
1 Point-by-point reply to comments

I’m grateful to the Editor and the Reviewers for their suggestions, which I found insightful and helpful. I’m confident that the
revised version of the paper, with respect to the previous version, is more clearly focused, ordered in its structure, and enriched
in terms of contents.

According to the Editor’s suggestion, I paid particular attention to clarifying that the comment is about the operational aspect5
of using crowdsourced data.

2 RESPONSE TO THE COMMENTS OF REVIEWER #1

The comment on “Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?” addresses
the subtle drawback hidden behind the practice of using traditional and crowdsourced data, recorded at different locations,
disjointly. The former are used to calibrate semi-distributed models and to force them in real-time, the latter only to update the10
model states in operational forecasting.

InMazzoleni et al. (2017), synthetic CSD were generated as model results using observed precipitation, while simulated
results were obtained using forecasted precipitation. Since the semi-distributed hydrological model used in Mazzoleni et al.
(2017) was calibrated at only one location, Viero (2017) underlined that synthetic CSD at interior points (different from
the calibration one) cannot be considered reliable due to equifinality issues. In fact, semi-distributed hydrologic models are15
commonly over-parametrized and may provide accurate predictions only where the model is calibrated, and it can fail to
represent the relative contribution of upstream tributaries. I read the comment with interest and I really appreciate all the
author’s efforts. However, I have many doubts and considerations that I would like to share with him.

Maurizio Mazzoleni

I thank Maurizio Mazzoleni (Reviewer #1) for his appreciation of the Comment and for his valuable comments and sugges-20
tions, which are addressed in the following.

1. Overall, I found that the main message of the author have beenstretched and repeated many times throughout the
Comment.

I agree. In the revised version of the Comment, the text is substantially reorganized to limit useless repetitions.

2. It is not clear to me what would the author propose to generatesynthetic CSD when only measurements from traditional25
sensors, located at points different from the ones of CSD, are available. In the summary section, only a pragmatic solution
is suggested in case of availability of distributed flow data(not the case in Mazzoleni et al., 2017). This solution involves
the collection of CSD for a suitable test period, to verify the model ability in describing the system states correctly atthe
locations in which CSD are collected. However, this solution will open many other types of questions. For example, how
would the author assess the quality of the CSD? Which category of citizen the author would engage in order to collect30
CSD? For how long will this data collection take place? How can it be insured that CSD quality during data collection
will be the same as the CSD quality during real-time modelling updating (no control)? Citizens accuracy is different and
data quality assessment is still a burning topic in citizen sciences. In addition, CSD in calibration may be different from
the ones in real-time model updating.

The work by Mazzoleni et al (2017) is actually a proof-of-concept, which analyses major aspects of the assimilation35
of crowdsourced data in order to improve flood forecasting. My Comment essentially focuses on what should follow
a proof-of-concept, i.e., on the operational use of CSD. Indeed, it is the passage from a proof-of-concept study to a
real-world application (i.e., from synthetic CSD to actually measured CSD) that entails additional, significant drawbacks
related to equifinality, overparametrization, and deficiency in model structure, which are not discussed in Mazzoleni et
al. (2017).40
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Accordingly, my Comment is not aimed at proposing a different, better way to generate synthetic CSD when measure-
ments from traditional sensors are available only at different locations from the ones of CSD, as this would mainly
pertain to a proof-of-concept study.

In the revised version of the Comment, it should be clearer that its main aim is to highlight additional drawbacks inherent
the use of CSD in operational flood forecasting, not assessedin Mazzoleni et al. (2017). Possible solutions and additional5
guidelines are now enhanced (thanks also to suggestions by Reviewer #2) and better explained.

3. Moreover, I do not understand to which extent the comments ofthe Author are referred to the paper of Mazzoleni et al.
(2017) or to a generic issue on the use of CSD in hydrological modelling.

I am aware that it is actually difficult to properly balance comments that must be specific (in that they refer to particular
aspects of a given work) and, at the same time, they should be significant in a wider sense. I revised the paper in order to10
make a better equilibrium by reporting specific comments in Section 2, and by debating them from a more general point
of view in Section 3.

4. The Author mentioned that “Indeed, for synthetic streamflowCSD to be realistic, two specific requirements have to be
met: i) a reliable rating curve must be available for the cross sections where hydrometric CSD are recorded, and ii) the
model has to be calibrated at these locations”. I agree with the author in case of CSD provided by static sensors, like15
in case of Mazzoleni et al. (2017). However, in a real scenario where CSD are provided by citizens at random moments
and locations within the catchment, by means of dynamic sensors, I do not agree with the second point of the comment
for two reasons. Firstly, assuming the author is right, it would be extremely difficult to calibrate the model with observed
data at unknown locations in which synthetic CSD will be assimilated. Secondly, it is not clear to me why synthetic
CSD based on model results should be generated if observed data are already available at the CSD/calibration points.20
Obviously, such observed data should be directly used to generate synthetic scenarios of CSD, like in case of the first
three case studies in Mazzoleni et al. (2017), without usingany model result.

