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Abstract: In traditional watershed delineation and topographic modeling, surface depressions are generally treated
as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water
across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual
wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical
structures and dynamic filling-spilling-merging surface-water hydrological processes. Differentiating and
appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing
challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic
analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their
hydrologic connectivity using high-resolution LiDAR data and aerial imagery. The graph theory-based contour tree
method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological
properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost path
algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other
or to the river network at scales finer than available through the National Hydrography Dataset. The results
demonstrated that our proposed framework is promising for improving overland flow simulation and hydrologic

connectivity analysis.

Keywords: flow path, geographically isolated wetlands, hydrologic connectivity, LiDAR, prairie pothole, wetland

depressions
1 Introduction

The Prairie Pothole Region (PPR) of North America extends from the north-central United States (U.S.) to south-
central Canada, encompassing a vast area of approximately 720,000 km?. The landscape of the PPR is dotted with
millions of wetland depressions formed by the glacial retreat that happened during the Pleistocene Epoch (Winter,
1989). The PPR is considered as one of the largest and most productive wetland areas in the world, which serves as
a primary breeding habitat for much of North America’s waterfowl population (Keddy, 2010; Steen et al., 2014;
Rover and Mushet, 2015). The wetland depressions, commonly known as potholes, possess important hydrological

and ecological functions, such as providing critical habitat for many migrating and breeding waterbirds (Minke,
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2009), acting as nutrient sinks (Oslund et al., 2010), and storing surface water that can attenuate peak runoff during a
flood event (Huang et al., 2011b). The potholes range in size from a relatively small area of less than 100 m? to as
large as 30,000 m?, with an estimated median size of 1600 m? (Zhang et al., 2009; Huang et al., 2011a). Most
potholes have a water depth of less than 1 m with varying water permanency, ranging from temporary to permanent
(Sloan, 1972). Due to their small size and shallow depth, these wetlands are highly sensitive to climate variability
and are vulnerable to ecological, hydrological, and anthropogenic changes. Wetland depressions have been
extensively drained and filled due to agricultural expansion, which is considered the greatest source of wetland loss
in the PPR (Johnston, 2013). In a report to the U.S. Congress on the status of wetland resources, Dahl (1990)
estimated that the conterminous U.S. lost more than 50 percent of its original wetland acreage over a period of 200
years between the 1780s and the 1980s. More recently, Dahl (2014) reported that the total wetland area in the PPR
declined by approximately 300 km? between 1997 and 2009. This represents an average annual net loss of 25 km?.
Regarding the number of depressions, it was estimated that the wetland depressions declined by over 107,000 or
four percent between 1997 and 2009 (Dahl, 2014).

The extensive wetland drainage and removal have increased precipitation runoff into regional river basins,
which is partially responsible for the increasing frequency and intensity of flooding events in the PPR (Miller and
Nudds, 1996; Bengtson and Padmanabhan, 1999; Todhunter and Rundquist, 2004). Concerns over flooding along
rivers in the PPR have stimulated the development of hydrologic models to simulate the effects of depression
storage on peak river flows (Hubbard and Linder, 1986; Gleason et al., 2007; Gleason et al., 2008; Huang et al.,
2011b). Since most of these prairie wetlands do not have surface outlets or well-defined surface water connections,
they are generally considered as geographically isolated wetlands (GIWSs) or upland-embedded wetlands (Tiner,
2003; Mushet et al., 2015; Cohen et al., 2016; Lane and D'Amico, 2016). Recently, the U.S. Environmental
Protection Agency conducted a comprehensive review of over 1350 peer-reviewed papers with the aim to synthesize
existing scientific understanding of how wetlands and streams affect the physical, chemical, and biological integrity
of downstream waters (U.S. EPA, 2015). The report concludes that additional research focused on the frequency,
magnitude, timing, duration, and rate of fluxes from GIWSs to downstream waters is needed to better identify
wetlands with hydrological connections or functions that substantially affect other waters and maintain the long-
term sustainability and resiliency of valued water resources.

In addition to the comprehensive review by the U.S. EPA (2015), a number of recent studies focusing on the
hydrologic connectivity of prairie wetlands have been reported in the literature. For example, Chu (2015) proposed a
modeling framework to delineate prairie wetlands and characterize their dynamic hydro-topographic properties in a
small North Dakota research area (2.55 km?) using a 10-m resolution digital elevation model (DEM). Vanderhoof et
al. (2016) examined the effects of wetland expansion and contraction on surface water connectivity in the PPR using
time series Landsat imagery. Ameli and Creed (2017) developed a physically-based hydrologic model to
characterize surface and groundwater hydrologic connectivity of prairie wetlands. These reported studies represent
some of the latest research developments on hydrologic connectivity in the PPR. To our knowledge, little work has
been done to delineate potential flow paths between wetlands and stream networks and use flow paths to

characterize hydrologic connectivity in the PPR. In addition, previous remote sensing-based work on the hydrology
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of prairie wetlands mainly focused on mapping wetland inundation areas (e.g., Huang et al., 2014; Vanderhoof et al.,
2017) or wetland depressions (e.g., McCauley and Anteau, 2014; Wu and Lane, 2016), few studies have treated
wetlands and catchments as integrated hydrological units. Therefore, there is a call for treating prairie wetlands and
catchments as highly integrated hydrological units because the existence of prairie wetlands depends on lateral
inputs of runoff water from their catchments in addition to direct precipitation (Hayashi et al., 2016). Furthermore,
hydrologic models for the PPR were commonly developed using coarse-resolution DEMSs, such as the 30-m
National Elevation Dataset (see Chu, 2015; Evenson et al., 2015; Evenson et al., 2016). High-resolution light
detection and ranging (LiDAR) data have rarely been used in broad-scale (e.g., basin- or subbasin-scale) studies to
delineate wetland catchments and model wetland connectivity in the PPR.

