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1 Point-by-point reply to comments

I'm grateful to the Editor and the Reviewers for their sudgess, which | found insightful and helpful. I'm confidentahthe
revised version of the paper, with respect to the previousiae, is more clearly focused, ordered in its structurd,emriched
in terms of contents.

According to the Editor’s suggestion, | paid particulaeatton to clarifying that the comment is about the operatiaspect
of using crowdsourced data.

2 RESPONSE TO THE COMMENTSOF REVIEWER #1

The comment on “Can assimilation of crowdsourced data inrdlpdical modelling improve flood prediction?” addresses
the subtle drawback hidden behind the practice of usingitiathl and crowdsourced data, recorded at different looas,
disjointly. The former are used to calibrate semi-disttémimodels and to force them in real-time, the latter onlyddate the
model states in operational forecasting.

InMazzoleni et al. (2017), synthetic CSD were generated @dehresults using observed precipitation, while simudate
results were obtained using forecasted precipitationc8ithe semi-distributed hydrological model used in Mazraeal.
(2017) was calibrated at only one location, Viero (2017) eritied that synthetic CSD at interior points (differenor
the calibration one) cannot be considered reliable due toifglity issues. In fact, semi-distributed hydrologicadets are
commonly over-parametrized and may provide accurate ptiedis only where the model is calibrated, and it can fail to
represent the relative contribution of upstream tribuéai | read the comment with interest and | really apprecidteie
author’s efforts. However, | have many doubts and consttara that | would like to share with him.

Maurizio Mazzoleni

| thank Maurizio Mazzoleni (Reviewer #1) for his appreaatiof the Comment and for his valuable comments and sugges-
tions, which are addressed in the following.

1. Overall, | found that the main message of the author have Is¢retched and repeated many times throughout the
Comment.

| agree. In the revised version of the Comment, the text istauitially reorganized to limit useless repetitions.

2. ltis not clear to me what would the author propose to genesgteghetic CSD when only measurements from traditional
sensors, located at points different from the ones of CS®aaailable. In the summary section, only a pragmatic sofuti
is suggested in case of availability of distributed flow daat the case in Mazzoleni et al., 2017). This solution ines|
the collection of CSD for a suitable test period, to verifg thodel ability in describing the system states correctthat
locations in which CSD are collected. However, this solutidll open many other types of questions. For example, how
would the author assess the quality of the CSD? Which cayegforitizen the author would engage in order to collect
CSD? For how long will this data collection take place? Howégbe insured that CSD quality during data collection
will be the same as the CSD quality during real-time modegllipdating (no control)? Citizens accuracy is different and
data quality assessment is still a burning topic in citizeresces. In addition, CSD in calibration may be differenifr
the ones in real-time model updating.

The work by Mazzoleni et al (2017) is actually a proof-of-cept, which analyses major aspects of the assimilation
of crowdsourced data in order to improve flood forecasting. Gdmment essentially focuses on what should follow
a proof-of-concept, i.e., on the operational use of CSDedd] it is the passage from a proof-of-concept study to a
real-world application (i.e., from synthetic CSD to actyaheasured CSD) that entails additional, significant draokis
related to equifinality, overparametrization, and deficyeim model structure, which are not discussed in Mazzoleni e
al. (2017).
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Accordingly, my Comment is not aimed at proposing a differéetter way to generate synthetic CSD when measure-
ments from traditional sensors are available only at difiedocations from the ones of CSD, as this would mainly
pertain to a proof-of-concept study.

In the revised version of the Comment, it should be clearith main aim is to highlight additional drawbacks inhéren
the use of CSD in operational flood forecasting, not assésdédzzoleni et al. (2017). Possible solutions and addition
guidelines are now enhanced (thanks also to suggestions\iguRer #2) and better explained.

. Moreover, | do not understand to which extent the commeritseofuthor are referred to the paper of Mazzoleni et al.

(2017) or to a generic issue on the use of CSD in hydrologicadetiing.

| am aware that it is actually difficult to properly balancerguents that must be specific (in that they refer to particular
aspects of a given work) and, at the same time, they shoul@jbéicant in a wider sense. | revised the paper in order to
make a better equilibrium by reporting specific commentsdcti®n 2, and by debating them from a more general point
of view in Section 3.

