
1 RESPONSE TO THE EDITOR’S COMMENTS

The reviewer of the revised comment has determined that the manuscript is a worthwhile contribution to the literature and is
ready for publication. I have now read the revised comment, and while I agree, the comment is a worthwhile contribution, there
are still areas of the comment that require editorial revisions before the manuscript can be accepted.

I now ask the author to address these comments. I will assess that the comments have been addressed before final acceptance5
of the manuscript for publication.

– Please proofread thoroughly the entire manuscript.Done. Many typos were amended throughout the text.

– Abstract: The abstract does not mention flood forecasting nor does it seem to capture the main points of the comment.
I would look to the summary of the comment, particularly the last 2 paragraphs, which contains some nice text about
the main points of the comment.Thanks for the suggestion. I revised the Abstract for it to capture the main points of the10
comment, by removing unnecessary information and adding more general comments.

– p. 1, line 3: Change “moment” to “time” and delete the word “actually”. Done.

– p. 1, line 10: You do not use the word “unreliable” later to describe the use of synthestic CSD. I would remove this
sentence here and replace with some of the points made in the summary.This sentence has been removed and replaced
with a more general comment.15

– p. 1, lines 15-16: Move the phrase “in order to produce the most accurate flood predictions” to the start of the sentence.
Done.

– p. 1, line 18: Delete “, and to explore different kind of” and “as well”. Done.

– Introduction, paragraphs 1 and 2: Abbreviate CSD after the first use of crowdsourced data (line 19) and then use CSD
after that (line 21).Done.20

– p.1, line 20: Change “unexpected” to “exciting”.Done.

– p. 2, line 1: Move the reference to Mazzoleni to after the phrase “In pioneering applications”.Done.

– p. 2, line 3: Change to read “In this recent work”.Done.

– p. 4, line 27: Change “hard” to “difficult”. Done.

– p. 5, line 14: What is meant by “closing section” here? Rephrase using a hydrology term.Sorry for the wrong expression.25
I’ve changed it with “basin outlet” in different parts of thetext.

– p. 5, line 18, Change to read “In their...”.Done.

– p. 5, line 20: Provide the reason for why this was not surprising. This will help reiterate the point you are making in this
paragraph.

Now the sentence reads (addition in red):30

“Not surprisingly, the model performance in the “scenario 3” was significantly better than in the “scenario 2”, as the
synthetic CSD they assimilated were representative of the model internal states in the best-fit scenario.”

– p. 5, line 22: Change to read “...the model must well represent the physics...”.Done.

– p. 5, line 24: I do not see where OSSE has been spelled out before it is abbreviated here.“OSSE” is spelled out in the
preceding paragraph.35
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– p. 5, lines 25-29: These sentences are still a bit unclear. This text should be more clear in describing one of the central
points of your comment. Provide more detail so that the reader is able to easily grasp the point.

Thank you for the suggestion. The paragraph has been reformulated to read (additions in red):

“As amatterof fact, The synthetic CSD used in Mazzoleni et al. (2017) for the Bacchiglione case study arerepresentative
of drawn fromthe model internal statesof theunderbest-fitscenarioconditions. Thus, when the model is forced with5
different (wrong) input data, their assimilation is expected to be as successful as possible in updating the model states
toward the best-fit scenario.However,recallingthatthe accuracy ofsuchsyntheticCSDis questionable, since theydo not
refer to model control points(i.e., they are drawn from the semi-distributed model at locations where the model is neither
calibrated nor verified), sonothing can actually be said about the model performance attheselocationswhereCSDare
generatedand,asa consequence,abouttheir accuracy.In a sense, synthetic CSD used by Mazzoleni et al. (2017) are10
optimal(in view of assimilation performance) rather thanrealistic. SinceRealCSDarethenexpectedto befartherfrom
thebest-fitscenariothanthesyntheticCSDgeneratedby themodel;that is, real CSD are likely biased with respect to
the synthetic CSD actually used. Therefore, assimilation of realcrowdsourceddataCSDcan not be as effective as that
performed in Mazzoleni et al. (2017).”

