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Abstract. The interception and smoothing effect of forest canopies on pulses of incident rainfall and its delivery to the 

soil has been suggested as a factor in moderating peak pore water pressure development within soil mantles, thus 

reducing the risk of shallow landslides. Here we provide three years of rainfall and throughfall data in a tropical 

secondary dipterocarp forest characterized by few large trees in northern Thailand, along with selected soil moisture 

dynamics, to address this issue. Throughout the sampling period, throughfall was an estimated 88% of rainfall, varying 5 

from 86-90% in individual years. Data from 167 events demonstrate that canopy interception was only weakly 

associated (via a non-linear relationship) with total event rainfall, but not significantly correlated with duration, mean 

intensity, or antecedent 2-day precipitation (API2). Mean interception during small events (≤ 35 mm) was 17% (n = 

135 events) compared with only 7% for large events (> 35 mm; n = 32). Examining small temporal intervals within the 

largest and highest intensity events that would potentially trigger landslides revealed complex patterns of interception. 10 

The tropical forest canopy had little smoothing effect on incident rainfall during the largest events. During events with 

high wind speeds and/or moderate-to-high pre-event wetting, measured throughfall was occasionally higher than 

rainfall during large event peaks, demonstrating limited buffering. However, in events with little wetting and low-to-

moderate wind speed, early event rainfall peaks were buffered by the canopy. As rainfall continued during most large 

events there was little difference between rainfall and throughfall depths. Comparing both rainfall and throughfall 15 

depths to conservative mean intensity–duration thresholds for landslide initiation, throughfall exceeded the threshold 

in 75% of the events in which rainfall exceeded the threshold for both wet and dry conditions. Throughfall intensity 

for all the 11 largest events (rainfall = 65-116 mm) plotted near or above the intensity-duration threshold for landslide 

initiation during wet conditions; five of the events were near or above the threshold for dry conditions. Soil moisture 

responses during a range of rainfall conditions in large events were heavily and progressively buffered at depths of 1 to 20 

2 m, indicating that the time-scale of any short-term smoothing of peak rainfall inputs (i.e., ≤ 1 h) has little influence 

on peak pore water pressure at depths where landslides would initiate. Given these findings, we conclude that canopy 

interception would have little effect on mitigating shallow landslide initiation during the types of monsoon rainfall 

conditions in this and similar tropical secondary forest sites.         

 25 
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1 Introduction 

Mechanisms of slope failure in relatively shallow soil mantles during rain events are generally well understood. Typically 

a positive pore water pressure develops just above a hydrologic discontinuity in the regolith causing an abrupt decline 

in shear strength and resultant rapid landslide (e.g., Sidle and Swanston, 1982; Harp et al., 1990; Fernandes et al., 1994; 

Kuriakose et al., 2008; Sidle and Bogaard, 2016). Alternatively, landslides have been known to occur due to an increase 5 

in soil weight and reduction in soil suction as soils wet during events (Sasaki et al., 2000; Lacerda, 2007; Godt et al., 

2009; Yamao et al., 2016). In contrast, some interactions amongst vegetation, site hydrology, and slope stability are not 

as well understood. In particular, the role of canopy interception of precipitation has drawn considerable speculation 

with little supporting data.  

Reinforcement of potentially unstable slopes by root systems of woody vegetation is well recognized (Gray and 10 

Megahan, 1981; Schmidt et al., 2001; Roering et al., 2003; Stokes et al., 2009; Schwartz et al., 2012) as is the effect of 

vegetation management on root strength (Ziemer, 1981; Sidle and Wu, 1999; Sidle et al., 2006; Imaizumi et al., 2008; 

DeGraff et al., 2012; Schwartz et al., 2013). In contrast to this mechanical reinforcement of shallow soil mantles by 

roots, the effects of the presence or absence of trees on the hydrological processes of transpiration, interception, water 

redistribution, and subsequent pore pressure formation in the subsurface remain a topic of controversy, especially when 15 

related to shallow landslide initiation (Keim and Skaugset, 2003; Reid and Lewis, 2009; Ghestem et al., 2011; Greco et 

al., 2013; Dhakal and Sullivan, 2014).  

