
 

1 

 

Delineating wetland catchments and modeling hydrologic 1 

connectivity using LiDAR data and aerial imagery 2 

Qiusheng Wu1, Charles R. Lane2 3 

1Department of Geography, Binghamton University, State University of New York, Binghamton, NY 13902, USA 4 

2U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research 5 

Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA  6 

Correspondence to: Qiusheng Wu (wqs@binghamton.edu) 7 

Abstract: In traditional watershed delineation and topographic modeling, surface depressions are generally treated 8 

as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water 9 

across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual 10 

wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical 11 

structures and dynamic filling-spilling-merging surface-water hydrological processes. Differentiating and 12 

appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing 13 

challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic 14 

analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their 15 

hydrologic connectivity using high-resolution LiDAR data and aerial imagery. The graph theory-based contour tree 16 

method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological 17 

properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost path 18 

algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other 19 

or to the river network at scales finer than available through the National Hydrography Dataset. The results 20 

demonstrated that our proposed framework is promising for improving overland flow simulation and hydrologic 21 

connectivity analysis.  22 
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1 Introduction 25 

The Prairie Pothole Region (PPR) of North America extends from the north-central United States (U.S.) to south-26 

central Canada, encompassing a vast area of approximately 720,000 km2. The landscape of the PPR is dotted with 27 

millions of wetland depressions formed by the glacial retreat that happened during the Pleistocene Epoch (Winter, 28 

1989). The PPR is considered as one of the largest and most productive wetland areas in the world, which serves as 29 

a primary breeding habitat for much of North America’s waterfowl population (Keddy, 2010; Steen et al., 2014; 30 

Rover and Mushet, 2015). The wetland depressions, commonly known as potholes, possess important hydrological 31 

and ecological functions, such as providing critical habitat for many migrating and breeding waterbirds (Minke, 32 
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2009), acting as nutrient sinks (Oslund et al., 2010), and storing surface water that can attenuate peak runoff during a 33 

flood event (Huang et al., 2011b). The potholes range in size from a relatively small area of less than 100 m2 to as 34 

large as 30,000 m2, with an estimated median size of 1600 m2 (Zhang et al., 2009; Huang et al., 2011a). Most 35 

potholes have a water depth of less than 1 m with varying water permanency, ranging from temporary to permanent 36 

(Sloan, 1972). Due to their small size and shallow depth, these wetlands are highly sensitive to climate variability 37 

and are vulnerable to ecological, hydrological, and anthropogenic changes. Wetland depressions have been 38 

extensively drained and filled due to agricultural expansion, which is considered the greatest source of wetland loss 39 

in the PPR (Johnston, 2013). In a report to the U.S. Congress on the status of wetland resources, Dahl (1990) 40 

estimated that the conterminous U.S. lost more than 50 percent of its original wetland acreage over a period of 200 41 

years between the 1780s and the 1980s. More recently, Dahl (2014) reported that the total wetland area in the PPR 42 

declined by approximately 300 km2 between 1997 and 2009. This represents an average annual net loss of 25 km2. 43 

Regarding the number of depressions, it was estimated that the wetland depressions declined by over 107,000 or 44 

four percent between 1997 and 2009 (Dahl, 2014).  45 

The extensive wetland drainage and removal have increased precipitation runoff into regional river basins, 46 

which is partially responsible for the increasing frequency and intensity of flooding events in the PPR (Miller and 47 

Nudds, 1996; Bengtson and Padmanabhan, 1999; Todhunter and Rundquist, 2004). Concerns over flooding along 48 

rivers in the PPR have stimulated the development of hydrologic models to simulate the effects of depression 49 

storage on peak river flows (Hubbard and Linder, 1986; Gleason et al., 2007; Gleason et al., 2008; Huang et al., 50 

2011b). Since most of these prairie wetlands do not have surface outlets or well-defined surface water connections, 51 

they are generally considered as geographically isolated wetlands (GIWs) or upland-embedded wetlands (Tiner, 52 

2003; Mushet et al., 2015; Cohen et al., 2016; Lane and D'Amico, 2016). Recently, the U.S. Environmental 53 

Protection Agency conducted a comprehensive review of over 1350 peer-reviewed papers with the aim to synthesize 54 

existing scientific understanding of how wetlands and streams affect the physical, chemical, and biological integrity 55 

of downstream waters (U.S. EPA, 2015). The report concludes that additional research focused on the frequency, 56 

magnitude, timing, duration, and rate of fluxes from GIWs to downstream waters is needed to better identify 57 

wetlands with hydrological connections or functions that substantially affect other waters and maintain the long-58 

term sustainability and resiliency of valued water resources.  59 

In addition to the comprehensive review by the U.S. EPA (2015), a number of recent studies focusing on the 60 

hydrologic connectivity of prairie wetlands have been reported in the literature. For example, Chu (2015) proposed a 61 

modeling framework to delineate prairie wetlands and characterize their dynamic hydro-topographic properties in a 62 

small North Dakota research area (2.55 km2) using a 10-m resolution digital elevation model (DEM). Vanderhoof et 63 

al. (2016) examined the effects of wetland expansion and contraction on surface water connectivity in the PPR using 64 

time series Landsat imagery. Ameli and Creed (2017) developed a physically-based hydrologic model to 65 

characterize surface and groundwater hydrologic connectivity of prairie wetlands. These reported studies represent 66 

some of the latest research developments on hydrologic connectivity in the PPR. To our knowledge, little work has 67 

been done to delineate potential flow paths between wetlands and stream networks and use flow paths to 68 

characterize hydrologic connectivity in the PPR. In addition, previous remote sensing-based work on the hydrology 69 
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of prairie wetlands mainly focused on mapping wetland inundation areas (e.g., Huang et al., 2014; Vanderhoof et al., 70 

2017) or wetland depressions (e.g., McCauley and Anteau, 2014; Wu and Lane, 2016), few studies have treated 71 

wetlands and catchments as integrated hydrological units. Therefore, there is a call for treating prairie wetlands and 72 

catchments as highly integrated hydrological units because the existence of prairie wetlands depends on lateral 73 

inputs of runoff water from their catchments in addition to direct precipitation (Hayashi et al., 2016). Furthermore, 74 

hydrologic models for the PPR were commonly developed using coarse-resolution DEMs, such as the 30-m 75 

