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1 RESPONSE TO THE EDITOR’S COMMENTS

The reviewer of the revised comment has determined thatanesuript is a worthwhile contribution to the literature éis
ready for publication. | have now read the revised commeand,while | agree, the comment is a worthwhile contributitrere
are still areas of the comment that require editorial regiss before the manuscript can be accepted.
I now ask the author to address these comments. | will assasthe comments have been addressed before final acceptance
of the manuscript for publication.

— Please proofread thoroughly the entire manuscrippne. Many typos were amended throughout the text.

— Abstract: The abstract does not mention flood forecastingdioes it seem to capture the main points of the comment.
| would look to the summary of the comment, particularly #e& P paragraphs, which contains some nice text about
the main points of the commeithanks for the suggestion. | revised the Abstract for it fotgee the main points of the
comment, by removing unnecessary information and adding general comments.

— p. 1, line 3: Change “moment” to “time” and delete the word “a@lly”. Done.

— p. 1, line 10: You do not use the word “unreliable” later to deibe the use of synthestic CSD. | would remove this
sentence here and replace with some of the points made iutheary.This sentence has been removed and replaced
with a more general comment.

— p. 1, lines 15-16: Move the phrase “in order to produce the naasurate flood predictions” to the start of the sentence.
Done.

— p. 1, line 18: Delete “, and to explore different kind of” an@s$ well”. Done.

— Introduction, paragraphs 1 and 2: Abbreviate CSD after th&t fise of crowdsourced data (line 19) and then use CSD
after that (line 21)Done.

— p.1, line 20: Change “unexpected” to “exciting'Done.

— p. 2, line 1: Move the reference to Mazzoleni to after the pardn pioneering applications”Done.
— p. 2, line 3: Change to read “In this recent workDone.

— p. 4, line 27: Change “hard” to “difficult”. Done.

— p. 5, line 14: What is meant by “closing section” here? Reg#asing a hydrology terrsorry for the wrong expression.
I've changed it with “basin outlet” in different parts of tiext.

— p. 5, line 18, Change to read “In their...Done.

— p. 5, line 20: Provide the reason for why this was not surpigsiThis will help reiterate the point you are making in this
paragraph.
Now the sentence reads (addition in red):
“Not surprisingly, the model performance in the “scenarior@s significantly better than in the “scenario, 25 the
synthetic CSD they assimilated were representative of ielinternal states in the best-fit scendrio.

— p. 5, line 22: Change to read “...the model must well repreéglea physics..”Done.

— p. 5, line 24: 1 do not see where OSSE has been spelled outehéfsrabbreviated heré OSSE” is spelled out in the
preceding paragraph.
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— p. 5, lines 25-29: These sentences are still a bit uncleas Txt should be more clear in describing one of the central

points of your comment. Provide more detail so that the re&dable to easily grasp the point.
Thank you for the suggestion. The paragraph has been refatedito read (additions in red):

“Asamatteroffact; The synthetic CSD used in Mazzoleni et al. (2017) ferBacchiglione case study aapresentative

of drawn fromthe model internal statesf-the underbest-fitseenarioconditions Thus, when the model is forced with
different (wrong) input data, their assimilation is exptto be as successful as possible in updating the modes state
toward the best-fit scenaribloweverreealingthatthe accuracy afuchsyntheticCSDis questionable, since thelp not
refer to model control point§.e., they are drawn from the semi-distributed model aafimns where the model is neither
calibrated nor verified), snothing can actually be said about the model performantiecatlocationswhere€Sbare

generatedind;asaconsequencgbouttheiraceuraeyln a sense, synthetic CSD used by Mazzoleni et al. (2017) are
optimal(in view of assimilation performance) rather thaalistic. SinceRealcSBarethenexpectedo-befartherfrom

thebest-fitseenarighanthesyntheticCSbgeneratedy-themedel:thatis; real CSD are likely biased with respect to
the synthetic CSD actually use@herefore, assimilation of reakrewdseureediataCSD can not be as effective as that

performed in Mazzoleni et al. (2017).”

p. 5, line 33: Delete the last sentence of this paragrdpbne.