Deep-rooted woody vegetation extracts soil water near potential failure planes during periods of high transpiration; 

however, such effects typically are not expected to augment slope stability during extended rainy periods when soils are 

already at field capacity, especially in temperate regions (Megahan, 1983; Sidle and Ochiai, 2006). In the tropics, where 20 

evapotranspiration rates are sustained year-round, the potential for modification of the soil moisture regime when trees 

are removed may be greater. Nevertheless, simulations of soil moisture in a Peninsular Malaysia rain forest indicate that 

evapotranspiration more significantly affects soil moisture during events preceded by dry conditions than events 

preceded by wet conditions; it is during these wet periods that shallow landslides are more likely to occur (Sidle, 2005; 

Sidle et al., 2006).  25 

Because forests intercept and evaporate rain water back to the atmosphere, less rainfall typically reaches the forest 

floor when canopies are intact (e.g., Rowe et al., 1999; Crockford and Richardson, 2000; Reid and Lewis, 2009; Ziegler 

et al., 2009; Kato et al., 2013). However, the effects of canopy interception are complicated by antecedent precipitation, 

wind, rainfall intensity and duration, and canopy structure (Xiao et al., 2000; Scott et al., 2003; Pypker et al., 2005; 

Germer et al., 2006; Kato et al., 2013). As such, canopy interception can vary greatly from event to event at a given site 30 

(Keim et al., 2004; Ziegler et al., 2009). Most studies show that the percentage of rainfall intercepted by tree canopies 
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is most variable and highest for small events compared to larger events (Filoso et al., 1999; Keim et al., 2004; Germer 

et al., 2006; Reid and Lewis, 2009; Ziegler et al., 2009; Dhakal and Sullivan, 2014). In addition to interception of rain 

water, forest canopies have been reported to exert a buffering effect on short-term pulses of incident rainfall (Xiao et 

al., 2000; Keim and Skaugset, 2003; Keim et al., 2006). Using a stochastic representation of rainfall, canopy evaporation, 

and rainfall transfer through the canopy, Keim et al. (2004) showed that effective rain intensity during large events was 5 

reduced more for short duration events than for long duration events; during small events such differences with storm 

duration were not apparent.  

Based on reports of interception and intensity smoothing in forest canopies, it has been advocated that canopy 

removal could lead to more intense pulses of rainfall infiltrating into forest soils and subsequently higher pore water 

pressures in the subsurface that could exacerbate landsliding (Rowe et al., 1999; Keim and Skaugset, 2003; Keim et al., 10 

2004; Reid and Lewis, 2007, 2009). If this is true, then in addition to the delayed effect of root decline after tree removal, 

there could also be an immediate negative effect due to the lack of canopy interception and subsequent potential to 

increase pore water pressure. While attempts have been made to include canopy interception losses into subsurface 

hydrology (Keim et al., 2006) and landslide models (Wilkinson et al., 2002), it is not clear what the mechanistic effects 

are on slope stability. Most canopy interception studies have been conducted in temperate forests, but this information 15 

is especially needed in tropical rain forests to assess the possible effects of canopy removal on landslide initiation in 

these regions where management pressures are rapidly increasing.  

The objectives of this research are three-fold: (1) evaluate rainfall interception by a secondary tropical forest canopy 

for a large number of monsoon events; (2) compare throughfall and rainfall rates to intensity–duration threshold 

relationships established for shallow landslides; and (3) determine the effect of canopy interception on the potential for 20 

soil water increases that could trigger landslides. One major question related to slope stability is to determine if canopy 

interception significantly reduces incident rainfall with respect to established conservative rainfall intensity-duration 

thresholds for landslide initiation. Another question relates to finding evidence that canopy interception significantly 

affects event soil moisture dynamics to an extent that it would influence shallow landslide initiation. These questions 

are addressed within the context of a three-year field investigation in a disturbed, secondary hill dipterocarp forest stand 25 

in northern Thailand. 

2 Site description 

The Mae (‘river’ in Thai language) Sa Experimental Catchment, a headwater catchment of the Ping River, is located 

northwest of Chiang Mai city in northern Thailand (18°54’06.8”; 98°53’14.2”; Figure 1a). The 74.2 km2 catchment is 
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mountainous, with elevations ranging from 500 to 1400 m asl. The topography is characterized by steep (some 

exceeding 45°) slopes and narrow valleys. The geology of the catchment includes granites and gneiss, with some marble 

and limestone. Soils include Ultisols, Alfisols, and Inceptisols; soil depth typically exceeds 2 m. Land cover is primarily 

mixed secondary forests and scrublands (together approximately 80% of the land area), with ongoing conversion to 

intensive agriculture, especially tree crops, floriculture, and greenhouse operations (Figure 1b). These agricultural 5 

activities, in addition to ecotourism, support the economies of several small villages. Much of the development, 

including the building and maintenance of major roads, is located immediately adjacent to the Sa River and its 

tributaries. A few recent landslides have occurred within the upper catchment (personal observations); most are 

triggered by runoff, either from compacted road surfaces or intercepted subsurface flow along cutslopes, that is 

discharged onto fillslopes or untstable slopes below the road (e.g., Sidle et al., 2006). Given the rapid revegetation of 10 

these tropical sites, it is difficult to detect older landslides.  