National Elevation Dataset (see Chu, 2015; Evenson et al., 2015; Evenson et al., 2016). High-resolution light 76 

detection and ranging (LiDAR) data have rarely been used in broad-scale (e.g., basin- or subbasin-scale) studies to 77 

delineate wetland catchments and model wetland connectivity in the PPR.  78 

In this paper, we present a semi-automated framework for delineating nested hierarchical wetland 79 

depressions and their corresponding catchments as well as simulating wetland connectivity using high-resolution 80 

LiDAR data. Our goal was to demonstrate a method to characterize fill-spill wetland hydrology and map potential 81 

hydrological connections between wetlands and stream networks. The hierarchical structure of wetland depressions 82 

and catchments was identified and quantified using a localized contour tree method (Wu et al., 2015). The potential 83 

hydrologic connectivity between wetlands and streams was characterized using the least-cost path algorithm. We 84 

also utilized high-resolution LiDAR intensity data to delineate wetland inundation areas, which were compared 85 

against the National Wetlands Inventory (NWI) to demonstrate the hydrological dynamics of prairie wetlands. Our 86 

ultimate goal is to build on our proposed framework to improve overland flow simulation and hydrologic 87 

connectivity analysis, which subsequently may improve the understanding of wetland hydrological dynamics at 88 

watershed scales. 89 

2 Study area and datasets 90 

2.1 Study area 91 

The work focused on the Pipestem River subbasin in the Prairie Pothole Region of North Dakota (Fig. 1). The 92 

subbasin is an 8-digit Hydrologic Unit Code (#10160002) with a total area of approximately 2,770 km2, covering 93 

four counties in North Dakota (see Fig. 1). The climate of the subbasin is characterized by long, cold, dry winters 94 

and short, mild, variably wet summers (Winter and Rosenberry, 1995). Average annual precipitation is 95 

approximately 440 mm with substantial seasonal and annual variations (Huang et al., 2011a). The land cover of the 96 

Pipestem subbasin is dominated by cultivated crops (44.1%), herbaceous vegetation (25.9%), and hay/pasture 97 

(13.1%), with a substantial amount of open water (7.1%) and emergent herbaceous wetlands (5.6%) (Jin et al., 98 

2013). The Cottonwood Lake area (see the blue rectangle in Fig. 1), a long-term field research site established by the 99 

U.S. Geological Survey (USGS) and the U.S. Fish and Wildlife Service (USFWS) in 1977 for wetland ecosystem 100 

monitoring, has been a very active area of research for several decades (e.g., Sloan, 1972; Winter and Rosenberry, 101 

1995; Huang et al., 2011a; Mushet and Euliss, 2012; Hayashi et al., 2016).  102 

2.2 LiDAR data 103 
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The LiDAR elevation data for the Pipestem subbasin were collected in late October 2011 and distributed through the 104 

North Dakota GIS Hub Data Portal (https://gis.nd.gov/, accessed December 30, 2016). The bare-earth digital 105 

elevation models (DEMs) derived from LiDAR point clouds are freely available as 1-m resolution image tiles (2 km 106 

× 2 km). The vertical accuracy of the LiDAR DEM is 15.0 cm. We created a seamless LiDAR DEM (see Fig. 1) for 107 

the Pipestem subbasin by mosaicking 786 DEM tiles and used it for all subsequent data analyses (approximately 108 

22.66 GB). The elevation of the subbasin ranges from 422 m to 666 m, with relatively high-elevation areas in the 109 

west and low-elevation areas in the east.  110 

The LiDAR intensity data for the Pipestem subbasin were also collected at 1-m resolution coincident with 111 

the LiDAR elevation data collection. In general, the return signal intensities of water areas are relatively weak due to 112 

water absorption of the near-infrared spectrum (Lang and McCarty, 2009; McCauley and Anteau, 2014). As a result, 113 

waterbodies typically appear as dark features whereas non-water areas appear as relatively bright features in the 114 

LiDAR intensity image. Thresholding techniques have been commonly used to distinguish water pixels from non-115 

water pixels (Huang et al., 2011b; Huang et al., 2014; Wu and Lane, 2016). In this study, the LiDAR intensity data 116 

were primarily used to extract standing-water areas (i.e., inundation areas) while the LiDAR DEMs were used to 117 

derive nested wetland depressions and their corresponding catchments above the standing-water surface. It is worth 118 

noting that October 2011 was an extreme wet period according to the Palmer Hydrological Drought Index (Huang et 119 

al., 2011a). Consequently, small individual wetland depressions nested within larger inundated wetland complexes 120 

might not be detectable from the resulting LiDAR DEM. 121 

2.3 Ancillary data 122 

In addition to the LiDAR datasets, we used three ancillary datasets, including the 1-m resolution aerial imagery from 123 

the National Agriculture Imagery Program (NAIP) of the U.S. Department of Agriculture (USDA), the National 124 

Wetlands Inventory (NWI) from the USFWS, and the National Hydrography Dataset (NHD) from the USGS.  125 

The NAIP imagery products were also acquired from the North Dakota GIS Hub Data Portal. The default 126 

spectral resolution of the NAIP imagery in North Dakota is natural color (Red, Green, and Blue, or RGB). 127 

Beginning in 2007, however, the state data have been delivered with four bands of data: RGB and Near Infrared. We 128 

downloaded and processed six years of NAIP imagery for the Pipestem subbasin, including 2003, 2004, 2006, 2009, 129 

2012, and 2014. A small portion of the study area with the NAIP imagery is shown in Fig. 2. These time-series 130 

NAIP imagery clearly demonstrate the dynamic nature of prairie pothole wetlands under various dry and wet 131 

conditions. In particular, the extremely wet year of 2014 resulted in many individual wetlands to coalesce and form 132 

larger wetland complexes (see the yellow arrows in Fig. 2). It should be noted that all the NAIP imagery were 133 

collected during the summer growing season of agricultural crops. Since no coincident aerial photographs were 134 

collected during the LiDAR data acquisition campaign in 2011, these NAIP imagery can serve as valuable data 135 

sources for validating the LiDAR-derived wetlands catchments and hydrological pathways in this study.  136 