Section 3 is nicely writtenhanks!

p. 6, line 3: Change to read: “However, this comment pointstbat attention must be paid..Done.

p. 6, line 4: Please add a reference to some literature thatarssemble based methods for flood forecasting.

| added references to two literature works that use ensebatsied methods just after where ensemble methods are first
mentioned in the text (it is at p. 7). Now the sentence readiditjan in red):

“As an alternative for operational forecasting, ensemialeell data assimilation methods (e.g., the Ensemble Kalman
Filter or the Particle Filter) can be used to update jointlyd®@l states and parameters and to provide a direct measure of
uncertainty(Moradkhani et al., 2005; Salamon and Feyen, 2009)

p. 8, line 5: Change to CSD where “crowdsourced data” is udezhanged “crowdsourced data” to CSD everywhere in
the text, but not here, where “crowdsourced” is used as aaptus“traditional”.

Wording needs to be softened in several areas of the comment:

p. 1, line 21: Delete “severe”Done.

p. 1, line 23: Delete “in fact” and expand on why a lack long érseries of CSD data are a further limitatidbone. Now
the sentence reads (addition in red): “In addition, longetseries of (CSD) are unavailabteus complicating efforts to
assess their effectiveness in improving flood prediction

. 2, line 16: Change to read “..., which affects the intetpten of the usefulness of CSDDone.
. 5, line 21: Change “claimed” to “argued”Done.

. 5, line 24: Delete “As a matter of fact..Done.

. 5, line 30: Change to read “It is possible that such an insistency....” Done.

. 5, line 31-32: Change to read “Therefore, additional canest be taken..’Done.

. 7, line 6: Change to read “As an alternative for..Done.

T T T T T T T

. 7, line 27-28: Change to read “and flow routing processe®fimitations..”.Done.
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Comment on “Can assimilation of crowdsourced data in
hydrological modelling improve flood prediction?” by Mazzoleni et
al. (2017)

Daniele P. Vierd

IDepartment of Civil, Environmental, and Architectural Emgring, University of Padova, via Loredan 20, 35131, Rado
(Italy).
Correspondence tddaniele P. Viero (daniele.viero@unipd.it)

Abstract. Citizen science and crowdsourcing are gaining increaditegiion among hydrologistén their a recent contribu-
tion, Mazzoleni et al. (2017) investigated the integratidrecrowdsourced data (CSD) in hydrological models to imprtve
accuracy of real-time flood forecasts. The Authors usechefitt CSD (i.e., not actually measured), becausearestdseureed
dataCSD were not available at therementtime of the study. In their work, which isetaally a proof-of-concept study,
Mazzoleni et al. (2017) showed that assimilation of CSD immps the overall model performance; the impact of irregular
frequency of available CSD, and that of data uncertaintyewsso deeply assessed. However, the use of synthetic CSD
in conjunction witha (semijdistributed hydrological modgldeserves further discussiom-restreal-weorld-applications,

where{semi-)distributednodelsarenotcalibrated. As a result adither equifinality, poor model identifiability, and lacks i
model structure, internal states of (semi-)distributediei® can hardly mimic the actual states of complex systenay &om
calibration pointsAccordingly, the use of synthetic CSD that are drawn from etlatdernal states under best-fit conditions can
lead to overestimating the effectiveness of CSD assimitati improving flood predictionSynthetiec€CSBgeneratedby-such

of high societal value, requires robust knowledge of the ehbéhaviour and an in-depth assessment of both model steuct

and forcing dataAdditional guidelines are given that are useful for the apvaluation orewdseurcedlataCSD for real-
time flood forecasting and, hopefully, to plan apt desigatsgies for both model calibration and collectioreedweseureed
dataCSD.

1 Introduction

Flood forecasting has a critical importance as it resulteicisions of high societal valuel order to produce the most accurate
flood predictionsit is essential to provide public authorities with the beshbination of data and modelserderto-produce
themestaceuratdloedpredictions and with a robust knowledge of the model behaviour in terfmsl@bility and uncertainty.



10

15

20

25

30

Modellers thus have a responsibility to deeply assess thagths and limitations of modglandte-exploredifferentkind-of
forcing dataaswelt.