I thank M. Mazzoleni for this comment, which help me to clarify the focus and the structure of my Comment. The
revised version of the Comment more specifically deals with aspects related to operational use of CSD. In the Summary
of the Comment, I remarked that locations at which streamflowCSD can be collected are actually always a-priori25
known because of the need of a rating curve, which must be developed before the assimilation of CSD in real-time
operational use. Data collected in order to develop the rating curve should also be used to calibrate or, at least, to
verify the model at these sections. Without actual rating curves, assimilation of synthetic CSD remains a theoretical
exercise. Accordingly, while synthetic CSD can be certainly useful to carry out proof-of-concept studies and preliminary
investigations, operational flood forecasting needs to rely on real data.30

5. Another extremely important point is the assimilation of CSD observations. From Viero’s Comment, it is not clear how
erroneous synthetic observations can affect assimilationperformances. The author briefly mentions this issue referring
to Dee (2005) and Liu et al. (2012). Honestly, since the main objective of Mazzoleni et al. (2017) was the assimilation
of realistic synthetic CSD, I was expecting a more comprehensive analysis on the effect of assimilating biased/uncertain
observations within hydrological model.35

The issue raised by M. Mazzoleni is undoubtedly interestingand deserves further discussion. The main objective of
Mazzoleni et al. (2017) was the assimilation of realistic synthetic CSD. In my Comment, I explain that little can actually
be said on the reliability of the synthetic CSD of the Bacchiglione case study. In the revised version, this aspect is better
explained through a practical example related to the effects of the “Viale Diaz” floodplain on flood routing. The reader
can grasp from this example which are the possible effects ofassimilating biased data at location where the model is not40
verified and when only model states are updated (or in the caseof structural deficiencies of the model).

Importantly, in my Comment I point out that even accurate andunbiased measured data can be “seen” as biased data by
a model. This can occur when the model is not properly calibrated at sections where data refer to (and model parameters
are not update along with model states), or when the model is unable to reproduce the actual dynamics of the system at
those locations due to intrinsic limitations of the model structure. This issue is better explained with practical examples45
in my answer to the following point #6.
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6. In addition, Viero stated, “In a context of equifinality and of poor identifiability of model parameters, the model internal
states can hardly mimic the actual system states away from calibration points, thus reducing the chances of success in
assimilating real (i.e. not synthetic) CSD.” Why the chances of success in assimilating real CSD is reduced if the model
is not calibrated at CSD location? Does this mean that in caseof assimilation of distributed soil moisture observations
from remote sensing, within a distributed hydrological model, we would need to calibrate the model in each grid cell?5
I disagree with the author. The main purpose of data assimilation is to use real-time (noisy) observations to update the
wrong estimate of the states of a dynamic model (not able to mimic the actual system states away from calibration point).
Assimilation of observations at internal points of the catchment is very useful when model states are less accurate than
real-time observations.If a model is able to correctly predict actual system states away from calibration points, why
should someone bother to add complexity and uncertainty assimilating CSD observations? The literature provides10
many studies (e.g. Rakovec et al., 2012) in which hydrological models are updated using measurements at internal
points, even if such observations are not used during model calibration.

Thank you for this comment. I realize that I was not precise enough in that part of my Comment, which was improved
in the revised version of the Comment.

To answer the key question in this Reviewer’s comment (whichI highlighted above), I remark that a model can predict15
wrong system states away from calibration points for different reasons (e.g., wrong/insufficient input data and/or poor
calibration and/or structural model deficiencies). Assimilation of observations at internal points of the catchment can be
extremely useful when model states are less accurate than real-time observations, but not when this lack of accuracy of
model states is due to problems with model structure (or due to poor calibration of model parameters if such parameters
are not updated through data assimilation along with the model states).20

Therefore, I stress that the statements by M. Mazzoleni are reasonable, but they implicitly assume that the model structure
(and the set of model parameter as well, since they were not updated through data assimilation in his work) is (are) able
to correctly estimate, at the same time, both the internal states and the model outputs. Although this is a highly desirable
feature for physical-based models (see also comment #3 of Reviewer #2), one must admit that it is not true in general
and, reasonably, it is not true for the model application of the Bacchiglione River presented in Mazzoleni et al. (2017).25

I try to clarify the question using first a hypothetical example. Consider a hydrological model, not calibrated at internal
points, which provides the right prediction at the closing section as the result of wrong predictions at some internal
points. The updating of model states at this internal pointsbased on real data (i.e., different to the internal states needed
to provide the ‘correct’ prediction at the outlet) will likely cause this model to produce worse predictions at the closing
section with respect to no assimilation at all. This possible occurrence cannot be detected, nor assessed, if data to be30
assimilated are extracted from the model itself. Indeed, inthis case synthetic data represent wrong internal states (with
respect to reality), but they represent the best-fit scenario in terms of main model output.

The problem of assimilating data that are not coherent with internal model states (when this is due to poor estima-
tion/identifiability of model parameters) could be limitedby updating the model parameters along with the internal
states of the model (as suggested by Reviewer #2), but this strategy could not be sufficient if the model has structural35
deficiencies.

As a practical example, consider the “Viale Diaz” floodplain, described in my Comment, which acts as a sort of in-line
natural flood control reservoir on flood propagation. Since the attenuation of flood wave exerted by this floodplain can
not be properly accounted for by the routing model used in Mazzoleni et al. (2017), the (hypothetical) assimilation of a
correct flood hydrograph upstream of the Viale Diaz floodplain leads to incorrect streamflow predictions at Ponte degli40
Angeli, downstream of the “Viale Diaz” floodplain.

7. I am puzzled with the sentence “Therefore, beside the key points identified by Mazzoleni et al. (2017), not only data,
but also the model has to match specific requirements for dataassimilation to be successful”. What are these specific
requirements that model has to match? Is the Author referring to the reliability of synthetic data at calibration points
and to the capability of the model to represent truth states?45
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The need to assimilate suitable crowdsourced data was assessed in Mazzoleni et al. (2017). With respect to the specific
requirements that the model has to match, its ability of wellrepresenting the physics of the hydrological system (i.e.,of
correctly representing true internal states when forced bycorrect input data) is actually the key aspect. I tried to make
this point clearer in the revised version of the Comment.

3 RESPONSE TO THE COMMENTS OF REVIEWER #25

The author makes some significant critical remarks on the work of Mazzoleni et al. (2017) that are worth to be considered for
publication.

I thank Reviewer #2 for his/her appreciation of my Comment and for his/her very useful and precise suggestions, which are
addressed in the following

1. However, I would first advise to mellow the tone of the narrative.10

Thanks for the suggestion. I revised the text of the paper to smooth the English and to fix many typos.

