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Abstract. The Soil and Water Assessment Tool (SWAT) is a globally applied river basin eco-hydrological model in 6 

a wide spectrum of studies, ranging from land use change and climate change impacts studies to research for the 7 

development of best water management practices. However, SWAT has limitations in simulating the seasonal 8 

growth cycles for trees and perennial vegetation in the tropics, where rainfall (via soil moisture) is the major plant 9 

growth controlling factor than temperature. Our goal is to improve the vegetation growth module of the SWAT 10 

model for simulating the vegetation variables such as the leaf area index (LAI) for tropical ecosystem. Therefore, we 11 

present a modified SWAT version for the tropics (SWAT-T) that uses a straightforward but robust soil moisture 12 

index (SMI) - a quotient of the rainfall (P) and reference evapotranspiration (PET) - to initiate a new growth cycle 13 

dynamically within a pre-defined period. Our results for the Mara Basin (Kenya/Tanzania) show that the SWAT-T 14 

simulated LAI corresponds well with the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI for ever-15 

green forest, savanna grassland and shrubland, indicating that the SMI is reliable for triggering new growth cycle 16 

annually. The water balance components (evapotranspiration and streamflow) simulated by the SWAT-T exhibit a 17 

good agreement with a thermal-based evapotranspiration (ET-RS) estimate and observed streamflow. The SWAT-T 18 

model with the proposed improved vegetation growth module for tropical ecosystem can be a robust tool for simu-19 

lating the vegetation growth dynamics consistently in hydrologic model applications including land use and climate 20 

change impact studies. 21 

1. Introduction  22 

The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) is a process-oriented, spatially semi-distributed 23 

and time-continuous river basin model. SWAT is one of the most widely applied eco-hydrological models for simu-24 

lating hydrological and biophysical processes under a range of climate and management conditions (Arnold et al., 25 

2012; Bressiani et al., 2015; Gassman et al., 2014; van Griensven et al., 2012; Krysanova and White, 2015). Many 26 

studies used SWAT in tropical Africa, to investigate the basin hydrology (e.g. Dessu and Melesse, 2012; Easton et 27 

al., 2010; Mwangi et al., 2016; Setegn et al., 2009) as well as to study the hydrological impacts of land use change 28 

(e.g. Gebremicael et al., 2013; Githui et al., 2009; Mango et al., 2011) and climate change (Mango et al., 2011; 29 

Mengistu and Sorteberg, 2012; Setegn et al., 2011; Teklesadik et al., 2017). Notwithstanding the high number of 30 

SWAT model applications in tropical catchments, only a few studies underscored the limitation of its plant growth 31 



2 

 

module for simulating the growth cycles of trees, perennials and annuals in this region of the world (Mwangi et al., 32 

2016; Strauch and Volk, 2013; Wagner et al., 2011). 33 

 It is worthwhile to note that phenological changes in vegetation affect the biophysical and hydrological processes in 34 

the basin hydrology and thus play a key role in integrated hydrologic and ecosystem modeling (Jolly and Running, 35 

2004; Shen et al., 2013; Strauch and Volk, 2013; Yang and Zhang, 2016; Yu et al., 2016). The Leaf Area Index 36 

(LAI), a vegetation attribute commonly used in eco-hydrological modeling, strongly correlates with a vegetation 37 

phenological development. Thus, an enhanced representation of the LAI dynamics can improve the predictive capa-38 

bility of hydrologic models, as noted in several studies (Andersen et al., 2002; Yu et al., 2016; Zhang et al., 2009). 39 

Arnold et al. (2012) also underscored the need for a realistic representation of the local and regional plant growth 40 

processes to simulate reliably the water balance, the erosion, and the nutrient yields using SWAT. For instance, the 41 

LAI and canopy height are needed to determine the canopy resistance and the aerodynamic resistance to subsequent-42 

ly compute the potential plant transpiration in SWAT. Therefore, inconsistencies  in the vegetation growth  could 43 

result in uncertain ET estimates as noted in Alemayehu et al. (2015).   44 

SWAT utilizes a simplified version of the Environmental Policy Impact Climate (EPIC) crop growth module to 45 

simulate the phenological development of plants, based on accumulated heat units (Arnold et al., 1998; Neitsch et 46 

al., 2011). SWAT uses dormancy, which is a function of daylength and latitude, to repeat the annual growth cycle 47 

for trees and perennials. Admittedly, this approach is suitable for temperate region. However, Strauch and Volk 48 

(2013) showed that the LAI temporal dynamics are not well represented for perennial vegetation (savanna and 49 

shrubs) and evergreen forest in Brazil. Likewise, Wagner et al. (2011) reported a mismatch between the growth 50 

cycle of deciduous forest in the Western Ghats  (India) and the SWAT dormancy period, and they subsequently 51 

shifted the dormancy period to the dry season.  52 

Unlike temperate regions where the vegetation growth dynamics are mainly controlled by the temperature, the pri-53 

mary controlling factor in tropical regions is the rainfall (i.e. the water availability)  (Jolly and Running, 2004; 54 

Lotsch, 2003; Pfeifer et al., 2012, 2014; Zhang, 2005). A study of Zhang et al. (2005) explored the relationship be-55 

tween the rainfall seasonality and the vegetation phenology across Africa. They showed that the onset of the vegeta-56 

tion green-up can be predicted using the cumulative rainfall as a criterion to indicate the season change. Jolly and 57 

Running (2004) determined the timing of leaf flush in an ecosystem process simulator (BIOME-BGC) after a de-58 

fined dry season in the Kalahari, using events where the daily rainfall (P) exceeded the reference evapotranspiration 59 

(PET). They showed that the modeled leaf flush dates compared well with the leaf flush dates estimated from the 60 

Normalized Difference Vegetation Index (NDVI), indicating the reliability of a proxy derived from P and PET to 61 

pinpoint a season change of tropical ecosystems. Sacks et al. (2010) studied the relationships between crop planting 62 

dates and temperature, P and PET globally, using 30-year average climatological values. They noted that in rainfall 63 

limited regions the ratio of P to PET is a better proxy for the soil moisture status than is P alone.  Using  soil mois-64 

ture index (SMI) derived from the  ratio of P to PET to trigger new growth cycle annually in hydrological modeling 65 

is appealing because  as the SMI can be determined a priori.  On the other hand, Strauch and Volk (2013) used 66 
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SWAT model simulated soil moisture in the top soil layers with a certain minimum threshold after a defined dry 67 

season to indicate the start of a rainy season (SOS) and thus new vegetation growth cycle. Their results showed 68 

improvements in the SWAT simulated LAI seasonal dynamics and reproduced well the Moderate Resolution Imag-69 

ing Spectroradiometer (MODIS) 8-day LAI. However, such approach requires calibrating the SWAT parameters for 70 

a realistic representation of the soil water balance dynamics often using observed streamflow. Recently, Yu et al.  71 