. The Author mentioned that “Indeed, for synthetic streamfiBD to be realistic, two specific requirements have to be

met: i) a reliable rating curve must be available for the ga®ctions where hydrometric CSD are recorded, and ii) the
model has to be calibrated at these locations”. | agree wité &uthor in case of CSD provided by static sensors, like
in case of Mazzoleni et al. (2017). However, in a real scenautiere CSD are provided by citizens at random moments
and locations within the catchment, by means of dynamiaosgnisdo not agree with the second point of the comment
for two reasons. Firstly, assuming the author is right, itthbbe extremely difficult to calibrate the model with observ
data at unknown locations in which synthetic CSD will be mdlsted. Secondly, it is not clear to me why synthetic
CSD based on model results should be generated if obsertacomalready available at the CSD/calibration points.
Obviously, such observed data should be directly used terg&nsynthetic scenarios of CSD, like in case of the first
three case studies in Mazzoleni et al. (2017), without uamgmodel result.

| thank M. Mazzoleni for this comment, which help me to charihe focus and the structure of my Comment. The
revised version of the Comment more specifically deals vsfieats related to operational use of CSD. In the Summary
of the Comment, | remarked that locations at which streamfGBD can be collected are actually always a-priori
known because of the need of a rating curve, which must belame before the assimilation of CSD in real-time
operational use. Data collected in order to develop thegaturve should also be used to calibrate or, at least, to
verify the model at these sections. Without actual ratingyes, assimilation of synthetic CSD remains a theoretical
exercise. Accordingly, while synthetic CSD can be certairsleful to carry out proof-of-concept studies and prelsmn
investigations, operational flood forecasting needs tpaglreal data.

. Another extremely important point is the assimilation oDG#servations. From Viero’s Comment, it is not clear how

erroneous synthetic observations can affect assimilgtieniormances. The author briefly mentions this issue rfgrr
to Dee (2005) and Liu et al. (2012). Honestly, since the maieaive of Mazzoleni et al. (2017) was the assimilation
of realistic synthetic CSD, | was expecting a more comprsiveranalysis on the effect of assimilating biased/unaerta
observations within hydrological model.

The issue raised by M. Mazzoleni is undoubtedly interesting deserves further discussion. The main objective of
Mazzoleni et al. (2017) was the assimilation of realististigtic CSD. In my Comment, | explain that little can actyall
be said on the reliability of the synthetic CSD of the Bactibite case study. In the revised version, this aspect igibett
explained through a practical example related to the effetthe “Viale Diaz” floodplain on flood routing. The reader
can grasp from this example which are the possible effecssimilating biased data at location where the model is not
verified and when only model states are updated (or in theafasteuctural deficiencies of the model).

Importantly, in my Comment | point out that even accurate amdiased measured data can be “seen” as biased data by
a model. This can occur when the model is not properly cdkiorat sections where data refer to (and model parameters
are not update along with model states), or when the modeiabla to reproduce the actual dynamics of the system at
those locations due to intrinsic limitations of the modelisture. This issue is better explained with practical eples

in my answer to the following point #6.
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6. In addition, Viero stated, “In a context of equifinality anfigmor identifiability of model parameters, the model intdrn

states can hardly mimic the actual system states away frdiloragon points, thus reducing the chances of success in
assimilating real (i.e. not synthetic) CSD.” Why the chasoésuccess in assimilating real CSD is reduced if the model
is not calibrated at CSD location? Does this mean that in aafs@ssimilation of distributed soil moisture observations
from remote sensing, within a distributed hydrological mipdve would need to calibrate the model in each grid cell?
| disagree with the author. The main purpose of data asstinitas to use real-time (noisy) observations to update the
wrong estimate of the states of a dynamic model (not ablenaathe actual system states away from calibration point).
Assimilation of observations at internal points of the batent is very useful when model states are less accurate than
real-time observationdf a model is able to correctly predict actual system states away from calibration points, why
should someone bother to add complexity and uncertainty assimilating CSD observations? The literature provides
many studies (e.g. Rakovec et al., 2012) in which hydroddgitodels are updated using measurements at internal
points, even if such observations are not used during madigration.

Thank you for this comment. | realize that | was not precisaugi in that part of my Comment, which was improved
in the revised version of the Comment.

To answer the key question in this Reviewer's comment (whiglghlighted above), | remark that a model can predict
wrong system states away from calibration points for diffgéreasons (e.g., wrong/insufficient input data and/or poo
calibration and/or structural model deficiencies). Askition of observations at internal points of the catchment loe
extremely useful when model states are less accurate taktime observations, but not when this lack of accuracy of
model states is due to problems with model structure (or dyp®or calibration of model parameters if such parameters
are not updated through data assimilation along with theainstdtes).

Therefore, | stress that the statements by M. Mazzoleneasonable, but they implicitly assume that the model siract
(and the set of model parameter as well, since they were miaiteg@ through data assimilation in his work) is (are) able
to correctly estimate, at the same time, both the interaé¢stand the model outputs. Although this is a highly dekgrab
feature for physical-based models (see also comment #3wwé&Rer #2), one must admit that it is not true in general
and, reasonably, it is not true for the model applicatiorhefBacchiglione River presented in Mazzoleni et al. (2017).

| try to clarify the question using first a hypothetical exdepConsider a hydrological model, not calibrated at irdkrn
points, which provides the right prediction at the closiegt®n as the result of wrong predictions at some internal
points. The updating of model states at this internal pdiated on real data (i.e., different to the internal statedee

to provide the ‘correct’ prediction at the outlet) will likecause this model to produce worse predictions at the rajposi
section with respect to no assimilation at all. This possitcurrence cannot be detected, nor assessed, if data to be
assimilated are extracted from the model itself. Indeedhigicase synthetic data represent wrong internal statiés (w
respect to reality), but they represent the best-fit scematierms of main model output.