– p. 5, line 33: Delete the last sentence of this paragraph.Done.15

– Section 3 is nicely written.Thanks!

– p. 6, line 3: Change to read: “However, this comment points out that attention must be paid...”.Done.

– p. 6, line 4: Please add a reference to some literature that use ensemble based methods for flood forecasting.

I added references to two literature works that use ensemblebased methods just after where ensemble methods are first
mentioned in the text (it is at p. 7). Now the sentence reads (addition in red):20

“As an alternative for operational forecasting, ensemble based data assimilation methods (e.g., the Ensemble Kalman
Filter or the Particle Filter) can be used to update jointly model states and parameters and to provide a direct measure of
uncertainty(Moradkhani et al., 2005; Salamon and Feyen, 2009).”

– p. 8, line 5: Change to CSD where “crowdsourced data” is used.I changed “crowdsourced data” to CSD everywhere in
the text, but not here, where “crowdsourced” is used as opposed to “traditional”.25

– Wording needs to be softened in several areas of the comment:

p. 1, line 21: Delete “severe”.Done.

p. 1, line 23: Delete “in fact” and expand on why a lack long time series of CSD data are a further limitation.Done. Now
the sentence reads (addition in red): “In addition, long time series of (CSD) are unavailable, thus complicating efforts to
assess their effectiveness in improving flood prediction.”30

p. 2, line 16: Change to read “..., which affects the interpretation of the usefulness of CSD.”.Done.

p. 5, line 21: Change “claimed” to “argued”.Done.

p. 5, line 24: Delete “As a matter of fact...”.Done.

p. 5, line 30: Change to read “It is possible that such an inconsistency....”.Done.

p. 5, line 31-32: Change to read “Therefore, additional caremust be taken...”.Done.35

p. 7, line 6: Change to read “As an alternative for...”.Done.

p. 7, line 27-28: Change to read “and flow routing processes face limitations...”.Done.
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Abstract. Citizen science and crowdsourcing are gaining increasing attention among hydrologists.In their a recent contribu-

tion, Mazzoleni et al. (2017) investigated the integrationof crowdsourced data (CSD) in hydrological models to improve the

accuracy of real-time flood forecasts. The Authors used synthetic CSD (i.e., not actually measured), because realcrowdsourced

dataCSD were not available at themomenttime of the study. In their work, which isactually a proof-of-concept study,

Mazzoleni et al. (2017) showed that assimilation of CSD improves the overall model performance; the impact of irregular5

frequency of available CSD, and that of data uncertainty, were also deeply assessed. However, the use of synthetic CSD

in conjunction witha (semi-)distributed hydrological models deserves further discussion.In most real-world applications,

hydrologicalmodelsare calibratedusing datafrom traditional sensors;CSD are typically collectedat different locations,

where(semi-)distributedmodelsarenot calibrated. As a result ofeither equifinality, poor model identifiability, and lacks in

model structure, internal states of (semi-)distributed models can hardly mimic the actual states of complex systems away from10

calibration points.Accordingly, the use of synthetic CSD that are drawn from model internal states under best-fit conditions can

lead to overestimating the effectiveness of CSD assimilation in improving flood prediction.SyntheticCSDgeneratedby such

modelsareunreliableanddonotallow toassesstheeffectsof modelstructuraluncertainty;theirusemayleadtooverestimating

theperformanceof CSDassimilationwith respectto realapplications.Operational flood forecasting, which results in decisions

of high societal value, requires robust knowledge of the model behaviour and an in-depth assessment of both model structure15

and forcing data.Additional guidelines are given that are useful for the a priori evaluation ofcrowdsourceddataCSD for real-

time flood forecasting and, hopefully, to plan apt design strategies for both model calibration and collection ofcrowdsourced

dataCSD.

1 Introduction

Flood forecasting has a critical importance as it results indecisions of high societal value.In order to produce the most accurate20

flood predictions,it is essential to provide public authorities with the best combination of data and modelsin orderto produce

themostaccuratefloodpredictions, and with a robust knowledge of the model behaviour in terms of reliability and uncertainty.
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Modellers thus have a responsibility to deeply assess the strengths and limitations of models, andto exploredifferentkind of

forcing dataaswell.