(2016)  concluded uncertainty in soil moisture is significantly greater than streamflow simulations of a calibrated 72 

hydrologic model. 73 

The objective this study is to improve the vegetation growth module of SWAT model for trees and perennials in the 74 

tropics. Towards this the use of the SMI within a predefined transition months as a dynamic trigger for new vegeta-75 

tion growth cycle will be explored. The modified SWAT (SWAT-T) model will be evaluated using 8-day MODIS 76 

LAI and thermal-based ET. Additionally, the model will be evaluated using observed daily streamflow.   77 

2. Materials and methods  78 

2.1. The study area  79 

The Mara River, a transboundary river shared by Kenya and Tanzania, drains an area of 13,750 km
2
 (Figure 1a). 80 

This river originates from the forested Mau Escarpment (about 3000 m.a.s.l.) and meander through diverse agroeco-81 

systems and subsequently crosses the Masai-Mara Game Reserve in Kenya and the Seregenti National Park in Tan-82 

zania and finally feeds the Lake Victoria. The Amala River and the Nyangores River are the only perennial tributar-83 

ies draining the head water region. The Talek River and the Sand River are the two most notable seasonal rivers 84 

stemming from Loita Hills. 85 

Rainfall varies spatially mainly due to its equatorial location and its topography. The rainfall pattern in most part of 86 

the basin is bimodal, with a short rainy season (October-December) driven by convergence and southward migration 87 

of the Intertropical Convergence Zone (ITCZ) and a long rainy season (March-May) driven by southeasterly trades. 88 

In general, rainfall decreases from west to east across the basin while temperature increases southwards. The Mara 89 

basin is endowed with significant biodiversity features through a sequence of zones from moist montane forest on 90 

the escarpment through dry upland forest to scattered woodland and then the extensive savanna grasslands (Figure 91 

1b). Dark volcanic origin soils are common on the escarpment and rangelands while shallow soils that drain freely 92 

are found lower down. Poorly drained soils cover the plateau and the plains. 93 
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 94 

(a) 95 

(b) 96 

 97 

Figure 1 Location of the Mara Basin (a) and its land cover classes (b). Note the sample sites location for the major natural 98 
vegetation classes that are used to mask the Moderate Resolution Imaging Spectroradiometer ( MODIS) Leaf Area Index 99 
(LAI). 100 

2.2. SWAT model description 101 

The SWAT (Arnold et al., 1998, 2012; Neitsch et al., 2011) is a comprehensive, process-oriented and physically-102 

based eco-hydrological model at a river basin scale. SWAT requires specific information about weather, soil proper-103 

ties, topography, vegetation, and land management practices occurring in the watershed to directly model physical 104 
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processes associated with water movement, sediment movement, crop growth, nutrient cycling, etc.  In SWAT a 105 

basin is partitioned into several sub-basins using topographic information and the sub-basins, in turn, are subdivided 106 

into several Hydrological Response Units (HRUs) with a unique combination of land use, soil and slope class. Each 107 

hydrologic processes are simulated at HRU level on a daily or sub-daily time step and aggregated into sub-basin 108 

level for routing into a river network (Neitsch et al., 2011). SWAT considers five storages: snow, canopy storage, 109 

the soil profile with up to ten layers, a shallow aquifer and a deep aquifer to calculate the water balance (Neitsch et 110 

al., 2011) using the following equation: 111 

 



t

1i

total LossesETQPS  

  ( 1) 

where ΔS is the change in water storage (mm) and t is time in days. P, Qtotal, ET and Losses are the daily amounts of 112 

precipitation (mm), the total water yield (mm), the evapotranspiration (mm) and the groundwater losses (mm), re-113 

spectively. The total water yield represents an aggregated sum of the surface runoff, the lateral flow and the return 114 

flow. In this study, the surface runoff is computed using the Soil Conservation Service (SCS) Curve Number (CN) 115 

method (USDA SCS, 1972).  116 

SWAT provides three options for estimating PET: Hargreaves (Hargreaves et al., 1985), Priestley-Taylor (Priestley 117 

and Taylor, 1972), and Penman-Monteith (Monteith, 1965) (Neitsch et al., 2011). The model simulates evaporation 118 

from soil and plants separately as described in Ritchie (1972). The potential soil evaporation is simulated as a func-119 

tion of PET and leaf area index (LAI) and further reduced with high plant water use while the actual soil water 120 

evaporation is estimated by using exponential functions of soil depth and water content (Neitsch et al., 2011). 121 

SWAT simulated LAI is also required to calculate the potential plant transpiration with formulations that varies 122 

depending on the PET method selection (Alemayehu et al., 2015; Neitsch et al., 2011). The actual plant transpiration 123 

(i.e. the plant water uptake) is reduced exponentially for soil water below filed capacity. Therefore, actual evapo-124 

transpiration in SWAT refers to the sum of evaporation from the canopy, the soil as well as plant transpiration. 125 

In this study, we use the Penman-Monteith method (Monteith, 1965) to compute the PET for alfalfa (Neitsch et al., 126 

2011) as: 127 
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where PET is the maximum transpiration rate (mm d
-1

), Δ is the slope of the saturation vapour pressure-temperature 128 

curve (kPa ˚C
-1

), 𝐻𝑛𝑒𝑡 is the net radiation (MJ m
-2

 d
-1

), G is the heat flux density to the ground (MJ m
-2

 d
-1

), 𝜌𝑎𝑖𝑟  is 129 

the air density (kg m
-3

), 𝐶𝑝 is the specific heat at constant pressure (MJ kg
-1

 ˚C
-1

), 𝑒𝑧 
0  is the saturation vapour pres-130 

sure of air at height z (kPa), 𝑒𝑧 is the water vapor pressure of air at height z (kPa), γ is the psychrometric constant 131 
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(kPa ˚C
-1

), 𝑟𝑐  is the plant canopy resistance (s m
-1

), and 𝑟𝑎 is the diffusion resistance of the air layer (aerodynamic 132 

resistance) (s m
-1

). The plant growth module simulates LAI and canopy height, which are required to determine the 133 

canopy and aerodynamic resistance. 134 

2.3. The vegetation growth and Leaf Area Index modeling in SWAT 135 

SWAT simulates the annual vegetation growth based on the simplified version of the EPIC plant growth model 136 