The problem of assimilating data that are not coherent witerhal model states (when this is due to poor estima-
tion/identifiability of model parameters) could be limitbg updating the model parameters along with the internal
states of the model (as suggested by Reviewer #2), but thigegy could not be sufficient if the model has structural
deficiencies.

As a practical example, consider the “Viale Diaz” floodpladescribed in my Comment, which acts as a sort of in-line
natural flood control reservoir on flood propagation. Sifmedttenuation of flood wave exerted by this floodplain can
not be properly accounted for by the routing model used in2dkeni et al. (2017), the (hypothetical) assimilation of a
correct flood hydrograph upstream of the Viale Diaz floodplaads to incorrect streamflow predictions at Ponte degli
Angeli, downstream of the “Viale Diaz” floodplain.

. | am puzzled with the sentence “Therefore, beside the keygpualentified by Mazzoleni et al. (2017), not only data,

but also the model has to match specific requirements for dssamilation to be successful”. What are these specific
requirements that model has to match? Is the Author refgrtinthe reliability of synthetic data at calibration points
and to the capability of the model to represent truth states?
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The need to assimilate suitable crowdsourced data wassassiesMazzoleni et al. (2017). With respect to the specific
requirements that the model has to match, its ability of wegkesenting the physics of the hydrological system (@fe.,
correctly representing true internal states when forceddmyect input data) is actually the key aspect. | tried to enak
this point clearer in the revised version of the Comment.

3 RESPONSE TO THE COMMENTSOF REVIEWER #2

The author makes some significant critical remarks on thekwbMazzoleni et al. (2017) that are worth to be considered fo
publication.

| thank Reviewer #2 for his/her appreciation of my Commert fam his/her very useful and precise suggestions, which are
addressed in the following

1. However, | would first advise to mellow the tone of the naveati
Thanks for the suggestion. | revised the text of the papemimosh the English and to fix many typos.

2. In addition, | invite the author to make sure that the comraame more general and less focused on the upper Bac-
chiglione river catchment presented by Mazzoleni et al1{20In doing so, Section 2.1 should be reduced considerably
as most of the information and comments seem too specifiengyid not be supported for the other test sites.

| thank the reviewer for his suggestion. In the revised eersif the Comment, Section 2 was shortened and reorganized,
trying to separate specific comments that refer to the uppeciglione case study from general comments (Section
3). | agree that Sect. 2.1 is very specific. Nevertheless,Healieve that most part of this specificity is not meaningless
for other test sites. Indeed, | remain convinced that muchbealearned from in-depth analyses of specific cases. The
opposite risk is the (often unperceived) oversimplificatid real systems and processes in our schematic repraeantat
(i.e., models) of the reality.

Besides its evident specificity, one of the goals of Sectitd highlight that real-world case studies are often farano
complex than what can emerge from most of the applicatiopsrted in the literature (this is undoubtedly due to the
need of limiting paper length). | am convinced that simtlag with many other case studies can easily be found.

Finally, the Comment is indeed a comment to a specific papérpaly one of the four case studies reported by Maz-

zoleni et al (2017) is here commented, since the contentseo€Comment only apply to (semi-)distributed (and over-

parameterized) models and to the assimilation of CSD dal@acation where the model cannot be calibrated. In the
other test cases presented in Mazzoleni et al (2017), theotsiised a lumped model and CSD were assimilated only
at calibration sections.

3. The paper of Mazzoleni et al. (2017) aimed at investigathmgtalue of information retained by crowdsourced data
(CSD) when assimilated in surface flow models for flood ptexfic Their work is admittedly a proof-of-concept study
and the synthetic feature of CSD is quite clear, rather thanéfly mentioned”. Their conclusions are correct so long as
one assumes the model well represents the physics of theltyidal system, which is a fundamental hypothesis behind
observation simulation system experiments. On the othed,Haagree that there seems to be an inherent tendency in
Mazzoleni et al. (2017) to present results in a way that sawebverstates the importance of CSD.