In this paper, we present a semi-automated framework for delineating nested hierarchical wetland
depressions and their corresponding catchments as well as simulating wetland connectivity using high-resolution
LiDAR data. Our goal was to demonstrate a method to characterize fill-spill wetland hydrology and map potential
hydrological connections between wetlands and stream networks. The hierarchical structure of wetland depressions
and catchments was identified and quantified using a localized contour tree method (Wu et al., 2015). The potential
hydrologic connectivity between wetlands and streams was characterized using the least-cost path algorithm. We
also utilized high-resolution LiDAR intensity data to delineate wetland inundation areas, which were compared
against the National Wetlands Inventory (NWI) to demonstrate the hydrological dynamics of prairie wetlands. Our
ultimate goal is to build on our proposed framework to improve overland flow simulation and hydrologic
connectivity analysis, which subsequently may improve the understanding of wetland hydrological dynamics at

watershed scales.
2 Study area and datasets
2.1 Study area

The work focused on the Pipestem River subbasin in the Prairie Pothole Region of North Dakota (Fig. 1). The
subbasin is an 8-digit Hydrologic Unit Code (#10160002) with a total area of approximately 2,770 km?, covering
four counties in North Dakota (see Fig. 1). The climate of the subbasin is characterized by long, cold, dry winters
and short, mild, variably wet summers (Winter and Rosenberry, 1995). Average annual precipitation is
approximately 440 mm with substantial seasonal and annual variations (Huang et al., 2011a). The land cover of the
Pipestem subbasin is dominated by cultivated crops (44.1%), herbaceous vegetation (25.9%), and hay/pasture
(13.1%), with a substantial amount of open water (7.1%) and emergent herbaceous wetlands (5.6%) (Jin et al.,
2013). The Cottonwood Lake area (see the blue rectangle in Fig. 1), a long-term field research site established by the
U.S. Geological Survey (USGS) and the U.S. Fish and Wildlife Service (USFWS) in 1977 for wetland ecosystem
monitoring, has been a very active area of research for several decades (e.g., Sloan, 1972; Winter and Rosenberry,
1995; Huang et al., 2011a; Mushet and Euliss, 2012; Hayashi et al., 2016).

2.2 LiDAR data
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The LIDAR elevation data for the Pipestem subbasin were collected in late October 2011 and distributed through the
North Dakota GIS Hub Data Portal (https://gis.nd.gov/, accessed December 30, 2016). The bare-earth digital
elevation models (DEMSs) derived from LiDAR point clouds are freely available as 1-m resolution image tiles (2 km
%2 km). The vertical accuracy of the LIDAR DEM is 15.0 cm. We created a seamless LIDAR DEM (see Fig. 1) for

the Pipestem subbasin by mosaicking 786 DEM tiles and used it for all subsequent data analyses (approximately

22.66 GB). The elevation of the subbasin ranges from 422 m to 666 m, with relatively high-elevation areas in the
west and low-elevation areas in the east.

The LiDAR intensity data for the Pipestem subbasin were also collected at 1-m resolution coincident with
the LiDAR elevation data collection. In general, the return signal intensities of water areas are relatively weak due to
water absorption of the near-infrared spectrum (Lang and McCarty, 2009; McCauley and Anteau, 2014). As a result,
waterbodies typically appear as dark features whereas non-water areas appear as relatively bright features in the
LiDAR intensity image. Thresholding techniques have been commonly used to distinguish water pixels from non-
water pixels (Huang et al., 2011b; Huang et al., 2014; Wu and Lane, 2016). In this study, the LiDAR intensity data
were primarily used to extract standing-water areas (i.e., inundation areas) while the LIDAR DEMs were used to
derive nested wetland depressions and their corresponding catchments above the standing-water surface. It is worth
noting that October 2011 was an extremely wet period with a Palmer Hydrological Drought Index (PHDI) of 7.84.
The PHDI typically falls within the range between -4 (extreme drought) and +4 (extremely wet) (Huang et al.,
2011a). Consequently, small individual wetland depressions nested within larger inundated wetland complexes
might not be detectable from the resulting LIiDAR DEM.

2.3 Ancillary data

In addition to the LiDAR datasets, we used three ancillary datasets, including the 1-m resolution aerial imagery from
the National Agriculture Imagery Program (NAIP) of the U.S. Department of Agriculture (USDA), the National
Wetlands Inventory (NWI1) from the USFWS, and the National Hydrography Dataset (NHD) from the USGS.

The NAIP imagery products were also acquired from the North Dakota GIS Hub Data Portal. The default
spectral resolution of the NAIP imagery in North Dakota is natural color (Red, Green, and Blue, or RGB).
Beginning in 2007, however, the state data have been delivered with four bands of data: RGB and Near Infrared. We
downloaded and processed six years of NAIP imagery for the Pipestem subbasin, including 2003, 2004, 2006, 2009,
2012, and 2014. A small portion of the study area with the NAIP imagery is shown in Fig. 2. These time-series
NAIP imagery clearly demonstrate the dynamic nature of prairie pothole wetlands under various dry and wet
conditions. In particular, the extremely wet year of 2014 resulted in many individual wetlands to coalesce and form
larger wetland complexes (see the yellow arrows in Fig. 2). It should be noted that all the NAIP imagery were
collected during the summer growing season of agricultural crops. Since no coincident aerial photographs were
collected during the LiDAR data acquisition campaign in 2011, these NAIP imagery can serve as valuable data
sources for validating the LiDAR-derived wetlands catchments and hydrological pathways in this study.

