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Abstract. In their recent contribution, Mazzoleni et al. (2017) investigated the integration of crowdsourced data (CSD) in

hydrological models to improve the accuracy of real-time flood forecasts. They showed that assimilation of CSD improves

the overall model performance; the impact of irregular frequency of available crowdsourced data, and that of data uncertainty,

were also deeply assessed. However, it has to be remarked that, in their work, the Authors used synthetic (i.e., not actually

measured) crowdsourced data, because actual crowdsourceddata were not available at the moment of the study. For this5

reason, the work by Mazzoleni et al. (2017) is actually a proof-of-concept study. In most real-world applications, hydrological

models are calibrated using data from traditional sensors;CSD are typically collected at different locations, where semi-

distributed models are not calibrated. As a result of eitherequifinality, poor model identifiability, and lacks in modelstructure,

internal states of (semi-)distributed models can hardly mimic the actual states of complex systems away from calibration

points. Indeed, in operational frameworks, the assimilation of real (rather than synthetic) CSD requires a careful assessment.10

Additional guidelines are given that are useful for the a-priori evaluation of (assessing the chance of assimilating) crowdsourced

data for real-time flood forecasting and, hopefully, to planapt design strategies for both model calibration and collection of

crowdsourced data.

1 Introduction

The availability of hydrometric data, collected by active citizens in the course of severe flood events, offers a new, unexpected15

chance to improve real-time flood forecasts. In pioneering applications, crowdsourced data (CSD) collected in the upper part

of a basin were assimilated into adaptive hydrological models to reduce uncertainty in forecasting flood hydrographs atdown-

stream sections (Mazzoleni et al., 2015). In a recent work, Mazzoleni et al. (2017) paid particular attention to the issues of

uncertainty and irregular arrival frequency of CSD. Their results showed that assimilation of CSD improves the overallmodel

performance. They also showed that the accuracy of CSD is, ingeneral, more important than their arrival frequency.20

However, in their work, the Authors used synthetic (i.e., not actually measured) CSD, because real streamflow CSD were

not available at the moment of the study. Commenting on this aspect, the Authors wrote “the developed methodology is not

tested with data coming from actual social sensors. Therefore, the conclusions need to be confirmed using real crowdsourced
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observations of water level”. A practical verification of the results by Mazzoleni et al.(2017) is indeed necessary; furthermore,

particular attention has to be paid to additional drawbacksinherent in the use of CSD for operational flood forecasting,which

are not discussed in their proof-of-concept study.

The Comment is outlined as follows. Section 2 presents a deepassessment of the Bacchiglione River case study (i.e., the

fourth case study presented in Mazzoleni et al., 2017), in order to highlight the actual gap between a proof-of-concept study5

and a real application for operational flood forecasting. Given the complexity of the basin and the relatively paucity ofavailable

data, it is shown that the semi-distributed model used in Mazzoleni et al. (2017) is unable to properly represent the physics of

the whole hydrological and hydraulic system, with adverse effects on the assimilation of real CSD. Based on the key features

delineated in Sect. 2, a more general assessment of CSD assimilation in (semi-)distributed hydrological models is given in

Sect. 3. A brief summary closes the Comment.10

2 Specific comments

2.1 The Bacchiglione catchment closed at Ponte degli Angeli(Vicenza)

The catchment of the upper Bacchiglione River, closed at Ponte degli Angeli in the historical centre of Vicenza (Fig. 1),is

located in the north of the Veneto Region, a plain that is fringed by the Alpine barrier at a distance of less than 100 km to the

north of the Adriatic Sea (Barbi et al., 2012).15

With regard to the precipitation climatology, the southernpart of this plain is the drier, with approximately 700–1000mm

of mean annual rainfall, whereas more than 2000 mm are measured close to the pre-alpine chain due to the interaction of the

southerly warm and humid currents coming from the Mediterranean Sea with the mountain barrier (Smith, 1979). A significant

portion of the annual rainfall often concentrates into veryshort periods of time in the form of what often turns out to be an

extreme event with deep convection playing a central role (Barbi et al., 2012; Rysman et al., 2016). As a consequence, severe20

flooding event have threatened agricultural and urban areasin the recent years (e.g. Viero et al., 2013; Scorzini and Frank,

2015).

Due to the spatial and temporal variability of the rainfall fields meteorological models are often unable to provide accurate

and reliable quantitative precipitation estimates (QPE) for the upper Bacchiglione catchment. An example of this inadequacy

is given, for instance, by Fig. 13 in Mazzoleni et al. (2017).The discharge simulated using forecasted input is very different25

from that obtained using recorded rainfall, with a significant time shift and errors in predicted discharge ranging between 25

and 50% at the flood peak (and up to 90% if considering synchronous data).