| agree with the reviewer. The fact that a model well represtre physics of the hydrological system is a fundamental
hypothesis for physically-based models, and is tacitlyamsd in Mazzoleni et al. (2017). However, it must be stressed
that this requirement is not necessarily matched when g@tributed, physically based models are actually used as
lumped models, i.e., they are calibrated only at the closéagions. Given the complexity of the Bacchiglione catchime
the relatively paucity of measured data, and the structitieeomodel used (see my answer to comment #6 of Reviewer
#1 for further details), reasonably it is not true for the mlapplication of the Bacchiglione River presented in Médgab
etal. (2017).
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4. There are, in my view, some major points that need to be lghtdd: the method chosen for calibrating a model should

be consistent regardless of the type of data used. For m@ati models, ensemble based data assimilation methods
(e.g the EnKF or the PF) are attractive in that they can be usedpdate jointly model states and parameters and
provide a direct measure of uncertainty. Note that theseaisambpe directly with problems of over parameterizatiod an
equifinality since parameter posterior distributions aspresented by ensembles. CSD can be instrumental to reduce
model uncertainty. Indeed, one can assimilate these daether with traditional hydrologic observations, thereby
reducing parameter uncertainty even in those regions wtiereriginal reliability of the model is inadequate. In geale

the value of information of these data is strictly dependentheir quantity, quality, spatial-temporal distributioNote

that typical data assimilation algorithms are in principéble to screen out noisy data automatically, but need to be
modified to tackle possible data bias, which otherwise l¢ag®orly calibrated models. Thus, it is important, regast

of the nature of the data, to verify if such bias exists beéorg data assimilation is applied.

| thank the Reviewer for these interesting consideratiEnsemble based data assimilation methods are indeed pbwerf
tools. On one hand, their use to jointly update model statesparameters can effectively circumvent the problem of
uncertainty in model internal states at crowdsourced daitatgy on the other hand, such methods can help diagnosing
poor identifiability of model parameters.

However, sophisticated tools to update jointly model patems and states may fail if assimilating data at locatiomsre/
the model is unable to correctly reproduce the actual peydithe system due to structural deficiencies. This occaeren
is far from being rare in operational flood forecasting frameks where (over)simplified models are commonly used in
order to limit their computational burden.

While structural deficiencies can be a-priori conjecturedugh a close inspection of both the physical system and the
model characteristics, it can be proved (and quantified) loplcomparing model results with measured data (i.e., model
validation). The “blind” use of CSD (i.e., its assimilatiahlocations where the model is neither calibrated nor eatjfi

is at least questionable (see, e.g., the examples reparthd answer to comment #6 of Reviewer #1).

Finally, in the Reviewer's comment it is stressed the imgace of detecting bias in data to be assimilated. This obser-
vation pertains also to the object of my Comment, since akging real (i.e., not synthetic) data at locations whéwe t
model is unable to reproduce the physic of the system is alguit’to assimilating biased data.

These considerations have been added to the revised vefsioe Comment.
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Abstract. In their recent contribution, Mazzoleni et al. (2017) invgated the integration of crowdsourced data (CSD) in
hydrological models to improve the accuracy of real-timedidorecasts. They showed that assimilation of CSD imprtves
overall model performance-al-the-consideredtasestudiesT; the impact of irregular frequency of available crowdsourced
data, and that of data uncertainty, were also deeply askedewever, it has to be remarked that, in their work, the Auth
used synthetic (i.e., not actually measured) crowdsoudatd, because actual crowdsourced data were not availatiie a
moment of the studyFhispeint-briefli-mentionedby-the-authers;deservedurtherdiseussienFor this reason, the work
by Mazzoleni et al. (2017) is actually a proof-of-concepidst In most real-world applicationsainfall-raneff hydrological
models are calibrated using data from traditional sensaggpically, CSD aretypically collected at different locations, where
semi-distributed models are not calibratésla-contextof-equifinality-and-of pooridentifiability-of- modelparametersthe

A aVala¥a
oG O cl C Gty aCtud o avvd O aiotatfor o i g o O

sueeessn-assimilatingreal{-enotsynthetie)SSB- As a result of either equifinality, poor model identifiakyjiend lacks
in model structure, internal states of (semi-)distributeatdels can hardly mimic the actual states of complex systemay
from calibration points. Indeed, in operational framevgrthe assimilation of real (rather than synthetic) CSD iregua
careful assessmerfdditional eriteriaguidelinesare given that are useful for the a-priori evaluation of éasig the chance
of assimilating) crowdsourced data for real-time flood éasting and, hopefully, to plan apt design strategies ftin boodel
calibration and collection of crowdsourced data.

1 Introduction

The availability of hydrometric data, collected by activézens in the course of severe flood events, offers a newpewted
chance to improve real-time flood forecasts. In pioneerjmglieations, crowdsourced data (CSD) collected in the uppet

of a basin were assimilated into adaptive hydrolajimodels to reduct¢he uncertainty in forecasting flood hydrographs at
downstream sections (Mazzoleni et al., 2015). In a recemnkwWdazzoleni et al. (2017) paid particular attention to ib®ues

of data uncertainty and irregular arrival frequency of CSDeil hesults showed that assimilation of CSD improves thealve
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model performanc@é-al-the-casestudiesthey-considered. They also showed that the accuracy of CSD isgniergl, more

important than their arrival frequency.