Within this general picture, the topic ofcommunity-based monitoring aimed at providingcrowdsourced data (CSD) is

gaining increasing attention among hydrologists(Le Coz et al., 2016; Walker et al., 2016; de Vos et al., 2017; Smith et al.,

2017; Starkey et al., 2017). IndeedFor example, the availability of hydrometric data, collected by activecitizens in the course5

of severe flood events, offers a new,unexpectedexciting chance to improve real-time flood forecasts. However, the use of

crowdsourceddataCSDposessevere challenges to modellers since their information content, reliability, arrival frequency, and

location are a priori unknown(Mazzoleni et al., 2015, 2017; McCabe et al., 2017; van Meerveld et al., 2017; Yang and Kang,

2017). In addition, long time series ofcrowdsourceddataCSDarein fact unavailable, thus complicating efforts to assess their

effectiveness in improving flood prediction.10

In pioneering applications(Mazzoleni et al., 2015), crowdsourceddata(CSD) collected in the upper part of a basin were

assimilated into adaptive hydrological models to reduce uncertainty in forecasting flood hydrographs at downstream sections

(Mazzolenietal.,2015). In a this recent work, Mazzoleni et al. (2017) paid particular attention to the issues of uncertainty and

irregular arrival frequency of CSD. Their results showed that assimilation of CSD improves the overall model performance.

They also showed that the accuracy of CSD is, in general, moreimportant than their arrival frequency.15

In their work, the Authors used synthetic (i.e., not actually measured) CSD, because real streamflow CSD were not available

at themomenttimeof the study. Commenting on this aspect, the Authors wrote “the developed methodology is not tested with

data coming from actual social sensors. Therefore, the conclusions need to be confirmed using real crowdsourced observations

of water level”. A practical verification of the results by Mazzoleni et al.(2017) is indeed necessary; furthermore, particular

attention has to be paid to possible drawbacks inherent in the use of CSD for operational flood forecasting and related to model20

structural uncertainty, which are not discussed in their proof-of-concept study.

The Comment is outlined as follows. Section 2 presentsadeepan in-depthassessment of the Bacchiglione River case study

(i.e., the fourth case study presented in Mazzoleni et al., 2017), in order to highlight the actual gap between a proof-of-concept

study and a real application for operational flood forecasting. Given the complexity of the basin and the relatively paucity of

available data, it is shown that the semi-distributed modelused in Mazzoleni et al. (2017) is unable to properly represent the25

physics of the whole hydrological and hydraulic system,with adverseeffectson theassimilationof realCSDwhich affects the

interpretation of the usefulness of CSD. Based on the key features delineated in Sect. 2, a more general assessment of CSD

assimilation in (semi-)distributed hydrological models is given in Sect. 3. A brief summary closes the Comment.

2 Specific comments

2.1 The Bacchiglione catchmentclosed at Ponte degli Angeli (Vicenza)30

The catchment of the upper Bacchiglione River, closed at Ponte degli Angeli in the historical centre of Vicenza (Fig. 1),is

located in the north of the Veneto Region, a plain that is fringed by the Alpine barrier at a distance of less than 100 km to the

north of the Adriatic Sea (Barbi et al., 2012).
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Figure 1. The catchment of the Bacchiglione River closed at Ponte degli Angeli, Vicenza (Italy).

With regard to the precipitation climatology, the southernpart of this plain is the drier, with approximately 700–1000mm

of mean annual rainfall, whereas more than 2000 mm are measured close to the pre-alpine chain due to the interaction of the

southerly warm and humid currents coming from the Mediterranean Sea with the mountain barrier (Smith, 1979). A significant

portion of the annual rainfall often concentrates into veryshort periods of time in the form of what often turns out to be an

extreme event with deep convection playing a central role (Barbi et al., 2012; Rysman et al., 2016). As a consequence, severe5

flooding events have threatened agricultural and urban areas in the recent years (e.g. Viero et al., 2013; Scorzini and Frank,

2017).