Within this general picture, the topic abmmunity-based monitoring aimed at providiogpwdsourced data (CSD) is
gaining increasing attention among hydrologifte Coz et al., 2016; Walker et al., 2016; de Vos et al., 201#jtiset al.,
2017, Starkey et al., 201.ArdeedFor examplethe availability of hydrometric data, collected by actorgzens in the course
of severe flood events, offers a nesexpeetecexciting chance to improve real-time flood forecasts. However, theeafs
erowdsoudrcedlataCSD posessevere challenges to modellers since their informatioesnreliability, arrival frequency, and
location are a priori unknow(Mazzoleni et al., 2015, 2017; McCabe et al., 2017; van M&dret al., 2017; Yang and Kang,
2017) In addition, long time series affewdseourcedlataCSD arein-faet unavailablethus complicating efforts to assess their
effectiveness in improving flood prediction

In pioneering application§Viazzoleni et al., 2015 erewdseurcedata{CSD) collected in the upper part of a basin were
assimilated into adaptive hydrological models to reduceettainty in forecasting flood hydrographs at downstreactices
{Mazzelenietal;2015) Inathisrecent work, Mazzoleni et al. (2017) paid particular aftamto the issues of uncertainty and
irregular arrival frequency of CSD. Their results showeat thssimilation of CSD improves the overall model perforogan
They also showed that the accuracy of CSD is, in general, imgertant than their arrival frequency.

In their work, the Authors used synthetic (i.e., not acyeadeasured) CSD, because real streamflow CSD were not deailab
at themementtime of the study. Commenting on this aspect, the Authors wriite tieveloped methodology is not tested with
data coming from actual social sensors. Therefore, thelosiens need to be confirmed using real crowdsourced obSensa
of water level. A practical verification of the results by Mazzoleni et @017) is indeed necessary; furthermore, particular
attention has to be paid to possible drawbacks inhereneingk of CSD for operational flood forecasting and relatedadeh
structural uncertainty, which are not discussed in theofof-concept study.

The Comment is outlined as follows. Section 2 preseamtsepan in-depthassessment of the Bacchiglione River case study
(i.e., the fourth case study presented in Mazzoleni et@L7 in order to highlight the actual gap between a proe¢afcept
study and a real application for operational flood forecgstGiven the complexity of the basin and the relatively [guaf
available data, it is shown that the semi-distributed madeld in Mazzoleni et al. (2017) is unable to properly repretee
physics of the whole hydrological and hydraulic systesith-adverseffectsontheassimilationefrealcSBwhich affects the
interpretation of the usefulness of CSBased on the key features delineated in Sect. 2, a moreaessessment of CSD

assimilation in (semi-)distributed hydrological modedgjiven in Sect. 3. A brief summary closes the Comment.

2 Specific comments

2.1 The Bacchiglione catchmentlesed at Ponte degli Angeli (Vicenza)

The catchment of the upper Bacchiglione River, closed atd’degli Angeli in the historical centre of Vicenza (Fig. iy,
located in the north of the Veneto Region, a plain that isgieith by the Alpine barrier at a distance of less than 100 kmeo th
north of the Adriatic Sea (Barbi et al., 2012).
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Figure 1. The catchment of the Bacchiglione River closed at Ponte degli Angeknv (Italy).

With regard to the precipitation climatology, the southpant of this plain is the drier, with approximately 700-10@én
of mean annual rainfall, whereas more than 2000 mm are meslose to the pre-alpine chain due to the interaction of the
southerly warm and humid currents coming from the Meditezean Sea with the mountain barrier (Smith, 1979). A signitica
portion of the annual rainfall often concentrates into vengrt periods of time in the form of what often turns out to be a
extreme event with deep convection playing a central robel§Bet al., 2012; Rysman et al., 2016). As a consequencereev
flooding evend have threatened agricultural and urban areas in the reeams ye.g. Viero et al., 2013; Scorzini and Frank,
2017).

