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Abstract. Citizen science and crowdsourcing are gaining increaditegnigon among hydrologists. In a recent contribution,
Mazzoleni et al. (2017) investigated the integration ofadeourced data (CSD) in hydrological models to improve twia
racy of real-time flood forecasts. The Authors used synthe8D (i.e., not actually measured), because real CSD were no
available at the time of the study. In their work, which is agfrof-concept study, Mazzoleni et al. (2017) showed tisatra-
ilation of CSD improves the overall model performance; tiact of irregular frequency of available CSD, and that dada
uncertainty, were also deeply assessed. However, the gyathietic CSD in conjunction with (semi-)distributed hgithgical
models deserves further discussion. As a result of equtfinabor model identifiability, and lacks in model struauinter-
nal states of (semi-)distributed models can hardly mimédhbtual states of complex systems away from calibrationtpoi
Accordingly, the use of synthetic CSD that are drawn from el@gternal states under best-fit conditions can lead toesser
timating the effectiveness of CSD assimilation in imprayfiood prediction. Operational flood forecasting, whichuttsin
decisions of high societal value, requires robust knowdeafthe model behaviour and an in-depth assessment of batklmo
structure and forcing data. Additional guidelines are gitleat are useful for the a priori evaluation of CSD for réale flood
forecasting and, hopefully, to plan apt design strategiebdth model calibration and collection of CSD.

1 Introduction

Flood forecasting has a critical importance as it resultieicisions of high societal value. In order to produce thetmosurate
flood predictions, it is essential to provide public autties with the best combination of data and models, and witibast

knowledge of the model behaviour in terms of reliability amdtertainty. Modellers thus have a responsibility to dgegkess
the strengths and limitations of model forcing data.

Within this general picture, the topic of community-basednitoring aimed at providing crowdsourced data (CSD) is
gaining increasing attention among hydrologists (Le Cad.2016; Walker et al., 2016; de Vos et al., 2017; Smith et al
2017; Starkey et al., 2017). For example, the availabilityyalrometric data, collected by active citizens in the sewf severe
flood events, offers a new, exciting chance to improve riead-tflood forecasts. However, the use of CSD poses challenges
to modellers since their information content, reliabijlayrival frequency, and location are a priori unknown (Maleni et al.,
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2015, 2017; McCabe et al., 2017; van Meerveld et al., 201ig¥ad Kang, 2017). In addition, long time series of (CSD) are
unavailable, thus complicating efforts to assess thedrctiffeness in improving flood prediction.

In pioneering applications (Mazzoleni et al., 2015), CShembed in the upper part of a basin were assimilated intgpada
tive hydrological models to reduce uncertainty in foreasflood hydrographs at downstream sections. In this rewenik,
Mazzoleni et al. (2017) paid particular attention to theiéssof uncertainty and irregular arrival frequency of CSbeif re-
sults showed that assimilation of CSD improves the overallieh performance. They also showed that the accuracy of CSD
is, in general, more important than their arrival frequency

In their work, the Authors used synthetic (i.e., not actpaieasured) CSD, because real streamflow CSD were not deailab
at the time of the study. Commenting on this aspect, the Asthaote ‘the developed methodology is not tested with data
coming from actual social sensors. Therefore, the conshssineed to be confirmed using real crowdsourced obsengtion
of water level. A practical verification of the results by Mazzoleni et €017) is indeed necessary; furthermore, particular
attention has to be paid to possible drawbacks inhereneingk of CSD for operational flood forecasting and relatedadeh
structural uncertainty, which are not discussed in theofof-concept study.

The Comment is outlined as follows. Section 2 presents atepth assessment of the Bacchiglione River case study (i.e.
the fourth case study presented in Mazzoleni et al., 20h7yrder to highlight the actual gap between a proof-of-cphce
study and a real application for operational flood forecgstGiven the complexity of the basin and the relatively [tguaf
available data, it is shown that the semi-distributed madeld in Mazzoleni et al. (2017) is unable to properly repretee
physics of the whole hydrological and hydraulic system,alhaffects the interpretation of the usefulness of CSD. 8ase
the key features delineated in Sect. 2, a more general assessf CSD assimilation in (semi-)distributed hydrolagimodels

is given in Sect. 3. A brief summary closes the Comment.