The NWI data for our study area were downloaded from https://www.fws.gov/wetlands/ (accessed 137 

December 30, 2016). The wetland inventory data in this region were created by manually interpreting aerial 138 

photographs acquired in the 1980s with additional support from soil surveys and field checking (Cowardin et al., 139 

https://gis.nd.gov/
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1979; Huang et al., 2011b; Wu and Lane, 2016). Tiner (1997) reported that the target mapping unit, the size class of 140 

the smallest group of NWI wetlands that can be consistently mapped, was between 1000 m2 and 4000 m2 in the 141 

Prairie Pothole Region. It should be noted that the target mapping unit is not the minimum wetland size of the NWI. 142 

In fact, there are a considerable amount of NWI wetland polygons smaller than the target mapping unit (1000 m2). In 143 

this study, we focused on the prairie wetlands that are greater than 500 m2. Therefore, 5644 small NWI wetland 144 

polygons (< 500 m2) were eliminated from further analysis. In total, there were 32,016 NWI wetland polygons (≥ 145 

500 m2) across the Pipestem subbasin (Table 1). The total size of these NWI wetlands was approximately 279.5 km2, 146 

covering 10.1% of the Pipestem subbasin. The areal composition of NWI wetlands were freshwater emergent 147 

wetlands (86.5%), lakes (7.5%), freshwater ponds (5.3%), freshwater forested/shrub wetland (0.4%), and riverine 148 

systems (0.3%). The median size of wetlands (≥ 500 m2) in our study area was 1.8 × 103 m2. Although the NWI data 149 

is the only spatially comprehensive wetland inventory for our study area, it is now considerably out-of-date, as it 150 

was developed 30 years ago and it does not reflect the wetland temporal change (Johnston, 2013). The wetland 151 

extent and type for many wetland patches have changed since its original delineation (e.g., Fig. 2). Nevertheless, 152 

NWI does provide valuable information about wetland locations (Tiner, 1997; Huang et al., 2011b). Furthermore, 153 

the NWI definition of wetlands requires only one of three wetland indicators (soils, hydrology, or plants) whereas 154 

regulatory delineation requires all three [33 Code of Federal Regulations 328.3(b)]. In our study, the NWI polygons 155 

were primarily used to compare with the wetland depressions delineated from the LiDAR DEM.   156 

The high-resolution NHD data were downloaded from http://nhd.usgs.gov (accessed December 30, 2016). 157 

There were 1840 polyline features in the NHD flowline layer for the Pipestem subbasin, with a total length of 1.4 × 158 

103 km and an average length of 762 m. The NHD flowlines overlaid on top of the LiDAR DEM are shown in Fig. 159 

1. It is worth noting that the majority of the NHD flowline features were found in the low-elevation areas in the east. 160 

The high-elevation areas in the west where most NWI wetland polygons are located have very few NHD flowlines, 161 

except for the Little Pipestem Creek. This suggests that a large number of temporary and seasonal flow paths were 162 

not captured in the NHD dataset, perhaps due to the fact that the NHD does not try to systematically measure stream 163 

lines <1.6 km (Stanislawski, 2009; Lane and D'Amico, 2016). In this study, the NHD flowlines were used to 164 

compare the LiDAR-derived potential flow paths using our proposed methodology. 165 

3 Methodology 166 

3.1 Outline  167 

Our methodology for delineating nested wetland catchments and flow paths is a semi-automated approach consisting 168 

of several key steps: (a) extraction of hierarchical wetland depressions using the localized contour tree method (Wu 169 

et al., 2015); (b) delineation of nested wetland catchments; (c) calculation of potential water storage; and (d) 170 

derivation of potential flow paths using the least-cost path search algorithm. The LiDAR DEM was used to delineate 171 

hierarchical wetland depressions and nested wetland catchments. The LiDAR intensity imagery was used to extract 172 

wetland inundation areas. The potential water storage of each individual wetland depression was calculated as the 173 

volume between the standing water surface and the maximum water boundary where water might overspill into 174 
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downstream wetlands or waters. The potential flow paths representing surface water connectivity were derived 175 

according to the potential water storage and simulated rainfall intensity. The flowchart in Fig. 3 shows the detailed 176 

procedures of the methodology for delineating wetland catchments and potential flow paths.  177 

3.2 Extraction of hierarchical wetland depressions  178 

The fill-and-spill hydrology of prairie wetland depressions have received considerable attention in recent years 179 

(Shaw et al., 2012; Shaw et al., 2013; Golden et al., 2014; Chu, 2015; Hayashi et al., 2016; Wu and Lane, 2016). It 180 

is generally acknowledged that the fill-and-spill mechanism of wetland depressions results in intermittent hydrologic 181 

connectivity between wetlands in the PPR. In this study, wetland depressions were categorized into two groups 182 

based on their hierarchical structure: simple depressions and composite depressions. A simple depression is a 183 

depression that does not have any other depressions embedded in it, whereas a composite depression is composed of 184 

two or more simple depressions (Wu and Lane, 2016). As shown in Fig. 4(a), for example, depressions A, B, C, D 185 

and E are all simple depressions. As water level gradually increases in these simple depressions, they will eventually 186 

begin to spill and merge to form composite depressions. For instance, the two adjoining simple depressions A and B 187 

can form a composite depression F (see Fig. 4(b)). Continuously, composite depression F and simple depression C 188 

can further coalesce to form an even larger composite depression G. Similarly, the two adjoining simple depressions 189 