Due to the spatial and temporal variability of the rainfall fields, meteorological models are often unable to provide accurate

and reliable quantitative precipitation estimates (QPE) for the upper Bacchiglione catchment. An example of this inadequacy

is given, for instance, by Fig. 13 in Mazzoleni et al. (2017).10
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The upper Veneto plain is a highly populated and urbanized area, with extremely complex drainage and irrigation networks

that significantly affect both runoff production and propagation (Viero and Valipour, 2017). Within this plain, the Bacchiglione

River and its tributaries are provided with relatively highlevees (Viero et al., 2013), which prevent the exchange of water from

inside to outside the riverbed (and vice versa) when the inner water levels are relatively high. As a consequence, the minor

channel networks are not always allowed to deliver their drainage water towards the nearest tributary, i.e., the inflow points5

along the main river reaches change during a flood event depending on the instantaneous water level within the river. This

occurrence modifies the network connectedness which, in turn, leads to different mechanisms of hydrologic response in the

overall catchment.

Just upstream of the City of Vicenza, an area of up to 1 km2 of (the “Viale Diaz” floodplain, (Fig. 1) is flooded when the

Bacchiglione flow rate exceeds∼ 160 m3/s. Since about2 ·106 m3 of water can be temporarily stored in this area, a significant10

flood attenuation can be produced, particularly in case offloodshydrographswith a steep rising limb (which is often the case

due to the climatic regime and the catchment characteristics).

Moreover, the lower part of the Bacchiglione basin, North ofVicenza, includes a vast groundwater resurgence zone, in

which it’s difficult to assess both the actual contribution of resurgence to the Bacchiglione streamflow (up to∼ 30 m3/s) and

the time-variable behaviour of soil moisture.15

Clearly, such a system is highly non-linear. Nonetheless, significant parts of the Bacchiglione catchments are poorly moni-

tored, and the remaining parts are completely unmonitored.The Leogra subcatchment (blue shaded area in Fig. 1) is provided

with a pressure-transducer for the measure of water level atTorrebelvicino (Fig. 1). A rating curve derived from theoretical

considerations is available for this cross-section. However, the absence of instrumental measures of flow discharge limits its

reliability. The Leogra-Timonchio subcatchment (orange shaded area in Fig. 1) is monitored by an ultrasonic stage sensor20

located at Ponte Marchese, just upstream of the confluence with the Orolo River. Flow rate measurements at Ponte Marchese

refers only to low hydraulic regimes, and show great variability due to the operations of a hydroelectric power plant located

just downstream of Ponte Marchese. The Orolo River (green shaded area in Fig. 1), with a discharge capacity of more than

one third of the Bacchiglione at Ponte degli Angeli, is one ofits major tributaries. Unfortunately, not only the Orolo subcatch-

ment is completely uncovered by meteorological gauging stations, but also no hydrometric gauging stations are presentalong25

its reach. Similarly to the Orolo, the Astichello catchment(red shaded area in Fig. 1) is unmonitored and, due to backwater

effects, significant areas adjacent to themain channel of theAstichello are flooded when water levels in the Bacchiglioneare

relatively high. Hence, the discharge that effectively flows from the Astichello into the Bacchiglione River may significantly

reduce depending on the water stage within the main course ofthe Bacchiglione River.

Attention must be paid to the fact that the three major tributaries (Orolo, Timonchio, and Astichello) meet just upstream of30

theclosingsectiongauging stationof Ponte degli Angeli (Fig. 1), making it difficult to correctly estimate the actual contribution

of each single tributary to the total streamflow. By looking at the tree-like structure of the drainage network in an electrical

analogy (Rodríguez-Iturbe and Rinaldo, 2001), the major tributaries of the Bacchiglione are in fact “conductors in parallel”.

Certainly, given the irregular topography of the catchments, the heterogeneity of the landscape, and the complexity ofthe

hydraulic network, it can be stated that the Bacchiglione catchment is poorly monitored.35
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2.2 The semi-distributed model of the Bacchiglione catchment

In catchments like that of the Bacchiglione River, for all the reasons reported in the previous section, the accurate prediction

of flood hydrographsby performingwith continuous time simulations is unquestionably aharddifficult task (Anquetin et al.,

2010).