The NWI data for our study area were downloaded from https://www.fws.gov/wetlands/ (accessed

December 30, 2016). The wetland inventory data in this region were created by manually interpreting aerial
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photographs acquired in the 1980s with additional support from soil surveys and field checking (Cowardin et al.,
1979; Huang et al., 2011b; Wu and Lane, 2016). Tiner (1997) reported that the target mapping unit, the size class of
the smallest group of NWI wetlands that can be consistently mapped, was between 1000 m? and 4000 m? in the
Prairie Pothole Region. It should be noted that the target mapping unit is not the minimum wetland size of the NWI.
In fact, there are a considerable amount of NWI wetland polygons smaller than the target mapping unit (1000 m?). In
this study, we focused on the prairie wetlands that are greater than 500 m2. Therefore, 5644 small NWI wetland
polygons (< 500 m?) were eliminated from further analysis. In total, there were 32,016 NWI wetland polygons (>
500 m?) across the Pipestem subbasin (Table 1). The total size of these NWI wetlands was approximately 279.5 km?,
covering 10.1% of the Pipestem subbasin. The areal composition of NWI wetlands were freshwater emergent
wetlands (86.5%), lakes (7.5%), freshwater ponds (5.3%), freshwater forested/shrub wetland (0.4%), and riverine
systems (0.3%). The median size of wetlands (> 500 m?) in our study area was 1.8 % 10% m2. Although the NWI data
is the only spatially comprehensive wetland inventory for our study area, it is now considerably out-of-date, as it
was developed 30 years ago and it does not reflect the wetland temporal change (Johnston, 2013). The wetland
extent and type for many wetland patches have changed since its original delineation (e.g., Fig. 2). Nevertheless,
NWI does provide valuable information about wetland locations (Tiner, 1997; Huang et al., 2011b). Furthermore,
the NWI definition of wetlands requires only one of three wetland indicators (soils, hydrology, or plants) whereas
regulatory delineation requires all three [33 Code of Federal Regulations 328.3(b)]. In our study, the NWI polygons
were primarily used to compare with the wetland depressions delineated from the LIDAR DEM.

The high-resolution NHD data were downloaded from http://nhd.usgs.gov (accessed December 30, 2016).
There were 1840 polyline features in the NHD flowline layer for the Pipestem subbasin, with a total length of 1.4 %
10® km and an average length of 762 m. The NHD flowlines overlaid on top of the LIDAR DEM are shown in Fig.
1. It is worth noting that the majority of the NHD flowline features were found in the low-elevation areas in the east.
The high-elevation areas in the west where most NWI wetland polygons are located have very few NHD flowlines,
except for the Little Pipestem Creek. This suggests that a large number of temporary and seasonal flow paths were
not captured in the NHD dataset, perhaps due to the fact that the NHD does not try to systematically measure stream
lines <1.6 km (Stanislawski, 2009; Lane and D'Amico, 2016). In this study, the NHD flowlines were used to

compare the LiDAR-derived potential flow paths using our proposed methodology.
3 Methodology
3.1 Outline

Our methodology for delineating nested wetland catchments and flow paths is a semi-automated approach consisting
of several key steps: (a) extraction of hierarchical wetland depressions using the localized contour tree method (Wu
et al., 2015); (b) delineation of nested wetland catchments; (c) calculation of potential water storage; and (d)
derivation of potential flow paths using the least-cost path search algorithm. The LIDAR DEM was used to delineate
hierarchical wetland depressions and nested wetland catchments. The LIDAR intensity imagery was used to extract

wetland inundation areas. The potential water storage of each individual wetland depression was calculated as the
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volume between the standing water surface and the maximum water boundary where water might overspill into
downstream wetlands or waters. The potential flow paths representing surface water connectivity were derived
according to the potential water storage and simulated rainfall intensity. The flowchart in Fig. 3 shows the detailed

procedures of the methodology for delineating wetland catchments and potential flow paths.

3.2 Extraction of hierarchical wetland depressions

The fill-and-spill hydrology of prairie wetland depressions have received considerable attention in recent years
(Shaw et al., 2012; Shaw et al., 2013; Golden et al., 2014; Chu, 2015; Hayashi et al., 2016; Wu and Lane, 2016). It
is generally acknowledged that the fill-and-spill mechanism of wetland depressions results in intermittent hydrologic
connectivity between wetlands in the PPR. In this study, wetland depressions were categorized into two groups
based on their hierarchical structure: simple depressions and composite depressions. A simple depression is a
depression that does not have any other depressions embedded in it, whereas a composite depression is composed of
two or more simple depressions (Wu and Lane, 2016). As shown in Fig. 4(a), for example, depressions A, B, C, D
and E are all simple depressions. As water level gradually increases in these simple depressions, they will eventually
begin to spill and merge to form composite depressions. For instance, the two adjoining simple depressions A and B
can form a composite depression F (see Fig. 4(b)). Continuously, composite depression F and simple depression C
can further coalesce to form an even larger composite depression G. Similarly, the two adjoining simple depressions
D and E can coalesce to form a composite depression H.

It is worth noting that the flow direction of surface waters resulting from the fill-and-spill mechanism
between adjoining wetland depressions can be bidirectional, depending on the antecedent water level and potential
water storage capability of the depressions. Most previous studies simply assumed that water always flows
unidirectionally from an upper waterbody to a lower one. This assumption, however, does not apply when two
adjoining depressions share the same spilling elevation or when there is a groundwater hydraulic head preventing
the flow from one to another. For example, in Fig. 4(a), the water flow direction resulting from fill-and-spill
between depressions A and B can be bidirectional. If depression B fills up more quickly than depression A, then
water will flow from depression B to depression A through the spilling point, and vice versa. Depression with a high
elevation of antecedent water level does not necessarily spill to an adjoining depression with a lower elevation of
antecedent water level. The key factors affecting the initialization of spilling process leading to flow direction are
the depression ponding time and catchment precipitation conditions. If the rain or runoff comes from the east and
that is where depression B is, then it might fill more quickly than if the runoff comes from the west where
depression A is. The wetland depression whichever takes less time to fill up will spill to the adjoining depression
and eventually coalesce to form a larger composite depression. If no adjoining depression with the same spilling
elevation is available, the upstream wetland depression will directly spill to downstream wetlands or streams. For
example, the largest fully-filled composite depression G will spill to the simple depression D or the composite
depression H, if available.