D and E can coalesce to form a composite depression H.  190 

It is worth noting that the flow direction of surface waters resulting from the fill-and-spill mechanism 191 

between adjoining wetland depressions can be bidirectional, depending on the antecedent water level and potential 192 

water storage capability of the depressions. Most previous studies simply assumed that water always flows 193 

unidirectionally from an upper waterbody to a lower one. This assumption, however, does not apply when two 194 

adjoining depressions share the same spilling elevation or when there is a groundwater hydraulic head preventing 195 

the flow from one to another. For example, in Fig. 4(a), the water flow direction resulting from fill-and-spill 196 

between depressions A and B can be bidirectional. If depression B fills up more quickly than depression A, then 197 

water will flow from depression B to depression A through the spilling point, and vice versa. Depression with a high 198 

elevation of antecedent water level does not necessarily spill to an adjoining depression with a lower elevation of 199 

antecedent water level. The key factors affecting the initialization of spilling process leading to flow direction are 200 

the depression ponding time and catchment precipitation conditions. If the rain or runoff comes from the east and 201 

that is where depression B is, then it might fill more quickly than if the runoff comes from the west where 202 

depression A is. The wetland depression whichever takes less time to fill up will spill to the adjoining depression 203 

and eventually coalesce to form a larger composite depression. If no adjoining depression with the same spilling 204 

elevation is available, the upstream wetland depression will directly spill to downstream wetlands or streams. For 205 

example, the largest fully-filled composite depression G will spill to the simple depression D or the composite 206 

depression H, if available.  207 

To identify and delineate the nested hierarchical structure of potential wetland depressions, we utilized the 208 

localized contour tree method proposed by Wu et al. (2015). The concept of contour tree was initially proposed to 209 

extract key topographic features (e.g., peaks, pits, ravines, and ridges) from contour maps (Kweon and Kanade, 210 



 

7 

 

1994). The contour tree is a tree data structure that can represent the nesting of contour lines on a continuous 211 

topographic surface. Wu et al. (2015) improved and implemented the contour tree algorithm, making it a locally 212 

adaptive version. In other words, the localized contour tree algorithm builds a series of trees rather than a single 213 

global contour tree for the entire area. Each localized contour tree represents one disjointed depression (simple or 214 

composite), and the number of trees represents the total number of disjointed depressions for the entire area. When a 215 

disjointed depression is fully flooded, the water in it will spill to the downstream wetlands or waters through 216 

overland flow. For example, Fig. 4(c) and (d) show the corresponding contour tree graphs for the composite 217 

depressions in Fig. 4(b). Once the composition G is fully filled, water will spill into simple depression D or 218 

composite depression H.   219 

3.3 Delineation of nested wetland catchments  220 

After the identification and extraction of hierarchical wetland depressions from the contour maps, various 221 

hydrologically relevant terrain attributes can be derived based on the DEM, including flow direction, flow 222 

accumulation, catchment boundary, flow path, flow length, etc. The calculation of flow direction is essential in 223 

hydrological analysis because it frequently serves as the first step to derive other hydrologically important terrain 224 

attributes. On a topographic surface represented in a DEM, flow direction is the direction of flow from each grid cell 225 

to its steepest downslope neighbor. One of the widely used flow direction algorithms is the eight-direction flow 226 

model known as the D8 algorithm (O'Callaghan and Mark, 1984), which is available in most GIS software packages. 227 

Flow accumulation is computed based on flow direction. Each cell value in the flow accumulation raster represents 228 

the number of upslope cells that flow into it. In general, cells with high flow accumulation values correspond to 229 

areas of concentrated flow (e.g. stream channels), while cells with a flow accumulation value of zero correspond to 230 

the pattern of ridges (Zhu, 2016). Therefore, flow accumulation provides a basis for identifying ridgelines and 231 

delineating catchment boundaries.  232 

A catchment is the upslope area that drains water to a common outlet. It is also known as the watershed, 233 

drainage basin, or contributing area. Catchment boundaries can be delineated from a DEM by identifying ridgelines 234 

between catchments based on a specific set of catchment outlets (i.e., spilling points). In traditional hydrological 235 

modeling, topographic depressions are commonly treated as spurious features and simply removed to create a 236 

hydrologically correct DEM, which enforces water to flow continuously across the landscape to the catchment 237 

outlets (e.g., stream gauges, dams). In the PPR, however, most topographic depressions in the DEM are real features 238 

that represent wetland depressions, which are rarely under fully-filled condition (see Hayashi et al., 2016; Lane and 239 

D'Amico, 2016; Vanderhoof et al., 2016). As illustrated above, we used the localized contour tree algorithm to 240 

delineate the hierarchical wetland depressions, which were used as the source locations for delineating wetland 241 

catchments. Each wetland depression (simple or composite) has a corresponding wetland catchment. As shown in 242 

Fig. 4(b), the corresponding wetland catchment of each wetland depression is bounded by the vertical lines 243 

surrounding that depression. For example, the wetland catchment of simple depression A is 𝐶𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡𝑙𝑚, and the 244 

wetland catchment of simple depression B is 𝐶𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡𝑚𝑛 .  Similarly, the wetland catchment of composite 245 
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depression F is 𝐶𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡𝑙𝑛, which is an aggregated area of 𝐶𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡𝑙𝑚 and 𝐶𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡𝑚𝑛, resulting from the 246 

coalesce of simple depressions A and B.  247 

3.4 Calculation of potential water storage and ponding time 248 

The potential water storage capacity (V  [m3]) of each wetland depression was computed through statistical analysis 249 

of the grid cells that fall within the depression (Wu and Lane, 2016):  250 





n

i

i RZCV
1

2)(       (1) 251 

where C is the spilling elevation (m), i.e., the elevation of the grid cell where water spills out of the depression; 
iZ  252 

is the elevation of the grid cell i  (m); R is the spatial resolution (m); and n is the total number of grid cells that fall 253 

within the depression.  254 

The ponding time of a depression was calculated as follows: 255 

  1000/  IAVT c      (2) 256 

where V  is the potential water storage capacity of the depression (m3); cA  is the catchment area of the 257 

corresponding depression (m2); and I is the rainfall intensity (mm/h). For the sake of simplicity, we made two 258 

assumptions. First, we assumed that the rainfall was temporally and spatially consistent and uniformly distributed 259 

throughout the landscape (e.g., 50 mm/h) and all surfaces were impervious. Second, we assumed no soil infiltration.  260 

 The proportion of wetland depression area ( wA ) to catchment area ( cA ) was calculated by: 261 

cwwc AAP /         (3) 262 

The wetland depression area ( wA ) refers to the maximum ponding extent of the depression. The proportion ( wcP ) 263 

can serve as a good indicator for percent inundation of the study area under extremely wet conditions (e.g., 264 

Vanderhoof et al., 2016).  265 

3.5 Derivation of surface-water flow paths 266 

Based on the computed ponding time of each depression under a specific rainfall intensity, the most probable 267 

sequence of the overland flow path were constructed. The depression with the least ponding time will first fill and 268 

start to overspill down-gradient. In hydrology, the path which water takes to travel from the spilling point to the 269 

downstream surface outlet or channel is commonly known as flow path. The distance it takes for water to travel is 270 

known as flow length. In this study, we adopted and adapted the least-cost path search algorithm (Wang and Liu, 271 