(Neitsch et al., 2011). The potential plant phenological development is hereby simulated on the basis of daily accu-137 

mulated heat units under optimal conditions; however, the actual growth is constrained by temperature, water, nitro-138 

gen or phosphorous stress (Arnold et al., 2012; Neitsch et al., 2011). 139 

Plant growth is primarily based on temperature and hence each plant has its own temperature requirements (i.e. 140 

minimum, maximum and optimum). The fundamental assumption in the heat unit theory is plants have a heat unit 141 

requirements that can be quantified and linked to the time of planting and maturity (Neitsch et al., 2011). The total 142 

number of heat units required for a plant to reach maturity must be provided by the user. The plant growth modeling 143 

includes simulation of  the leaf area development, light interception and conversion of intercepted light into biomass 144 

assuming a plant species-specific radiation-use efficiency (Neitsch et al., 2011). The optimal leaf area development 145 

during the initial period of the growth is modeled (Neitsch et al., 2011) as: 146 
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               (3) 

where frLAImx is the fraction of the plant’s maximum leaf area index corresponding to a given fraction of potential 147 

heat units for the plant, , and l1 and l2 are shape coefficients. Once the maximum leaf area index is reached, LAI will 148 

remain constant until the leaf senescence begins to exceed the leaf growth. Afterwards, the leaf senescence becomes 149 

the dominant growth process and hence the LAI follows a linear decline (Neitsch et al., 2011). However, Strauch 150 

and Volk (2013) showed the advantage of using a logistic decline curve, to avoid that the LAI drops to zero before 151 

dormancy occurs. Therefore, we adopted this change to SWAT2012 whereby the LAI during leaf senescence for 152 

trees and perennials is calculated as (Strauch and Volk, 2013): 153 
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(4) 

where the term used as exponent is a function of time and t varies from 6 to -6, LAI is the leaf area for a given day 154 

and declines using r as a decline rate, LAImx and LAImin are the maximum and minimum (i.e. during dormancy) leaf 155 

area index, respectively, frPHU,sen is the fraction of growing season (PHU) at which senescence becomes the domi-156 

nant growth process.  157 
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As detailed in Neitsch  et al. (2011), the daily LAI calculation for perennials and trees are slightly different, for the 158 

latter the years of development is considered. 159 

For perennials, the leaf on day i is calculated as: 160 

 
 )).(5exp(1
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               (5) 

The total leaf area index, the area of green leaf per unit area of land, is calculated: 161 

iii LAILAILAI  1                       (6) 

where ΔLAIi is the leaf area added on day i, LAIi and LAIi-l are the leaf area indices for day i and i-1 respectively, 162 

frLAImx,i and frLAImx,i-1 are the fraction of the plant’s maximum leaf area index for day i and i-1, LAImx is the maximum 163 

leaf area index for the plants, yrcur is the age of the tree (years), and yrfulldev is the number of years for tree species to 164 

reach full development (years). 165 

2.4. SWAT annual vegetation growth cycle limitation for the tropics 166 

SWAT assumes that trees and perennial vegetation can go dormant as the daylength nears the minimum daylength 167 

for the year. Dormancy, which is a function of latitude and daylength during which plants do not grow, is used to 168 

repeat the growth cycle each year for trees and perennials. At the beginning of the dormant period, a fraction of the 169 

biomass is converted to residue and the leaf area index is set to the minimum value (Neitsch et al., 2011). In the 170 

tropics, however, plants growth dormancy is primarily controlled by precipitation (Bobée et al., 2012; Jolly and 171 

Running, 2004; Lotsch, 2003; Zhang et al., 2010; Zhang, 2005) and hence the standard SWAT growth module can-172 

not realistically represent the seasonal growth dynamics for trees and perennials. SWAT offers several management 173 

settings for the start and the end of growing season based on either heat units (the default) or calendar date schedul-174 

ing. In fact, the limitation with plant growth dynamics cannot be solved using SWAT management settings as far as 175 

the latitude and daylength dependent dormancy is activated.   176 

2.5. A soil moisture index-based vegetation growth cycle for the tropics 177 

As several studies demonstrated (Jolly and Running, 2004; Zhang, 2005; Zhang et al., 2006),  the water availability 178 

in the soil profile is one of the primary governing factors of vegetation growth in tropics.  Thus, we propose a soil 179 

moisture index (SMI) to trigger new growth cycle for tropical ecosystem in SWAT model within a predefined peri-180 

od. The SMI is computed as:  181 
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where P and PET denotes daily rainfall and potential evapotranspiration (mm d
-1

), N is the number of days of aggre-182 

gation. In this study we used five days aggregated P and PET (i.e. pentad) to determine the SMI to assure sufficient 183 

soil moisture availability to initiate new growth cycle. The SMI is somewhat similar to the Water Requirement Sat-184 

isfaction Index (WRSI) (Verdin and Kalver 2002), which is a ratio of ET to PET. 185 

 Figure 2 presents the SMI seasonal pattern based on long-term climatological P for several gauge stations and PET 186 

from Trabucco and Zomer (2009) across the Mara Basin. It is apparent from Figure 2 that the dry season (mostly 187 

from June - September) shows low SMI values (less than 0.5). Additionally, these patterns resemble well the long-188 

term monthly average LAI for the savanna ecosystem (the dominant cover in the mid-section of the Mara Basin). In 189 

areas with a humid climate (i.e. the head water regions of the basin), the SMI values are high and the rainfall regime 190 

is different, yet in the relatively drier months (January and February) the SMI is low. As shown in Figure 2, the LAI 191 

and the SMI seasonal dynamics match well with approximately one month lag, indicating the reliability of the SMI 192 

as a proxy for the SOS and hence to trigger  the annual vegetation growth cycle. This approach enables SWAT 193 

growth module not only to simulate the vegetation cycle dynamically within a predefined period, also avoids the 194 

need for management setting (“plant” and “kill”). 195 

 196 

Figure 2 The climatological moisture index (SMI) derived from historical gauge observation across the Mara Basin and 197 
Trabucco and Zomer (2009) global reference evapotranspiration data. Leaf Area Index (LAI) for the savanna ecosystem 198 
(dotted line). SOS1 and SOS2 represent the start-of-rainy season (SOS) transition months to trigger growth.  199 

0

0.5

1

1.5

2

2.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

LA
I 

(m
2

/m
2

) 

P
/P

ET
 

NYABANGI

NYABASSI

TARIME

MUGUMU

BUHEMBA

Narok

RNGE

SOS1 SOS2 



9 

 

To avoid false starts during the dry season, the end of the dry season and the beginning of the rainy season (SOS1 200 

and SOS2, respectively) are determined using a long-term monthly climatological P to PET ratio (Figure 2). For 201 

river basins with a single rainfall regime, a single set of SOS months can be used across the basin. However, in ba-202 

sins with different rainfall regimes, different SOS months need to be set at sub-basin level. In our study area two 203 

distinct rainfall regimes are observed and therefore two different SOS values were needed. For the major part of the 204 

sub-basins October (SOS1) and November (SOS2) were used as transitions (Figure 2). 205 