Mazzoleni et al. (2017) used an available semi-distributedhydrological model coupled with a Muskingum–Cunge scheme5

for flood propagation within the main river network, which was originally set up to forecast flood hydrographsof the Bac-

chiglione Riverat theclosingsectionof Ponte degli Angeli (Vicenza). Sensibly, the model was calibrated by minimizing the

root mean square error between observed and simulated values of water discharge only at Ponte degli Angeli, which is the

only hydrometric station provided with a reliable rating curve. The semi-distributed model, although explicitly representing

the hydrological processes within the main subcatchments,has to be intended as a lumped model from a practical standpoint,10

since the discharge in Ponte degli Angeli is its only controlpoint.

Therefore, no matter the accuracy ofthe streamflow predictions in Ponte degli Angeli, little can be said about the accuracyof

the model in describing the internal states of the system, such as the streamflow alongthe upstream tributaries. This limitation

has to be ascribed to uncertainty in precipitation fields, tothe paucity of (reliable) flow rate data upstream of Vicenza,and to

inherent limitations of the model itself.15

Indeed, it has to be remarked that the Muskingum–Cunge modelfor flood propagation used in Mazzoleni et al. (2017)

considers rectangular river cross-sections for the estimation of hydraulic radius, waveceleritiescelerity, and other hydraulic

variables (Todini, 2007). Accordingly, the effects exerted by the “Viale Diaz” floodplain, which acts as a sort of in-line natural

flood control reservoir on flood propagation, can not be properly accounted for. This means that, if the flood hydrograph is

correctly modelled at Ponte degli Angeli, it can not be correctly modelled upstream of the Viale Diaz floodplain (and vice20

versa).

2.3 The use of synthetic CSD in the Bacchiglione case study

In the Bacchiglione case study, Mazzoleni et al. (2017) calibrated the model using measured rainfall data to well reproduce the

streamflow hydrograph at theclosingsectionbasin outlet(call this post-event simulation “scenario 1”). Then they forced the

model with predicted rainfall fields that were completely different from the actual storm event (“scenario 2”); in this case, the25

discharge simulated using forecasted input was very different from that obtained using recorded rainfall, with a significant time

shift and errors in predicted discharge ranging between 25 and 50% at the flood peak (and up to 90% if considering synchronous

data). In their “scenario 3”, similarly to the “observing system simulation experiment” (OSSE) approach, synthetic streamflow

CSD extracted from the “scenario 1” were assimilated into a new run using the same forcing as in the “scenario 2”. Not

surprisingly, the model performance in the “scenario 3” wassignificantly better than in the “scenario 2”, as the synthetic CSD30

they assimilated were representative of the model internalstates in the best-fit scenario.

The Authorsclaimedarguedthat the synthetic CSD they used are realistic. For this condition to be met, given that these CSD

aretheresults of the model itself, the model mustwell representwell the physics of the real system (i.e., it must be calibrated
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or, at least, verified) at locations where CSD are first generated and then assimilated; this is a fundamental hypothesis behind

the OSSE approach.As amatterof fact, The synthetic CSD used in Mazzoleni et al. (2017) for the Bacchiglione case study are

representativeof drawn fromthe model internal statesof theunderbest-fitscenarioconditions. Thus, when the model is forced

with different (wrong) input data, their assimilation is expected to be as successful as possible in updating the model states

toward the best-fit scenario.However,recallingthatthe accuracy ofsuchsyntheticCSDis questionable, since theydo not refer5

to model control points(i.e., they are drawn from the semi-distributed model at locations where the model is neither calibrated

nor verified), sonothing can actually be said about the model performance attheselocationswhereCSDaregeneratedand,

asa consequence,abouttheir accuracy.In a sense, synthetic CSD used by Mazzoleni et al. (2017) areoptimal (in view of

assimilation performance) rather thanrealistic. SinceRealCSDarethenexpectedto befartherfrom thebest-fitscenariothan

thesyntheticCSDgeneratedby themodel;that is, real CSD are likely biased with respect to the synthetic CSD actually used.10

Therefore, assimilation of realcrowdsourceddataCSDcan not be as effective as that performed in Mazzoleni et al. (2017).