Due to the spatial and temporal variability of the rainfadldis meteorological models are often unable to provide accurate
and reliable quantitative precipitation estimates (QRIEXtie upper Bacchiglione catchment. An example of thiseqadcy
is given, for instance, by Fig. 13 in Mazzoleni et al. (2017).
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The upper Veneto plain is a highly populated and urbanized,avith extremely complex drainage and irrigation network
that significantly affect both runoff production and proptign (Viero and Valipour, 2017). Within this plain, the Bhaglione
River and its tributaries are provided with relatively higliees (Viero et al., 2013), which prevent the exchange ¢émfeom
inside to outside the riverbed (and vice versa) when therimmzer levels are relatively high. As a consequence, themin
channel networks are not always allowed to deliver theimaige water towards the nearest tributary, i.e., the inflomts
along the main river reaches change during a flood event déemeon the instantaneous water level within the river. This
occurrence modifies the network connectedness which, im keads to different mechanisms of hydrologic responséén t
overall catchment.

Just upstream of the City of Vicenza, an area of up to  kinthe “Viale Diaz” floodplain {Fig. 1) is flooded when the
Bacchiglione flow rate exceeds 160 m3/s. Since abow2 - 105 m? of water can be temporarily stored in this area, a significant
flood attenuation can be produced, particularly in caddeefishydrographith a steep rising limb (which is often the case
due to the climatic regime and the catchment charactes)stic

Moreover, the lower part of the Bacchiglione basin, Northvafenza, includes a vast groundwater resurgence zone, in
which it's difficult to assess both the actual contributidrresurgence to the Bacchiglione streamflow (upt80 m3/s) and
the time-variable behaviour of soil moisture.

Clearly, such a system is highly non-linear. Nonethelagsijficant parts of the Bacchiglione catchmgare poorly moni-
tored, and the remaining parts are completely unmonitdrbd.Leogra subcatchment (blue shaded area in Fig. 1) isq@dvi
with a pressure-transducer for the measure of water levebraébelvicino (Fig. 1). A rating curve derived from thetical
considerations is available for this cross-section. Haxethe absence of instrumental measures of flow discharges lits
reliability. The Leogra-Timonchio subcatchment (oranpaded area in Fig. 1) is monitored by an ultrasonic stageosens
located at Ponte Marchese, just upstream of the confluertbetlvéi Orolo River. Flow rate measurements at Ponte Marchese
refers only to low hydraulic regimes, and show great valitghilue to the operatiamof a hydroelectric power plant located
just downstream of Ponte Marchese. The Orolo River (greedesharea in Fig. 1), with a discharge capacity of more than
one third of the Bacchiglione at Ponte degli Angeli, is on&®Mmajor tributaries. Unfortunately, not only the Oroldsatch-
ment is completely uncovered by meteorological gaugingosts, but also no hydrometric gauging stations are presenty
its reach. Similarly to the Orolo, the Astichello catchmé@eid shaded area in Fig. 1) is unmonitored and, due to baekwat
effects, significant areas adjacent to thain channel of théstichello are flooded when water levels in the Bacchigliane
relatively high. Hence, the discharge that effectively #dnom the Astichello into the Bacchiglione River may sigeafitly
reduce depending on the water stage within the main course &acchiglione River.

Attention must be paid to the fact that the three major tekies (Orolo, Timonchio, and Astichello) meet just upstmezt
theelesingseetiongauging statiof Ponte degli Angeli (Fig. 1), making it difficult to corrégestimate the actual contribution
of each single tributary to the total streamflow. By lookiriglee tree-like structure of the drainage network in an eieait
analogy (Rodriguez-lturbe and Rinaldo, 2001), the majbutaries of the Bacchiglione are in fact “conductors ingtiat”.

Certainly, given the irregular topography of the catchragtite heterogeneity of the landscape, and the complexitiyeof
hydraulic network, it can be stated that the Bacchigliortetoaent is poorly monitored.
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2.2 The semi-distributed model of the Bacchiglione catchnm

In catchments like that of the Bacchiglione River, for ak titasons reported in the previous section, the accuradeoa
of flood hydrograph&y-perfermingwith continuous time simulatianis unquestionably Barddifficult task (Anquetin et al.,
2010).