2.6. SWAT-T: the adaptation of the SWAT plant growth module 206 

Based on the rationale elaborated in the preceding sections, we modified the standard SWAT2012 (version 627) 207 

plant growth subroutine for basins located between 20
0
 N and 20

0 
S:  208 

i) If the simulation day is within SOS1 and SOS2 for a given HRU and a new growing cycle is not initiated 209 

yet, the SMI is calculated as the ratio of the pentad P to PET. 210 

ii) If the SMI exceeds or equals 0.5, a new growing cycle for trees and perennials is initiated. Subsequent-211 

ly, FRPHU is set to 0 and the LAI is set to the minimum value. Plant residue decomposition and nutrient 212 

release is calculated as if dormancy would occur.  213 

iii) In case the SMI is still below the threshold (i.e. 0.5) at the end of month SOS2, a new growing cycle is 214 

initiated immediately after the last date of SOS2.  215 

It is worth noting that SMI threshold could be raised or lowered depending on the climatic condition of the basin. 216 

2.7. Data for model evaluation  217 

The Leaf Area Index 218 

The remote sensing LAI data used in this study is based on the MODIS TERRA sensor (Table 1). The LAI product 219 

retrieval algorithm is based on the physics of radiative transfer in vegetation canopies (Myneni et al., 2002) and 220 

involves  several constants (leaf angle distribution, optical properties of soils and wood, and canopy heterogeneity) 221 

(Bobée et al., 2012). The theoretical basis of the MODIS LAI product algorithm and the validation results are de-222 

tailed in Myneni et al. (2002). Kraus (2008) validated the MOD15A2 LAI data at Budongo Forest (Uganda) and 223 

Kakamega Forest (Kenya) sites and reported an accuracy level comparable to the accuracy of field measurements, 224 

indicating the reliability of MOD15A2 LAI for evaluating SWAT simulated LAI for the study area. 225 

Table 1 Summary of the inputs of the SWAT model and the evaluation datasets. 226 

 Spatial/temporal 

resolution 

Source Description 

Rainfall 5 km / 1-day Roy et al. (2017) Bias-corrected satellite rainfall for 

Mara basin 

Climate 25 km / 3-hour Rondell et al. (2004) Max. and min. temperature, relative 

humidity, wind, solar radiation Land cover classes 30 m FAO (2002) Land cover classes for East Africa 
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DEM 30 m NASA (2014) Digital elevation model 

Soil classes 1 km FAO (2009) Global soil classes 
Discharge Daily (2002-2008) WRMA (Kenya)  River discharge at Bomet 

ET 1 km / 8-day Alemayehu et al. (2017)   ET maps for Mara basin 

MOD15A2 1 km  / 8-day LPDAAC(2014) Global leaf area index 

 227 

We selected a representative relatively homogeneous sample sites (i.e. polygons) for evergreen forest (174 km
2
), tea 228 

(123 km
2
), savanna grassland (136 km

2
) and shrubland (130 km

2
) (see Figure 1b) using the Africover classes and 229 

Google Earth images. This is useful to reduce the effect of land cover mix while averaging coarse scale (i.e. 1 km) 230 

LAI and hence improve the reliability of the LAI timeseries. Subsequently, the MOD15A2 LAI was masked using 231 

the polygons of the sample covers and pixels with only quality flag 0, which indicates good quality, were used. Also, 232 

pixels with LAI values less than 1.5 during the peak growing months (i.e. period with LAI values mostly above 2.0) 233 

were removed. Finally, we extracted the 8-day median LAI time series for each land cover for 2002-2009 and few 234 

gaps in the LAI time series were filled using linear interpolation. Notwithstanding with all the quality control efforts, 235 

due to the high variability and the inevitable signal noise, we noted breaks and high temporal variation in the LAI 236 

timeseries (Figure 3). Verbesselt et al. (2010) developed the Breaks For Additive Seasonal and Trend (BFAST) 237 

method that decomposes the Normalized Vegetation Index (NDVI) time series into trend, seasonal, and remainder 238 

components. The trend and seasonal components comprise information pertinent to phenological developments as 239 

well as gradual and abrupt changes whereas the reminder component comprises noise and error information of the 240 

time series. This method has been applied to tropical ecosystems to identify phenological cycles as well as abrupt 241 

changes (DeVries et al., 2015; Verbesselt et al., 2010, 2012). In our study, we used the BFAST tool to extract the 242 

seasonal development pattern of LAI while excluding the noise and error information from the LAI timeseries. Fig-243 

ure 3 demonstrates the smoothed 8-day LAI time series using BFAST along with the raw-median LAI values. It is 244 

apparent from the smoothed LAI time series that the high LAI development occurs during the wet months from 245 

March to May, suggesting consistency in the smoothed LAI timeseries. Therefore, the smoothed LAI time series 246 

were used to calibrate and evaluate the SWAT-T model vegetation growth module for simulating LAI.  247 
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 248 

Figure 3 The 8-day raw-median LAI timeseries for evergreen forest (a), tea (b), grassland (c) and shrubland (d) sample 249 
sites. The raw-median LAI is smoothed using the Breaks For Additive Seasonal and Trend (BFAST) method (Verbesselt 250 
et al., 2010). 251 

The evapotranspiration 252 

ET is one of the major components in a basin water balance that is influenced by the seasonal vegetation growth 253 

cycle. Thus, remote sensing-based ET estimates can be used to evaluate (calibrate) the SWAT-T model. Alemayehu 254 

et al. (2017) estimated ET for the Mara River basin using several MODIS thermal imageries and the GLDAS global 255 

weather dataset from 2002 to 2009 at a 8-day temporal resolution based on the Operational Simplified Surface Ener-256 

gy Balance (SSEBop) algorithm (Senay et al., 2013). The SSEBop mainly depends on the remotely sensed land 257 

surface temperature and the grass reference evapotranspiration (Senay et al., 2013). Alemayehu et al. (2017) 258 

demonstrated that the SSEBop ET explained about 52%, 63% and 81% of the observed variability in the MODIS 259 

NDVI at 16-day, monthly and annual temporal resolution. Also, they suggested that the estimated ET can be used 260 

for hydrological model parameterization. We note the resemblance in the seasonal pattern of the MODIS LAI ana-261 

lyzed in this study with the SSEBop ET, hereafter referred as remote sensing-based ET (ET-RS). Therefore, we used 262 

this dataset to evaluate the SWAT-T simulated ET at land cover level. 263 

Streamflow  264 

Due to the limited availability of observed streamflow, we used daily observed streamflow series (2002-2008) for 265 

the head water region (700 km
2
) at Bomet gauging station. The streamflow data is relatively complete with about 266 

11% missing gaps distributed throughout the timeseries.  267 
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2.8. Model set up, calibration and evaluation 268 

