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Abstract. In their recent contribution, Mazzoleni et al. (2017) invgated the integration of crowdsourced data (CSD) in
hydrological models to improve the accuracy of real-timedidorecasts. The Authors used synthetic CSD (i.e., not#lgtu
measured), because real crowdsourced data were not d@ailathe moment of the study. In their work, which is actually
a proof-of-concept study, Mazzoleni et al. (2017) showed &ssimilation of CSD improves the overall model perforoggn
the impact of irregular frequency of available CSD, and tfatata uncertainty, were also deeply assessed. Howeeeusth

of synthetic CSD in conjunction with a semi-distributed hyldgical model deserves further discussion. In most weald
applications, hydrological models are calibrated usinig di@m traditional sensors; CSD are typically collectedlifferent
locations, where (semi-)distributed models are not catda. As a result of either equifinality, poor model ideniifigy, and
lacks in model structure, internal states of (semi-)distied models can hardly mimic the actual states of complsterys
away from calibration points. Synthetic CSD generated lmhsuaodels are unreliable and do not allow to assess the ffect
of model structural uncertainty; their use may lead to cstmeating the performance of CSD assimilation with respeceal
applications. Additional guidelines are given that arduider the a-priori evaluation of crowdsourced data forl+ae flood
forecasting and, hopefully, to plan apt design strategiebdth model calibration and collection of crowdsourcethda

1 Introduction

Flood forecasting has a critical importance as it resultdenisions of high societal value. It is essential to proypdélic
authorities with the best combination of data and modelgdeioto produce the most accurate flood predictions, and avith
robust knowledge of the model behaviour in terms of religbéind uncertainty. Modellers thus have a responsibititgeeply
assess the strengths and limitations of models, and to rexgifierent kind of forcing data as well.

Within this general picture, the topic of crowdsourced datgaining increasing attention among hydrologists. lagéee
availability of hydrometric data, collected by active zéns in the course of severe flood events, offers a new, uoedge
chance to improve real-time flood forecasts. However, tleeaiscrowdsourced data poses severe challenges to modellers
since their information content, reliability, arrival reency, and location are a-priori unknown (Mazzoleni gt2115, 2017;
van Meerveld et al., 2017). In addition, long time seriesrofadsourced data are in fact unavailable.
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In pioneering applications, crowdsourced data (CSD) ct#le in the upper part of a basin were assimilated into agapti
hydrological models to reduce uncertainty in forecastingdl hydrographs at downstream sections (Mazzoleni et@l5)2
In a recent work, Mazzoleni et al. (2017) paid particulaeition to the issues of uncertainty and irregular arrivagjfrency
of CSD. Their results showed that assimilation of CSD impsothe overall model performance. They also showed that the
accuracy of CSD is, in general, more important than theivarfrequency.

In their work, the Authors used synthetic (i.e., not actuaieasured) CSD, because real streamflow CSD were not deailab
at the moment of the study. Commenting on this aspect, theoksitwrote the developed methodology is not tested with data
coming from actual social sensors. Therefore, the conchssheed to be confirmed using real crowdsourced obsengtion
of water level. A practical verification of the results by Mazzoleni et €017) is indeed necessary; furthermore, particular
attention has to be paid to possible drawbacks inhereneingke of CSD for operational flood forecasting and relatedadeh
structural uncertainty, which are not discussed in theofof-concept study.

The Comment is outlined as follows. Section 2 presents a deggssment of the Bacchiglione River case study (i.e., the
fourth case study presented in Mazzoleni et al., 2017), deroto highlight the actual gap between a proof-of-concatys
and a real application for operational flood forecastinge@ithe complexity of the basin and the relatively paucitgilable
data, it is shown that the semi-distributed model used in2dkeni et al. (2017) is unable to properly represent the johyaf
the whole hydrological and hydraulic system, with advefseces on the assimilation of real CSD. Based on the key featu
delineated in Sect. 2, a more general assessment of CSDilatisimin (semi-)distributed hydrological models is given
Sect. 3. A brief summary closes the Comment.