2 Specific comments
2.1 The Bacchiglione catchment closed at Ponte degli AngéWicenza)

The catchment of the upper Bacchiglione River, closed atd>degli Angeli in the historical centre of Vicenza (Fig. ©9,
located in the north of the Veneto Region, a plain that isgieh by the Alpine barrier at a distance of less than 100 kmeto th
north of the Adriatic Sea (Barbi et al., 2012).

With regard to the precipitation climatology, the southpant of this plain is the drier, with approximately 700-108én
of mean annual rainfall, whereas more than 2000 mm are mesiose to the pre-alpine chain due to the interaction of the
southerly warm and humid currents coming from the Meditezean Sea with the mountain barrier (Smith, 1979). A significa
portion of the annual rainfall often concentrates into veiprt periods of time in the form of what often turns out to be a
extreme event with deep convection playing a central roblfBet al., 2012; Rysman et al., 2016). As a consequenceresev
flooding events have threatened agricultural and urbarsanethe recent years (e.g. Viero et al., 2013; Scorzini aadlcr
2017).
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Figure 1. The catchment of the Bacchiglione River at Ponte degli Angeli, Vicehaky).

Due to the spatial and temporal variability of the rainfadldis, meteorological models are often unable to providerate
and reliable quantitative precipitation estimates (QRIE)tie upper Bacchiglione catchment. An example of thiseqadcy
is given, for instance, by Fig. 13 in Mazzoleni et al. (2017).

The upper Veneto plain is a highly populated and urbanized,avith extremely complex drainage and irrigation network
that significantly affect both runoff production and proptign (Viero and Valipour, 2017). Within this plain, the Bhaglione
River and its tributaries are provided with relatively higliees (Viero et al., 2013), which prevent the exchange ¢émfeom
inside to outside the riverbed (and vice versa) when therimmzger levels are relatively high. As a consequence, themin
channel networks are not always allowed to deliver theiméige water towards the nearest tributary, i.e., the inflomts
along the main river reaches change during a flood event dameon the instantaneous water level within the river. This
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occurrence modifies the network connectedness which, im keads to different mechanisms of hydrologic responséeén t
overall catchment.

Just upstream of the City of Vicenza, an area of up to # kthe “Viale Diaz” floodplain, Fig. 1) is flooded when the
Bacchiglione flow rate exceeds 160 m3/s. Since abowu2 - 10° m? of water can be temporarily stored in this area, a significant
flood attenuation can be produced, particularly in case dfdgraphs with a steep rising limb (which is often the casetdu
the climatic regime and the catchment characteristics).

Moreover, the lower part of the Bacchiglione basin, NorthVafenza, includes a vast groundwater resurgence zone, in
which it's difficult to assess both the actual contributidiresurgence to the Bacchiglione streamflow (up-t80 m*/s) and
the time-variable behaviour of soil moisture.

Clearly, such a system is highly non-linear. Nonethelagsjficant parts of the Bacchiglione catchment are poorlynimo
tored, and the remaining parts are completely unmonitdred.Leogra subcatchment (blue shaded area in Fig. 1) isqedvi
with a pressure-transducer for the measure of water levebraébelvicino (Fig. 1). A rating curve derived from thetical
considerations is available for this cross-section. Harethe absence of instrumental measures of flow discharges lits
reliability. The Leogra-Timonchio subcatchment (oranbaded area in Fig. 1) is monitored by an ultrasonic stageosens
located at Ponte Marchese, just upstream of the conflueribehe Orolo River. Flow rate measurements at Ponte Marchese
refers only to low hydraulic regimes, and show great valiighidue to the operation of a hydroelectric power plant teca
just downstream of Ponte Marchese. The Orolo River (greaedesharea in Fig. 1), with a discharge capacity of more than
one third of the Bacchiglione at Ponte degli Angeli, is on&®Mmajor tributaries. Unfortunately, not only the Oroldsatch-
ment is completely uncovered by meteorological gaugintjosis, but also no hydrometric gauging stations are preseng
its reach. Similarly to the Orolo, the Astichello catchmémtd shaded area in Fig. 1) is unmonitored and, due to baekwat
effects, significant areas adjacent to the main channeleoA#tichello are flooded when water levels in the Bacchigliare
relatively high. Hence, the discharge that effectively 8dwom the Astichello into the Bacchiglione River may sigeafitly
reduce depending on the water stage within the main course &@acchiglione River.