Mazzoleni et al. (2017) used an available semi-distribimgdtological model coupled with a Muskingum—Cunge scheme
for flood propagation within the main river network, which svariginally set up to forecast flood hydrograpbfsthe Bac-
chiglione Riverat theelosingsectionof Ponte degli Angeli (Vicenza). Sensibly, the model wasbecated by minimizing the
root mean square error between observed and simulatedsvaweater discharge only at Ponte degli Angeli, which is the
only hydrometric station provided with a reliable ratingee The semi-distributed model, although explicitly regenting
the hydrological processes within the main subcatchméats{o be intended as a lumped model from a practical stamigipoi
since the discharge in Ponte degli Angeli is its only conpaiht.

Therefore, no matter the accuracyteé streamflow predictianin Ponte degli Angeli, little can be said about the accuodcy
the model in describing the internal states of the systenh) as the streamflow alortge upstream tributaries. This limitation
has to be ascribed to uncertainty in precipitation fieldsh&opaucity of (reliable) flow rate data upstream of Viceraza] to
inherent limitations of the model itself.

Indeed, it has to be remarked that the Muskingum—-Cunge nfoddlood propagation used in Mazzoleni et al. (2017)
considers rectangular river cross-sections for the esomaf hydraulic radius, waveeleritiescelerity, and other hydraulic
variables (Todini, 2007). Accordingly, the effects exdrby the “Viale Diaz” floodplain, which acts as a sort of indinatural
flood control reservoir on flood propagation, can not be pigpeccounted for. This means that, if the flood hydrograph is
correctly modelled at Ponte degli Angeli, it can not be cattyemodelled upstream of the Viale Diaz floodplain (and vice

versa).
2.3 The use of synthetic CSD in the Bacchiglione case study

In the Bacchiglione case study, Mazzoleni et al. (2017pcated the model using measured rainfall data to well repredhe
streamflow hydrograph at thdesingsectionbasin outlef(call this post-event simulation “scenario 1”). Then theyckd the
model with predicted rainfall fields that were completelfetient from the actual storm event (“scenario 27); in thise, the
discharge simulated using forecasted input was very difieirom that obtained using recorded rainfall, with a igant time
shift and errors in predicted discharge ranging betweem#®8% at the flood peak (and up to 90% if considering synchreno
data). In th& “scenario 3", similarly to the “observing system simulatiexperiment” (OSSE) approach, synthetic streamflow
CSD extracted from the “scenario 1” were assimilated inteea nun using the same forcing as in the “scenario 2”. Not
surprisingly, the model performance in the “scenario 3” sigmificantly better than in the “scenario,2is the synthetic CSD
they assimilated were representative of the model intestaéds in the best-fit scenario

The Authorsslaimedarguedhat the synthetic CSD they used are realistic. For thisitiomdo be met, given that these CSD
aretheresults of the model itself, the model must|l representyell the physics of the real system (i.e., it must be calibrated
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or, at least, verified) at locations where CSD are first geadrand then assimilated; this is a fundamental hypothesisd
the OSSE approachsamatteroffact; The synthetic CSD used in Mazzoleni et al. (2017) ferBlacchiglione case study are
representativef drawn fromthe model internal states-the underbest-fitseenariaconditions Thus, when the model is forced
with different (wrong) input data, their assimilation ispected to be as successful as possible in updating the madies$ s
toward the best-fit scenariblowever recalingthatthe accuracy o$uchsyntheticCSDis questionable, since thelp not refer
to model control pointéi.e., they are drawn from the semi-distributed model aatimms where the model is neither calibrated
nor verified), sanothing can actually be said about the model performandeeatlocationswhereCSB-aregeneratedind,
asa-consequencabouttheiracedraeyln a sense, synthetic CSD used by Mazzoleni et al. (2017pjtienal (in view of
assimilation performance) rather thagalistic. SinceRealESBarethenexpectedo-befartherfromthebestfitseenarighan
thesynthetiecCSbgeneratedhy-themodelkthatis; real CSD are likely biased with respect to the syntheS®G@ctually used
Fherefore, assimilation of reatewdseureediataCSD can not be as effective as that performed in Mazzoleni eR@lLy).
From one point of viewjt is possible thasuch an inconsistency could have led Mazzoleni et al. (204 Bverrate the
importance of CSD, as they considered issues related to G&sjpn, but not accuracy (Mazzoleni et al., 20¥&pma
meregeneralpointofview Therefore additional care must be taken in operational flood foréegsthen assimilating CSD

into (semi-)distributed hydrological models at locatiatiser than model control point$histastpeintisfurtherdiseussedn
thenextseetion.