2. In addition, I invite the author to make sure that the comments are more general and less focused on the upper Bac-
chiglione river catchment presented by Mazzoleni et al. (2017). In doing so, Section 2.1 should be reduced considerably,
as most of the information and comments seem too specific, andmight not be supported for the other test sites.

I thank the reviewer for his suggestion. In the revised version of the Comment, Section 2 was shortened and reorganized,15
trying to separate specific comments that refer to the upper Bacchiglione case study from general comments (Section
3). I agree that Sect. 2.1 is very specific. Nevertheless, I dobelieve that most part of this specificity is not meaningless
for other test sites. Indeed, I remain convinced that much can be learned from in-depth analyses of specific cases. The
opposite risk is the (often unperceived) oversimplification of real systems and processes in our schematic representations
(i.e., models) of the reality.20

Besides its evident specificity, one of the goals of Sect. 2.1is to highlight that real-world case studies are often far more
complex than what can emerge from most of the applications reported in the literature (this is undoubtedly due to the
need of limiting paper length). I am convinced that similarities with many other case studies can easily be found.

Finally, the Comment is indeed a comment to a specific paper, and only one of the four case studies reported by Maz-
zoleni et al (2017) is here commented, since the contents of the Comment only apply to (semi-)distributed (and over-25
parameterized) models and to the assimilation of CSD data atlocation where the model cannot be calibrated. In the
other test cases presented in Mazzoleni et al (2017), the Authors used a lumped model and CSD were assimilated only
at calibration sections.

3. The paper of Mazzoleni et al. (2017) aimed at investigating the value of information retained by crowdsourced data
(CSD) when assimilated in surface flow models for flood prediction. Their work is admittedly a proof-of-concept study30
and the synthetic feature of CSD is quite clear, rather than “briefly mentioned”. Their conclusions are correct so long as
one assumes the model well represents the physics of the hydrological system, which is a fundamental hypothesis behind
observation simulation system experiments. On the other hand, I agree that there seems to be an inherent tendency in
Mazzoleni et al. (2017) to present results in a way that somehow overstates the importance of CSD.

I agree with the reviewer. The fact that a model well represents the physics of the hydrological system is a fundamental35
hypothesis for physically-based models, and is tacitly assumed in Mazzoleni et al. (2017). However, it must be stressed
that this requirement is not necessarily matched when semi-distributed, physically based models are actually used as
lumped models, i.e., they are calibrated only at the closingsections. Given the complexity of the Bacchiglione catchment,
the relatively paucity of measured data, and the structure of the model used (see my answer to comment #6 of Reviewer
#1 for further details), reasonably it is not true for the model application of the Bacchiglione River presented in Mazzoleni40
et al. (2017).
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4. There are, in my view, some major points that need to be highlighted: the method chosen for calibrating a model should
be consistent regardless of the type of data used. For non-linear models, ensemble based data assimilation methods
(e.g the EnKF or the PF) are attractive in that they can be usedto update jointly model states and parameters and
provide a direct measure of uncertainty. Note that these models cope directly with problems of over parameterization and
equifinality since parameter posterior distributions are represented by ensembles. CSD can be instrumental to reduce5
model uncertainty. Indeed, one can assimilate these data together with traditional hydrologic observations, thereby
reducing parameter uncertainty even in those regions wherethe original reliability of the model is inadequate. In general,
the value of information of these data is strictly dependenton their quantity, quality, spatial-temporal distribution. Note
that typical data assimilation algorithms are in principleable to screen out noisy data automatically, but need to be
modified to tackle possible data bias, which otherwise leadsto poorly calibrated models. Thus, it is important, regardless10
of the nature of the data, to verify if such bias exists beforeany data assimilation is applied.

I thank the Reviewer for these interesting considerations.Ensemble based data assimilation methods are indeed powerful
tools. On one hand, their use to jointly update model states and parameters can effectively circumvent the problem of
uncertainty in model internal states at crowdsourced data points; on the other hand, such methods can help diagnosing
poor identifiability of model parameters.15

However, sophisticated tools to update jointly model parameters and states may fail if assimilating data at locations where
the model is unable to correctly reproduce the actual physics of the system due to structural deficiencies. This occurrence
is far from being rare in operational flood forecasting frameworks where (over)simplified models are commonly used in
order to limit their computational burden.

While structural deficiencies can be a-priori conjectured through a close inspection of both the physical system and the20
model characteristics, it can be proved (and quantified) only by comparing model results with measured data (i.e., model
validation). The “blind” use of CSD (i.e., its assimilationat locations where the model is neither calibrated nor verified)
is at least questionable (see, e.g., the examples reported in the answer to comment #6 of Reviewer #1).

Finally, in the Reviewer’s comment it is stressed the importance of detecting bias in data to be assimilated. This obser-
vation pertains also to the object of my Comment, since assimilating real (i.e., not synthetic) data at locations where the25
model is unable to reproduce the physic of the system is equivalent to assimilating biased data.