Attention must be paid to the fact that the three major talies (Orolo, Timonchio, and Astichello) meet just upstnea
of the gauging station of Ponte degli Angeli (Fig. 1), makindifficult to correctly estimate the actual contributioheach
single tributary to the total streamflow. By looking at theetdike structure of the drainage network in an electricalagy
(Rodriguez-lturbe and Rinaldo, 2001), the major tribetmof the Bacchiglione are in fact “conductors in parallel”.

Certainly, given the irregular topography of the catchragtite heterogeneity of the landscape, and the complexityeof
hydraulic network, it can be stated that the Bacchigliortetoaent is poorly monitored.

2.2 The semi-distributed model of the Bacchiglione catchnm

In catchments like that of the Bacchiglione River, for a# tieasons reported in the previous section, the accurateoa of
flood hydrographs with continuous time simulation is ungioesbly a difficult task (Anquetin et al., 2010).

Mazzoleni et al. (2017) used an available semi-distribimgdtological model coupled with a Muskingum—Cunge scheme
for flood propagation within the main river network, which svariginally set up to forecast flood hydrographs of the Bac-
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chiglione River at Ponte degli Angeli (Vicenza). Sensiltifye model was calibrated by minimizing the root mean squaos e
between observed and simulated values of water dischalgebRonte degli Angeli, which is the only hydrometric sbati
provided with a reliable rating curve. The semi-distrilsiteodel, although explicitly representing the hydrologjmacesses
within the main subcatchments, has to be intended as a lumpddl from a practical standpoint, since the discharge irté>o
degli Angeli is its only control point.

Therefore, no matter the accuracy of streamflow predictidhdnte degli Angeli, little can be said about the accuradhef
model in describing the internal states of the system, sat¢hestreamflow along upstream tributaries. This limitatias to
be ascribed to uncertainty in precipitation fields, to thegia of (reliable) flow rate data upstream of Vicenza, anthterent
limitations of the model itself.

Indeed, it has to be remarked that the Muskingum—Cunge nfodédlood propagation used in Mazzoleni et al. (2017)
considers rectangular river cross-sections for the esitimaf hydraulic radius, wave celerity, and other hydrawariables
(Todini, 2007). Accordingly, the effects exerted by the & Diaz” floodplain, which acts as a sort of in-line naturabf
control reservoir on flood propagation, can not be propertpanted for. This means that, if the flood hydrograph isexity
modelled at Ponte degli Angeli, it can not be correctly mtetkelipstream of the Viale Diaz floodplain (and vice versa).

2.3 The use of synthetic CSD in the Bacchiglione case study

In the Bacchiglione case study, Mazzoleni et al. (2017)ocated the model using measured rainfall data to well repred
the streamflow hydrograph at the basin outlet (call thisqeeent simulation “scenario 1”). Then they forced the maoaigth
predicted rainfall fields that were completely differerdrfr the actual storm event (“scenario 2"); in this case, tisetdirge
simulated using forecasted input was very different froat thbtained using recorded rainfall, with a significant tigtéft
and errors in predicted discharge ranging between 25 and&i@be flood peak (and up to 90% if considering synchronous
data). In their “scenario 3", similarly to the “observingssgm simulation experiment” (OSSE) approach, synthetiastflow
CSD extracted from the “scenario 1” were assimilated intcew nun using the same forcing as in the “scenario 2”. Not
surprisingly, the model performance in the “scenario 3" wigsificantly better than in the “scenario 2", as the synth€sD
they assimilated were representative of the model intestads in the best-fit scenario.

The Authors argued that the synthetic CSD they used arestieakror this condition to be met, given that these CSD age th
results of the model itself, the model must well represeatphysics of the real system (i.e., it must be calibratedtdeaest,
verified) at locations where CSD are first generated and thsimdated; this is a fundamental hypothesis behind theEDSS
approach. The synthetic CSD used in Mazzoleni et al. (2a#rihe Bacchiglione case study are drawn from the modelnater
states under best-fit conditions. Thus, when the model éetbwith different (wrong) input data, their assimilatisrexpected
to be as successful as possible in updating the model statast the best-fit scenario. However, the accuracy of suctistic
CSD is questionable, since they do not refer to model copwaoits (i.e., they are drawn from the semi-distributed nhade
locations where the model is neither calibrated nor veljfied nothing can actually be said about the model performaic
these locations. In a sense, synthetic CSD used by Mazzstlahi (2017) are@ptimal (in view of assimilation performance)
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rather thamrealistic. Since real CSD are likely biased with respect to the syitl@$D actually used, assimilation of real CSD
can not be as effective as that performed in Mazzoleni el 7).