3 The use of real CSD in operational flood forecasting

As remarked by Mazzoleni et al. (2017), the success of aksding real CSD in hydrological modelling strictly depenats
their accuracy, quantity, and spatial-temporal distidoutHowever,this comment points out thatttention must be paid not
only to CSD, but also to the model.

In general, historical data recorded by traditional semaoe first used to calibrate a model; then, in real-time mihéesame
sensors provide data both to force the model and to updatadlde! states (e.g., Ercolani and Castelli, 2017); moreadkier
reliability of data from traditional sensors outperforrhattof CSD. Hence, from a practical point of view, CSD havetkah
usefulness at locations already equipped with traditisaakors. Since their natural purpose is to enhance (raereplace)
data from traditional sensors, and considering that thaeybeacollected at locations not known a priori, CSD typicalbynot
refer to model calibration points.

Given the spatially distributed nature of CSD, spatiallpleit hydrological models can take the major advantagenfro
CSD. On the other hand, particular care has to be taken wraimdevith physically based, (semi-)distributed modelbkjak
are known to suffer from equifinality and poor identifialyilaf model parameters (Beven, 2006).

After the critical work by Beven (1989), detailed investigas were carried out about the model complexity needed to
simulate rainfall-runoff process. Several studies ingidahat the information content in a rainfall-runoff regas sufficient
to support models of only very limited complexity (Jakemand &ornberger, 1993; Refsgaard, 1997). This implies that di
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tributed, or semi-distributed, hydrological models arkelem calibrated; rather, they are commonly over-paramedi since
calibration rarely involves their internal states (Sebeeal., 2012; Viero et al., 2014).

In addition, flood routing processes are typically overdifigal in operational models meant to real-time flood for¢icas
(Mejia and Reed, 2011). For instance, significant effedtsted to either compound sections, large floodplains caeneo
the main channel, or confluences causing backwater effeetseldom accounted for.

As a consequence, (semi-)distributed rainfall-runoff elednay provide accurate predictions of outflow dischargiet
elesingseetionbasin outletand, at the same time, poor predictions of internal stataheofystem (e.g., the soil moisture
content, or the relative contribution of upstream tribigsy; in other words, one can likely get the correct answettfe wrong
reason (Loague et al., 2010). Therefore, (semi-)disteidbutodels can be said calibrated only at calibration (orromioints,
and verified only at locations in which model results are sheevcompare favourably with enough (and accurate enough)
measured data.

This caveat particularly applies to assimilation of CSDyndtological modelling for operational, real-time flood éoasting.
Indeed, while CSD typically refer to model internal statbgy are assimilated in order to improve the accuracy of taenm
outputs of the model, such as streamflow hydrograpkatngsectionsasin outle{model internal states are relatively less
important in this context).

Recalling that model input, states, parameters, and aufjputa subset of them) can be updated using different data as-
similation techniques (Refsgaard, 1997), assimilatiol€8D in operational flood forecasting can be helpful provittest
the model is able to well represent the physics of the systeocations where CSD are collected. Of course, data assimi-
lation can contribute, in many cases, to improve such a septation. However, when only internal states are updaigth(
Mazzoleni et al., 2017), this condition is met if (and onlytlie model is properly calibrated and verified at locatiote e
CSD refer to. Otherwise, correcting internal states of algaalibrated model can even lead, in principle, to worsjotions
at the outlet than performing no corrections at all (Crow sad Loon, 2006). It is undoubtedly difficult to assess thgues
when only synthetic CSD, generated by the same model, ailalatesfor testing the overall method.