2 Specific comments
2.1 The Bacchiglione catchment closed at Ponte degli AngéYicenza)

The catchment of the upper Bacchiglione River, closed atd’dagli Angeli in the historical centre of Vicenza (Fig. g,
located in the north of the Veneto Region, a plain that isgieith by the Alpine barrier at a distance of less than 100 kmeo th
north of the Adriatic Sea (Barbi et al., 2012).

With regard to the precipitation climatology, the southpamt of this plain is the drier, with approximately 700-10@f
of mean annual rainfall, whereas more than 2000 mm are megslose to the pre-alpine chain due to the interaction of the
southerly warm and humid currents coming from the Meditezean Sea with the mountain barrier (Smith, 1979). A signitica
portion of the annual rainfall often concentrates into veprt periods of time in the form of what often turns out to be a
extreme event with deep convection playing a central rollfBet al., 2012; Rysman et al., 2016). As a consequenceresev
flooding event have threatened agricultural and urban areti®e recent years (e.g. Viero et al., 2013; Scorzini andlra
2015).

Due to the spatial and temporal variability of the rainfadldis meteorological models are often unable to providerateu
and reliable quantitative precipitation estimates (QRIEtie upper Bacchiglione catchment. An example of this éaccy
is given, for instance, by Fig. 13 in Mazzoleni et al. (2017).
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Figure 1. The catchment of the Bacchiglione River closed at Ponte degli Angeknv (Italy).

The upper Veneto plain is a highly populated and urbanized,avith extremely complex drainage and irrigation network
that significantly affect both runoff production and proptign (Viero and Valipour, 2017). Within this plain, the Bhaglione
River and its tributaries are provided with relatively higliees (Viero et al., 2013), which prevent the exchange ¢émfeom
inside to outside the riverbed (and vice-versa) when therinvater levels are relatively high. As a consequence, tmomi
channel networks are not always allowed to deliver theimadige water towards the nearest tributary, i.e., the inflomts
along the main river reaches change during a flood event déepeon the instantaneous water level within the river. This
occurrence modifies the network connectedness which, im keads to different mechanisms of hydrologic responséén t
overall catchment.

Just upstream of the City of Vicenza, an area of up to % kithe “Viale Diaz” floodplain (Fig. 1) is flooded when the
Bacchiglione flow rate exceeds 160 m3/s. Since abol? - 10 m? of water can be temporarily stored in this area, a significant
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flood attenuation can be produced, particularly in case ofdBowith a steep rising limb (which is often the case due to the
climatic regime and the catchment characteristics).

Moreover, the lower part of the Bacchiglione basin, NorthVafenza, includes a vast groundwater resurgence zone, in
which it's difficult to assess both the actual contributidiresurgence to the Bacchiglione streamflow (up-t80 m3/s) and
the time-variable behaviour of soil moisture.

Clearly, such a system is highly non-linear. Nonethelagsjficant parts of the Bacchiglione catchments are pooiiyim
tored, and the remaining parts are completely unmonitdrbd.Leogra subcatchment (blue shaded area in Fig. 1) isq@dvi
with a pressure-transducer for the measure of water levebraébelvicino (Fig. 1). A rating curve derived from thetical
considerations is available for this cross-section. Harethe absence of instrumental measures of flow discharges lits
reliability. The Leogra-Timonchio subcatchment (oranbaded area in Fig. 1) is monitored by an ultrasonic stageosens
located at Ponte Marchese, just upstream of the conflueribahe Orolo River. Flow rate measurements at Ponte Marchese
refers only to low hydraulic regimes, and show great valiighilue to the operations of a hydroelectric power planated
just downstream of Ponte Marchese. The Orolo River (greadestharea in Fig. 1), with a discharge capacity of more than on
third of the Bacchiglione at Ponte degli Angeli, is one ofritajor tributaries. Unfortunately, not only the Orolo sutotenent
is completely uncovered by meteorological gauging statitat also no hydrometric gauging stations are presengaten
reach. Similarly to the Orolo, the Astichello catchmend(slhaded area in Fig. 1) is unmonitored and, due to backwhter e
fects, significant areas adjacent to the Astichello are #doshen water levels in the Bacchiglione are relatively higénce,
the discharge that effectively flows from the Astichellcitihe Bacchiglione River may significantly reduce dependinghe
water stage within the main course of the Bacchiglione River

Attention must be paid to the fact that the three major talies (Orolo, Timonchio, and Astichello) meet just upstiea
of the closing section of Ponte degli Angeli (Fig. 1), makingifficult to correctly estimate the actual contributioheach
single tributary to the total streamflow. By looking at theetdike structure of the drainage network in an electricalagy
(Rodriguez-lturbe and Rinaldo, 2001), the major tribetmof the Bacchiglione are in fact “conductors in parallel”.