From one point of view,it is possible thatsuch an inconsistency could have led Mazzoleni et al. (2017)to overrate the

importance of CSD, as they considered issues related to CSD precision, but not accuracy (Mazzoleni et al., 2016).From a

moregeneralpoint of view Therefore, additional care must be taken in operational flood forecasting when assimilating CSD

into (semi-)distributed hydrological models at locationsother than model control points.This lastpoint is furtherdiscussedin15

thenextsection.

3 The use of real CSD in operational flood forecasting

As remarked by Mazzoleni et al. (2017), the success of assimilating real CSD in hydrological modelling strictly dependson

their accuracy, quantity, and spatial-temporal distribution. However,this comment points out thatattention must be paid not

only to CSD, but also to the model.20

In general, historical data recorded by traditional sensors are first used to calibrate a model; then, in real-time mode,the same

sensors provide data both to force the model and to update themodel states (e.g., Ercolani and Castelli, 2017); moreover, the

reliability of data from traditional sensors outperforms that of CSD. Hence, from a practical point of view, CSD have limited

usefulness at locations already equipped with traditionalsensors. Since their natural purpose is to enhance (rather than replace)

data from traditional sensors, and considering that they can be collected at locations not known a priori, CSD typicallydo not25

refer to model calibration points.

Given the spatially distributed nature of CSD, spatially explicit hydrological models can take the major advantage from

CSD. On the other hand, particular care has to be taken when dealing with physically based, (semi-)distributed models, which

are known to suffer from equifinality and poor identifiability of model parameters (Beven, 2006).

After the critical work by Beven (1989), detailed investigations were carried out about the model complexity needed to30

simulate rainfall-runoff process. Several studies indicated that the information content in a rainfall-runoff record is sufficient

to support models of only very limited complexity (Jakeman and Hornberger, 1993; Refsgaard, 1997). This implies that dis-
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tributed, or semi-distributed, hydrological models are seldom calibrated; rather, they are commonly over-parametrized, since

calibration rarely involves their internal states (Sebbenet al., 2012; Viero et al., 2014).

In addition, flood routing processes are typically oversimplified in operational models meant to real-time flood forecasting

(Mejia and Reed, 2011). For instance, significant effects related to either compound sections, large floodplains connected to

the main channel, or confluences causing backwater effects,are seldom accounted for.5

As a consequence, (semi-)distributed rainfall-runoff models may provide accurate predictions of outflow discharge atthe

closingsectionbasin outletand, at the same time, poor predictions of internal states ofthe system (e.g., the soil moisture

content, or the relative contribution of upstream tributaries); in other words, one can likely get the correct answer for the wrong

reason (Loague et al., 2010). Therefore, (semi-)distributed models can be said calibrated only at calibration (or control) points,

and verified only at locations in which model results are shown to compare favourably with enough (and accurate enough)10

measured data.

This caveat particularly applies to assimilation of CSD in hydrological modelling for operational, real-time flood forecasting.

Indeed, while CSD typically refer to model internal states,they are assimilated in order to improve the accuracy of the main

outputs of the model, such as streamflow hydrographs atclosingsectionsbasin outlet(model internal states are relatively less

important in this context).15

Recalling that model input, states, parameters, and outputs (or a subset of them) can be updated using different data as-

similation techniques (Refsgaard, 1997), assimilation ofCSD in operational flood forecasting can be helpful providedthat

the model is able to well represent the physics of the system at locations where CSD are collected. Of course, data assimi-

lation can contribute, in many cases, to improve such a representation. However, when only internal states are updated (as in

Mazzoleni et al., 2017), this condition is met if (and only if) the model is properly calibrated and verified at locations where20

CSD refer to. Otherwise, correcting internal states of a poorly calibrated model can even lead, in principle, to worse predictions

at the outlet than performing no corrections at all (Crow andVan Loon, 2006). It is undoubtedly difficult to assess this issue

when only synthetic CSD, generated by the same model, are available for testing the overall method.