These considerations have been added to the revised versionof the Comment.
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Abstract. In their recent contribution, Mazzoleni et al. (2017) investigated the integration of crowdsourced data (CSD) in

hydrological models to improve the accuracy of real-time flood forecasts. They showed that assimilation of CSD improvesthe

overall model performancein all theconsideredcasestudies.T; the impact of irregular frequency of available crowdsourced

data, and that of data uncertainty, were also deeply assessed. However, it has to be remarked that, in their work, the Authors

used synthetic (i.e., not actually measured) crowdsourceddata, because actual crowdsourced data were not available at the5

moment of the study.This point, briefly mentionedby the authors,deservesfurther discussion.For this reason, the work

by Mazzoleni et al. (2017) is actually a proof-of-concept study. In most real-world applications,rainfall-runoff hydrological

models are calibrated using data from traditional sensors; . Typically, CSD aretypically collected at different locations, where

semi-distributed models are not calibrated.In a contextof equifinality andof poor identifiability of modelparameters,the

model internalstatescanhardly mimic the actualsystemstatesawayfrom calibrationpoints,thusreducingthe chancesof10

successin assimilatingreal (i.e., not synthetic)CSD. As a result of either equifinality, poor model identifiability, and lacks

in model structure, internal states of (semi-)distributedmodels can hardly mimic the actual states of complex systemsaway

from calibration points. Indeed, in operational frameworks, the assimilation of real (rather than synthetic) CSD requires a

careful assessment.Additional criteriaguidelinesare given that are useful for the a-priori evaluation of (assessing the chance

of assimilating) crowdsourced data for real-time flood forecasting and, hopefully, to plan apt design strategies for both model15

calibration and collection of crowdsourced data.

1 Introduction

The availability of hydrometric data, collected by active citizens in the course of severe flood events, offers a new, unexpected

chance to improve real-time flood forecasts. In pioneering applications, crowdsourced data (CSD) collected in the upper part

of a basin were assimilated into adaptive hydrological models to reducethe uncertainty in forecasting flood hydrographs at20

downstream sections (Mazzoleni et al., 2015). In a recent work, Mazzoleni et al. (2017) paid particular attention to theissues

of data uncertainty and irregular arrival frequency of CSD. Their results showed that assimilation of CSD improves the overall

1



model performancein all the casestudiesthey considered. They also showed that the accuracy of CSD is, in general, more

important than their arrival frequency.

However,thereis a crucial aspectthat hasto be remarked. in their work, the Authors used synthetic (i.e., not actually

measured) CSD, because real streamflow CSD were not available at the moment of the study.The Authors warnedabout

this aspectby statingthatCommenting on this aspect, the Authors wrote“ the developed methodology is not tested with data5

coming from actual social sensors. Therefore, the conclusions need to be confirmed using real crowdsourced observations of

water level”. This point deservesfurtherdiscussion,astheuseof syntheticdataled themto disregardasubtle,yet significant,

limitation inherentin the useof CSD in for real-timeflood forecasting.The probleminvolvesequifinality (i.e., uncertainty

in modelparametersandinternalstates,Beven,2006)thatcharacterizeshydrologic,semi-distributed(andover-parametrized)

models.A practical verification of the results by Mazzoleni et al. (2017) is indeed necessary; furthermore, particular attention10

has to be paid to additional drawbacks inherent in the use of CSD in operational flood forecasting, which are not discussedin

their proof-of-concept study.

After the critical work by Beven(1989),detailedinvestigationswerecarriedout aboutthe complexity a modelneedsto

simulaterainfall-runoff process.Severalstudiesindicatedthat the informationcontentin a rainfall-runoff recordis sufficient

to supportmodelsof only very limited complexity (Jakemanand Hornberger,1993; Refsgaard,1997). This implies that15

distributed,or semi-distributed,hydrologicmodelsareseldomcalibrated.Rather,they arecommonlyover-parametrized.As

a typical example,a semi-distributedrainfall-runoff modelmay provideaccuratepredictionsof the outflow dischargeat the

closingsectionand,at thesametime, it canfail to correctlymodelthe relativecontributionof upstreamtributaries.To limit

problemsrelatedto over-parametrization,alsothe internalstatesof a distributedmodelhaveto becalibrated(Sebbenet al.,

2012;Viero etal., 2014),andnotonly theoutflow at theclosingsection.20

Strictly speaking,andbearingin mind that onecanget the correctanswerfor the wrong reasonLoagueet al. (2010),a

semi-distributedmodelcanbesaidcalibratedonly at thecalibrationpoints.This caveathasimportantconsequencesalsoon

dataassimilationandmodelsupdating.

In general,data assimilationtechniquesare usedto updatemodel input, states,parameters,or outputsbasedon new,

availableobservations(Refsgaard,1997).Assimilationof CSDmayimprovetheperformanceof aforecastingmodelinasmuch25

as assimilateddata contributein updating(i.e., in correcting)the internal statesof the model. It must be observedthat

crowdsourceddatatypically refersto internalstatesof themodel,sinceinputandoutputdatacommonlycorrespondsto location

providedwith traditionalphysicalsensors.For updatingto besuccessful,availabledatamustbesubstantialandaccurate(as

well debatedby Mazzoleniet al., 2017),but further requirementsmustbemet. Indeed,dataassimilationis successfulif the

modelcancorrectlypredict,at thesametime, both themainoutputandthe internalstatesof thesystem.At least,themodel30

haveto describewell therealsystemstates(i.e.,mustbeproperlycalibrated)ateverylocationin whichcrowdsourceddataare

collected.Accordingly,crowdsourceddatamustbecollectedin correspondenceof thecontrolpointsof themodels(i.e., those

usedto calibratethemodel).
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Therefore,besidethekeypointsidentifiedby Mazzolenietal. (2017),notonly data,butalsothemodelhasto matchspecific

requirementsfor dataassimilationto besuccessful.This issueis certainlyrelevantfor thecasestudyof theBacchiglioneRiver,

for thereasonreportedin thefollowing.

The Comment is outlined as follows. Section 2 presents a deepassessment of the Bacchiglione River case study (i.e., the

fourth case study presented in Mazzoleni et al., 2017), in order to highlight the actual gap between a proof-of-concept study5

and a real application for operational flood forecasting. Given the complexity of the basin and the relatively paucity ofavailable

data, it is shown that the semi-distributed model used in Mazzoleni et al. (2017) is unable to properly represent the physics of

the whole hydrological and hydraulic system, with adverse effects on the assimilation of real CSD. Based on the key features

delineated in Sect. 2, a more general assessment of CSD assimilation in (semi-)distributed hydrological models is given in

Sect. 3. A brief summary closes the Comment.10

2 Specific comments

In this Section,thefocusis on thefourth casestudypresentedin Mazzoleniet al. (2017),in which synthetic(i.e.,not actually

recorded)crowdsourceddata(CSD) wereusedto improvethe performanceof a semi-distributedhydrologicalmodelof the

BacchiglionecatchmentclosedatPontedegliAngeli, Vicenza(Italy).