However, thereis-acrucial-aspectthathasto-beremarked. in their work, the Authors used synthetic (i.et, actually
measured) CSD, because real streamflow CSD were not aeadalthe moment of the studjhe-Autherswarnedabeut
this-aspeeby-statingthat Commenting on this aspect, the Authors wrtitee developed methodology is not tested with data
coming from actual social sensors. Therefore, the conahssheed to be confirmed using real crowdsourced obsensatbn

water level.

ized)
medels.A practical verification of the results by Mazzoleni et al0{Z) is indeed necessary; furthermore, particular atianti
has to be paid to additional drawbacks inherent in the useSaf {D operational flood forecasting, which are not discussed

their proof-of-concept study.
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The Comment is outlined as follows. Section 2 presents a desgssment of the Bacchiglione River case study (i.e., the
fourth case study presented in Mazzoleni et al., 2017), derto highlight the actual gap between a proof-of-concetys
and a real application for operational flood forecastinge@ithe complexity of the basin and the relatively paucitgwilable
data, it is shown that the semi-distributed model used inAdkeni et al. (2017) is unable to properly represent the ipbyaf
the whole hydrological and hydraulic system, with adveirffeces on the assimilation of real CSD. Based on the key featu
delineated in Sect. 2, a more general assessment of CSDilatisimin (semi-)distributed hydrological models is given
Sect. 3. A brief summary closes the Comment.

2 Specific comments

2.1 The Bacchiglione catchment closed at Ponte degli AngéYicenza)

The catchment of the upper Bacchiglione River, closed atd’degli Angeli in the historical centre of Vicenza (Fig. Iy,
located in the north of the Veneto Region, a plain that isgieith by the Alpine barrier at a distance of less than 100 kmeo th
north of the Adriatic Sea (Barbi et al., 2012).

With regard to the precipitation climatology, the southeant of this plain is the drier, with approximately 700-10060 of
mean annual rainfall, whereas more than 2000 mm are meadosgito the pre-alpine chain due to the interactigth of the
southerly warm and humid currents coming from the Meditezean Seavith the mountain barriefSmith, 1979)indeedthe

lessthantkm;with-slepesupte70%. A significant portion of the annual rainfall often contrates into very short periods of
time in the form of what often turns out to be an extreme evatit deep convection playing a central role (Barbi et al.,201

Rysman et al., 2016). As a consequence, severe flooding lexemthreatened agricultural and urban areas in the reeang y
(e.g. Viero et al., 2013; Scorzini and Frank, 2015).

- Due tothe spatial and temporal

variability of the rainfall fieldsis-apparentMany meteorological modeglare often unable to provide accurate and reliable
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Figure 1. The catchment of the Bacchiglione River closed at Ponte degli Angeknv (Italy).

guantitative precipitation estimates (QPE) for the uppecddiglione catchmentduete-bothinsufficientspatialandtempeoral
reseolutionandto-theactualcomplexityof-thisenvirorment. An example of this inadequacy is given, fotanse, by Fig. 13
in Mazzoleni et al. (2017). The discharge simulated usimgdasted input is very different from that obtained usirgprded
rainfall, shewingwith a significant time shift and erroiis predicted discharge rangirmptween 25 and 50% at the flood peak
(and up to 90% if considering synchronous data).

Fromanhydradliepointefview- The upper Veneto plain is a highly populated and urbanized,avith extremely complex
drainage and irrigation networkhBat significantly affect both runoff production and proptgn (Viero and Valipour, 2017)
Within this plain, the Bacchiglione River arad its tributaries are provided with relatively high lewe@/iero et al., 2013),
which prevent the exchange of water from inside to outsidaitrerbed (and vice-versa) when the inner water levelselee r
tively high. As a consequence, the minor channel networksat always allowed to deliver their drainage water towdanés
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nearest tributary, i.e., the inflow points along the maimrrrikeaches change during a flood event depending on the tastan
neous water level within the river. This occurrembangemodifiesthe network connectedness which, in turn, leads to difteren
mechanisms of hydrologic response in the overall catchment

Just upstream of the City of Vicenzaan area of up to 1 kinof the “Viale Diaz” floodplain (Fig. 1) ef-abeutt-km?2 is
flooded when théBacchiglioneflow rate in-the-Baeehiglione exceeds 160 m3/s. Since abou? - 10° m? of water can be
temporarily stored in this area, a significant flood atteiomatan be produced, particularly in case of floods with agstesng
limb (which is often the cas@ue to the climatic regime and the catchment charactesjistic

Moreover, the lower part of the Bacchiglione basin, Northvafenza, includes a vast groundwater resurgence zone, in
which it's difficult to assess both the actual contributidrresurgence to the Bacchiglione streamflow (up-t80 m3/s) and
the time-variable behaviour of soil moisture.