2.8.1. The model set up and data used 269 

The Mara River Basin was delineated using a high resolution (30 m) digital elevation model (DEM) (NASA, 2014) 270 

in ArcSWAT2012 (revision 627). The basin was subdivided into 89 sub-basins to spatially differentiate areas of the 271 

basin dominated by different land use and\ or soil with dissimilar impact on hydrology. Each sub-basin was further 272 

discretized into several HRUs, which represent unique combinations of soil, land use and slope classes. The model 273 

was set up for conditions representing the period 2002-2009. The land cover classes for the basin were obtained 274 

from FAO-Africover project (FAO, 2002). Generally speaking, as shown in Figure 1b, the dominant portion of the 275 

basin is covered by natural vegetation including savanna grassland, shrubland and evergreen forest. These land cov-276 

er classes were assigned the characteristics of  RNGE, RNGB and FRSE, respectively in SWAT (Neitsch et al., 277 

2011). We extracted the soil classes for the basin from the Harmonized Global Soil Database (FAO, 2008). A soil 278 

properties database for the Mara River Basin was established using the soil water characteristics tool (SPAW, 279 

http://hydrolab.arsusda.gov/soilwater).  280 

The list of hydro-climatological and spatial data used to derive the SWAT model are presented in Table 1. In situ 281 

measurements of rainfall and other climate variables are sparse and thus bias-corrected multi- satellite rainfall analy-282 

sis data from Roy et al. (2017) were used. The bias-correction involves using historical gauge measurements and a 283 

downscaling to a 5 km resolution. Detailed information on the bias-correction and downscaling procedures can be 284 

found in Roy et al. (2017). Weather data needed to compute the  PET using the Penman-Monteith (Monteith, 1965) 285 

method was obtained from the Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004). To remove 286 

the biases in the PET estimates compared to observation based long-term (1950-2000) seasonal PET (Trabucco and 287 

Zomer, 2009) estimates, we slightly adjusted the solar radiation for each month at sub-basin level. 288 

2.8.2. Model calibration and evaluation approach  289 

The main purpose of this study is to explore the potential of the SMI to trigger new vegetation growth cycle for the 290 

tropical ecosystem within a predefined period annually. We initially evaluated the effects of the vegetation growth 291 

module modification by comparing against the standard SWAT model growth module with varying management 292 

settings. This analysis involved uncalibrated simulations of the SWAT models with the default SWAT model pa-293 

rameters, meaning the models differs only with how vegetation growth is simulated. It is worth noting that the aim 294 

of these simulations is mainly to expose the inconsistencies in the vegetation growth module structure. Afterwards, 295 

we calibrated the parameters related to the simulation of the LAI, the evapotranspiration and the streamflow manual-296 

ly by trial-and-error and expert knowledge for the SWAT-T model. Firstly, SWAT parameters that control the 297 

shape, the magnitude and the temporal dynamics of LAI were adjusted to reproduce the MODIS LAI at 8-day for 298 

each land cover classes. Then, we adjusted parameters that mainly control streamflow and evapotranspiration (ET) 299 

simulation simultaneously using the daily observed streamflow and 8-day ET-RS. Perhaps, the manual adjustment 300 

may not be as robust as an automatic calibration as the latter explores a larger parameters space. However, the man-301 

http://hydrolab.arsusda.gov/soilwater
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ual calibration is sufficient to illustrate the impact of the modification on the vegetation growth cycle and its effect 302 

on the water balance components. The SWAT-T model calibration and validation was done for 2002-2005 and 303 

2006-2009, respectively. 304 

2.8.3. The model performance metrics 305 

The Pearson correlation coefficient (r) and the Percent of PBIAS (%bias) were used to evaluate the agreement be-306 

tween the simulated and the remote sensing-based estimates of LAI and evapotranspiration for each land cover class 307 

and the streamflow. Additionally, the model performance was evaluated using the Kling-Gupta Efficiency (KGE) 308 

(Gupta et al., 2009), which provides a compressive assessment by taking into account of the variability, the bias and 309 

the correlation in a multi-objective sense. 310 

3. Results and discussion 311 

3.1. Consistency assessment of the vegetation growth module without calibration  312 

3.1.1. LAI simulation  313 

To highlight the added value of the modified vegetation growth module in SWAT-T for simulating the seasonal 314 

growth pattern of trees and perennials, we compared the daily simulated LAI of the standard SWAT2012 (revision 315 

627) model and SWAT-T model. At this stage, the models were uncalibrated (i.e. based on default SWAT parame-316 

ters). This is useful to explore the effect of the vegetation growth module structural modification on the consistency 317 

of simulated LAI annual cycle. We note from the simulation results considerable inconsistencies in the growth cycle 318 

of the simulated daily LAI mainly due to the vegetation growth model structure and management settings. For in-319 

stance, Figure 4 and Figure 5 present the simulated daily LAI for FRSE and RNGE based on the standard SWAT 320 

model under different management settings and the SWAT-T model. Strauch and Volk (2013), Kilonzo (2014) and 321 

Mwang et al. (2016) reported similar observations. The default management setting in the standard SWAT model 322 

for starting the new growth cycle (i.e. planting) and ending the growth cycle is scheduled using the FRPHU (Heat 323 

unit). Thus, the start and the end of the vegetation growth cycle management settings occurs at FRPHU  0.15 and 1.2, 324 

respectively. With this management setting, the simulated LAI is zero at the beginning of each simulation year for 325 

all types of vegetation cover. Mwang et al. (2016) improved the SWAT LAI simulation with this management set-326 

ting using FRPHU   of 0.001 to start the growing season and  minimum LAI  of 3.0 for evergreen forest. Yet, this 327 

change is region specific and cannot be transferred.  As shown in Figure 4 and Figure 5, this can also be partly im-328 

proved using a date scheduling (Date) for the start and the end of the vegetation growth cycle (i.e. instead of heat 329 

unit). Additionally, all the management setting can be removed (no mgt) and vegetation is growing since the start of 330 

the simulation (i.e. IGRO=1). 331 

The forested head-water region experiences a unimodal rainfall regime, with March-August being the rainy season. 332 

In contrast, a bimodal rainfall regime prevails (March-May and October-December) on the remaining part of the 333 

basin. Despite the changes in the management settings, it is apparent that the standard SWAT model has inherent 334 
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limitation to simulate vegetation growth cycle for tropics that are consistent with seasonal rainfall distribution 335 

(Figure 4 and Figure 5). Also, the vegetation growth cycle resets annually on 28
th

 June due to dormancy. 336 

In contrast, the simulated LAI cycles for FRSE, tea, RNGE and RNGB  cover types using the SWAT-T model (i.e. 337 

the modified vegetation growth module) reveal a consistent annual cycle and are associated with the seasonal rain-338 

fall pattern (see Figure 4 and Figure 5). 339 

 340 

Figure 4 The LAI as simulated by the SWAT-T and the standard SWAT models for different management settings for 341 
evergreen forest (FRSE) using default SWAT parameter. See management settings explanations in the texts. 342 
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 343 