To identify and delineate the nested hierarchical structure of potential wetland depressions, we utilized the

localized contour tree method proposed by Wu et al. (2015). The concept of contour tree was initially proposed to
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extract key topographic features (e.g., peaks, pits, ravines, and ridges) from contour maps (Kweon and Kanade,
1994). The contour tree is a tree data structure that can represent the nesting of contour lines on a continuous
topographic surface. Wu et al. (2015) improved and implemented the contour tree algorithm, making it a locally
adaptive version. In other words, the localized contour tree algorithm builds a series of trees rather than a single
global contour tree for the entire area. Each localized contour tree represents one disjointed depression (simple or
composite), and the number of trees represents the total number of disjointed depressions for the entire area. When a
disjointed depression is fully flooded, the water in it will spill to the downstream wetlands or waters through
overland flow. For example, Fig. 4(c) and (d) show the corresponding contour tree graphs for the composite
depressions in Fig. 4(b). Once the composition G is fully filled, water will spill into simple depression D or

composite depression H.

3.3 Delineation of nested wetland catchments

After the identification and extraction of hierarchical wetland depressions from the contour maps, various
hydrologically relevant terrain attributes can be derived based on the DEM, including flow direction, flow
accumulation, catchment boundary, flow path, flow length, etc. The calculation of flow direction is essential in
hydrological analysis because it frequently serves as the first step to derive other hydrologically important terrain
attributes. On a topographic surface represented in a DEM, flow direction is the direction of flow from each grid cell
to its steepest downslope neighbor. One of the widely used flow direction algorithms is the eight-direction flow
model known as the D8 algorithm (O'Callaghan and Mark, 1984), which is available in most GIS software packages.
Flow accumulation is computed based on flow direction. Each cell value in the flow accumulation raster represents
the number of upslope cells that flow into it. In general, cells with high flow accumulation values correspond to
areas of concentrated flow (e.g. stream channels), while cells with a flow accumulation value of zero correspond to
the pattern of ridges (Zhu, 2016). Therefore, flow accumulation provides a basis for identifying ridgelines and
delineating catchment boundaries.

A catchment is the upslope area that drains water to a common outlet. It is also known as the watershed,
drainage basin, or contributing area. Catchment boundaries can be delineated from a DEM by identifying ridgelines
between catchments based on a specific set of catchment outlets (i.e., spilling points). In traditional hydrological
modeling, topographic depressions are commonly treated as spurious features and simply removed to create a
hydrologically correct DEM, which enforces water to flow continuously across the landscape to the catchment
outlets (e.g., stream gauges, dams). In the PPR, however, most topographic depressions in the DEM are real features
that represent wetland depressions, which are rarely under fully-filled condition (see Hayashi et al., 2016; Lane and
D'Amico, 2016; Vanderhoof et al., 2016). As illustrated above, we used the localized contour tree algorithm to
delineate the hierarchical wetland depressions, which were used as the source locations for delineating wetland
catchments. Each wetland depression (simple or composite) has a corresponding wetland catchment. As shown in
Fig. 4(b), the corresponding wetland catchment of each wetland depression is bounded by the vertical lines
surrounding that depression. For example, the wetland catchment of simple depression A is Catchment,,,, and the

wetland catchment of simple depression B is Catchment,,,. Similarly, the wetland catchment of composite
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depression F is Catchment,,, which is an aggregated area of Catchment,, and Catchment,,,, resulting from the

coalesce of simple depressions A and B.
3.4 Calculation of potential water storage and ponding time

The potential water storage capacity (V [m?]) of each wetland depression was computed through statistical analysis
of the grid cells that fall within the depression (Wu and Lane, 2016):

szn:(C—Zi)-Rz 1)

where C is the spilling elevation (m), i.e., the elevation of the grid cell where water spills out of the depression; Z,

is the elevation of the grid cell i (m); Rris the spatial resolution (m); and N is the total number of grid cells that fall
within the depression.

The ponding time of a depression was calculated as follows:
T=VI/(A-1)1000 (2

where V is the potential water storage capacity of the depression (m°); AC is the catchment area of the

corresponding depression (m?); and | is the rainfall intensity (mm/h). For the sake of simplicity, we made two
assumptions. First, we assumed that the rainfall was temporally and spatially consistent and uniformly distributed
throughout the landscape (e.g., 50 mm/h) and all surfaces were impervious. Second, we assumed no soil infiltration.
Note that assuming no infiltration is a reasonable assumption for the prairie pothole landscape (Shaw et al., 2013;
Hayashi et al., 2016). However, this assumption might be problematic in other landscapes with more heterogeneity
in infiltration capacity.

The proportion of wetland depression area ( A,,) to catchment area ( A, ) was calculated by:

Pe =AJA Q)
The wetland depression area ( A,) refers to the maximum ponding extent of the depression. The proportion (P, )

can serve as a good indicator for percent inundation of the study area under extremely wet conditions (e.g.,
Vanderhoof et al., 2016).