2006; Metz et al., 2011; Stein et al., 2011) to derive the potential flow paths. The least cost path algorithm requires 272 

two input datasets: the DEM and the depression polygons. Given the fact that topographic depressions in high-273 

resolution LiDAR DEM are frequently a combination of artifacts and actual landscape features (Lindsay and Creed, 274 

2006), the user can set a minimum size threshold for depressions to be treated as actual landscape features. In other 275 
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words, depressions with a size smaller than the threshold will be treated as artifacts, and thus removed from the 276 

DEM. This results in a partially-filled DEM in which depressions smaller than the chosen threshold are filled to 277 

enforce hydrologic flow while larger depressions are kept for further analysis. Based on the partially-filled DEM, 278 

flow direction for each grid cell can be calculated using the D8 flow direction algorithm (O'Callaghan and Mark, 279 

1984). The least cost path minimizes the cumulative cost (i.e., elevation) along its length. Flow paths are computed 280 

by tracing down gradient, from higher to lower cells, following assigned flow directions. With the simulated 281 

overland flow path, flow length can be calculated, which is defined as the distance between the spilling point of an 282 

upslope wetland and the inlet of a downslope wetland or stream. In our study, hydrologic connectivity refers to the 283 

water movement between wetland-wetland and wetland-stream via hydrologic pathways of surface water.  284 

3.6 Wetland Hydrology Analyst 285 

To facilitate automated delineation of wetland catchments and flow paths, we implemented the proposed framework 286 

as an ArcGIS toolbox – Wetland Hydrology Analyst, which is freely available for download at 287 

https://GISTools.github.io/ (accessed December 30, 2016). The core algorithms of the toolbox were implemented 288 

using the Python programming language. The toolbox consists of three tools: Wetland Depression Tool, Wetland 289 

Catchment Tool, and Flow Path Tool. The Wetland Depression Tool asks the user to select a DEM grid, and then 290 

executes the localized contour tree algorithm with user-defined parameters (e.g., base contour elevation, contour 291 

interval, min. depression size, min. ponding depth) automatically to delineate hierarchical wetland depressions. The 292 

depressional wetland polygons can be stored as ESRI Shapefiles or a Feature Dataset in a Geodatabase. Various 293 

morphometric properties (e.g., width, length, size, perimeter, max. depth, mean depth, volume, elongatedness, 294 

compactness) are computed and included in the attribute table of the wetland polygon layers. The Wetland 295 

Catchment Tool uses the DEM grid and the wetland polygon layers resulted from the Wetland Depression Tool as 296 

input, and exports wetland catchment layers in both vector and raster format. The Flow Path Tool can be used to 297 

derive potential overland flow paths of surface water based on the DEM grid and the wetland polygon layers.  298 

3.7 Wetland inundation mapping  299 

The LiDAR intensity image was primarily used to map inundation areas. Before inundation mapping, we applied a 300 

median filter to smooth the LiDAR intensity image. The median filter is considered as an edge-preserving filter that 301 

can effectively remove data noise while preserving boundaries between image objects (Wu et al., 2014). 302 

Subsequently, a simple thresholding method was used to separate inundated and non-inundated classes. Similar 303 

thresholding techniques have been used in previous studies to extract water areas from LiDAR intensity imagery 304 

(Lang and McCarty, 2009; Huang et al., 2011b). By examining typical inundation areas and the histogram of the 305 

LiDAR intensity imagery used in our study, we chose an intensity threshold value of 20. Grid cells with an intensity 306 

value between 0 and 20 were classified as an inundated class while grid cells with an intensity value greater than 20 307 

as a non-inundated class, which resulted in a binary image. In the binary image, each region composed of inundated 308 

pixels that were spatially connected (8-neighbor) was referred to as a potential inundation object. The “boundary 309 

clean” and “region group” functions in ArcGIS Spatial Analyst were then used to clean ragged edges of the potential 310 

https://gistools.github.io/
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inundation objects and assign a unique number to each object. It should be noted that water and live trees might both 311 

appear as dark features in the LiDAR intensity imagery and have similar intensity values, although trees are not 312 

particularly common in this region. As a result, some trees were misclassified as inundation objects. To correct the 313 

misclassifications and obtain reliable inundation objects, we further refined the potential inundation objects using 314 

additional criteria with the aid of the LiDAR DEM. First, we assumed that each inundation object must occur within 315 

a topographic depression in order to retain water. In other words, all inundation objects must intersect with 316 

depression objects derived using the “sink” function in ArcGIS Spatial Analyst. Secondly, given the relatively flat 317 

and level surface of inundated regions, the standard deviation of pixel elevations within the same inundation object 318 

should be very small. By examining the standard deviation of pixel elevations of some typical inundation objects 319 

and tree objects, we chose a threshold of 0.25 m, which is slightly larger than the vertical accuracy of the LiDAR 320 

data (0.15 m). This step can be achieved using the “zonal statistics as table” in ArcGIS Spatial Analyst. Thirdly, we 321 

only focused on wetlands greater than 500 m2. Therefore, inundation objects with areas smaller than 500 m2 were 322 

eliminated from further analysis. 323 

4 Results  324 

4.1 Inundation mapping results 325 

Using the above procedures, we identified 15,784 inundation objects (i.e., depressions ≥ 500 m2 with water as 326 

determined through LiDAR-based analyses), which were then compared against the NWI wetland polygons in our 327 

study area. We have made the inundation map publicly available at https://GISTools.github.io/ (accessed December 328 

30, 2016). The identified inundation objects encompassed an area of approximately 278.5 km2, accounting for 10.1 % 329 

of the Pipestem subbasin. Using the empirical area-to-volume equation developed for this region of the PPR (see 330 

Gleason et al., 2007; Wu and Lane, 2016), we estimated that the 15,784 inundated depressions stored approximately 331 