The catchment is the site of ongoing investigations of hydrological and land-use change (Sidle and Ziegler, 2010; 

Bannwarth et al., 2014a,b; Ziegler et al., 2014a,b). Associated instrumentation includes 11 spatially-distributed rain gages 

and one stream gaging station that monitors discharge and turbidity at the mouth of the catchment at a sub-hourly time 

scale (Figure 1). Mean annual rainfall in the catchment varies from 1500 to 2000 mm y-1. The vast majority of the annual 15 

precipitation is delivered as intense rainfall (often exceeding 20 mm h-1) during the monsoon season between May and 

November. The catchment has a mean annual runoff ratio of approximately 30% (Ziegler et al., 2014b).  

The throughfall experiment was conducted at station 429 (Figure 1b), which consists of a hydrometeorological 

tower that measures water and energy fluxes within an upland, dipterocarp forest. Trees are typically 10-16 m tall in the 

forest; tree trunk diameter ranges from 2-77 cm. Tree density in the plot is moderate: 127 trees within a 350 m2 plot. 20 

Leaf Area Index ranges from 1.8-3.2, as determined at 117 point locations using fisheye digital photographs and Deta-

T Hemiview software (www.delta-t.co.uk). The forest is secondary and is typically burned annually, but fire only affects 

the understory vegetation. 

A total of 34 tree species are found in the plot, along with three types of bamboo: Bambusa tulda Roxb (Poaceae); 

Bambusa pallida (Poaceae); and Dendrocalamus nudus Pilg. (Poaceae). Dominant tree species are Shorea obtusa Wall. Ex Bl. 25 

(Dipterecarpaceae) and Quercus kerrii Craib var. kerrii (Fagaceae). Other important species include: Lithocarpus 

polystachyus (Wall. Ex A. DC.) Rehder. (Fagaceae); Tectona grandis L. f. (Verbenaceae); Craibiodendron stellatum (Pierre) 

W.W. Sm. (Ericaceae); Cratoxylum formosum (Jack) Dyer ssp. Pruniflorum (Kurz) Gogel. (Guttiferae, Hypericeae); 

Dipterocarpus tuberculatus Roxb. Var. tuberculatus (Dipterocarpaceae); Gardenia sootepensis Hutch. (Rubiaceae); Pterocarpus 

marocarpus Kurz (Leguminosae, Papilionoideae); Shorea siamensis Miq. var. siamensis (Dipterocarpaceae); and Wendlandia 30 

tinctoria (Roxb.) DC. subsp. Orientalis Cowan (Rubiaceae). 

http://www.delta-t.co.uk/
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The soil at the site is an Ultisol with a thin (< 20 cm) brown A horizon underlain by a dark red B horizon that 

extends below a depth of two meters. Saturated hydraulic conductivity declines exponentially from the surface (~136 

mm h-1) to approximately < 4 mm h-1 at a depth of 25 cm; values at 1 m and 2 m are 1-2 mm h-1 (n = 3 measurements 

for all depths; unpublished data, determined with a bore-hole permeameter). Bulk density does not change much over 

this depth range (1.08-1.38 g cm-3 for the surface, 1 m. and 2 m depths). Corresponding porosity for the three depths 5 

is 0.59, 0.52, and 0.48 (based on a particle density of 2.65 g cm-3). The decrease in saturated hydraulic conductivity is 

typical of that in other profiles found in southeast Asia (cf. Ziegler et al., 2004; 2006). Macropores and fissures, features 

that could influence preferential flow through the soil, were not abundant in the subsoil. 

3 Methods 

3.1 Measurements 10 

To assess real-time rainfall interception in the forest stand, a tipping-bucket rain gage was mounted on a meteorological 

tower at a height of 18 m, about 1 m above the tallest canopy trees (820 m asl), to measure incident rainfall (station 

429, Figure 1b). For our analyses we examined all events that occurred during the period from 6 May 2005 to 21 

November 2007. To be considered an event, total rainfall during a period had to be ≥ 8 mm with no precipitation break 

> 4 h occurring. As such, we included a range of monsoon storms to assess interception losses for potential landslide-15 

triggering events and those that were smaller. 