3.5 Derivation of surface-water flow paths

Based on the computed ponding time of each depression under a specific rainfall intensity, the most probable
sequence of the overland flow path were constructed. The depression with the least ponding time will first fill and
start to overspill down-gradient. In hydrology, the path which water takes to travel from the spilling point to the
downstream surface outlet or channel is commonly known as flow path. The distance it takes for water to travel is
known as flow length. In this study, we adopted and adapted the least-cost path search algorithm (Wang and Liu,

2006; Metz et al., 2011; Stein et al., 2011) to derive the potential flow paths. The least cost path algorithm requires
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two input datasets: the DEM and the depression polygons. Given the fact that topographic depressions in high-
resolution LIDAR DEM are frequently a combination of artifacts and actual landscape features (Lindsay and Creed,
2006), the user can set a minimum size threshold for depressions to be treated as actual landscape features. In other
words, depressions with a size smaller than the threshold will be treated as artifacts, and thus removed from the
DEM. This results in a partially-filled DEM in which depressions smaller than the chosen threshold are filled to
enforce hydrologic flow while larger depressions are kept for further analysis. Based on the partially-filled DEM,
flow direction for each grid cell can be calculated using the D8 flow direction algorithm (O'Callaghan and Mark,
1984). The least cost path minimizes the cumulative cost (i.e., elevation) along its length. Flow paths are computed
by tracing down gradient, from higher to lower cells, following assigned flow directions. With the simulated
overland flow path, flow length can be calculated, which is defined as the distance between the spilling point of an
upslope wetland and the inlet of a downslope wetland or stream. In our study, hydrologic connectivity refers to the

water movement between wetland-wetland and wetland-stream via hydrologic pathways of surface water.

3.6 Wetland Hydrology Analyst

To facilitate automated delineation of wetland catchments and flow paths, we implemented the proposed framework

as an ArcGIS toolbox — Wetland Hydrology Analyst, which is freely available for download at

https://G1STools.github.io/ (accessed December 30, 2016). The core algorithms of the toolbox were implemented
using the Python programming language. The toolbox consists of three tools: Wetland Depression Tool, Wetland
Catchment Tool, and Flow Path Tool. The Wetland Depression Tool asks the user to select a DEM grid, and then
executes the localized contour tree algorithm with user-defined parameters (e.g., base contour elevation, contour
interval, min. depression size, min. ponding depth) automatically to delineate hierarchical wetland depressions. The
depressional wetland polygons can be stored as ESRI Shapefiles or a Feature Dataset in a Geodatabase. Various
morphometric properties (e.g., width, length, size, perimeter, max. depth, mean depth, volume, elongatedness,
compactness) are computed and included in the attribute table of the wetland polygon layers. The Wetland
Catchment Tool uses the DEM grid and the wetland polygon layers resulted from the Wetland Depression Tool as
input, and exports wetland catchment layers in both vector and raster format. The Flow Path Tool can be used to

derive potential overland flow paths of surface water based on the DEM grid and the wetland polygon layers.

3.7 Wetland inundation mapping

The LiDAR intensity image was primarily used to map inundation areas. Before inundation mapping, we applied a
median filter to smooth the LiDAR intensity image. The median filter is considered as an edge-preserving filter that
can effectively remove data noise while preserving boundaries between image objects (Wu et al., 2014).
Subsequently, a simple thresholding method was used to separate inundated and non-inundated classes. Similar
thresholding techniques have been used in previous studies to extract water areas from LiDAR intensity imagery
(Lang and McCarty, 2009; Huang et al., 2011b). By examining typical inundation areas and the histogram of the
LiDAR intensity imagery used in our study, we chose an intensity threshold value of 20. Grid cells with an intensity

value between 0 and 20 were classified as an inundated class while grid cells with an intensity value greater than 20

9


https://gistools.github.io/

312  asanon-inundated class, which resulted in a binary image. In the binary image, each region composed of inundated
313 pixels that were spatially connected (8-neighbor) was referred to as a potential inundation object. The “boundary
314 clean” and “region group” functions in ArcGIS Spatial Analyst were then used to clean ragged edges of the potential
315 inundation objects and assign a unique number to each object. It should be noted that water and live trees might both
316  appear as dark features in the LIDAR intensity imagery and have similar intensity values, although trees are not
317  particularly common in this region. As a result, some trees were misclassified as inundation objects. To correct the
318 misclassifications and obtain reliable inundation objects, we further refined the potential inundation objects using
319  additional criteria with the aid of the LIDAR DEM. First, we assumed that each inundation object must occur within
320  a topographic depression in order to retain water. In other words, all inundation objects must intersect with
321  depression objects derived using the “sink” function in ArcGIS Spatial Analyst. Secondly, given the relatively flat
322 and level surface of inundated regions, the standard deviation of pixel elevations within the same inundation object
323  should be very small. By examining the standard deviation of pixel elevations of some typical inundation objects
324  and tree objects, we chose a threshold of 0.25 m, which is slightly larger than the vertical accuracy of the LiDAR
325 data (0.15 m). This step can be achieved using the “zonal statistics as table” in ArcGIS Spatial Analyst. Thirdly, we
326 only focused on wetlands greater than 500 m?. Therefore, inundation objects with areas smaller than 500 m? were

327  eliminated from further analysis.
328 4 Results
329 4.1 Inundation mapping results

330 Using the above procedures, we identified 15,784 inundation objects (i.e., depressions > 500 m? with water as
331 determined through LiDAR-based analyses), which were then compared against the NWI wetland polygons in our
332  study area. We have made the inundation map publicly available at https://GISTools.qgithub.io/ (accessed December