448.5 million m3 of water. The histogram of inundation polygons is shown in Fig. 5(a). The median size of the 332 

inundation polygons identified using the LiDAR intensity data was 1.8 × 103 m2, which was slightly larger than the 333 

reported median size of NWI polygons (Table 2). Contrary to expectations, 18,957 out of 32,016 NWI wetland 334 

polygons did not intersect with the inundation objects. In other words, 59.2% of the NWI wetland polygons mapped 335 

in the 1980s did not contain visible waterbodies during the LiDAR collection period. The total area of these ‘dried’ 336 

NWI wetlands were 43.6 km2, accounting for 15.6% of the original NWI wetland areas (279.5 km2). The histogram 337 

of the ‘dried’ NWI wetlands is shown in Fig. 5(b). It is worth noting that most of these ‘dried’ NWI wetlands were 338 

relatively small with a median size of 1.2 × 103 m2 (Table 2). The LiDAR intensity data were acquired in late 339 

October 2011, an extremely wet month according to the Palmer Hydrological Drought Index (Fig. 6). During this 340 

wet season, most wetlands would be expected to have abundant standing water. If no standing water could be 341 

detected in a wetland patch during this extremely wet period, it is possible that some of these small wetlands might 342 

have dried out during the past weeks to months. It is possible that land use change surrounding the 'dried' wetlands 343 

(e.g., row-cropping replacing pasture lands) may have affected their hydrology (Wright and Wimberly, 2013); water 344 

diversion via drainage or ditches could also be responsible for the lack of inundation, though we did not explore 345 

https://gistools.github.io/
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either of these potential drivers of change in this study. However, it is also likely that some of the ‘dried’ wetland 346 

might become wet again in the spring following snowmelt. The ‘dried’ NWI wetlands could also be attributed to the 347 

source of error in the original NWI data, which has a minimum mapping unit (i.e., the minimum sized wetland that 348 

can be consistently mapped) of 0.1 ha for the PPR (Tiner, 1997). Figure 5(b) shows that 37% of the ‘dried’ NWI 349 

polygons are smaller than the minimum mapping unit (1000 m2). This implies that these small ‘dried’ NWI 350 

polygons could be due to the NWI mapping error. Figure 7 illustrates the difference in shape and extent between the 351 

LiDAR-derived wetland inundation maps and the NWI wetland polygons. The areas of disagreement (discrepancy) 352 

can be partly explained by the different image acquisition dates. As mentioned earlier, the NWI maps for Pipestem 353 

subbasin of the PPR were created in the early 1980s while the LiDAR data were acquired in 2011. Clearly, most 354 

small NWI wetlands (see yellow-outline polygons in Fig. 7) appeared to not have visible standing water. Conversely, 355 

large NWI wetlands exhibited expansion and coalesced to form even large wetland complexes (see blue-outline 356 

polygons in Fig. 7).  357 

4.2 Nested wetland depressions and catchments  358 

We applied the localized contour method on the LiDAR-derived DEM and identified 33,241 wetland depressions. It 359 

should be noted that the ‘wetland depression’ refers to the maximum potential ponding extent of the depression. The 360 

inundated wetland depressions identified in the prior section can be seen as a subset of these depressions with water 361 

in them. The total area of the identified wetland depressions was approximately 0.55 × 109 m2 (Table 3), accounting 362 

for 20% of the entire study area. This histogram of the wetland depressions is shown in Fig. 8(a). The median size of 363 

wetland depressions was 2.6 × 103 m2, which is larger than that of the NWI wetland polygons as well as the 364 

inundation polygons (see Table 2). Using Eq. (1), we estimated that the potential water storage capacity of the 365 

Pipestem subbasin resulting from these wetland depressions is 782.8 million m3, which is 1.75 times as large as the 366 

estimated existing water storage (448.5 million m3) for the 15,784 inundated wetlands mentioned above. As noted 367 

by Hayashi et al. (2016), wetlands and catchments are highly correlated and should be considered as integrated 368 

hydrological units. The water input of each wetland largely depends on runoff from the upland areas within the 369 

catchment. Using the method described in Section 3.3, we delineated the associated wetland catchments for each of 370 

the 33,241 wetland depressions. The histogram of the delineated wetland catchments is shown in Fig. 8(b). The 371 

median size of wetland catchments was 26 × 103 m2, which is approximately ten times larger than that of the 372 

wetland depressions (Table 3).  373 

Using Eq. (3), we calculated the proportion of depression area to catchment area ( cw AA / ) for each wetland 374 

depression. It was found that the proportion ranged from 0.04% to 83.72%, with a median of 14.31% (Table 3). Our 375 

findings are in general agreement with previous studies (Hayashi et al., 2016). For instance, Hayashi et al. (1998) 376 

reported an average proportion  ( cw AA / ) of 9% for 12 prairie wetlands in the Canadian portion of the PPR. 377 

Similarly, Watmough and Schmoll (2007) analyzed 13 wetlands in the Cottonwood Lake Area during the high-stage 378 

period and reported an average proportion ( cw AA / ) of 18%. It should be noted that the average proportion of 379 

wetland area to catchment area ( cw AA / ) reported in the above studies were calculated on the basis of a limited 380 
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number of wetlands. On the contrary, our results were computed from more than 30,000 wetland depressions and 381 

catchments, which provides a statistically reliable result for the study area due to a much larger sample size.  382 

4.3 Potential flow paths and connectivity lengths 383 

Based on the LiDAR DEM and wetland depression polygon layer, we derived the potential flow path network for 384 

our study area using the least-cost path algorithm. We have made the interactive map of modeled hydrologic 385 

connectivity in the Pipestem subbasin publicly available at https://GISTools.github.io#wetland-connectivity 386 

(accessed December 30, 2016). A number of data layers derived from our study are available on the map, such as the 387 

inundation polygons, wetland depressions, wetland catchments, and potential flow paths. NWI polygons, NHD 388 

flowlines, LiDAR intensity image, LiDAR shaded relief, and time-series aerial photographs are also available for 389 

results comparison and visualization. A small proportion of the map is shown in Fig. 9. Clearly, the derived potential 390 

flow paths not only captured the permanent surface water flow paths (see the thick blue NHD flowline in Fig. 9), but 391 

also the potential intermittent and infrequent flow paths that have not been mapped previously. By examining the 392 

potential flow paths overlaid on the color infrared aerial photograph (Fig. 9(b)), we can see that the majority of 393 

potential flow paths appeared to be collocated with vegetated areas. This indicates that flow paths are likely located 394 

in high soil moisture areas that are directly or indirectly related to surface water or groundwater connectivity. It 395 

should be reiterated that the derived flow paths are only potential flow paths. Water may not have flowed along a 396 

fraction of them to date.  397 

In total, there are 1840 NHD flowlines in the Pipestem subbasin. The mean and median length of NHD 398 

flowlines are 762 m and 316 m, respectively (Table 4). However, the potential flow lengths derived from our study, 399 

which connected not only stream segments but also wetlands to wetlands, revealed much shorter flow paths than the 400 