The upper Veneto plain is a highly populated and urbanized area, with extremely complex drainage and irrigation networks

that significantly affect both runoff production and propagation (Viero and Valipour, 2017). Within this plain, the Bacchiglione

River and its tributaries are provided with relatively highlevees (Viero et al., 2013), which prevent the exchange of water from30

inside to outside the riverbed (and vice-versa) when the inner water levels are relatively high. As a consequence, the minor

channel networks are not always allowed to deliver their drainage water towards the nearest tributary, i.e., the inflow points

along the main river reaches change during a flood event depending on the instantaneous water level within the river. This
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Figure 1. The catchment of the Bacchiglione River closed at Ponte degli Angeli, Vicenza (Italy).

occurrence modifies the network connectedness which, in turn, leads to different mechanisms of hydrologic response in the

overall catchment.

Just upstream of the City of Vicenza, an area of up to 1 km2 of the “Viale Diaz” floodplain (Fig. 1) is flooded when the

Bacchiglione flow rate exceeds∼ 160 m3/s. Since about2 ·106 m3 of water can be temporarily stored in this area, a significant

flood attenuation can be produced, particularly in case of floods with a steep rising limb (which is often the case due to the5

climatic regime and the catchment characteristics).

Moreover, the lower part of the Bacchiglione basin, North ofVicenza, includes a vast groundwater resurgence zone, in

which it’s difficult to assess both the actual contribution of resurgence to the Bacchiglione streamflow (up to∼ 30 m3/s) and

the time-variable behaviour of soil moisture.

3



Clearly, such a system is highly non-linear. Nonetheless, significant parts of the Bacchiglione catchments are poorly moni-

tored, and the remaining parts are completely unmonitored.The Leogra subcatchment (blue shaded area in Fig. 1) is provided

with a pressure-transducer for the measure of water level atTorrebelvicino (Fig. 1). A rating curve derived from theoretical

considerations is available for this cross-section. However, the absence of instrumental measures of flow discharge limits its

reliability. The Leogra-Timonchio subcatchment (orange shaded area in Fig. 1) is monitored by an ultrasonic stage sensor5

located at Ponte Marchese, just upstream of the confluence with the Orolo River. Flow rate measurements at Ponte Marchese

refers only to low hydraulic regimes, and show great variability due to the operations of a hydroelectric power plant located

just downstream of Ponte Marchese. The Orolo River (green shaded area in Fig. 1), with a discharge capacity of more than one

third of the Bacchiglione at Ponte degli Angeli, is one of itsmajor tributaries. Unfortunately, not only the Orolo subcatchment

is completely uncovered by meteorological gauging stations, but also no hydrometric gauging stations are present along its10

reach. Similarly to the Orolo, the Astichello catchment (red shaded area in Fig. 1) is unmonitored and, due to backwater ef-

fects, significant areas adjacent to the Astichello are flooded when water levels in the Bacchiglione are relatively high. Hence,

the discharge that effectively flows from the Astichello into the Bacchiglione River may significantly reduce dependingon the

water stage within the main course of the Bacchiglione River.

Attention must be paid to the fact that the three major tributaries (Orolo, Timonchio, and Astichello) meet just upstream15

of the closing section of Ponte degli Angeli (Fig. 1), makingit difficult to correctly estimate the actual contribution of each

single tributary to the total streamflow. By looking at the tree-like structure of the drainage network in an electrical analogy

(Rodríguez-Iturbe and Rinaldo, 2001), the major tributaries of the Bacchiglione are in fact “conductors in parallel”.

Certainly, given the irregular topography of the catchments, the heterogeneity of the landscape, and the complexity ofthe

hydraulic network, it can be stated that the Bacchiglione catchment is poorly monitored.20

2.2 The semi-distributed model of the Bacchiglione catchment

In catchments like that of the Bacchiglione River, for all the reasons reported in the previous section, the accurate prediction of

flood hydrographs by performing continuous time simulations is unquestionably a hard task (Anquetin et al., 2010).

Mazzoleni et al. (2017) used an available semi-distributedhydrological model coupled with a Muskingum–Cunge scheme

for flood propagation within the main river network, which was originally set up to forecast flood hydrographs at the closing25

section of Ponte degli Angeli (Vicenza). Sensibly, the model was calibrated by minimizing the root mean square error between

observed and simulated values of water discharge only at Ponte degli Angeli, which is the only hydrometric station provided

with a reliable rating curve. The semi-distributed model, although explicitly representing the hydrological processes within

the main subcatchments, has to be intended as a lumped model from a practical standpoint, since the discharge in Ponte degli