From one point of view, it is possible that such an inconsisgecould have led Mazzoleni et al. (2017) to overrate the
importance of CSD, as they considered issues related to €&fision, but not accuracy (Mazzoleni et al., 2016). Thenesf
additional care must be taken in operational flood foreogstvhen assimilating CSD into (semi-)distributed hydradad)
models at locations other than model control points.

3 The use of real CSD in operational flood forecasting

As remarked by Mazzoleni et al. (2017), the success of akding real CSD in hydrological modelling strictly depermts
their accuracy, quantity, and spatial-temporal distidoutHowever, this comment points out that attention muspéie not
only to CSD, but also to the model.

In general, historical data recorded by traditional semaoe first used to calibrate a model; then, in real-time mibgesame
sensors provide data both to force the model and to updatdhel states (e.g., Ercolani and Castelli, 2017); moredkier
reliability of data from traditional sensors outperforrhattof CSD. Hence, from a practical point of view, CSD havetkah
usefulness at locations already equipped with traditisaakors. Since their natural purpose is to enhance (réatereplace)
data from traditional sensors, and considering that thaeybeacollected at locations not known a priori, CSD typicaltynot
refer to model calibration points.

Given the spatially distributed nature of CSD, spatiallpl@it hydrological models can take the major advantagenfro
CSD. On the other hand, particular care has to be taken wraimgevith physically based, (semi-)distributed modelbjai
are known to suffer from equifinality and poor identifialyildf model parameters (Beven, 2006).

After the critical work by Beven (1989), detailed investigas were carried out about the model complexity needed to
simulate rainfall-runoff process. Several studies ingidahat the information content in a rainfall-runoff regdas sufficient
to support models of only very limited complexity (Jakemand &ornberger, 1993; Refsgaard, 1997). This implies trst di
tributed, or semi-distributed, hydrological models arlelem calibrated; rather, they are commonly over-paramedki since
calibration rarely involves their internal states (Sebeeal., 2012; Viero et al., 2014).

In addition, flood routing processes are typically overdifigal in operational models meant to real-time flood for¢icas
(Mejia and Reed, 2011). For instance, significant effedtted to either compound sections, large floodplains caedeo
the main channel, or confluences causing backwater eftaetseldom accounted for.

As a consequence, (semi-)distributed rainfall-runoff glednay provide accurate predictions of outflow dischargiet
basin outlet and, at the same time, poor predictions ofrialestates of the system (e.g., the soil moisture contetttearelative
contribution of upstream tributaries); in other words, caa likely get the correct answer for the wrong reason (Leagal.,
2010). Therefore, (semi-)distributed models can be sditdraged only at calibration (or control) points, and vexifionly at
locations in which model results are shown to compare faywith enough (and accurate enough) measured data.
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This caveat particularly applies to assimilation of CSDydtological modelling for operational, real-time floodéoasting.
Indeed, while CSD typically refer to model internal statbey are assimilated in order to improve the accuracy of taenm
outputs of the model, such as streamflow hydrographs at batliet (model internal states are relatively less impdritathis
context).

Recalling that model input, states, parameters, and au{jouta subset of them) can be updated using different data as-
similation techniques (Refsgaard, 1997), assimilatiol€8D in operational flood forecasting can be helpful provittest
the model is able to well represent the physics of the systdocations where CSD are collected. Of course, data assimi-
lation can contribute, in many cases, to improve such a septation. However, when only internal states are updagdh(
Mazzoleni et al., 2017), this condition is met if (and onlytlie model is properly calibrated and verified at locatiote e
CSD refer to. Otherwise, correcting internal states of algaalibrated model can even lead, in principle, to worsjmptions
at the outlet than performing no corrections at all (Crow ¥ad Loon, 2006). It is undoubtedly difficult to assess th&ies
when only synthetic CSD, generated by the same model, ailalalesfor testing the overall method.