Soil moisture was monitored at the soil surface and depths of 1 and 2 m in the same forest patch using Campbell 

Scientific (Logan UT, USA) CS-615 soil moisture probes, connected to a Campbell CR23x data logger. The probes 

were situated less than 10 m from the throughfall collection system under the forest canopy. Soil moisture 

measurements were recorded at 20 min intervals (note: these are instantaneous measurements, not means). Water 20 

content reflectometer values recorded with the CS-615 were converted to volumetric water contents via sensor-specific 

calibration curves determined from manual samples collected within the soil profile at the time of installation and during 

subsequent periods of both wet and dry seasons. During the latter periods, manual samples were collected by augering 

holes to a 2 m depth near the probe site. Volumetric samples were collected with an AMS bulk density sampler. The 

calibration curve was determined via linear regression from the reflectometer (independent variable) and paired 25 

volumetric water content (dependent variable) data. Details of this calculation are provided by the manufacturer 

(https://s.campbellsci.com/documents/us/manuals/cs616.pdf). 

Throughfall was collected in a system consisting of six 4-m long gutters radiating from a central tipping-bucket 

device that was installed under the canopy and secured at heights of 0.5-1.0 m above the ground at a slight angle (≤ 6°) 
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to promote rapid drainage (Figure 2a); the angle was based on prior experience (Ziegler et al., 2009). Each collection 

gutter of the throughfall system was 43.5 mm wide, with a triangular-shaped channel and 25 mm vertical risers to reduce 

rain splash loss. All gutters drained into a large tipping-bucket to measure real-time throughfall response for comparison 

with incident rainfall. The volume of throughfall required to produce one tip was 230-240 cm3 (0.22-0.23 mm). A 

dynamic calibration correction was then applied to account for differences in tip volume over the range of observed 5 

tipping rates (Calder and Kidd, 1978; Marsalek, 1981; Humphrey et al., 1997; Ziegler et al., 2009). These differences are 

caused by “splash” losses that occur as the tipping mechanism moves when rainfall drains from the funnel. This 

relationship was determined by draining known volumes of water through the tipping bucket system (mm tip-1) and 

recording the number of tips registered.  

The volume of rainfall within a given time interval was divided by the total surface collection area of the entire gutter 10 

system, corrected for the angle of inclination (area = 1.044 m2), to calculate total throughfall for the interval. A 

correction was also applied to account for splash error occurring during high-intensity throughfall. Based on data 

collected from seven events using a paired tipping bucket rain gage and a throughfall system installed in an open area 

(i.e., both were used to measure rainfall), we observed that substantial splash loss occurred during high-intensity events. 

Total event rainfall depths between the devices could be achieved when calibrated tip volumes were increased 50-78% 15 

(via linear regression) during high-intensity periods of events (i.e., for rates of 5-12 tips per minute). We used this 

relationship to adjust the throughfall rates for high-intensity throughfall measured in this study.   

We recognize several limitations in this correction: (1) the correction is based on limited data (unpublished); (2) 

some splash error probably also occurred at lower intensities (< 5 tips per minute), but the data set does not allow us 

to quantify it; and (3) the splash error associated with open rainfall may not be the same as that for throughfall, owing 20 

to different drop sizes and drop direction (both of which vary from event to event). Nevertheless, after applying this 

crude correction, the total event throughfall depths were within the ranges (relative to rainfall) expected for the range 

of events measured (i.e., the Ci of increasingly large events approached a value of 0; see Figure 3a). Thus, we believe 

any residual errors due to splash (after correction) are minor; importantly, these errors would not change our final 

interpretations. 25 

 The time interval used to assess both rainfall and throughfall inputs via the respective tipping bucket devices was 1 

min. Although the collector was kept in the same location during the three year study, it has an advantage over using 

conventional, movable, tipping-bucket rain gauges because it integrates throughfall response under much of the variable 

canopy structure (Ziegler et al., 2009). Spatial integration of throughfall is especially important in tropical forests where 

multi-tiered canopies create considerable variability in throughfall (Lloyd and Marques, 1988; Dykes, 1997; Konishi et 30 

al., 2006).  



8 
 

3.2 Calculations 

Canopy interception ratio (Ci) is calculated as 

 Ci = (RF – TH) RF-1        [1] 

where, RF is the incident rainfall during an event or a portion of the event (mm) and TH is the throughfall (mm) during 

the same period of time. Values of Ci approaching zero indicate no canopy interception for that event or period of the 5 

event.  