Angeli is its only control point.30

Therefore, no matter the accuracy of the streamflow predictions in Ponte degli Angeli, little can be said about the accuracy of

the model in describing the internal states of the system, such as the streamflow along the upstream tributaries. This limitation

has to be ascribed to uncertainty in precipitation fields, tothe paucity of (reliable) flow rate data upstream of Vicenza,and to

inherent limitations of the model itself.
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Indeed, it has to be remarked that the Muskingum–Cunge modelfor flood propagation used in Mazzoleni et al. (2017)

considers rectangular river cross-sections for the estimation of hydraulic radius, wave celerities, and other hydraulic variables

(Todini, 2007). Accordingly, the effects exerted by the “Viale Diaz” floodplain, which acts as a sort of in-line natural flood

control reservoir on flood propagation, can not be properly accounted for. This means that, if the flood hydrograph is correctly

modelled at Ponte degli Angeli, it can not be correctly modelled upstream of the Viale Diaz floodplain (and vice-versa).5

2.3 The use of synthetic CSD in the Bacchiglione case study

In Mazzoleni et al. (2017), synthetic CSD of streamflow are results of the model itself. Similarly to the “observing system

simulation experiment” (OSSE) approach, synthetic CSD were calculated by forcing the hydrological model with measured

precipitation recorded during the considered flood events (post-event simulation).

The Authors claimed that these synthetic CSD are realistic;however, for this condition to be met, the model must represent10

well the physics of the real system (i.e., it must be calibrated or, at least, verified) at locations where CSD are first generated and

then assimilated, which is a fundamental hypothesis behindthe OSSE approach. As a matter of fact, the synthetic CSD usedin

Mazzoleni et al. (2017) for the Bacchiglione case study are representative of the model internal states of the best-fit scenario.

But, recalling that such CSD do not refer to model control points, nothing can actually be said about the model performance at

locations where CSD are generated and, as a consequence, about their accuracy.15

From one point of view, such an inconsistency could have led to overrate the importance of CSD in Mazzoleni et al. (2017),

who considered issues related to CSD precision, but not accuracy. In other words, real CSD are likely biased with respectto the

synthetic CSD they used but, contrarily to Mazzoleni et al. (2016), this aspect was not accounted for in Mazzoleni et al. (2017).

From a more general point of view, additional care must be taken in operational flood forecasting when assimilating CSD into

(semi-)distributed hydrological models at locations other than model control points. This last point is further discussed in the20

next section.

3 The use of CSD in operational flood forecasting

As remarked by Mazzoleni et al. (2017), the success of assimilating SCD in hydrological modelling strictly depends on their

accuracy, quantity, and spatial-temporal distribution. However, attention must be paid not only to CSD, but also to themodel.

First, it must be observed that CSD typically do not refer to model calibration points, since their natural purpose is to enhance25

(rather than replace) data from traditional sensors. In general, historical data recorded by traditional sensors are first used to

calibrate a model; then, in real-time mode, the same sensorsprovide data both to force the model and to update the model states

(e.g., Ercolani and Castelli, 2017); moreover, the reliability of data from traditional sensors outperforms that of CSD. Hence,

from a practical point of view, CSD have limited usefulness at locations already equipped with traditional sensors.

Accordingly, particular care has to be taken when dealing with physically-based, (semi-)distributed models, which are known30

to suffer from equifinality and identifiability of model parameters (Beven, 2006). After the critical work by Beven (1989), de-

tailed investigations were carried out about the model complexity needed to simulate rainfall-runoff process. Several studies
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indicated that the information content in a rainfall-runoff record is sufficient to support models of only very limited complex-

ity (Jakeman and Hornberger, 1993; Refsgaard, 1997). This implies that distributed, or semi-distributed, hydrological mod-

els are seldom calibrated; rather, they are commonly over-parametrized, since calibration rarely involves their internal states

(Sebben et al., 2012; Viero et al., 2014).

In addition, flood routing processes are typically oversimplified in operational models meant to real-time flood forecasting5

(Mejia and Reed, 2011). For instance, significant effects related to either compound sections, large floodplains connected to

the main channel, or confluences causing backwater effects,are seldom accounted for.

As a consequence, semi-distributed rainfall-runoff models may provide accurate predictions of outflow discharge at the

closing section and, at the same time, poor predictions of internal states of the system (e.g., the soil moisture content, or

the relative contribution of upstream tributaries); in other words, one can likely get the correct answer for the wrong reason10

(Loague et al., 2010). Therefore, (semi-)distributed models can be said calibrated only at calibration (or control) points, and

verified only at locations in which model results are shown tocompare favourably with enough (and accurate enough) measured

data.

This caveat particularly applies to assimilation of CSD in hydrological modelling for operational, real-time flood forecasting.

Indeed, while CSD typically refer to model internal states,they are assimilated in order to improve the accuracy of the main15

outputs of the model, such as streamflow hydrographs at closing sections (model internal states are relatively less important in

this context).