As avalid analternative for operational forecasting, ensemble basgal assimilation methods (e.g., the Ensemble Kalman
Filter or the Particle Filter) can be used to update jointlgdal states and parameters and to provide a direct measure of
uncertainty(Moradkhani et al., 2005; Salamon and Feyen, 2009; Wani e2@l7) In this way, models cope directly with
equifinality and problems of over-parametrization, sinaeameter posterior distributions are represented by dslssnNote
that typical data assimilation algorithms are in princighde to screen out noisy data automatically, but need to lbfiad to
tackle possible data bias, which otherwise leads to poa@lip@ated models. Thus, it is important, regardless of e of
the data, to verify if such bias exists before any data assiion is applied.

Nonetheless, also such sophisticated tools may fail if tbdehhas structural deficiencies that make it unable to sete
true system states at given locations. As a representatarame, consider the Bacchiglione River (Fig. 1) and, dpediy,
the “Viale Diaz” floodplain described in Sec. 2. The role @eyby such an in-line flood control reservoir on flood routing
can not be accounted for using a basic Muskingum—-Cunge ntioatetonsiders rectangular cross-sections. It followsttiea
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assimilation of accurate streamflow data referring to aieedbcated just upstream of the Viale Diaz floodplain (eRpnte

Marchese, see Fig. 1) can likely deteriorate the model ptiedis in Ponte degli Angeli, downstream of the floodplain.
Shortcomings similar to the one described above, which edoind in many different case studies, can be a priori cenjec

tured through a close inspection of both the physical systedithe model characteristic. Their quantitative assessnezds

an extensive comparison with measured data; of coursejrad"hise of CSD (i.e., their assimilation at locations whtre

model is neither calibrated nor verified) is at least questixe.

4 Summary

The approach proposed and investigated by Mazzoleni 2@L7(, based on the assimilation of crowdsourced data (CSD)
can be generally valuable to improve real-time flood forecasing non-traditional information now available thatkactive
citizens and new technologies.

However, it has to be remarked that physically based madgdi rainfall-runoff and flow routing processeaste faceaetual
limitations ascribed to the paucity of measured data, tactimplexity of real environments, and to lacks in model gtre
and parametrization. As a consequence, (semi-)distdowtiafall-runoff models used for operational flood fordaas can
provide reliable predictions at locations where calilmatis performed (i.e., control points) and, at the same timegrrectly
represent system states elsewhere (e.g., dischargesiaamsungauged tributaries).

In a context of equifinality and simplified representatiomel physical processes, the accurate prediction of outfimiwo-
graphs can be achieved even though model internal statésamich the true system states. In such cases, the aséamitzt
real CSD can lead to a substantially lower performance thamnse of synthetic CSD would suggest, as it correspondacin f
to update a model using biased data (e.g., Dee, 2005; Liu, &(l2). When only internal states (and not model parameters
are updated, or when the model suffers structural defigsntie assimilation of real (i.e., not synthetic) streamflata at in-
ternal points can lead, in principle, to even worse modeligt®n at the outlet than no assimilation at all (Crow and Yaon,
2006). The problem can arise due to the disjoint use of tmadit and crowdsourced data, with the former used to cdébra
(semi-)distributed models at control points, and the tatted only in real-time to update model states at differecetions.

A possible solution is the use of ensemble based data aasomilmethods to update jointly model states and parameters
An additional pragmatic recommendation is the collectibmacurate measured data for a suitable period, for at least t
reasons: i) to develop reliable rating curves at locatiohene water level CSD are planned to be collected, and ii) librese
and verify the model ability in describing the system statasectly at the locations in which CSD are collected.

It must be observed that, while scarce control on the cadleaif CSD can be exerted during significant flood events, the
locations at which citizens can collect CSD of water levelalivays determined a priori, since the availability ofrgtcurves
is a necessary condition in order to convert water levels discharges. The amount of measured data needed to develop
reliable rating curves can also be profitably used to cakttee model at those sections as well.



As a final remark, both modellers and environmental agerstieald comprehensively account for the characteristitiseof
physical system, for model structure and parametrizat@rthe design of the sensors network, and for data to be ustbdirio

calibration and in operational mode.
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