As a conservative predictor for shallow landslides, a number of regional studies have generated the lowest thresholds 

for slope failure based on average rainfall intensity–duration relationships (e.g., Larson and Simon, 1993; Aleotti, 2004; 

Guzzetti et al., 2007; Dahal and Hasegawa, 2008) based on an earlier global concept developed by Caine (1980). Sidle 

and Ochiai (2006) modified Caine’s global intensity–duration threshold by removing some very short and very long (> 10 

10 days) events that misrepresented rainfall – landslide initiation data. The resulting relationship is given as: 

I = 13.58 D-0.38         [2] 

where I is the mean event intensity (mm h-1) and D is the duration of the event (h). To assess the effects of antecedent 

rainfall on the intensity–duration relationship, all of Caine’s (1980) data that included 2-day antecedent rainfall (API2) 

together with new data were plotted separately for API2 ≤ 20 mm and API2 > 20 mm (Sidle and Ochiai, 2006). Two-15 

day antecedent rainfall was used because this parameter correlated well with maximum piezometric response in unstable 

hollows (Sidle, 1992). The intensity–duration relationship developed for the events preceded by dry (≤ 20 mm) 

antecedent conditions is the following (Sidle and Ochiai, 2006): 

I = 19.99 D-0.38         [3] 

where I and D are as in Eq. 2. For the events preceded by wet antecedent conditions, the following relationship is used: 20 

I = 12.64 D-0.49         [4] 

where I and D are as above. The global modified Caine threshold (Eq. 2) is lower than the dry condition threshold (Eq. 

3) for all combinations of event intensity–duration. Furthermore, because the equations are based on duration, the 

modified Caine threshold is higher than the wet condition threshold (Eq. 4) for events exceeding 1-h duration. It should 

be noted that storms that exceed any of these thresholds will not necessarily trigger a landslide, rather it means that the 25 

very minimum rainfall conditions (i.e., average intensity and duration) for global landslides has been met. Herein we 

employ these thresholds to ascertain whether interception has a significant effect on the intensity-duration relations 

that may trigger landslides at our site.   
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4 Results 

4.1 Canopy interception for all events  

The maximum, minimum, and mean rainfall totals for the 167 recorded events during the three year study were 116.4, 

8.1, and 24.3 mm, respectively. The corresponding totals for throughfall were 114.6, 5.7, and 21.3 mm, respectively. 

Event mean rainfall intensity (depth/duration) ranged from 0.5 to 88.0 mm h-1. The mean event intensity of all 167 5 

events was 9.1 mm h-1. The duration of the 167 events ranged from about 9 min to 57 h, with a mean duration of about 

7 h.   

A total of 52, 59, and 56 events where monitored in 2005, 2006, and 2007 (Table 1). Mean event size ranged from 

22-28 mm. Rainfall depths for the three years varied from 1149-1678 mm; the corresponding throughfall depth range 

was 1037-1450 mm (Table 1). Annual estimates of throughfall (fraction of rainfall) were 0.90, 0.86, and 0.87, 10 

respectively. We can only speculate that annual variations result from minor changes in canopy characteristics (based 

on observations) and differences in event rainfall characteristics. Further, we believe the inherent error in the calculation 

of throughfall for any one event is on the order of ± 6%.  The differences in the yearly calculations are within this 

tolerance. 

The three-year throughfall estimate was 0.88, which is near the higher end of values reported for forests in Southeast 15 

Asia (e.g., Sinun et al., 1992; Dykes, 1997; Konishi et al., 2006; Ziegler et al., 2009; Tanaka et al., 2015). The throughfall 

estimate may be slightly elevated because of the following reasons: (a) the stand was a recovering secondary forest (i.e., 

lacking a multi-story canopy) with low LAI (1.8-3.2); (b) the event-based estimate does not include many very small 

events when canopy interception is expected to be high (i.e., we only report throughfall for events representing 78, 87, 

and 82% of incident rainfall entering the forest in 2005, 2006, and 2007; data not shown); and (c) under-catch of rainfall 20 

above the canopy during windy conditions. Nevertheless, we believe the method provided reasonably accurate data for 

this type of analysis. 

For the 167 events, throughfall ranged widely from 62 to 129% of rainfall (Figure 4). When expressed as a canopy 

interception ratio (Ci, Eq. 1), values ranged from -0.29 to 0.38, with the mean for all 167 events being 0.15 (Figure 3). 

Throughfall was greater than incident rainfall during 9 events (Figure 3b), but only for four events was the difference 25 

greater than 6%, a value we consider to be approximately the uncertainty in the throughfall estimate. Most of the events 

where throughfall was greater than rainfall occurred in 2007 (n = 4), with one and three occurring in 2005 and 2006, 

respectively (Figure 4b). We consider the four exceptionally low values (ranging from -0.18 to -0.24) to be outliers in 

this analysis that can partly be explained by the preferential channelling of intercepted water via canopy “pour points” 
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to the collector (Konishi et al., 2006; Ziegler et al., 2009). Both the boundary of uncertainty and the outliers are shown 

in Figure 4b.  