333 30, 2016). The identified inundation objects encompassed an area of approximately 278.5 km?, accounting for 10.1 %
334 of the Pipestem subbasin. Using the empirical area-to-volume equation developed for this region of the PPR (see
335 Gleason et al., 2007; Wu and Lane, 2016), we estimated that the 15,784 inundated depressions stored approximately
336 448.5 million m® of water. The histogram of inundation polygons is shown in Fig. 5(a). The median size of the
337 inundation polygons identified using the LiDAR intensity data was 1.8 < 10° m2, which was slightly larger than the
338 reported median size of NWI polygons (Table 2). Contrary to expectations, 18,957 out of 32,016 NWI wetland
339 polygons did not intersect with the inundation objects. In other words, 59.2% of the NWI wetland polygons mapped
340 in the 1980s did not contain visible waterbodies during the LIiDAR collection period. The total area of these ‘dried’
341 NWI wetlands were 43.6 km?, accounting for 15.6% of the original NWI wetland areas (279.5 km?). The histogram
342 of the ‘dried” NWI wetlands is shown in Fig. 5(b). It is worth noting that most of these ‘dried” NWI wetlands were
343 relatively small with a median size of 1.2 %< 10% m? (Table 2). The LiDAR intensity data were acquired in late
344  October 2011, an extremely wet month according to the Palmer Hydrological Drought Index (Fig. 6). During this
345  wet season, most wetlands would be expected to have abundant standing water. If no standing water could be

346 detected in a wetland patch during this extremely wet period, it is possible that some of these small wetlands might
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have dried out during the past weeks to months. It is possible that land use change surrounding the 'dried" wetlands
(e.g., row-cropping replacing pasture lands) may have affected their hydrology (Wright and Wimberly, 2013); water
diversion via drainage or ditches could also be responsible for the lack of inundation, though we did not explore
either of these potential drivers of change in this study. However, it is also likely that some of the ‘dried” wetland
might become wet again in the spring following snowmelt. The ‘dried” NWI wetlands could also be attributed to the
source of error in the original NWI data, which has a minimum mapping unit (i.e., the minimum sized wetland that
can be consistently mapped) of 0.1 ha for the PPR (Tiner, 1997). Figure 5(b) shows that 37% of the ‘dried” NWI
polygons are smaller than the minimum mapping unit (1000 m?). This implies that these small ‘dried” NWI
polygons could be due to the NWI mapping error. Figure 7 illustrates the difference in shape and extent between the
LiDAR-derived wetland inundation maps and the NWI wetland polygons. The areas of disagreement (discrepancy)
can be partly explained by the different image acquisition dates. As mentioned earlier, the NWI maps for Pipestem
subbasin of the PPR were created in the early 1980s while the LIDAR data were acquired in 2011. Clearly, most
small NWI wetlands (see yellow-outline polygons in Fig. 7) appeared to not have visible standing water. Conversely,
large NWI wetlands exhibited expansion and coalesced to form even large wetland complexes (see blue-outline
polygons in Fig. 7).

4.2 Nested wetland depressions and catchments

We applied the localized contour method on the LiDAR-derived DEM and identified 33,241 wetland depressions. It
should be noted that the ‘wetland depression’ refers to the maximum potential ponding extent of the depression. The
inundated wetland depressions identified in the prior section can be seen as a subset of these depressions with water
in them. The total area of the identified wetland depressions was approximately 0.55 x10° m? (Table 3), accounting
for 20% of the entire study area. This histogram of the wetland depressions is shown in Fig. 8(a). The median size of
wetland depressions was 2.6 > 10° m?, which is larger than that of the NWI wetland polygons as well as the
inundation polygons (see Table 2). Using Eqg. (1), we estimated that the potential water storage capacity of the
Pipestem subbasin resulting from these wetland depressions is 782.8 million m?, which is 1.75 times as large as the
estimated existing water storage (448.5 million m®) for the 15,784 inundated wetlands mentioned above. As noted
by Hayashi et al. (2016), wetlands and catchments are highly correlated and should be considered as integrated
hydrological units. The water input of each wetland largely depends on runoff from the upland areas within the
catchment. Using the method described in Section 3.3, we delineated the associated wetland catchments for each of
the 33,241 wetland depressions. The histogram of the delineated wetland catchments is shown in Fig. 8(b). The
median size of wetland catchments was 26 > 10° m2, which is approximately ten times larger than that of the

wetland depressions (Table 3).
Using Eq. (3), we calculated the proportion of depression area to catchment area ( A, / A, ) for each wetland

depression. It was found that the proportion ranged from 0.04% to 83.72%, with a median of 14.31% (Table 3). Our

findings are in general agreement with previous studies (Hayashi et al., 2016). For instance, Hayashi et al. (1998)

reported an average proportion (A, /A,) of 9% for 12 prairie wetlands in the Canadian portion of the PPR.
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Similarly, Watmough and Schmoll (2007) analyzed 13 wetlands in the Cottonwood Lake Area during the high-stage

period and reported an average proportion ( A,/ A.) of 18%. It should be noted that the average proportion of

wetland area to catchment area (A, / A.) reported in the above studies were calculated on the basis of a limited

number of wetlands. On the contrary, our results were computed from more than 30,000 wetland depressions and

catchments, which provides a statistically reliable result for the study area due to a much larger sample size.
4.3 Potential flow paths and connectivity lengths

Based on the LIDAR DEM and wetland depression polygon layer, we derived the potential flow path network for
our study area using the least-cost path algorithm. We have made the interactive map of modeled hydrologic

connectivity in the Pipestem subbasin publicly available at https://GISTools.github.io#wetland-connectivity

(accessed December 30, 2016). A number of data layers derived from our study are available on the map, such as the
inundation polygons, wetland depressions, wetland catchments, and potential flow paths. NWI polygons, NHD
flowlines, LIiDAR intensity image, LIiDAR shaded relief, and time-series aerial photographs are also available for
results comparison and visualization. A small proportion of the map is shown in Fig. 9. Clearly, the derived potential
flow paths not only captured the permanent surface water flow paths (see the thick blue NHD flowline in Fig. 9), but
also the potential intermittent and infrequent flow paths that have not been mapped previously. By examining the
potential flow paths overlaid on the color infrared aerial photograph (Fig. 9(b)), we can see that the majority of
potential flow paths appeared to be collocated with vegetated areas. This indicates that flow paths are likely located
in high soil moisture areas that are directly or indirectly related to surface water or groundwater connectivity. It
should be reiterated that the derived flow paths are only potential flow paths. Water may not have flowed along a
fraction of them to date.