Certainly, given the irregular topography of the catchragtite heterogeneity of the landscape, and the complexityeof
hydraulic network, it can be stated that the Bacchigliortetwaent is poorly monitored.

2.2 The semi-distributed model of the Bacchiglione catchnm

In catchments like that of the Bacchiglione River, for a# tieasons reported in the previous section, the accurateoa of
flood hydrographs by performing continuous time simulaigunquestionably a hard task (Anquetin et al., 2010).
Mazzoleni et al. (2017) used an available semi-distribimgdtological model coupled with a Muskingum—Cunge scheme
for flood propagation within the main river network, whichsvariginally set up to forecast flood hydrographs at the olpsi
section of Ponte degli Angeli (Vicenza). Sensibly, the medes calibrated by minimizing the root mean square errovbeh
observed and simulated values of water discharge only aeRt@yli Angeli, which is the only hydrometric station proed
with a reliable rating curve. The semi-distributed modé&ha@ugh explicitly representing the hydrological proassvithin
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the main subcatchments, has to be intended as a lumped motehfpractical standpoint, since the discharge in Pontk deg
Angeli is its only control point.

Therefore, no matter the accuracy of the streamflow prexfistin Ponte degli Angeli, little can be said about the acuod
the model in describing the internal states of the systent) as the streamflow along the upstream tributaries. Thitaliion
has to be ascribed to uncertainty in precipitation fieldsheopaucity of (reliable) flow rate data upstream of Viceraza] to
inherent limitations of the model itself.

Indeed, it has to be remarked that the Muskingum—-Cunge nfoddlood propagation used in Mazzoleni et al. (2017)
considers rectangular river cross-sections for the eitmaf hydraulic radius, wave celerities, and other hyticavariables
(Todini, 2007). Accordingly, the effects exerted by the & Diaz” floodplain, which acts as a sort of in-line naturabd
control reservoir on flood propagation, can not be propertpanted for. This means that, if the flood hydrograph iseszity
modelled at Ponte degli Angeli, it can not be correctly mtatklpstream of the Viale Diaz floodplain (and vice-versa).

2.3 The use of synthetic CSD in the Bacchiglione case study

In the Bacchiglione case study, Mazzoleni et al. (2017pcated the model using measured rainfall data to well rapredhe
streamflow hydrograph at the closing section (call this{gesint simulation “scenario 1”). Then they forced the moalih
predicted rainfall fields that were completely differerdrfr the actual storm event (“scenario 2”); in this case, tisetdirge
simulated using forecasted input was very different froat tibtained using recorded rainfall, with a significant tshét and
errors in predicted discharge ranging between 25 and 50bedidod peak (and up to 90% if considering synchronous data).
In the “scenario 3", similarly to the “observing system siation experiment” (OSSE) approach, synthetic streamfl&DC
extracted from the “scenario 1” were assimilated into a nawusing the same forcing as in the “scenario 2”. Not sunpgigi

the model performance in the “scenario 3” was significanditdr than in the “scenario 2”.

The Authors claimed that the synthetic CSD they used aréstiealFor this condition to be met, given that these CSD
are results of the model itself, the model must representtivelphysics of the real system (i.e., it must be calibratedb
least, verified) at locations where CSD are first generatedtlaen assimilated; this is a fundamental hypothesis bethiad
OSSE approach. As a matter of fact, the synthetic CSD usedaizedeni et al. (2017) for the Bacchiglione case study are
representative of the model internal states of the bestdibario. However, recalling that such CSD do not refer to ehod
control points, nothing can actually be said about the mpéelormance at locations where CSD are generated and, as a
consequence, about their accuracy. Real CSD are then egpecbe farther from the best-fit scenario than the synthetic
CSD generated by the model; that is, real CSD are likely diagéh respect to the synthetic CSD actually used. Therefore
assimilation of real crowdsourced data can not be as efteas that performed in Mazzoleni et al. (2017).