Figure 5 The LAI as simulated by the SWAT-T and the standard SWAT models for different management settings for 344 

grassland (RNGE) using default SWAT parameter. See management settings explanations in the texts. 345 

3.1.2. Implication of inconsistent LAI simulation 346 

The LAI is required to compute potential transpiration, potential soil evaporation and plant biomass, among others 347 

in  SWAT (Neitsch et al., 2011). For instance, to compute the daily potential plant transpiration in SWAT,  the can-348 

opy resistance and the aerodynamic resistance are determined using the simulated actual daily LAI and canopy 349 

height, respectively (Neitsch et al., 2011). Therefore, the aforementioned limitations of the annual vegetation growth 350 

cycle in the standard SWAT model growth module also influence directly the accuracy of transpiration.  For in-351 

stance, Figure 6 depicts the comparison of the standard SWAT and the SWAT-T simulated daily potential transpira-352 

tion timeseries for grassland based on the Penman-Monteith approach. We observe 14% (12%) of the standard 353 

SWAT simulated daily potential transpiration timeseries (2002-2009) for FRSE (RNGE) being zero, suggesting a 354 

considerable inconsistency. However, the SWAT-T reduced considerably (i.e. less than 2% for FRSE and RNGE) 355 

the inconsistent zero daily potential transpiration, indicating the improvements in the vegetation growth module. 356 

Several studies have shown the effect of PET method selection in SWAT on simulated ET and other water balance 357 

components (Alemayehu et al., 2015; Maranda and Anctil, 2015; Wang et al., 2006). Alemayehu et al. (2015) re-358 

ported significant differences in both potential and actual transpiration with the choice of PET method using cali-359 

brated SWAT model, which partly ascribed to the unrealistic LAI growth cycle. We notice the SWAT-T simulated 360 

potential transpiration is consistent regardless of the PET method selection in SWAT (results not shown here) and 361 

therefore, the improved vegetation growth module in the SWAT-T could reduce the uncertainty arising from the 362 

module structure and thus minimize the uncertainties in model simulation outputs.  363 
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 364 

Figure 6 Inter-comparison of Penman-Monteith-based daily potential transpiration simulated by the SWAT-T and the 365 
standard SWAT models for grassland. Note that the heat unit scheduling is used in the standard SWAT model.  366 

3.2. Evaluation of the calibrated SWAT-T model  367 

3.2.1. Performance of the LAI simulation 368 

Table 2 presents the list of SWAT model parameters that are adjusted during the calibration process. Initially, the 369 

minimum LAI (ALAI_MIN) for each land cover classes were set based on the long-term MODIS LAI. Also, the 370 

PHU was computed using the long-term climatology, as suggested in Strauch and Volk (2013). The shape coeffi-371 

cients for the LAI curve (FRGW1, FRGW2, LAIMX1, LAIMX2 and DLAI) and the remaining parameters were adjust-372 

ed during the calibration period by a trail-and-error process such that the SWAT-T simulated 8-day LAI mimics the 373 

MODIS 8-day LAI.  374 

Figure 7 presents the comparison of 8-day MODIS LAI with the calibrated SWAT-T simulated LAI aggregated over 375 

several land cover classes for the calibration and validation period. We evaluated the degree of agreement qualita-376 

tively -by visual comparison- and quantitatively -by statistical measures. From the visual inspection it is apparent 377 

that the intra-annual LAI dynamics (and hence the annual growth cycle of each land cover class) from the SWAT-T 378 

model correspond well with the MODIS LAI data. This observation is supported by correlation as high as 0.94 379 

(FRSE) and 0.92 (RNGB) during the calibration period (Table 3). As shown in Table 3, the model also shows simi-380 

lar performance during the validation period with low average biases and correlation as high as 0.93 (FRSE). Over-381 

all, the results indicate that the SMI can indeed be used to dynamically trigger a new growing season within a pre-382 

defined period.  383 

Despite the overall good performance of SWAT-T in simulating LAI, we observed biases for FRSE and Tea mainly 384 

during the rainy season over the calibration and validation period (see Figure 7 top row). This is partly attributed to 385 

the cloud contamination of the MODIS LAI, as shown in Figure 3a and Figure 3b, in the mountainous humid part of 386 

the basin , as note in Krause (2008). Also, the senescence seems to occur slightly early for Tea, as shown in Figure 387 
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3b, thereby we note a mismatch between SWAT simulated LAI and MODIS LAI. This indicate the need to further 388 

adjust the Fraction of total PHU when leaf area begins to decline (DLAI). 389 

Table 2 List of SWAT parameters used to calibrate LAI, ET and streamflow with their default and calibrated values. 390 

 

Parameter 

 

Parameter definition (unit) 

 

Variable 

Default (calibrated) 

FRSE RNGE RNGB 

BIO_E Radiation-use efficiency((kg/ha)/(MJ/m2)) LAI 15 (17) 34 (10) 34 (10) 

BLAI Maximum potential leaf area index (m2/m2) LAI 5 (4.0) 2.5 (3.5) 2 (3.5) 

FRGW1 Fraction of PHU corresponding to the 1st point 

on the optimal leaf area development curve 

LAI 
0.15 (0.06) 0.05 (0.2) 

0.05 (0.2) 

 

LAIMX1 
Fraction of BLAI corresponding to the 1st point 

on the optimal leaf area development curve 

LAI 0.7 

(0.15) 

0.1 

(0.1) 

0.1 

(0.1) 

FRGW2 
Fraction of PHU corresponding to the 2nd point 

on the optimal leaf area development curve 

LAI 0.25 

(0.15) 

0.25 

(0.5) 

0.25 

(0.5) 

LAIMX2 
Fraction of BLAI corresponding to the 2nd point 

on the optimal leaf area development curve 

LAI 0.99 

(0.30) 

0.7 

(0.99) 

0.7 

(0.99) 

DLAI 
Fraction of total PHU when leaf area begins to 

decline 

LAI 0.99 

(0.30) 

0.35 

(0.99) 

0.35 

(0.99) 

T_OPT Optimal temperature for plant growth (ºC) LAI 30 (25) 25 (30) 25 (30) 

T_BASE Minimum temperature for plant growth (ºC) LAI 0 (5) 12 (5) 12 (5) 

ALAI_MIN 
Minimum leaf area index for plant during 

dormant period (m2.m2) 

LAI 0.75 

(2.0) 

0 

(0.75) 

0 

(0.75) 

PHU 
Total number of heat units needed to bring   

plant to maturity 

LAI 1800 

(3570) 

1800 

(4100) 

1800 

(4100) 

SOL_Z1 Soil layer depths (mm) 