In total, there are 1840 NHD flowlines in the Pipestem subbasin. The mean and median length of NHD
flowlines are 762 m and 316 m, respectively (Table 4). However, the potential flow lengths derived from our study,
which connected not only stream segments but also wetlands to wetlands, revealed much shorter flow paths than the
NHD flowlines. This finding is within our expectation. The histogram of the derived potential flow lengths is shown
in Fig. 10. The median potential flow length is 83 m, which is approximately 1/4 of the median NHD flowlines. The
median elevation difference between an upstream wetland and a downstream wetland connected through the

potential flow path is 0.89 m.

5 Discussion

The LIiDAR data we used in this study were collected in late October 2011, which was an extremely wet period
according to the Palmer Hydrological Drought Index (see Fig. 6). Most wetlands exhibited high water levels and
large water extents, which can be evidenced from the LiDAR intensity image in Fig. 7 and the aerial photograph in
Fig. 9. It can be clearly seen that most wetlands, particularly those larger ones, appeared to have larger water extents
compared to the NWI polygons. A substantial number of inundated NWI wetlands were found to coalesce with

adjoining LiDAR-based wetland depressions and form larger wetland complexes. LiDAR data acquired during high
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water levels is desirable for studying maximum water extents of prairie wetlands. However, the use of wet-period
LiDAR data alone is not ideal for studying the fill-and-spill hydrology of prairie wetlands. Since LIiDAR sensors
working in the near-infrared spectrum typically could not penetrate water, it is impractical to derive bathymetry of
the wetland depressions. As a result, the delineation and characterization of individual wetland depressions nested
within larger inundated wetland complexes were not possible. Bathymetric LiDAR systems with a green laser
onboard offer a promising solution for acquiring wetland basin morphometry due to the higher penetration capability
of the green laser (Wang and Philpot, 2007). In addition, the derivation of antecedent water depth and volume of
wetland depressions is difficult, which can only be estimated using empirical equations based on the statistical
relationship between depression area and depression volume (Hayashi and Van der Kamp, 2000; Gleason et al.,
2007). As noted earlier, the volume of water in the 15,784 inundated wetlands was estimated to be 448.5 million m2,
Ideally, using multiple LiDAR datasets acquired in both dry and deluge conditions in conjunction with time-series
aerial photographs would be essential for studying the fill-and-spill mechanism of prairie wetlands. In this case, we
could use the dry-period LiDAR data to delineate and characterize the morphology of individual wetland
depressions before the fill-and-spill processes occur. Furthermore, we can derive the potential flow paths and project
the coalescing of wetland depressions after the fill-and-spill processes initiate. The wet-period LiDAR data and
time-series aerial photographs can serve as validation datasets to evaluate the fill-and-spill patterns.

It is also worth noting that the proposed methodology in this study was designed to reflect the topography
and hydrologic connectivity between wetlands in the Prairie Pothole Region. We have made assumptions to simplify
the complex prairie hydrology. Physically-based hydrological models (e.g., Brunner and Simmons, 2012; Ameli and
Creed, 2017) have not yet been integrated into our framework. However, fill-and-spill is a complex and spatially
distributed hydrological process highly affected by many factors, such as surface topography, surface roughness, soil
infiltration, soil properties, depression storage, precipitation, evapotranspiration, snowmelt runoff, and groundwater
exchange (Tromp-van Meerveld and McDonnell, 2006a, b; Evenson et al., 2015; Zhao and Wu, 2015; Evenson et
al., 2016; Hayashi et al., 2016). Nevertheless, our study presents the first attempt to use LiDAR data for deriving
nested wetland catchments and simulating flow paths in the broad-scale Pipestem subbasin in the PPR. Previous
studies utilizing high-resolution digital elevation data (e.g., LIiDAR, Interferometric Synthetic Aperture Radar
[IfSAR]) for studying prairie wetlands were mostly confined in small-scale areas (e.g., plot scale, small watershed
scale) with a limited number of wetlands, whereas broad-scale studies using physically-based hydrological models
have rarely used LIiDAR data to delineate and characterize individual wetland depressions or catchments. The
connectivity between surface and subsurface waters and the associated hydrologic and ecological functions are
spatially variable and temporally dynamic (Blume and van Meerveld, 2015). Coupled surface-subsurface flow
models with hydrologic, biogeochemical, ecologic, and geographic perspectives have yet to be developed for broad-
scale studies in the PPR (Golden et al., 2014; Amado et al., 2016). Further efforts are still needed to improve the
understanding of the integrated surface-water and groundwater processes of prairie wetlands.

6 Conclusions
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Accurate delineation and characterization of wetland depressions and catchments are essential to understand and
correctly analyze the hydrology of many landscapes, including the Prairie Pothole Region. In this study, we
delineated the inundation areas while reducing the confounding factor of live trees by using the LiDAR-derived
DEM in conjunction with the coincident LiDAR intensity imagery. In addition, we developed a semi-automated
framework for identifying nested hierarchical wetland depressions and delineating their corresponding catchments
using the localized contour tree method. Furthermore, we quantified the potential hydrologic connectivity between
wetlands and streams based on the overland flow networks derived using the least-cost path algorithm on LiDAR
data. Although the results presented in this study are specific to the Pipestem subbasin, the proposed framework can
be easily adopted and adapted to other wetland regions where LIiDAR data are available. The new tools that we
developed and have made freely available to the scientific community for identifying potential hydrologic
connectivity between wetlands and stream networks can better inform regulatory decisions and enhance the ability
to better manage wetlands under various planning scenarios. The resulting flow network delineated potential flow
paths connecting wetland depressions to each other or to the river network at scales finer than available through the
National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving
overland flow modeling and hydrologic connectivity analysis (Golden et al., 2016).