As a valid analternative for operational forecasting, ensemble based data assimilation methods (e.g., the Ensemble Kalman

Filter or the Particle Filter) can be used to update jointly model states and parameters and to provide a direct measure of25

uncertainty(Moradkhani et al., 2005; Salamon and Feyen, 2009; Wani et al., 2017). In this way, models cope directly with

equifinality and problems of over-parametrization, since parameter posterior distributions are represented by ensembles. Note

that typical data assimilation algorithms are in principleable to screen out noisy data automatically, but need to be modified to

tackle possible data bias, which otherwise leads to poorly calibrated models. Thus, it is important, regardless of the nature of

the data, to verify if such bias exists before any data assimilation is applied.30

Nonetheless, also such sophisticated tools may fail if the model has structural deficiencies that make it unable to represent

true system states at given locations. As a representative example, consider the Bacchiglione River (Fig. 1) and, specifically,

the “Viale Diaz” floodplain described in Sec. 2. The role played by such an in-line flood control reservoir on flood routing

can not be accounted for using a basic Muskingum–Cunge modelthat considers rectangular cross-sections. It follows that the
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assimilation of accurate streamflow data referring to a section located just upstream of the Viale Diaz floodplain (e.g.,Ponte

Marchese, see Fig. 1) can likely deteriorate the model predictions in Ponte degli Angeli, downstream of the floodplain.

Shortcomings similar to the one described above, which can be found in many different case studies, can be a priori conjec-

tured through a close inspection of both the physical systemand the model characteristic. Their quantitative assessment needs

an extensive comparison with measured data; of course, a “blind” use of CSD (i.e., their assimilation at locations wherethe5

model is neither calibrated nor verified) is at least questionable.

4 Summary

The approach proposed and investigated by Mazzoleni et al. (2017), based on the assimilation of crowdsourced data (CSD),

can be generally valuable to improve real-time flood forecasts using non-traditional information now available thanksto active

citizens and new technologies.10

However, it has to be remarked that physically based modelling of rainfall-runoff and flow routing processeshasto faceactual

limitations ascribed to the paucity of measured data, to thecomplexity of real environments, and to lacks in model structure

and parametrization. As a consequence, (semi-)distributed rainfall-runoff models used for operational flood forecasting can

provide reliable predictions at locations where calibration is performed (i.e., control points) and, at the same time,incorrectly

represent system states elsewhere (e.g., discharges in upstream, ungauged tributaries).15

In a context of equifinality and simplified representation ofreal physical processes, the accurate prediction of outflowhydro-

graphs can be achieved even though model internal states don’t match the true system states. In such cases, the assimilation of

real CSD can lead to a substantially lower performance than the use of synthetic CSD would suggest, as it corresponds, in fact,

to update a model using biased data (e.g., Dee, 2005; Liu et al., 2012). When only internal states (and not model parameters)

are updated, or when the model suffers structural deficiencies, the assimilation of real (i.e., not synthetic) streamflow data at in-20

ternal points can lead, in principle, to even worse model prediction at the outlet than no assimilation at all (Crow and Van Loon,

2006). The problem can arise due to the disjoint use of traditional and crowdsourced data, with the former used to calibrate

(semi-)distributed models at control points, and the latter used only in real-time to update model states at different locations.

A possible solution is the use of ensemble based data assimilation methods to update jointly model states and parameters.

An additional pragmatic recommendation is the collection of accurate measured data for a suitable period, for at least two25

reasons: i) to develop reliable rating curves at locations where water level CSD are planned to be collected, and ii) to calibrate

and verify the model ability in describing the system statescorrectly at the locations in which CSD are collected.

It must be observed that, while scarce control on the collection of CSD can be exerted during significant flood events, the

locations at which citizens can collect CSD of water levels is always determined a priori, since the availability of rating curves

is a necessary condition in order to convert water levels into discharges. The amount of measured data needed to develop30

reliable rating curves can also be profitably used to calibrate the model at those sections as well.
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As a final remark, both modellers and environmental agenciesshould comprehensively account for the characteristics ofthe

physical system, for model structure and parametrization,for the design of the sensors network, and for data to be used both in

calibration and in operational mode.
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