Clearly, such a system is highly non-linear. Nonetheldgsjficant parts of the Bacchiglione catchments are pooidyim
tored, and the remaining parts are completely unmonitdrked.Leogra subcatchment (blue shaded area in Fig. 1) isqedvi
with a pressure-transducer for the measure of water levebraebelvicino (Fig. 1). A rating curve derived from thetical
considerations is available for this cross-sectidowever, the absence #6+eliability-is-elearhHew,-sineene instrumental
measures of flow dischargeeavaiablefer-thissitelimits its reliability. The Leogra-Timonchio subcatchment (orange shaded
area in Fig. 1) is monitored by an ultrasonic stage selwsatted at Ponte Marchese, just upstream of the confluertbethve

Orolo River.eperatecby-ARPAV :
providedwith-anyrating-eurve-Available Flow rate measureens at Ponte Marchese refers only to low hydraullc regimes,

and show great variability due to the operations of a hyewek power plant located just downstream of Ponte Marehes

The Orolo River (green shaded area in Fig. 1), with a disehagapacity of more than one third of the Bacchiglione at Ponte
degli Angeli, is one of its major tributarieFhe i i ichi
spatialvariability-ef preeipitationfields. Unfortunately, not onl§his-areathe Orolo subcatchmeig completely uncovered by

meteorological gauging stations, but also no hydromefiieging stations are present aldingreachef-theOrolo-River its
reach Similarly to the Orolo, the Astichello catchment (red sbédrea in Fig. 1) is unmonitored and, due to backwater sffect

significant areas adjacent to the Astichello are flooded wheger levels in the Bacchiglione are relatively high. Hertbe
discharge that effectively flows from the Astichello inteetBacchiglione River may significantly redetdepending on the
water stage within the main course of the Bacchiglione River

Attention must be paid to the fact that the three major tekies (Orolo, Timonchio, and Astichello) meet just upstmezt
the closing section of Ponte degli Angeli (Fig. 1), makindifficult to correctlyestimate the actual contribution of each single
tributary to the total streamfloaerreetly.By looking at the tree-like structure of the drainage netwinran electrical analogy

(Rodriguez-lturbe and Rinaldo, 2001), the major tribetmof the Bacchiglione are in fact “conductors in parallel”.
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Certainly, given the irregular topography of the catchragtite heterogeneity of the landscape, and the complexityeof
hydraulic network, it can be stated that thecchiglionecatchmenbfBacehigliones poorly monitored.

2.2 The semi-distributed model of the Bacchiglione catchnm

In catchments like that of the Bacchiglione River, for a# tieasons reported in the previous section, the accuratetoa of
flood hydrographs by performing continuous time simulaigunquestionably a hard task (Anquetin et al., 2010).

Mazzoleni et al. (2017) used an available semi-distribimgdtological model coupled with a Muskingum—Cunge scheme
for flood propagation within the main river network, whichssariginally set up to forecast flood hydrographs at the olpsi
section of Ponte degli Angeli (Vicenze&gensibly, the model was calibrated by minimizing the rooamgquare error between
observed and simulated values of water discharge only aeRlmgli Angeli, which is the only hydrometric station praed
with a reliable rating curve. The semi-distributed modé&ha@ugh explicitly representing the hydrological proassvithin
the main subcatchments, has to be intended as a lumped moctedfpractical standpoint, since the discharge in Ponté deg
Angeli is its only control point.

Therefore, no matter the accuracy of tmedeHnforecastingflood-hydrographsstreamflow predictionsn Ponte degli
Angeli, little can be said about the accuracy of gwme model in describing the internal states of the systeah as the
streamflow along the upstream tributaries. This limitatias to be ascribed to uncertainty in precipitation fieldshéopaucity
of (reliable) flow rate data upstream of Vicenza, and to iehelimitations of the model itself.

Indeed, it has to be remarked that the Muskingum—Cunge nfoddlood propagation used in Mazzoleni et al. (2017)
considers rectangular river cross-sections for the etitmaf hydraulic radius, wave celerities, and other hyticavariables
(Todini, 2007). Accordingly, the effects exerted by the &\ Diaz” floodplain, which acts as a sort of in-line naturabtl
control reservoir on flood propagation, can not be propertpanted for. This means that, if the flood hydrograph isexily
modelled at Ponte degli Angeli,igretcan not becorrectly modelled upstream of the Viale Diaz floodplaind aice-versa).