A total of 35 events had Ci values ≥ 0.25 (Figure 3a). Most of these events were small-to-moderate in size (range = 

8.7-32.0 mm; median = 12 mm), but rainfall depth in three events exceeded 30 mm. These 35 events ranged from 0.5 

to 7.4 h in duration; event intensities ranged from 2 to 37 mm h-1. Three events had mean intensities > 20 mm h-1.  The 5 

events also ranged greatly in antecedent moisture conditions: API2 ranged from 0.0 to 60 mm. 

Except for four events with anomalously low Ci values, the overall tendency was for Ci to converge towards zero 

as total rainfall increased, particularly beyond 60 mm (Figure 3a). However, the relationship between Ci and total rainfall 

was not strong (non-linear regression; R2 = 0.11; significant at α = 0.05; Figure 3a). No meaningful relationship existed 

between Ci and API2, event duration, or mean event intensity (Figures 3b-d). However, during longer events with short 10 

periods of high intensity, mean intensity would not be a good index to compare with Ci. 

 

4.2 Canopy interception during large storms 

Because many shallow landslides occur after a high-intensity burst of rainfall that follows an initial period of lower 

intensity rain (e.g., Okuda et al., 1979; Sidle and Swanston, 1982; Sidle and Chigira, 2004; Sidle and Bogaard, 2016), we 15 

focus mainly on the largest and longest events (Table 2). Eleven of the events summarized in Table 2 have total rainfall 

depths > 65 mm; and one had a duration > 55 h (event #1; total rainfall = 40 mm). The eleven large events have low 

Ci values (-0.01 to 0.11), indicating that most rainfall was converted into throughfall (open orange colored circles in 

Figure 3). The long-duration event #1 had a relatively high Ci value (0.14; triangle in Figure 3b).    

Events #54 and #158 had Ci values ≤ 0 (Table 2). Event #54 was short-duration, high intensity with moderately 20 

high wind speed, while event #158 had relatively low intensity and wind speed, but high surface soil moisture prior to 

the storm. The high intensity and moderately high wind speed during event #54 likely generated non-vertical rainfall 

that may have been underestimated in the gauge above the canopy and may have dislodged and transferred rainfall 

from proximate trees to the plot canopies and throughfall collector troughs. The slightly negative Ci (-0.01) during 

event #158 was likely affected by wet conditions (soil moisture in surface and 1 m depths were 0.45 and 0.42 g cm-3, 25 

respectively) at the onset of the storm.     

Five events had canopy interception values ranging from 0.02-0.05 (#99, #156, #48, #56, #63; Table 2), indicating 

very limited canopy buffering during these large (65-116 mm) events. Durations and intensities of these five events 

were variable, ranging from 2.4 to 38.8 h and 5.3-41.6 mm h-1, respectively. High antecedent precipitation (API2 = 11-

22 mm) and maximum wind speed (2.3-4.2 m s-1) occurred prior to and during four of these events, while event #63 30 

had the driest antecedent conditions (Table 2).  
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The large event with greatest interception (#1; Ci = 0.14) had the driest antecedent conditions (API2 = 0 mm) of 

all large events considered and very low maximum wind speed (1.9 m s-1). Because of these conditions and the relatively 

small total rainfall depth (40 mm), canopy interception was likely higher than that for the other large events (Figure 3b). 

We included event #1 as a “large” event because of its exceptionally long duration (> 56 h).  

The remaining four large events with intermediate Ci values ranging from 0.09-0.11 (#115, #96, #85, and #26) all 5 

had relatively long durations (10.6-29.7 h), moderate intensities (2.4-7.4 mm h-1), and relatively low maximum wind 

speeds (2.2-2.7 m s-1) (Table 2). The main difference among these events was the much higher API2 value for event 

#96 (52 mm) compared to the other three events (0-1 mm).  

Collectively, the variation in rainfall characteristics (e.g., duration, intensity) and other hydro-climatic phenomena 

(e.g., maximum wind speed, API2) demonstrate the inherent variability in (or the measurement of) canopy interception 10 

across a range of large events. In most cases is it difficult to pinpoint the key factor or combination of factors dictating 

Ci because meteorological conditions (rainfall intensity, wind speed) vary across time and space scales that our 

methodology does not measure. Again, we consider the error in the interception estimate to be on the order of 6%.  