2.1 The Bacchiglione catchment closed at Ponte degli Angeli(Vicenza)15

The catchment of the upper Bacchiglione River, closed at Ponte degli Angeli in the historical centre of Vicenza (Fig. 1),is

located in the north of the Veneto Region, a plain that is fringed by the Alpine barrier at a distance of less than 100 km to the

north of the Adriatic Sea (Barbi et al., 2012).

With regard to the precipitation climatology, the southernpart of this plain is the drier, with approximately 700–1000mm of

mean annual rainfall, whereas more than 2000 mm are measuredclose to the pre-alpine chain due to the interactionwith of the20

southerly warm and humid currents coming from the Mediterranean Seawith the mountain barrier(Smith, 1979).Indeed,the

topographyof theregionrisesfrom thesouthernplain atabout30 m abovesealevel (a.s.l.)to about1500–2200m a.s.l.in the

first orographicbarrier,thepre-alpinechain,andthenfurther to thenorth to theDolomites,a mountainmassivethatpeaksat

over3000m a.s.l.In thenorthernpartof theBacchiglionecatchment,theterrainelevationsraisefrom 250to 1’000 m a.s.l.in

lessthan1 km, with slopesup to 70%. A significant portion of the annual rainfall often concentrates into very short periods of25

time in the form of what often turns out to be an extreme event with deep convection playing a central role (Barbi et al., 2012;

Rysman et al., 2016). As a consequence, severe flooding eventhave threatened agricultural and urban areas in the recent years

(e.g. Viero et al., 2013; Scorzini and Frank, 2015).

A comparisonof hourly rainfall ratesmeasuredat the four meteorologicalgaugingstationsof Valli del Pasubio,Monte

Summano,Malo, MontecchioPrecalcino,andS.Agostino(Fig. 1) is reportedin Fig. 2 for thestormeventof 16-18May 201330

(dataprovidedby theRegionalAgencyfor FloodProtectionof theVenetoRegion,ARPAV). Due tothe spatial and temporal

variability of the rainfall fieldsis apparent.Many meteorological models areoften unable to provide accurate and reliable
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Figure 1. The catchment of the Bacchiglione River closed at Ponte degli Angeli, Vicenza (Italy).

quantitative precipitation estimates (QPE) for the upper Bacchiglione catchment., dueto bothinsufficientspatialandtemporal

resolution,andto theactualcomplexityof this environment. An example of this inadequacy is given, for instance, by Fig. 13

in Mazzoleni et al. (2017). The discharge simulated using forecasted input is very different from that obtained using recorded

rainfall, showingwith a significant time shift and errorsin predicted discharge rangingbetween 25 and 50% at the flood peak

(and up to 90% if considering synchronous data).5

Fromanhydraulicpointof view, The upper Veneto plain is a highly populated and urbanized area, with extremely complex

drainage and irrigation networksthat significantly affect both runoff production and propagation (Viero and Valipour, 2017).

Within this plain, the Bacchiglione River andall its tributaries are provided with relatively high levees (Viero et al., 2013),

which prevent the exchange of water from inside to outside the riverbed (and vice-versa) when the inner water levels are rela-

tively high. As a consequence, the minor channel networks are not always allowed to deliver their drainage water towardsthe10
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nearest tributary, i.e., the inflow points along the main river reaches change during a flood event depending on the instanta-

neous water level within the river. This occurrencechangemodifiesthe network connectedness which, in turn, leads to different

mechanisms of hydrologic response in the overall catchment.

Just upstream of the City of Vicenza,a an area of up to 1 km2 of the “Viale Diaz” floodplain(Fig. 1) of about1 km2 is

flooded when theBacchiglioneflow rate in the Bacchiglione exceeds∼ 160 m3/s. Since about2 · 106 m3 of water can be5

temporarily stored in this area, a significant flood attenuation can be produced, particularly in case of floods with a steep rising

limb (which is often the casedue to the climatic regime and the catchment characteristics).

Moreover, the lower part of the Bacchiglione basin, North ofVicenza, includes a vast groundwater resurgence zone, in

which it’s difficult to assess both the actual contribution of resurgence to the Bacchiglione streamflow (up to∼ 30 m3/s) and

the time-variable behaviour of soil moisture.10

Clearly, such a system is highly non-linear. Nonetheless, significant parts of the Bacchiglione catchments are poorly moni-

tored, and the remaining parts are completely unmonitored.The Leogra subcatchment (blue shaded area in Fig. 1) is provided

with a pressure-transducer for the measure of water level atTorrebelvicino (Fig. 1). A rating curve derived from theoretical

considerations is available for this cross-section.However, the absence ofIts reliability is clearly low, sinceno instrumental

measures of flow dischargeareavailablefor thissitelimits its reliability. The Leogra-Timonchio subcatchment (orange shaded15

area in Fig. 1) is monitored by an ultrasonic stage sensorlocated at Ponte Marchese, just upstream of the confluence with the

Orolo River.operatedby ARPAV ; Locatedin PonteMarchese,just upstreamof theconfluencewith theOrolo River, it is not

providedwith any rating curve.Available Flow rate measurements at Ponte Marchese refers only to low hydraulic regimes,

and show great variability due to the operations of a hydroelectric power plant located just downstream of Ponte Marchese.