2.3 The use of synthetic CSD in the Bacchiglione case study

In theworkby Mazzoleni et al. (2017}he synthetideurlyerewdseurcedata{CSD) of streamflow aré¢he resuls of the model

itself. irdeed,Similarly to the “observing system simulation experime(@SSE) approactsynthetic CSD were calculated

by forcing the hydrological model-the Bacehiglienecatehment with measured precipitation recorded during timsidered
flood events (post-event simulatiod)s-a-matterof-fact; thesedataarerepresentativef theactualmodelinternalstateof the




30

The Authors claimed that these synthetic CSD are realistizrever, for this condition to be met, the model must represe
well the physics of the real system (i.e., it must be caléxlatr, at least, verified) at locations where CSD are firstig¢ee and
then assimilated, which is a fundamental hypothesis behie@©SSE approach. As a matter of fact, the synthetic CSDinsed
Mazzoleni et al. (2017) for the Bacchiglione case study apgasentative of the model internal states of the bestditato.

But, recalling that such CSD do not refer to model controhgminothing can actually be said about the model performahc
locations where CSD are generated and, as a consequenuaethaoaccuracy.
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From one point of view, such an inconsistency could havedexérrate the importance of CSD in Mazzoleni et al. (2017),
who considered issues related to CSD precision, but notacgun other words, real CSD are likely biased with respethe
synthetic CSD they used but, contrarily to Mazzoleni et2016), this aspect was not accounted for in Mazzoleni ep@l 7).
From a more general point of view, additional care must beriak operational flood forecasting when assimilating CSD in
(semi-)distributed hydrological models at locations ofitian model control points. This last point is further dissed in the

next section.

3 The use of CSD in operational flood forecasting

As remarked by Mazzoleni et al. (2017), the success of asdimg SCD in hydrological modelling strictly depends oweith
accuracy, quantity, and spatial-temporal distributioowdver, attention must be paid not only to CSD, but also tavibdel.

First, it must be observed that CSD typically do not refer tel calibration points, since their natural purpose isiteegice
(rather than replace) data from traditional sensors. Ireg@nhistorical data recorded by traditional sensors asedsed to
calibrate a model; then, in real-time mode, the same sepsavile data both to force the model and to update the maoatelsst
(e.g. Ercolani and Castelli, 2017); moreover, the relipbdf data from traditional sensors outperforms that of C&lence,
CSD have limited usefulness at locations already equippttmditional sensors.

Accordingly, particular care has to be taken when dealirilg physically-based, (semi-)distributed models, whiahkarown
to suffer from equifinality and identifiability of model pangters (Beven, 2006)\fter the critical work by Beven (1989), de-
tailed investigations were carried out about the model derily needed to simulate rainfall-runoff process. Selvstadies
indicated that the information content in a rainfall-ruin@fcord is sufficient to support models of only very limiteshaplex-
ity (Jakeman and Hornberger, 1993; Refsgaard, 1997). Tpdies that distributed, or semi-distributed, hydrol@jimod-
els are seldom calibrated; rather, they are commonly osearpetrized, since calibration rarely involves their ingd states
(Sebben et al., 2012; Viero et al., 2014).

In addition, flood routing processes are typically overdifigal in operational models meant to real-time flood foréioas
(Mejia and Reed, 2011). For instance, significant effedeted to either compound sections, large floodplains cdedeo
the main channel, or confluences causing backwater effgetseldom accounted for.

As a consequence, semi-distributed rainfall-runoff medahy provide accurate predictions of outflow discharge at th
closing section and, at the same time, poor predictions tefrial states of the system (e.g., the soil moisture content
the relative contribution of upstream tributaries); inathvords, one can likely get the correct answer for the wraagon
(Loague et al., 2010). Therefore, (semi-)distributed n®dan be said calibrated only at calibration (or controlng and
verified only at locations in which model results are showraimpare favourably with enough (and accurate enough) megésu
data.

This caveat particularly applies to assimilation of CSDydiological modelling for operational, real-time floodéoasting.
Indeed, while CSD typically refer to model internal statibey are assimilated in order to improve the accuracy of thenm
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outputs of the model, such as streamflow hydrographs aihglagctions (model internal states are relatively less itapbin
this context).

Recalling that model input, states, parameters, and @ifputs subset of them) can be updated using different dataitess
tion techniques (Refsgaard, 1997), assimilation of CSDperational flood forecasting can be helpful provided thattiodel
is able to well represent the physics of the system at loestichere CSD are collected. When only internal states areteghda
(as in Mazzoleni et al., 2017), this condition is met if (amdyoif) the model is properly calibrated and verified at ldoas
where CSD refer to. Otherwise, correcting internal stafes poorly calibrated model can even lead, in principle, tasgo
predictions at the outlet than performing no correctionallgiCrow and Van Loon, 2006). It is undoubtedly difficult tes@ss
this issue when only synthetic CSD, generated by the samelpaeé available for testing the overall method.