 

4.3 Throughfall and rainfall patterns during large storms 15 
 

We also examined the pattern of incident rainfall versus throughfall during the six of the largest events (Figure 5). This 

sub-group includes the three events (#54, #56, and #156) with the highest intensities (36.9-45.6 mm h-1), short 

durations (1.8-2.8 h), and low Ci values (0.0-0.3). Three other events (#63, #99, and #158) had low intensities (2.0-6.8 

mm h-1), long durations (16.4-38.8 h), and a range of Ci values (-0.01 to 0.05). For events #56, #99, and #156, 20 

throughfall exceeded rainfall during early large peaks, but was generally lower than rain intensity during latter parts of 

these events (Figures 5a,b,c). Short-duration event #54 was characterized by an initial burst of rainfall intensity of nearly 

3 mm min-1 (Figure 5d), which immediately translated into substantial throughfall despite the initially dry canopy (API2 

= 0; SM0m = 0.17; Table 2). Event #158 produced a complicated pattern of throughfall response – during the initial 

rain burst, throughfall exceed rainfall, but after about a 5-h period of little precipitation, rainfall exceeded throughfall 25 

for the rest of the event (Figure 5f). Throughout most of event #63, rainfall exceeded throughfall (Figure 5e).  

The three largest events (#56, #99, and #156) exhibited minor canopy storage during early, low intensity rainfall; 

however, during large subsequent peaks (> 100 mm h-1, minutely rates) throughfall exceeded rainfall (Figures 5a,b,c). 

Moderate to high maximum wind speeds occurred during these three events (2.9-4.2 m s-1). The highest wind speed 

was associated with the largest rainfall event #56, during which throughfall depth was similar to rainfall depth (115-116 30 

mm; Ci = 0.02). In addition, wet canopy conditions preceding these three events are supported by high API2 (11-22 

mm) and associated surface soil moisture (0.40-0.48 g cm3). During the early peaks of large events with relatively low 
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intensity and wind speed (#63 and #158), more rain water was likely stored in the canopy (Figure 5e,f). The findings 

of early storage agree with the generally accepted idea that canopies store a larger proportion of rainwater during the 

early stage of events (e.g., Xiao et al., 2000; Zeng et al., 2000; Iida et al., 2012). While in five of these six large events 

rainfall exceeded throughfall when intensities were < 1.0 – 1.1 mm min-1 and, typically, throughfall exceeded rainfall 

when intensities were > 1.1 mm min-1, this pattern was not consistently found in other storms (Figure 5). 5 

 

4.4 Soil moisture dynamics 

We examined vertical soil moisture dynamics near the soil surface and at depths of 1 m and 2 m under the forest canopy 

to ascertain the effects of canopy buffering on water movement in the soil to depths where shallow landslides may 

occur. Such a 1-dimensional assessment does not capture effects of complex topography which can influence flow 10 

pathways and hydrologic response at depth, rather it gives a general perspective on the potential of relatively 

homogeneous soils to attenuate soil infiltration. In particular, we focus on periods during events when the canopy 

exerts a maximum influence on short-term incident rainfall. Such canopy interception effects have been suggested to 

provide benefits to slope stability during large, landslide-producing events (Rowe et al., 1999; Keim and Skaugset, 2003; 

Reid and Lewis, 2009). We show soil moisture dynamics for the same six events used to assess intra-storm patterns of 15 

rainfall/throughfall (Figure 6), but also consider changes in the other large events (Table 2). The six events include a 

range of dry and wet antecedent moisture conditions (e.g., API2 ranged from 0 to 22 mm). Corresponding surface, 1-

m, and 2-m initial soil moisture ranged from 0.17-0.48 m3 m-3, 0.34-0.42 m3 m-3, and 0.33-0.37 m3 m-3, respectively 

(Table 2; Figure 6). These values indicate large differences in pre-event soil moisture near the soil surface, but not at 

depths where landslides may initiate. 20 

Events #56, #99, #156, and #158 are representative of relatively wet antecedent conditions. Initial surface soil 

moisture values for these events range from 0.40-0.48 (Figure 6). Throughfall infiltration into the soil produced peaks 

in surface soil moisture that lagged behind throughfall peaks by typically 20-60 min (Figure 6; note that soil moisture is 

measured every 20-min). In some cases, surface soil moisture increased > 0.1 m3 m-3 during the event (e.g., events #56, 

#156, #158). The rainfall rates triggering these increases typically exceeded 60-100 mm h-1 for 20 min periods (Figure 25 

6a,c,f). During event #99, two periods of rainfall resulted in corresponding peaks in surface soil moisture. For all four 

events, increases in soil moisture at the 1-m depth occurred 100-180 min after the onset of rainfall, or 30-90 min 

following the maximum rainfall and/or throughfall rate (Figures 6a,b,c,f).   