ET 

300 [1000] 

(480 [1600]) 

300[1000] 

(480 [1600]) 

300[1000] 

(480 

[1600]) 

SOL_AWC2 Soil available water (mm) 

ET/flow 0.26-0.31 

[0.27-0.29] 

(0.18-0.21 

0.26-0.31 

[0.27-0.29] 

(0.18-0.21 

0.26-0.31 

[0.27-0.29] 

(0.18-0.21 
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[0.18-0.20]) [0.18-0.20]) [0.18-0.20]) 

ESCO Soil evaporation compensation factor (-) 

ET 0.95 

(0.88) 

0.95 

(1) 

0.95 

(1) 

EPCO Plant uptake compensation factor (-) 

ET 1 

(1) 

1 

(1) 

1 

(1) 

GSI 
Maximum stomatal conductance at high solar 

radiation and low vapor pressure deficit (m.s-1) 

ET 0.002 

(0.006) 

0.005 

(0.0035) 

0.005 

(0.004) 

REVAPMN Depth of water in the aquifer for revap (mm) 

ET 750 

(100) 

750 

(100) 

750 

(100) 

CN23 Initial SCS curve number II value (-) 

flow 55 [70] 

(38 [48]) 

69 [79] 

(81 [92]) 

61 [74] 

(71 [87]) 

SURLAG Surface runoff lag time (day) flow 4(0.01) 4(0.01) 4(0.01) 

ALPHA_BF Baseflow recession constant (day) 

flow 0.048 

(0.2) 

0.048 

(0.2) 

0.048 

(0.2) 

GWQMN Shallow aquifer minimum level for base flow 

flow 1000 

(50) 

1000 

(50) 

1000 

(50) 

GW_REVAP Groundwater ‘revap’ coefficient (-) 

ET 0.02 

(0.1) 

0.02 

(0.02) 

0.02 

(0.02) 

RCHRG_DP Deep aquifer percolation fraction (-) 

flow 0.05 

(0.3) 

0.05 

(0.1) 

0.05 

(0.1) 

1
SOL_Z values for the top [and lower] soil layers depth  391 

2
SOL_AWC values range for the top [and lower] soil layers depending on soil texture and bulk density 392 

3
CN2 values for soil hydrologic group B[C] 393 

 394 
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 395 

Figure 7 The MODIS LAI and the SWAT-T model simulated HRU weighted aggregated 8-day LAI time series (2002-396 
2009). The gray sheds indicate the boundaries of the 25th and 75th percentiles. The vertical line marks the end of the cali-397 
bration period and the beginning of the validation period.  398 

Table 3 Summary of the performance metrics for the SWAT-T for simulating LAI, ET and flow. Note that the for LAI 399 

and ET the performance is at 8-day whilst daily for flow. 400 

 

LAI calibration (validation) ET calibration (validation) Streamflow calibration (vali-

dation) 

 

FRSE Tea RNGE RNGB FRSE Tea RNGE RNGB Flow 

r 0.94 (0.93) 0.83 (0.83) 0.89 (0.86) 0.92 (0.88) 0.71 (0.68) 0.67 (0.64) 0.72 (0.77) 0.66 (0.72) 0.72 (0.76) 

%bias 1.5 (0) 0.1 (0.2) -3.7 (-0.4) -1.3 (4.6) 3.7 (6.6) -1.7 (0.5) 7.8 (11) 1.2 (2.9) 3.5 (15.5) 

KGE 0.50 (0.62) 0.42 (0.44) 0.86 (0.85) 0.88 (0.86) 0.71 (0.67) 0.62 (0.62) 0.69 (0.74) 0.66 (0.72) 0.71 (0.71) 

 401 

3.2.2. The seasonal vegetation growth pattern  402 

The seasonal pattern of LAI for FRSE, Tea, RNGE and RNGB are analysed using 8-day LAI timeseries (2002-403 

2009) from calibrated SWAT-T model and MODIS LAI. Generally, not surprisingly, the seasonal dynamics of 404 

SWAT-T simulated LAI and MODIS LAI agrees well (Figure 8 left) with pooled correlation of 0.97. 405 

 As shown in Figure 8 (right), the SWAT-T simulated monthly average LAI shows a higher seasonal variation as 406 

compared to the variation observed from MODIS LAI for FRSE with amplitude (i.e. peak-to-trough difference) is 407 

about 47.7% and 31%, respectively of the average annual MODIS LAI. The seasonal variation from MODIS LAI is 408 

comparable with the results of Myneni et al. (2007) who noted 25% seasonal variation in the Amazon forest.  We 409 

notice a correlation up to 0.66 between the seasonal LAI and rainfall in the humid part of the basin. Our observa-410 

tions are in agreement with Kraus (2008), that reported the association of LAI dynamics for forest sites located in 411 

Kenya and Uganda with inter-annual climate variability.    412 
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In  part of the basin where there is a marked dry season, the seasonal LAI dynamics exhibit a notable seasonal varia-413 

tion, with amplitude (i.e. peak-to-trough difference) that is up to 79% of the mean annual LAI (1.4 m
2
/m

2
) for 414 

RNGE. Unlike the LAI of FRSE and Tea in the humid part, the seasonal rainfall pattern is strongly correlated (up to 415 

0.81) with lagged LAI for RNGE and RNGB. This results is in agreement with several studies that noted that the 416 

LAI dynamics for natural ecosystem in the Sub-Saharan Africa are associated with the rainfall distribution pattern 417 

(Bobée et al., 2012; Kraus et al., 2009; Pfeifer et al., 2014).   418 

 419 

Figure 8  The long-term (2002-2009) average seasonal LAI pooled scatter plot (left) and temporal dynamics (right).  420 
FRSE: evergreen forest; RNGE: grassland; RNGB: shrubland. 421 

In addition to improving the seasonal dynamics of LAI in SWAT without the need of management settings, the SMI 422 

accounts for the year-to-year shifts in the SOS due to climatic variations. This is particularly important for long-term 423 

land use change and climate change impact studies. Figure 9 demonstrates the year-to-year shifts as well as the spa-424 

tial variation in the SOS dates for part of the Mara River Basin dominated by savanna grassland. Generally, the 425 

season change tends to occur in the month of October (i.e. Julian date 278-304).  Yet, we acknowledge the need of 426 

further verification studies in basins with sufficient forcing data and field measurements.  427 

 428 

Figure 9 The inter-annual and spatial variation of the start of the rainy season for the savanna vegetation in the Mara 429 
River basin for 2002-2005. Note that Julian dates are used and the mapping is done at HRU scale. 430 
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3.2.3. The spatial simulation of the evapotranspiration 431 