As a valid alternative for operational forecasting, enslentiased data assimilation methods (e.g., the Ensembleatalm
Filter or the Particle Filter) can be used to update jointlyd®l states and parameters and to provide a direct measure of
uncertainty. In this way, models cope directly with equilityeand problems of over-parametrization, since paramsterior
distributions are represented by ensembles. Note thatalygata assimilation algorithms are in principle able t®sn out
noisy data automatically, but need to be modified to tacklssiibe data bias, which otherwise leads to poorly calilbrate
models. Thus, it is important, regardless of the nature efdéita, to verify if such bias exists before any data asdiimilas
applied.

Nonetheless, also such sophisticated tools may falil if tbdahhas structural deficiencies that make it unable to seymte
true system states at given locations. As a representatdrede, consider the Bacchiglione River (Fig. 1) and, djpadily,
the “Viale Diaz” floodplain described in Sec. 2. The role @edyby such an in-line flood control reservoir on flood routing
can not be accounted for using a basic Muskingum—Cunge ntloaietonsiders rectangular cross-sections. It followsttiea
assimilation of accurate streamflow data referring to aicedbcated just upstream of the Viale Diaz floodplain (eRpnte
Marchese, see Fig. 1) can likely deteriorate the model ptiedis in Ponte degli Angeli, downstream of the floodplain.

Shortcomings similar to the one described above, which edonind in many different case studies, can be a-priori @nje
tured through a close inspection of both the physical systetithe model characteristic. Their quantitative assessnezds
an extensive comparison with measured data; of coursejrad"hise of CSD (i.e., their assimilation at locations where
model is neither calibrated nor verified) is at least questixe.

4 Summary

The approach proposed and investigated by Mazzoleni a(m?o based on theseassimilatiorof crowdsourced data (CSD),
can be generally valuabte improve real-time flood forecasts isi
the-acedracyof-hydroloegicalpredictions using non-traditional informatiemvhich-new-activecitizensanghewtechnolegies
makenow-availableto-hydrologistsnow available thanks to active citizens and new technotogie

However, it has to be remarked thae-correctdeseriptionef-thephysical physically based modelling akinfall-runoff
and flow routing processgwxecesses has to face actual limitations ascribed to theitpaaf fereing measurediata, to the
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complexity of realphysieal environments, and the lacks in model structure and parametrization. As a cpresgce (semi-
)distributedrainfall-runoff modelsused for operational flood forecastisgehasthatusedin-Mazzelenietal{(2017) can

provideguite reliable predictions at locations where calibraimperformed (i.e., control points) andt the same timestilt

provideunacceptablywrongpredictionancorrectly represent system states elsewbénaternalsystenstatesatthesametime
(e.g., discharges inpstreamungauged tributaries).
In a context of equifinalityBeven{20606and simplified representation of real physical procestesatcurate prediction of

outflow hydrographs can be achieved even though model ailtstates don’'t match the true system statesasuredlatathat

. In such casetheperformanedhe assimilation

of real CSDef»medempdaﬂﬂgeanbe can lead to a substantially longerformancehanexpectedrvhenthe use of synthetic
CSD would suggest, as it corresponds, in factadsinitatingupdate a model usingiased data (e.g., Dee, 2005; Liu et al.,

2012) in-etherwerds,When only internal states (and not model parameters) ardeghdar when the model suffers structural
deficienciesthe assimilation of real (i.e., not synthetic) streamflowadaferringto-a-poerlyparametrizecsubeatechments
ortributary at internal pointcan lead, in principle, to even worse model predictatrthe outlethan no assimilation at all
(Crow and Van Loon, 2006)The problem can arise due to the disjoint use of traditiamal crowdsourced dathatreferto
differenttoecations, with the former used to calibrate (semi-)distted modelst control pointsand the latter used only in
real-timeto updatemodelupdatingstates at different locations

A possible solution is the use of ensemble based data aaSomilmethods to update jointly model states and parameters
An additional pragmati¢-eperative recommendation is the collectioneedwdseureediccurate measurathta for a suitable
test period, for at least two reasons: i) to develop reliadleg curves at locations where water level CSD are planode
collected, and ii) tccalibrate and/enfy the model ab|I|ty in descnblng the system stategecity at the locations in which
CSD are collecteéh

It must be observed that, while scarce control on the cadleaif CSD can be exerted during significant flood events, the
locations at which citizens can collect CSD is always deteecha-priori, since the availability of rating curves isecessary
condition in order to convert water levels into dischargése amount of measured data needed to develop reliablg atimes
can also be profitably used to calibrate the model at thog®asas well.

As a final remarkjn i ' , both
modellers and environmental agencies shaolchprehensivelpccounin-acomprehensivelyranner for the characteristics of
the physical system, fahe model structure and parametrization, for the desigheséensors network, and for data to be used

both in calibration and in operational mode.
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