NHD flowlines. This finding is within our expectation. The histogram of the derived potential flow lengths is shown 401 

in Fig. 10. The median potential flow length is 83 m, which is approximately 1/4 of the median NHD flowlines. The 402 

median elevation difference between an upstream wetland and a downstream wetland connected through the 403 

potential flow path is 0.89 m.  404 

5 Discussion 405 

The LiDAR data we used in this study were collected in late October 2011, which was an extremely wet period 406 

according to the Palmer Hydrological Drought Index (see Fig. 6). Most wetlands exhibited high water levels and 407 

large water extents, which can be evidenced from the LiDAR intensity image in Fig. 7 and the aerial photograph in 408 

Fig. 9. It can be clearly seen that most wetlands, particularly those larger ones, appeared to have larger water extents 409 

compared to the NWI polygons. A substantial number of inundated NWI wetlands were found to coalesce with 410 

adjoining LiDAR-based wetland depressions and form larger wetland complexes. LiDAR data acquired during high 411 

water levels is desirable for studying maximum water extents of prairie wetlands. However, the use of wet-period 412 

LiDAR data alone is not ideal for studying the fill-and-spill hydrology of prairie wetlands. Since LiDAR sensors 413 

working in the near-infrared spectrum typically could not penetrate water, it is impractical to derive bathymetry of 414 

the wetland depressions. As a result, the delineation and characterization of individual wetland depressions nested 415 

https://gistools.github.io/#wetland-connectivity
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within larger inundated wetland complexes were not possible. Bathymetric LiDAR systems with a green laser 416 

onboard offer a promising solution for acquiring wetland basin morphometry due to the higher penetration capability 417 

of the green laser (Wang and Philpot, 2007). In addition, the derivation of antecedent water depth and volume of 418 

wetland depressions is difficult, which can only be estimated using empirical equations based on the statistical 419 

relationship between depression area and depression volume (Hayashi and Van der Kamp, 2000; Gleason et al., 420 

2007). As noted earlier, the volume of water in the 15,784 inundated wetlands was estimated to be 448.5 million m3. 421 

Ideally, using multiple LiDAR datasets acquired in both dry and deluge conditions in conjunction with time-series 422 

aerial photographs would be essential for studying the fill-and-spill mechanism of prairie wetlands. In this case, we 423 

could use the dry-period LiDAR data to delineate and characterize the morphology of individual wetland 424 

depressions before the fill-and-spill processes occur. Furthermore, we can derive the potential flow paths and project 425 

the coalescing of wetland depressions after the fill-and-spill processes initiate. The wet-period LiDAR data and 426 

time-series aerial photographs can serve as validation datasets to evaluate the fill-and-spill patterns.  427 

It is also worth noting that the proposed methodology in this study was designed to reflect the topography 428 

and hydrologic connectivity between wetlands in the Prairie Pothole Region. We have made assumptions to simplify 429 

the complex prairie hydrology. Physically-based hydrological models (e.g., Brunner and Simmons, 2012; Ameli and 430 

Creed, 2017) have not yet been integrated into our framework. However, fill-and-spill is a complex and spatially 431 

distributed hydrological process highly affected by many factors, such as surface topography, surface roughness, soil 432 

infiltration, soil properties, depression storage, precipitation, evapotranspiration, snowmelt runoff, and groundwater 433 

exchange (Tromp-van Meerveld and McDonnell, 2006b, a; Evenson et al., 2015; Zhao and Wu, 2015; Evenson et 434 

al., 2016; Hayashi et al., 2016). Nevertheless, our study presents the first attempt to use LiDAR data for deriving 435 

nested wetland catchments and simulating flow paths in the broad-scale Pipestem subbasin in the PPR. Previous 436 

studies utilizing high-resolution digital elevation data (e.g., LiDAR, Interferometric Synthetic Aperture Radar 437 

[IfSAR]) for studying prairie wetlands were mostly confined in small-scale areas (e.g., plot scale, small watershed 438 

scale) with a limited number of wetlands, whereas broad-scale studies using physically-based hydrological models 439 

have rarely used LiDAR data to delineate and characterize individual wetland depressions or catchments. Coupled 440 

surface-subsurface flow models with hydrologic, biogeochemical, ecologic, and geographic perspectives have yet to 441 

be developed for broad-scale studies in the PPR (Golden et al., 2014; Amado et al., 2016). Further efforts are still 442 

needed to improve the understanding of the integrated surface-water and groundwater processes of prairie wetlands.  443 

6 Conclusions 444 

Accurate delineation and characterization of wetland depressions and catchments are essential to understand and 445 

correctly analyze the hydrology of many landscapes, including the Prairie Pothole Region. In this study, we 446 

delineated the inundation areas while reducing the confounding factor of live trees by using the LiDAR-derived 447 

DEM in conjunction with the coincident LiDAR intensity imagery. In addition, we developed a semi-automated 448 

framework for identifying nested hierarchical wetland depressions and delineating their corresponding catchments 449 

using the localized contour tree method. Furthermore, we quantified the potential hydrologic connectivity between 450 

wetlands and streams based on the overland flow networks derived using the least-cost path algorithm on LiDAR 451 
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data. Although the results presented in this study are specific to the Pipestem subbasin, the proposed framework can 452 

be easily adopted and adapted to other wetland regions where LiDAR data are available. The new tools that we 453 

developed and have made freely available to the scientific community for identifying potential hydrologic 454 

connectivity between wetlands and stream networks can better inform regulatory decisions and enhance the ability 455 

to better manage wetlands under various planning scenarios. The resulting flow network delineated potential flow 456 

paths connecting wetland depressions to each other or to the river network at scales finer than available through the 457 