The Orolo River (green shaded area in Fig. 1), with a discharge capacity of more than one third of the Bacchiglione at Ponte20

degli Angeli, is one of its major tributaries.The catchmentof the the Orolo River leansagainsta ridge,which increasesthe

spatialvariability of precipitationfields. Unfortunately, not onlythis areathe Orolo subcatchmentis completely uncovered by

meteorological gauging stations, but also no hydrometric gauging stations are present alongthe reachof the Orolo River its

reach. Similarly to the Orolo, the Astichello catchment (red shaded area in Fig. 1) is unmonitored and, due to backwater effects,

significant areas adjacent to the Astichello are flooded whenwater levels in the Bacchiglione are relatively high. Hence, the25

discharge that effectively flows from the Astichello into the Bacchiglione River may significantly reduced depending on the

water stage within the main course of the Bacchiglione River.

Attention must be paid to the fact that the three major tributaries (Orolo, Timonchio, and Astichello) meet just upstream of

the closing section of Ponte degli Angeli (Fig. 1), making itdifficult to correctlyestimate the actual contribution of each single

tributary to the total streamflowcorrectly.By looking at the tree-like structure of the drainage network in an electrical analogy30

(Rodríguez-Iturbe and Rinaldo, 2001), the major tributaries of the Bacchiglione are in fact “conductors in parallel”.

Moreover,the lower part of the Bacchiglionebasin,North of Vicenza,includesa vast groundwaterresurgencezone,in

which it’s difficult to assessboth theactualcontributionof resurgenceto theBacchiglionestreamflow(up to ∼ 30 m3/s) and

thetime-variablebehaviourof soil moisture.
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Certainly, given the irregular topography of the catchments, the heterogeneity of the landscape, and the complexity ofthe

hydraulic network, it can be stated that theBacchiglionecatchmentof Bacchiglioneis poorly monitored.

2.2 The semi-distributed model of the Bacchiglione catchment

In catchments like that of the Bacchiglione River, for all the reasons reported in the previous section, the accurate prediction of

flood hydrographs by performing continuous time simulations is unquestionably a hard task (Anquetin et al., 2010).5

Mazzoleni et al. (2017) used an available semi-distributedhydrological model coupled with a Muskingum–Cunge scheme

for flood propagation within the main river network, which was originally set up to forecast flood hydrographs at the closing

section of Ponte degli Angeli (Vicenza).Sensibly, the model was calibrated by minimizing the root mean square error between

observed and simulated values of water discharge only at Ponte degli Angeli, which is the only hydrometric station provided

with a reliable rating curve. The semi-distributed model, although explicitly representing the hydrological processes within10

the main subcatchments, has to be intended as a lumped model from a practical standpoint, since the discharge in Ponte degli

Angeli is its only control point.

Therefore, no matter the accuracy of themodel in forecastingflood hydrographsstreamflow predictionsin Ponte degli

Angeli, little can be said about the accuracy of thesame model in describing the internal states of the system, such as the

streamflow along the upstream tributaries. This limitationhas to be ascribed to uncertainty in precipitation fields, tothe paucity15

of (reliable) flow rate data upstream of Vicenza, and to inherent limitations of the model itself.

Indeed, it has to be remarked that the Muskingum–Cunge modelfor flood propagation used in Mazzoleni et al. (2017)

considers rectangular river cross-sections for the estimation of hydraulic radius, wave celerities, and other hydraulic variables

(Todini, 2007). Accordingly, the effects exerted by the “Viale Diaz” floodplain, which acts as a sort of in-line natural flood

control reservoir on flood propagation, can not be properly accounted for. This means that, if the flood hydrograph is correctly20

modelled at Ponte degli Angeli, itis not can not becorrectly modelled upstream of the Viale Diaz floodplain (and vice-versa).

2.3 The use of synthetic CSD in the Bacchiglione case study

In thework by Mazzoleni et al. (2017),the synthetichourlycrowdsourceddata(CSD) of streamflow arethe resultsof the model

itself. Indeed,Similarly to the “observing system simulation experiment”(OSSE) approach,synthetic CSD were calculated

by forcing the hydrological modelof theBacchiglionecatchment with measured precipitation recorded during theconsidered25

flood events (post-event simulation).As amatterof fact, thesedataarerepresentativeof theactualmodelinternalstatesof the

best-fitscenario.

Importantly,the syntheticCSD usedby Mazzoleniet al. (2017) in the Bacchiglionecasestudydo not refer to calibration

pointsof themodel.Thisaspectcanbeseenastypical of crowdsourceddata,whosenaturalpurposeis to enhance(ratherthan

replace)datafrom traditionalsensors.Indeed,historicaldatarecordedby traditionalsensorsarefirst usedto calibrateamodel;30

then,in real-timemode,thesamesensorsprovidedataboth to force themodelandto updatethemodelstates(e.g.Ercolani

andCastelli,2017);moreover,thereliability of datafrom traditionalsensorsoutperformthatof CSD.
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The Author claimedthat the syntheticCSD they usedarerealistic.For the Bacchiglionecasestudy,recalling the global

picturegivenin Sections2.1and2.2,andthatthesemi-distributedmodelwascalibratedonly atclosingsectionof Pontedegli

Angeli, this statementis at leastquestionable.Indeed,for syntheticstreamflowCSDto berealistic,two specificrequirements

haveto be met: i) a reliablerating curvemustbeavailablefor the crosssectionswherehydrometricCSD arerecorded,and

ii) the modelhasto becalibratedat theselocations.Unfortunately,noneof theserequirementsaremet for the Bacchiglione5

River.Thefirst issue(i.e., lackof ratingcurves)wasassessedinasmuchtheAuthorsconsidereddifferentdegreeof uncertainty

in streamflowCSD.In this way, theyaccountedfor, e.g.,measuringerrorsandinaccuracyin ratingcurves.However,nothing

wassaid(nor canbe said)aboutthe modelperformanceat locationswhereCSD arecollected,sincetheselocationsdo not

correspondsto calibrationpoints.Here,themodelpredictionsarelikely biasedbut, contrarily to Mazzoleniet al. (2016),this

aspectwasnot accountedfor in Mazzoleniet al. (2017).10

Whatcanoccurif, dueto over-parametrization,themodelbadly reproducestheactualstatesat theCSDlocations?In this

case,the truecrowdsourceddatadon’t matchthe internalmodelstatesneededto produceanaccuratepredictionof theflood

hydrographat thedownstreamsection.Theirassimilationinto themodelcanevenleadto worseresultsthannoassimilationat

all or, at least,to fewerbenefitsthanexpected.