As an alternative for operational forecasting, ensembetalata assimilation methods (e.g., the Ensemble Kalnigm Fi
or the Particle Filter) can be used to update jointly modatest and parameters and to provide a direct measure of aimtrt
(Moradkhani et al., 2005; Salamon and Feyen, 2009; Wani,&@17). In this way, models cope directly with equifinakiyd
problems of over-parametrization, since parameter piosteistributions are represented by ensembles. Note ypatal data
assimilation algorithms are in principle able to screenrmisy data automatically, but need to be modified to tackkside
data bias, which otherwise leads to poorly calibrated nwodélus, it is important, regardless of the nature of the, dateerify
if such bias exists before any data assimilation is applied.

Nonetheless, also such sophisticated tools may fail if tbdehhas structural deficiencies that make it unable to semte
true system states at given locations. As a representatarame, consider the Bacchiglione River (Fig. 1) and, djmdly,
the “Viale Diaz” floodplain described in Sec. 2. The role @edyby such an in-line flood control reservoir on flood routing
can not be accounted for using a basic Muskingum—Cunge ntioatetonsiders rectangular cross-sections. It followsttiea
assimilation of accurate streamflow data referring to aieedbcated just upstream of the Viale Diaz floodplain (eRpnte
Marchese, see Fig. 1) can likely deteriorate the model ptiedis in Ponte degli Angeli, downstream of the floodplain.

Shortcomings similar to the one described above, which edoind in many different case studies, can be a priori cenjec
tured through a close inspection of both the physical systedithe model characteristic. Their quantitative assessnezds
an extensive comparison with measured data; of coursejrad"hise of CSD (i.e., their assimilation at locations whtre
model is neither calibrated nor verified) is at least questixe.

4 Summary

The approach proposed and investigated by Mazzoleni 2@L7(, based on the assimilation of crowdsourced data (CSD)
can be generally valuable to improve real-time flood forescasing non-traditional information now available thatdsctive
citizens and new technologies.
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However, it has to be remarked that physically based madebif rainfall-runoff and flow routing processes face limi-
tations ascribed to the paucity of measured data, to the lexpof real environments, and to lacks in model structamel
parametrization. As a consequence, (semi-)distributedatarunoff models used for operational flood forecagtoan provide
reliable predictions at locations where calibration iS@ened (i.e., control points) and, at the same time, inadlyeepresent
system states elsewhere (e.g., discharges in upstreaaygedtributaries).

In a context of equifinality and simplified representatiomel physical processes, the accurate prediction of outfiiwo-
graphs can be achieved even though model internal statéswitich the true system states. In such cases, the assomitt
real CSD can lead to a substantially lower performance thamnse of synthetic CSD would suggest, as it correspondacin f
to update a model using biased data (e.g., Dee, 2005; Liu, &(Hl2). When only internal states (and not model parameters
are updated, or when the model suffers structural defigsntie assimilation of real (i.e., not synthetic) streamflata at in-
ternal points can lead, in principle, to even worse modedipt®n at the outlet than no assimilation at all (Crow ana Yaon,
2006). The problem can arise due to the disjoint use of ioadit and crowdsourced data, with the former used to caébra
(semi-)distributed models at control points, and the tatted only in real-time to update model states at differecetions.

A possible solution is the use of ensemble based data aasomilmethods to update jointly model states and parameters
An additional pragmatic recommendation is the collectibmacurate measured data for a suitable period, for at least t
reasons: i) to develop reliable rating curves at locatiohene water level CSD are planned to be collected, and ii) librese
and verify the model ability in describing the system stat@sectly at the locations in which CSD are collected.

It must be observed that, while scarce control on the cadleaif CSD can be exerted during significant flood events, the
locations at which citizens can collect CSD of water levelalivays determined a priori, since the availability ofmgtcurves
is a necessary condition in order to convert water levels discharges. The amount of measured data needed to develop
reliable rating curves can also be profitably used to cakttze model at those sections as well.

As a final remark, both modellers and environmental agerstiesald comprehensively account for the characteristitBeof
physical system, for model structure and parametrizatmrthe design of the sensor network, and for data to be ustribo

calibration and in operational mode.
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