National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving 458 

overland flow modeling and hydrologic connectivity analysis (Golden et al., 2016). 459 

Broad-scale prairie wetland hydrology has been difficult to study with traditional remote sensing methods 460 

using multi-spectral satellite data due to the limited spatial resolution and the interference of tree canopy (Klemas, 461 

2011; Gallant, 2015). LiDAR-derived DEMs can be used to map potential hydrologic flow pathways, which regulate 462 

the ability of wetlands to provide ecosystem services (Lang and McCarty, 2009). This study is an initial step towards 463 

the development of a spatially distributed hydrologic model to fully describe the hydrologic processes in broad-scale 464 

prairie wetlands. Additional field work and the integration of physically-based models of surface and subsurface 465 

processes would benefit the study. Importantly, the results capture temporary and ephemeral hydrologic connections 466 

and provide essential information for wetland scientists and decision-makers to more effectively plan for current and 467 

future management of prairie wetlands.  468 
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Table 1. Summary statistics of the National Wetlands Inventory (NWI) for the Pipestem subbasin, North Dakota. 635 

 636 

Wetland type Count 
Min 

(103 m2) 

Max 

(106 m2) 

Median 

(103 m2) 

Sum 

(106 m2) 

Percentage 

(%) 

Freshwater Emergent Wetland 31,046 0.50 3.1 1.8 241.7 86.5 

Freshwater Forested/ 

Shrub Wetland 
108 0.55 0.34 2.6 1.18 0.4 

Freshwater Pond 760 0.53 0.72 1.8 14.7 5.3 

Lake 50 3.7 9.4 188.6 21.1 7.5 

Riverine 52 0.63 0.43 4.0 0.81 0.3 

Total (all polygons) 32,016 0.50 9.4 1.8 279.5 100.0 

 637 
  638 
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Table 2. Summary statistics of NWI wetland polygons and inundation polygons derived from LiDAR intensity data.  639 

 640 

Type Count 
Min  

(103 m2) 

Max  

(106 m2) 

Mean  

(103 m2) 

Median  

(103 m2) 

Sum  

(106 m2) 

NWI polygons 32,016 0.50 9.4 8.7 1.8 279.5 

Inundation polygons 15,784 0.50 7.3 17.7 1.8 278.5 

Dried NWI polygons 18,957 0.50 0.11 2.3 1.2 43.6 

  641 
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Table 3. Summary statistics of 33,241 wetland depressions and catchments derived from LiDAR DEM. 642 

 643 

Type Min Max  Mean Median  Sum  

Depression area (m2) 1.0 × 103 20.0 × 106 16.6 × 103 2.6 × 103 0.55 × 109 

Catchment area (m2) 1.8 × 103 57.9 × 106 82.7 × 103 26 × 103 2.77 × 109 

Depression volume (m3) 1 153 × 106 23.4 × 103 0.42 × 103 0.78 × 109 

Proportion of depression area to 

catchment area (%) 
0.04 83.72 16.59 14.31 20.06 

  644 
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Table 4. Summary statistics of wetland depression ponding depth, NHD flowlines, flow path length, and elevation 645 

difference.  646 

 647 

Type Count Min (m) Max (m) Mean (m) Median (m) Sum (m)  

Ponding depth  33,241 0.01 7.6 0.23 0.16 NA 

NHD flowlines  1840 3.9 15.5 × 103 762 317 1.4 × 106  

Flow path length  41,449 1.5 4.7 × 103 138 83 5.0 × 106 

Elevation difference  41,449 0.01 70.9 2.1 0.89 NA  

  648 
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 649 

Figure 1. Location of the Pipestem subbasin within the Prairie Pothole Region of North Dakota. 650 
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 651 

Figure 2. Examples of the National Agriculture Imagery Program (NAIP) aerial imagery in the Prairie Pothole 652 

Region of North Dakota illustrate the dynamic nature of prairie pothole wetlands under various dry and wet 653 

conditions. The yellow arrows highlight locations where filling-spilling-merging dynamics occurred (imagery 654 

location: 99°8'34.454" W, 47°1'23.519" N).   655 
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 656 

Figure 3. Flowchart of the methodology for delineating wetland catchments and flow paths.  657 
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 658 

Figure 4. Illustration of the filling-merging-spilling dynamics of wetland depressions: (a) first-level depressions; (b) 659 

nested hierarchical structure of depressions under fully-filled condition; (c) corresponding contour tree 660 

representation of the composite wetland depression (left) in (a); and (d) corresponding contour tree representation of 661 

the composite wetland depression (right) in (a). Different color of nodes in the tree represents different portions of 662 

the composite depression in (a): light blue (first-level), dark blue (second-level), and green (third-level).  663 
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 664 

 665 

Figure 5. Histograms of inundation and NWI wetland polygons. (a) Inundation objects derived from LiDAR 666 

intensity data; (b) dried NWI wetland polygons not intersecting inundation objects.  667 
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 668 

Figure 6. Palmer Hydrological Drought Index (PHDI) of the Pipestem subbasin (2001-2015).  669 
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 670 

 671 

Figure 7. Comparison between inundation areas (derived from LiDAR intensity data) and NWI wetland polygons 672 

(image location: 99°9'53.9" W, 47°3'34.474" N). (a) Inundation areas and NWI wetlands overlaid on LiDAR 673 

intensity image; and (b) inundation areas and NWI wetlands overlaid on color infrared aerial photograph (2009).   674 
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 675 

 676 

 677 
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 678 
Figure 8. Histogram of wetland depressions and catchments. (a) Wetland depressions; (b) wetland catchments; (c) 679 

potential storage capacity; and (d) proportion of depression area to catchment area.   680 
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 681 

Figure 9. Examples of LiDAR-derived wetland depressions and flow paths in the Pipestem subbasin (image 682 

location: 98°59'48.82" W, 47°1'32.679" N). (a) Wetland depressions and flow paths overlaid on LiDAR shaded 683 

relief map; and (b) NWI polygons, wetland depressions and flow paths overlaid on color infrared aerial photograph 684 

(2012). 685 
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 686 

 687 

Figure 10. Histogram of potential wetland connectivity. (a) Potential flow path lengths; and (b) elevation 688 

differences between wetlands connected through potential flow paths.  689 


