. A. and Ramankutty, N.: Crop planting dates: an analysis of global patterns, *Glob.*
622 *Ecol. Biogeogr.*, 19, no-no, doi:10.1111/j.1466-8238.2010.00551.x, 2010.

623 Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H. and Verdin, J. P.: Operational
624 Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB
625 Approach, *JAWRA J. Am. Water Resour. Assoc.*, 49(3), 577–591, doi:10.1111/jawr.12057, 2013.

626 Setegn, S. G., Srinivasan, R., Melesse, A. M. and Dargahi, B.: SWAT model application and prediction uncertainty
627 analysis in the Lake Tana Basin, Ethiopia, *Hydrol. Process.*, 24(3), 357–367, doi:10.1002/hyp.7457, 2009.

628 Setegn, S. G., Rayner, D., Melesse, A. M., Dargahi, B. and Srinivasan, R.: Impact of climate change on the
629 hydroclimatology of Lake Tana Basin, Ethiopia, *Water Resour. Res.*, 47(4), n/a-n/a, doi:10.1029/2010WR009248,
630 2011.

631 Shen, C., Niu, J. and Phanikumar, M. S.: Evaluating controls on coupled hydrologic and vegetation dynamics in a
632 humid continental climate watershed using a subsurface-land surface processes model, *Water Resour. Res.*, 49(5),
633 2552–2572, doi:10.1002/wrcr.20189, 2013.

634 Strauch, M.: SWAT plant growth modification for improved modeling of tropical vegetation SWAT is increasingly
635 used in the tropics ..., 2013.

636 Strauch, M. and Volk, M.: SWAT plant growth modification for improved modeling of perennial vegetation in the
637 tropics, *Ecol. Modell.*, 269, 98–112, doi:10.1016/j.ecolmodel.2013.08.013, 2013.

638 Teklesadik, A. D., Alemayehu, T., van Griensven, A., Kumar, R., Liersch, S., Eisner, S., Tecklenburg, J., Ewunte, S.
639 and Wang, X.: Inter-model comparison of hydrological impacts of climate change on the Upper Blue Nile basin
640 using ensemble of hydrological models and global climate models, *Clim. Change*, doi:10.1007/s10584-017-1913-4,
641 2017.

642 Trabucco, A. and Zomer, R. J.: Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration
643 (Global-PET) Geospatial Database. CGIAR Consortium for Spatial Information. Published online, available from
644 the CGIAR-CSI GeoPortal, 2009.

645 USDA SCS: Section 4 Hydrology, National Engineering Handbook. Washington., 1972.

646 Verbesselt, J., Hyndman, R., Newnham, G. and Culvenor, D.: Detecting trend and seasonal changes in satellite
647 image time series, *Remote Sens. Environ.*, 114(1), 106–115, doi:10.1016/j.rse.2009.08.014, 2010.

648 Verbesselt, J., Zeileis, A. and Herold, M.: Near real-time disturbance detection using satellite image time series,
649 *Remote Sens. Environ.*, 123(2012), 98–108, doi:10.1016/j.rse.2012.02.022, 2012.

650 Verdin, J. and Klaver, R.: Grid-cell-based crop water accounting for the famine early warning system, *Hydrol.*
651 *Process.*, 16(8), 1617–1630, doi:10.1002/hyp.1025, 2002.

652 Wagner, P. D., Kumar, S., Fiener, P. and Schneider, K.: Hydrological Modeling with SWAT in a Monsoon -Driven
653 environment: Experience from the Western Ghats, India, *Trans. ASABE*, 54(5), 1783–1790, 2011.

654 Wang, X., Melesse, A. M. and Yang, W.: Influences of Potential Evapotranspiration Estimation Methods on
655 SWAT's Hydrologic Simulation in a Northwestern Minnesota Watershed, *Trans. ASABE*, 49(6), 1755–1771,
656 doi:10.13031/2013.22297, 2006.

657 Yang, Q. and Zhang, X.: Improving SWAT for simulating water and carbon fluxes of forest ecosystems, *Sci. Total
658 Environ.*, 569–570, 1478–1488, doi:10.1016/j.scitotenv.2016.06.238, 2016.

659 Yu, X., Lamačová, A., Duffy, C., Krám, P. and Hruška, J.: Hydrological model uncertainty due to spatial
660 evapotranspiration estimation methods, *Comput. Geosci.*, 90(2016), 90–101, doi:10.1016/j.cageo.2015.05.006,
661 2016.

662 Zhang, K., Kimball, J. S., Nemani, R. R. and Running, S. W.: A continuous satellite-derived global record of land
663 surface evapotranspiration from 1983 to 2006, *Water Resour. Res.*, 46(9), 1–21, doi:10.1029/2009WR008800, 2010.

664 Zhang, X.: Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and
665 TRMM instruments, *J. Geophys. Res.*, 110(D12), D12103, doi:10.1029/2004JD005263, 2005.

666 Zhang, X., Friedl, M. A. and Schaaf, C. B.: Global vegetation phenology from Moderate Resolution Imaging
667 Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements, *J. Geophys.*
668 *Res. Biogeosciences*, 111(4), 1–14, doi:10.1029/2006JG000217, 2006.

669 Zhang, Y., Chiew, F. H. S., Zhang, L. and Li, H.: Use of Remotely Sensed Actual Evapotranspiration to Improve
670 Rainfall–Runoff Modeling in Southeast Australia, *J. Hydrometeorol.*, 10(4), 969–980, doi:10.1175/2009JHM1061.1,
671 2009.

672