Recalling that model input, states, parameters, and outputs (or a subset of them) can be updated using different data assimila-

tion techniques (Refsgaard, 1997), assimilation of CSD in operational flood forecasting can be helpful provided that the model

is able to well represent the physics of the system at locations where CSD are collected. When only internal states are updated20

(as in Mazzoleni et al., 2017), this condition is met if (and only if) the model is properly calibrated and verified at locations

where CSD refer to. Otherwise, correcting internal states of a poorly calibrated model can even lead, in principle, to worse

predictions at the outlet than performing no corrections atall (Crow and Van Loon, 2006). It is undoubtedly difficult to assess

this issue when only synthetic CSD, generated by the same model, are available for testing the overall method.

As a valid alternative for operational forecasting, ensemble based data assimilation methods (e.g., the Ensemble Kalman25

Filter or the Particle Filter) can be used to update jointly model states and parameters and to provide a direct measure of

uncertainty. In this way, models cope directly with equifinality and problems of over-parametrization, since parameter posterior

distributions are represented by ensembles. Note that typical data assimilation algorithms are in principle able to screen out

noisy data automatically, but need to be modified to tackle possible data bias, which otherwise leads to poorly calibrated

models. Thus, it is important, regardless of the nature of the data, to verify if such bias exists before any data assimilation is30

applied.

Nonetheless, also such sophisticated tools may fail if the model has structural deficiencies that make it unable to represent

true system states at given locations. As a representative example, consider the Bacchiglione River (Fig. 1) and, specifically,

the “Viale Diaz” floodplain described in Sec. 2. The role played by such an in-line flood control reservoir on flood routing

can not be accounted for using a basic Muskingum–Cunge modelthat considers rectangular cross-sections. It follows that the35
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assimilation of accurate streamflow data referring to a section located just upstream of the Viale Diaz floodplain (e.g.,Ponte

Marchese, see Fig. 1) can likely deteriorate the model predictions in Ponte degli Angeli, downstream of the floodplain.

Shortcomings similar to the one described above, which can be found in many different case studies, can be a-priori conjec-

tured through a close inspection of both the physical systemand the model characteristic. Their quantitative assessment needs

an extensive comparison with measured data; of course, a “blind” use of CSD (i.e., their assimilation at locations wherethe5

model is neither calibrated nor verified) is at least questionable.

4 Summary

The approach proposed and investigated by Mazzoleni et al. (2017), based on the assimilation of crowdsourced data (CSD),

can be generally valuable to improve real-time flood forecasts using non-traditional information now available thanksto active

citizens and new technologies.10

However, it has to be remarked that physically based modelling of rainfall-runoff and flow routing processes has to face actual

limitations ascribed to the paucity of measured data, to thecomplexity of real environments, and to lacks in model structure

and parametrization. As a consequence, (semi-)distributed rainfall-runoff models used for operational flood forecasting can

provide reliable predictions at locations where calibration is performed (i.e., control points) and, at the same time,incorrectly

represent system states elsewhere(e.g., discharges in upstream, ungauged tributaries).15

In a context of equifinality and simplified representation ofreal physical processes, the accurate prediction of outflowhydro-

graphs can be achieved even though model internal states don’t match the true system states. In such cases, the assimilation of

real CSD can lead to a substantially lower performance than the use of synthetic CSD would suggest, as it corresponds, in fact,

to update a model using biased data (e.g., Dee, 2005; Liu et al., 2012). When only internal states (and not model parameters)

are updated, or when the model suffers structural deficiencies, the assimilation of real (i.e., not synthetic) streamflow data at in-20

ternal points can lead, in principle, to even worse model prediction at the outlet than no assimilation at all (Crow and Van Loon,

2006). The problem can arise due to the disjoint use of traditional and crowdsourced data, with the former used to calibrate

(semi-)distributed models at control points, and the latter used only in real-time to update model states at different locations.

A possible solution is the use of ensemble based data assimilation methods to update jointly model states and parameters.

An additional pragmatic recommendation is the collection of accurate measured data for a suitable period, for at least two25

reasons: i) to develop reliable rating curves at locations where water level CSD are planned to be collected, and ii) to calibrate

and verify the model ability in describing the system statescorrectly at the locations in which CSD are collected.

It must be observed that, while scarce control on the collection of CSD can be exerted during significant flood events, the

locations at which citizens can collect CSD is always determined a-priori, since the availability of rating curves is a necessary

condition in order to convert water levels into discharges.The amount of measured data needed to develop reliable rating curves30

can also be profitably used to calibrate the model at those sections as well.
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As a final remark, both modellers and environmental agenciesshould comprehensively account for the characteristics ofthe

physical system, for model structure and parametrization,for the design of the sensors network, and for data to be used both in

calibration and in operational mode.

Acknowledgements.M. Mazzoleni and the anonymous reviewer are gratefully acknowledged for providing valuable comments and sugges-

tions.5
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