As warnedby Dee(2005)andby Liu etal.(2012),greatcareshouldbetakenin assimilatingdataif systematicbiasesorphase15

errorsin thedataor modelexist,sincetheoptimalityof thedataassimilationtechniquesis realizedonly if theobservationsand

themodelsarenotbiasedin themeansense.

This observationis particularlyimportantgiventhat theresultsof thestudyby Mazzoleniet al. (2017)pointedout that the

modelperformanceis moresensitiveto the accuraciesof CSD than to the momentsin time at which the streamflowCSD

becomeavailable.Be careful that here,given the characteristicsof CSD usedby the Authors,“accuracyof CSD” implies a20

closesimilarity betweenthetruecrowdsourceddataandtheinternalstatesof themodel.

This problemis of generalinterest,andnot limited to the studyby Mazzoleniet al. (2017).Actually, the complexity of

catchments,therelativelypaucityof data,andtheover-parametrizationof semi-distributedrainfall-runoffmodelsarelikely the

rule ratherthantheexception.

Therefore,the main aim of this commentis to warn aboutthe subtledrawbackhiddenbehindthe (bad)practiceof using25

traditionalandcrowdsourceddata,recordedatdifferentlocations,disjointly; theformerto calibrate(semi-)distributedmodels

andto forcethemin real-time,thelatteronly to updatethemodelstatesin operationalforecasting.But thesameproblem,due

to equifinalityof (semi-)distributedmodels,couldemergedueto asimilar, incorrectuseof only traditionaldata.

The Authors claimed that these synthetic CSD are realistic;however, for this condition to be met, the model must represent

well the physics of the real system (i.e., it must be calibrated or, at least, verified) at locations where CSD are first generated and30

then assimilated, which is a fundamental hypothesis behindthe OSSE approach. As a matter of fact, the synthetic CSD usedin

Mazzoleni et al. (2017) for the Bacchiglione case study are representative of the model internal states of the best-fit scenario.

But, recalling that such CSD do not refer to model control points, nothing can actually be said about the model performance at

locations where CSD are generated and, as a consequence, about their accuracy.
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From one point of view, such an inconsistency could have led to overrate the importance of CSD in Mazzoleni et al. (2017),

who considered issues related to CSD precision, but not accuracy. In other words, real CSD are likely biased with respectto the

synthetic CSD they used but, contrarily to Mazzoleni et al. (2016), this aspect was not accounted for in Mazzoleni et al. (2017).

From a more general point of view, additional care must be taken in operational flood forecasting when assimilating CSD into

(semi-)distributed hydrological models at locations other than model control points. This last point is further discussed in the5

next section.

3 The use of CSD in operational flood forecasting

As remarked by Mazzoleni et al. (2017), the success of assimilating SCD in hydrological modelling strictly depends on their

accuracy, quantity, and spatial-temporal distribution. However, attention must be paid not only to CSD, but also to themodel.

First, it must be observed that CSD typically do not refer to model calibration points, since their natural purpose is to enhance10

(rather than replace) data from traditional sensors. In general, historical data recorded by traditional sensors are first used to

calibrate a model; then, in real-time mode, the same sensorsprovide data both to force the model and to update the model states

(e.g. Ercolani and Castelli, 2017); moreover, the reliability of data from traditional sensors outperforms that of CSD. Hence,

CSD have limited usefulness at locations already equipped with traditional sensors.

Accordingly, particular care has to be taken when dealing with physically-based, (semi-)distributed models, which are known15

to suffer from equifinality and identifiability of model parameters (Beven, 2006).After the critical work by Beven (1989), de-

tailed investigations were carried out about the model complexity needed to simulate rainfall-runoff process. Several studies

indicated that the information content in a rainfall-runoff record is sufficient to support models of only very limited complex-

ity (Jakeman and Hornberger, 1993; Refsgaard, 1997). This implies that distributed, or semi-distributed, hydrological mod-

els are seldom calibrated; rather, they are commonly over-parametrized, since calibration rarely involves their internal states20

(Sebben et al., 2012; Viero et al., 2014).

In addition, flood routing processes are typically oversimplified in operational models meant to real-time flood forecasting

(Mejia and Reed, 2011). For instance, significant effects related to either compound sections, large floodplains connected to

the main channel, or confluences causing backwater effects,are seldom accounted for.

As a consequence, semi-distributed rainfall-runoff models may provide accurate predictions of outflow discharge at the25

closing section and, at the same time, poor predictions of internal states of the system (e.g., the soil moisture content, or

the relative contribution of upstream tributaries); in other words, one can likely get the correct answer for the wrong reason

(Loague et al., 2010). Therefore, (semi-)distributed models can be said calibrated only at calibration (or control) points, and

verified only at locations in which model results are shown tocompare favourably with enough (and accurate enough) measured

data.30

This caveat particularly applies to assimilation of CSD in hydrological modelling for operational, real-time flood forecasting.

Indeed, while CSD typically refer to model internal states,they are assimilated in order to improve the accuracy of the main
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outputs of the model, such as streamflow hydrographs at closing sections (model internal states are relatively less important in

this context).