Broad-scale prairie wetland hydrology has been difficult to study with traditional remote sensing methods
using multi-spectral satellite data due to the limited spatial resolution and the interference of tree canopy (Klemas,
2011; Gallant, 2015). LiDAR-derived DEMs can be used to map potential hydrologic flow pathways, which regulate
the ability of wetlands to provide ecosystem services (Lang and McCarty, 2009). This study is an initial step towards
the development of a spatially distributed hydrologic model to fully describe the hydrologic processes in broad-scale
prairie wetlands. Additional field work and the integration of physically-based models of surface and subsurface
processes would benefit the study. Importantly, the results capture temporary and ephemeral hydrologic connections
and provide essential information for wetland scientists and decision-makers to more effectively plan for current and

future management of prairie wetlands.
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645

Table 1. Summary statistics of the National Wetlands Inventory (NWI) for the Pipestem subbasin, North Dakota.

Wetland type Count oMb Max Medan s Percentage
Freshwater Emergent Wetland 31,046 0.50 3.1 1.8 241.7 86.5
gﬁi@""v"\‘}:aaﬁge“ed/ 108 0.55 0.34 2.6 1.18 0.4
Freshwater Pond 760 0.53 0.72 1.8 147 5.3
Lake 50 3.7 9.4 188.6 21.1 7.5
Riverine 52 0.63 0.43 4.0 0.81 0.3
Total (all polygons) 32,016 0.50 9.4 1.8 279.5 100.0
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648

Table 2. Summary statistics of NWI wetland polygons and inundation polygons derived from LiDAR intensity data.

Type Count MM Meen o Medap o Sum

(10°m?) (10°m?) (10°m?) (10°m?) (10°m?)
NWI polygons 32,016 0.50 9.4 8.7 1.8 279.5
Inundation polygons 15,784 0.50 7.3 17.7 1.8 278.5
Dried NWI polygons 18,957 0.50 0.11 2.3 1.2 43.6
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649  Table 3. Summary statistics of 33,241 wetland depressions and catchments derived from LiDAR DEM.

650
Type Min Max Mean Median Sum
Depression area (m?) 1.0 <103 20.0 <108  16.6 x10° 2.6 <10  0.55 x10°
Catchment area (m?) 1.8 x10° 57.9 <10°  82.7 x10° 26 <10  2.77 x10°
Depression volume (m°) 1 153 <108  23.4 x<10® 0.42 x10°®  0.78 x10°
E;fcﬁlor;t;ﬁ?;fege(&ig’ss'on area to 0.04 83.72 16.59 14.31 20.06
651
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Table 4. Summary statistics of wetland depression ponding depth, NHD flowlines, flow path length, and elevation

difference.

Type Count Min(m) Max(m) Mean(m) Median (m) Sum (m)
Ponding depth 33,241 0.01 7.6 0.23 0.16 NA
NHD flowlines 1840 39 155 x10° 762 317 1.4 x10°
Flow path length 41,449 1.5 4.7 x10° 138 83 5.0 x10°
Elevation difference 41,449 0.01 70.9 2.1 0.89 NA
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Figure 1. Location of the Pipestem subbasin within the Prairie Pothole Region of North Dakota.
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658

659 Figure 2. Examples of the National Agriculture Imagery Program (NAIP) aerial imagery in the Prairie Pothole
660 Region of North Dakota illustrate the dynamic nature of prairie pothole wetlands under various dry and wet
661  conditions. The yellow arrows highlight locations where filling-spilling-merging dynamics occurred (imagery
662  location: 998'34.454" W, 47<1'23.519" N).
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664 Figure 3. Flowchart of the methodology for delineating wetland catchments and flow paths.

/  NAIPimagery /

s63 > Shadedrelicfmap |

24



665

666
667
668
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670

Figure 4. Illlustration of the filling-merging-spilling dynamics of wetland depressions: (a) first-level depressions; (b)
nested hierarchical structure of depressions under fully-filled condition; (c) corresponding contour tree
representation of the composite wetland depression (left) in (a); and (d) corresponding contour tree representation of
the composite wetland depression (right) in (a). Different color of nodes in the tree represents different portions of

the composite depression in (a): light blue (first-level), dark blue (second-level), and green (third-level).
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672
673  Figure 5. Histograms of inundation and NWI wetland polygons. (a) Inundation objects derived from LiDAR

674 intensity data; (b) dried NWI wetland polygons not intersecting inundation objects.
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676  Figure 6. Palmer Hydrological Drought Index (PHDI) of the Pipestem subbasin (2001-2015).
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Figure 7. Comparison between inundation areas (derived from LiDAR intensity data) and NWI wetland polygons
(image location; 999'53.9" W, 47<3'34.474" N). (a) Inundation areas and NWI wetlands overlaid on LiDAR

intensity image; and (b) inundation areas and NWI wetlands overlaid on color infrared aerial photograph (2009).
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686 Figure 8. Histogram of wetland depressions and catchments. (a) Wetland depressions; (b) wetland catchments; (c)

687  potential storage capacity; and (d) proportion of depression area to catchment area.
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689  Figure 9. Examples of LiDAR-derived wetland depressions and flow paths in the Pipestem subbasin (image
690 location: 98%59'48.82" W, 47<1'32.679" N). (a) Wetland depressions and flow paths overlaid on LiDAR shaded
691  relief map; and (b) NWI polygons, wetland depressions and flow paths overlaid on color infrared aerial photograph
692  (2012).
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695 Figure 10. Histogram of potential wetland connectivity. (a) Potential flow path lengths; and (b) elevation

696 differences between wetlands connected through potential flow paths.
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