From one point of view, such an inconsistency could have led2dleni et al. (2017) to overrate the importance of CSD,
as they considered issues related to CSD precision, butceatacy (Mazzoleni et al., 2016). From a more general pdint o
view, additional care must be taken in operational flooddasting when assimilating CSD into (semi-)distributedriojalical
models at locations other than model control points. Thispaint is further discussed in the next section.
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3 The use of real CSD in operational flood forecasting

As remarked by Mazzoleni et al. (2017), the success of aksging real CSD in hydrological modelling strictly deperats
their accuracy, quantity, and spatial-temporal distidoutHowever, attention must be paid not only to CSD, but &dsthe
model.

In general, historical data recorded by traditional semaee first used to calibrate a model; then, in real-time mih@esame
sensors provide data both to force the model and to updatadldel states (e.g., Ercolani and Castelli, 2017); moredker
reliability of data from traditional sensors outperforrhattof CSD. Hence, from a practical point of view, CSD havatkh
usefulness at locations already equipped with traditisaabkors. Since their natural purpose is to enhance (raereplace)
data from traditional sensors, and considering that theybeacollected at locations not known a priori, CSD typicaltynot
refer to model calibration points.

Given the spatially distributed nature of CSD, spatiallpleit hydrological models can take the major advantagenfro
CSD. On the other hand, particular care has to be taken wradimgavith physically-based, (semi-)distributed modelkjch
are known to suffer from equifinality and poor identifialyilaf model parameters (Beven, 2006).

After the critical work by Beven (1989), detailed investigas were carried out about the model complexity needed to
simulate rainfall-runoff process. Several studies ingidahat the information content in a rainfall-runoff reddas sufficient
to support models of only very limited complexity (Jakemand &ornberger, 1993; Refsgaard, 1997). This implies that di
tributed, or semi-distributed, hydrological models arlelsm calibrated; rather, they are commonly over-parameti;i since
calibration rarely involves their internal states (Sebetal., 2012; Viero et al., 2014).

In addition, flood routing processes are typically overdifigal in operational models meant to real-time flood for¢ioas
(Mejia and Reed, 2011). For instance, significant effedeted to either compound sections, large floodplains cdedeo
the main channel, or confluences causing backwater effgetseldom accounted for.

As a consequence, (semi-)distributed rainfall-runoff elednay provide accurate predictions of outflow discharget
closing section and, at the same time, poor predictions tefrial states of the system (e.g., the soil moisture content
the relative contribution of upstream tributaries); inetlvords, one can likely get the correct answer for the wraagon
(Loague et al., 2010). Therefore, (semi-)distributed n®dan be said calibrated only at calibration (or controlnpg and
verified only at locations in which model results are showoimpare favourably with enough (and accurate enough) meésu
data.

This caveat particularly applies to assimilation of CSDyndtological modelling for operational, real-time flood éoasting.
Indeed, while CSD typically refer to model internal statbgy are assimilated in order to improve the accuracy of thanm
outputs of the model, such as streamflow hydrographs angjesctions (model internal states are relatively less rtapbin
this context).

Recalling that model input, states, parameters, and aufjputa subset of them) can be updated using different data as-
similation techniques (Refsgaard, 1997), assimilatiol©8D in operational flood forecasting can be helpful provittest
the model is able to well represent the physics of the systdacations where CSD are collected. Of course, data assimi-
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lation can contribute, in many cases, to improve such a septation. However, when only internal states are updatedh(
Mazzoleni et al., 2017), this condition is met if (and onlytlie model is properly calibrated and verified at locatiote e
CSD refer to. Otherwise, correcting internal states of algaalibrated model can even lead, in principle, to worsjmptions
at the outlet than performing no corrections at all (Crow sad Loon, 2006). It is undoubtedly difficult to assess thgues
when only synthetic CSD, generated by the same model, ailalalesfor testing the overall method.