Recalling that model input, states, parameters, and outputs (or a subset of them) can be updated using different data assimila-

tion techniques (Refsgaard, 1997), assimilation of CSD in operational flood forecasting can be helpful provided that the model

is able to well represent the physics of the system at locations where CSD are collected. When only internal states are updated5

(as in Mazzoleni et al., 2017), this condition is met if (and only if) the model is properly calibrated and verified at locations

where CSD refer to. Otherwise, correcting internal states of a poorly calibrated model can even lead, in principle, to worse

predictions at the outlet than performing no corrections atall (Crow and Van Loon, 2006). It is undoubtedly difficult to assess

this issue when only synthetic CSD, generated by the same model, are available for testing the overall method.

As a valid alternative for operational forecasting, ensemble based data assimilation methods (e.g., the Ensemble Kalman10

Filter or the Particle Filter) can be used to update jointly model states and parameters and to provide a direct measure of

uncertainty. In this way, models cope directly with equifinality and problems of over-parametrization, since parameter posterior

distributions are represented by ensembles. Note that typical data assimilation algorithms are in principle able to screen out

noisy data automatically, but need to be modified to tackle possible data bias, which otherwise leads to poorly calibrated

models. Thus, it is important, regardless of the nature of the data, to verify if such bias exists before any data assimilation is15

applied.

Nonetheless, also such sophisticated tools may fail if the model has structural deficiencies that make it unable to represent

true system states at given locations. As a representative example, consider the Bacchiglione River (Fig. 1) and, specifically,

the “Viale Diaz” floodplain described in Sec. 2. The role played by such an in-line flood control reservoir on flood routing

can not be accounted for using a basic Muskingum–Cunge modelthat considers rectangular cross-sections. It follows that the20

assimilation of accurate streamflow data referring to a section located just upstream of the Viale Diaz floodplain (e.g.,Ponte

Marchese, see Fig. 1) can likely deteriorate the model predictions in Ponte degli Angeli, downstream of the floodplain.

Shortcomings similar to the one described above, which can be found in many different case studies, can be a-priori conjec-

tured through a close inspection of both the physical systemand the model characteristic. Their quantitative assessment needs

an extensive comparison with measured data; of course, a “blind” use of CSD (i.e., their assimilation at locations wherethe25

model is neither calibrated nor verified) is at least questionable.

4 Summary

The approach proposed and investigated by Mazzoleni et al. (2017), based on theuseassimilationof crowdsourced data (CSD),

can be generally valuableto improve real-time flood forecasts, is in generalvaluable,andshowsapromisingway to improve

theaccuracyof hydrologicalpredictions using non-traditional information, which now activecitizensandnewtechnologies30

makenowavailableto hydrologistsnow available thanks to active citizens and new technologies.

However, it has to be remarked thatthe correctdescriptionof the physicalphysically based modelling ofrainfall-runoff

and flow routing processesprocesses has to face actual limitations ascribed to the paucity of forcing measureddata, to the
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complexity of realphysical environments, and tothe lacks in model structure and parametrization. As a consequence,(semi-

)distributedrainfall-runoff modelsused for operational flood forecastingsuchas that usedin Mazzoleniet al. (2017) can

providequite reliable predictions at locations where calibrationis performed (i.e., control points) and, at the same time,still

provideunacceptablywrongpredictionsincorrectly represent system states elsewhereof internalsystemstatesatthesametime

(e.g., discharges inupstream,ungauged tributaries).5

In a context of equifinalityBeven(2006)and simplified representation of real physical processes, the accurate prediction of

outflow hydrographs can be achieved even though model internal states don’t match the true system states.measureddatathat

donot referto calibrationpointsof (semi-)distributedmodelsarelikely biasedfor dataassimilationpurpose(actually,at these

locations,it is themodelstatesthatarebiasedratherthanthemeasureddata!). In such cases,theperformancethe assimilation

of real CSDof modelupdatingcanbe can lead to a substantially lowerperformancethanexpectedwhenthe use of synthetic10

CSD would suggest, as it corresponds, in fact, toassimilatingupdate a model usingbiased data (e.g., Dee, 2005; Liu et al.,

2012).In otherwords,When only internal states (and not model parameters) are updated, or when the model suffers structural

deficiencies,the assimilation of real (i.e., not synthetic) streamflow data referring to a poorly parametrizedsubcatchments

or tributary at internal pointscan lead, in principle, to even worse model predictionat the outletthan no assimilation at all

(Crow and Van Loon, 2006). The problem can arise due to the disjoint use of traditionaland crowdsourced datathat refer to15

different locations, with the former used to calibrate (semi-)distributed modelsat control points, and the latter used only in

real-timeto updatemodelupdatingstates at different locations.

A possible solution is the use of ensemble based data assimilation methods to update jointly model states and parameters.

An additional,pragmatic, operative recommendation is the collection ofcrowdsourcedaccurate measureddata for a suitable

test period, for at least two reasons: i) to develop reliablerating curves at locations where water level CSD are plannedto be20

collected, and ii) tocalibrate andverify the model ability in describing the system states correctly at the locations in which

CSD are collected, andpossiblyto updatethemodelcalibrationusingall theavailabledata.

It must be observed that, while scarce control on the collection of CSD can be exerted during significant flood events, the

locations at which citizens can collect CSD is always determined a-priori, since the availability of rating curves is a necessary

condition in order to convert water levels into discharges.The amount of measured data needed to develop reliable rating curves25

can also be profitably used to calibrate the model at those sections as well.

As a final remark,in orderto takethemaximumadvantagein term of accurateandreliablereal-timeflood forecasts, both

modellers and environmental agencies shouldcomprehensivelyaccountin acomprehensivelymanner for the characteristics of

the physical system, forthe model structure and parametrization, for the design of the sensors network, and for data to be used

both in calibration and in operational mode.30
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