As presented in Table 2, several SWAT parameters were calibrated by comparing SWAT-T model simulated ET 432 

with ET-RS.  The higher water use by FRSE as compared to other land cover classes is reflected by a lower ESCO, 433 

and a higher GW_REVAP and GSI (Table 2). The lower ESCO indicates an increased possibility of extracting soil 434 

water to satisfy the atmospheric demand at a relatively lower soil depth. Also, the higher GW_REVAP points to an 435 

increased extraction of water by deep-rooted plants from the shallow aquifer or pumping. Similar findings were 436 

reported by Strauch and Volk  (2013). 437 

 Figure 10 presents the comparison of 8-day ET-RS and SWAT-T simulated ET for the calibration (2002 - 2005) 438 

and validation (2006 - 2009) periods for FRSE, Tea, RNGE and RNGB. Visually, the ET simulated by the SWAT-T 439 

fairly agrees with the ET-RS for all the covers. As shown in Table 3, the statistical performance indices show a 440 

modest performance in simulating ET for the dominant cover types in the basin. The average model biases for the 441 

simulated ET ranges from 7.8% (RNGE) to 1.2% (RNGB) during the calibration period. Additionally, the correla-442 

tion between 8-day ET from the SWAT-T and the ET-RS varies from 0.67 (Tea) to 0.72 (grassland). Overall, we 443 

mark similar performance measures during the calibration and validation period, suggesting a fair representation of 444 

the processes pertinent to ET.  445 

The variability of the ET is controlled by several -biotic and abiotic- factors. The 8-day ET time series as simulated 446 

by the SWAT-T model illustrates the variation in the temporal dynamics of ET in the study area. For land cover 447 

types located in the humid part of the basin (FRSE and tea) there is no clear temporal pattern (Figure 10). In con-448 

trast, the areas covered by RNGE and RNGB show a clear seasonality in the simulated ET. These observations are 449 

consistent with the seasonality of the simulated LAI, as discussed section 3.2.2. 450 
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 451 

Figure 10 The comparison of remote sensing-based evapotranspiration (ET-RS)  and SWAT-T simulated ET (ET-SWAT-452 
T) aggregated per land cover classes. Note that for SWAT-T HRU level ET is aggregated per landcover. The vertical 453 
black line marks the end of the calibration period and the beginning of the validation period. 454 
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To shed light on the consistency of SWAT-T model simulated LAI and ET, we selected simulation outputs for April 455 

and August at HRU level (Figure 11 and Figure 12). Figure 11 (upper row) exhibits the monthly ET at HRU level 456 

for the wet month (April) and dry month (August) in 2002. The lower portion of the basin, with dominant savanna 457 

cover, experiences a monthly ET between 16 and 63 mm/month in August and between 41 and 93 mm/month in 458 

April. These estimates are also well reflected in the spatial distribution of the average monthly simulated LAI 459 

(Figure 11 lower row). We notice that the linear relationship between ET and LAI is stronger, in general, for grass-460 

land and shrubs than for evergreen forest and tea. The lower correlation for tea and evergreen forest could be partly 461 

attributed to the high evaporation contribution of the wet soil, as the upper portion of the basin receives ample rain-462 

fall year round. Also, the tea harvesting activities in the upper part of the basin is not taken into account in the mod-463 

el. We also note visually that during the wet month the spatial variability of ET is higher than that of the LAI (Figure 464 

11). Further comparison research is needed to evaluate the added value of the improved vegetation growth module 465 

on spatial ET simulations. This will be addressed in our ongoing research on ET evaluation. 466 

 467 

Figure 11 SWAT-T simulated monthly ET (upper row) and LAI (lower row) for April (wet) and August (dry) 2002 at 468 
HRU level. 469 
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 470 

Figure 12 The average seasonal and spatial distribution of ET (2002-2009) in the Mara Basin, as simulated by the SWAT-471 
T model at HRU level. 472 

3.2.4. The performance of the streamflow simulations  473 

Figure 13 presents the comparison of daily SWAT-T simulated streamflow with observation for the calibration and 474 

validation periods. Visually, the simulated hydrograph fairly reproduced the observations. The average biases of the 475 

SWAT-T simulated daily streamflow compared to observations are 3.5 and 15.5% during the calibration and valida-476 

tion periods, respectively (Table 3). The correlation between the daily observed and simulated streamflows is about 477 

0.72 (0.76) during calibration (validation) period. Additionally, the overall comprehensive assessment using KGE is 478 

about 0.71, suggesting the ability of the calibrated SWAT-T model in reproducing observed streamflow responses. 479 

However, the model tends to underestimate the baseflow and this is more pronounced during the validation period. 480 

This is probably associated with the overestimation of the ET for evergreen forest (6.6%) during the validation, 481 

since ET has a known effect on the groundwater flow.  482 
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 483 

Figure 13 Observed and simulated flows for the Nyangores River at Bomet.  484 

4. Summary and conclusions 485 

We presented an innovative approach to improve the simulation of the annual growth cycle for trees and perennials -486 

and hence improve the simulation of evapotranspiration and streamflow- for tropical conditions in SWAT. The ro-487 

bustness of the changes made to the standard SWAT2012 version 627 have been assessed by comparing the model 488 

outputs with remotely sensed 8-day composite Moderate Resolution Imaging Spectroscopy (MODIS) LAI data, as 489 

well as with thermal-based evapotranspiration (ET-RS) and observed streamflow data. Towards this, we presented a 490 

straightforward but robust soil moisture index (SMI), a quotient of rainfall (P) and reference evapotranspiration 491 

(PET), to trigger a new growing season within a defined period. The new growing season starts when the SMI index 492 

exceeds or equals a certain user defined threshold.  493 

The structural improvements in the LAI simulation have been demonstrated by comparing uncalibrated simulation 494 

of LAI using standard SWAT model and SWAT-T model. The results indicated that the modified module structure 495 

for the vegetation growth exhibits temporal progression patterns that are consistent with the seasonal rainfall pattern 496 

in the Mara Basin. Further, we noted better consistency in the SWAT-T model simulated potential transpiration for 497 

perennial and trees, suggesting the usefulness of the vegetation growth module modification in reducing the model 498 

structural uncertainty. Our calibrated SWAT-T model results also show that the calibrated SWAT-T simulated LAI 499 

corresponds well with the MODIS LAI for various land cover classes with correlation of up to 0.94, indicating the 500 

realistic representation of the start of the new growing season using the SMI after a pre-defined period. The im-501 

provement in the vegetation growth cycle in SWAT is also supported with a good agreement of simulated ET with 502 
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ET-RS, particularly for the grassland. Additionally, the daily flow simulated with the SWAT-T mimics well the 503 

observed flows for the Nyangores River. Therefore, the SWAT-T developed in this study can a robust tool for simu-504 

lating the vegetation growth dynamics consistently in hydrologic model applications including land use and climate 505 

change impact studies. 506 
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