As a valid alternative for operational forecasting, enslentiased data assimilation methods (e.g., the Ensembleatalm
Filter or the Particle Filter) can be used to update jointlgd®l states and parameters and to provide a direct measure of
uncertainty. In this way, models cope directly with equilityeand problems of over-parametrization, since paramsterior
distributions are represented by ensembles. Note thatalygata assimilation algorithms are in principle able t®sen out
noisy data automatically, but need to be modified to tacklssiibe data bias, which otherwise leads to poorly calilbrate
models. Thus, it is important, regardless of the nature efdéita, to verify if such bias exists before any data asdiimilas
applied.

Nonetheless, also such sophisticated tools may falil if tbdahhas structural deficiencies that make it unable to seymte
true system states at given locations. As a representatdrede, consider the Bacchiglione River (Fig. 1) and, djpadily,
the “Viale Diaz” floodplain described in Sec. 2. The role @edyby such an in-line flood control reservoir on flood routing
can not be accounted for using a basic Muskingum—Cunge ntloaietonsiders rectangular cross-sections. It followsttiea
assimilation of accurate streamflow data referring to aicedbcated just upstream of the Viale Diaz floodplain (eRpnte
Marchese, see Fig. 1) can likely deteriorate the model ptiedis in Ponte degli Angeli, downstream of the floodplain.

Shortcomings similar to the one described above, which edonind in many different case studies, can be a-priori @nje
tured through a close inspection of both the physical systetithe model characteristic. Their quantitative assessnezds
an extensive comparison with measured data; of coursejrad"hise of CSD (i.e., their assimilation at locations whtre
model is neither calibrated nor verified) is at least questixe.

4 Summary

The approach proposed and investigated by Mazzoleni é2@L7(, based on the assimilation of crowdsourced data (CSD)
can be generally valuable to improve real-time flood forecasing non-traditional information now available thamkactive
citizens and new technologies.

However, it has to be remarked that physically based maodgiif rainfall-runoff and flow routing processes has to facteal
limitations ascribed to the paucity of measured data, tactimplexity of real environments, and to lacks in model gtre
and parametrization. As a consequence, (semi-)distdb@iafall-runoff models used for operational flood forgaasg can
provide reliable predictions at locations where calilmatis performed (i.e., control points) and, at the same tinerrectly
represent system states elsewhere (e.g., dischargesiaamsungauged tributaries).

In a context of equifinality and simplified representatiome#l physical processes, the accurate prediction of outfimiwo-
graphs can be achieved even though model internal statéswitch the true system states. In such cases, the assomitst
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real CSD can lead to a substantially lower performance thamse of synthetic CSD would suggest, as it correspondacin f
to update a model using biased data (e.g., Dee, 2005; Liu, &0l2). When only internal states (and not model parameters
are updated, or when the model suffers structural defigsntie assimilation of real (i.e., not synthetic) streamflata at in-
ternal points can lead, in principle, to even worse modeligtin at the outlet than no assimilation at all (Crow and Yaon,
2006). The problem can arise due to the disjoint use of tmadit and crowdsourced data, with the former used to caébra
(semi-)distributed models at control points, and the tatted only in real-time to update model states at differecations.

A possible solution is the use of ensemble based data aasomilmethods to update jointly model states and parameters
An additional pragmatic recommendation is the collectibmacurate measured data for a suitable period, for at least t
reasons: i) to develop reliable rating curves at locationerna water level CSD are planned to be collected, and ii) ltbrege
and verify the model ability in describing the system statasectly at the locations in which CSD are collected.

It must be observed that, while scarce control on the cadleaif CSD can be exerted during significant flood events, the
locations at which citizens can collect CSD of water levelalivays determined a-priori, since the availability ofnmgtcurves
is a necessary condition in order to convert water levels discharges. The amount of measured data needed to develop
reliable rating curves can also be profitably used to cakttze model at those sections as well.

As a final remark, both modellers and environmental agemstieald comprehensively account for the characteristitiseof
physical system, for model structure and parametrizat@rthe design of the sensors network, and for data to be ustbdip

calibration and in operational mode.
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