During events with drier antecedent conditions (#54 and 63; API2 = 0 and surface soil moisture ≤ 0.34 m3 m-3), 

much greater wetting occurred in the surface soil (increases of 0.14-0.27 m3 m-3) compared with that during wetter 30 
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antecedent conditions (Figures 6d,e). Event #54 was characterized by an initial burst of rainfall on dry soil (0.17 m3 m-3), 

which rapidly elevated surface soil moisture over the next hour (Figure 6d). Event #63 consisted of two 

rainfall/throughfall peaks that produced corresponding peaks in surface soil moisture with short lags (20-40 min). This 

event also caused a small, but abrupt increase in soil moisture at the 1-m depth just after the second rainfall peak, and 

a lagged and very minor increase in moisture at the 2 m depth. Subsoil moisture during event #54 was unaffected 5 

during this shorter (1.8 h) event. Soil moisture at the 2-m depth increased incrementally about 1-2 h after the final 

rainfall peaks of events #156 and #158, but then tapered off after about 3-6 h (Figures 6c,f). Both events occurred 

under some of the wettest conditions observed (surface soil moisture = 0.45-0.48 m3 m-3). The short-term bursts of 

intensity during the two largest events (#56, 116 mm and #99, 106 mm) generated only a very minor and lagged 

response of soil moisture at the 2 m depth. Three other large events summarized in Table 2 produced soil moisture 10 

changes at 2 m (#96, #85, and #48). In all cases, the maximum observed change in soil moisture at 2-m was only on 

the order of 0.03 m3 m-3.   

Six of the eight large events that increased soil moisture at the 2-m depth had very wet surface conditions (surface 

soil moisture values ≥ 0.44 m3 m-3; Table 2; Wettingmax). Together with these wet surface conditions, total depth of 

throughfall (or rainfall) appeared to be more important than event intensity in propagating water fluxes to the 2 m 15 

depth. In contrast, the two events that only affected surface soil moisture had initial soil moisture values of 0.17-0.29 

m3 m-3 (API2 = 0.0 for both events; Table 2). Throughfall depths during these drier antecedent conditions ranged from 

34-81 mm. Event #54 had the highest average event intensity (45.6 mm h-1), but produced no increases in subsoil 

moisture. Intermediate of these responses, some events with initial soil moisture conditions ranging from 0.30-0.40 

m3 m-3 produced soil moisture increases down to one meter depth for a variety of throughfall inputs (64-115 mm) 20 

occurring over 2.8 to 18.9 h (Table 2). Observed changes in soil moisture at 1 m were on the order of 0.02-0.08 m3 m-

3. Saturated or nearly saturated conditions in surface soils occurred during only two events (#156 and 158), both of 

which had high levels of soil moisture (0.45-48 m3 m-3) prior to the events. Even during the largest events, soil moisture 

contents were well below saturation at the 1 m and 2 m depths (Table 2).  

4.5 Rainfall duration–intensity landslide thresholds 25 

To further assess the potential of the monitored events to initiate shallow landslides, we compared incident rainfall and 

throughfall to three conservative intensity-duration landslide threshold relationships (Eqs. 2, 3, and 4). Considering all 

167 events, regardless of antecedent rainfall, 37 rainfall events exceeded the threshold (Eq. 2) for potential landslide 

initiation, while throughfall from 30 events fell on or above this threshold (Figure 7a). This difference of seven events 

is associated with 10 events with rainfall > throughfall (positive canopy interceptions ranging from 0.03 to 0.34) and 30 
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three events with throughfall > rainfall (negative Ci ranging from -0.06 to -0.24). Five of these events had rainfall depths 

> 25 mm and six had intensities > 10 mm h-1 (not shown). Only one had an API2 value > 20 mm – event #80, 29 mm 

of rainfall during a period of 3.3 h (9 mm h-1) with a Ci = 0.14 (not shown).  

We segregated the 167 events into those preceded by dry and wet conditions to compare with Eqs. 3 and 4 (Figure 

7b,c). A total of 120 events were preceded by dry conditions (API2 ≤ 20 mm); 47 events were preceded by wet 5 

conditions (API2 > 20 mm). For dry conditions, 16 and 12 rainfall and throughfall events, respectively, plotted above 

the corresponding threshold (Eq. 3). For the events where both rainfall and throughfall were above the threshold, 

durations did not exceed 3 h and intensities were greater than 26.7 mm h-1 (Figure 7b). Events where rainfall exceeded 

the threshold but throughfall did not were characterized by low to moderate rainfall depths (12-30 mm), appreciable 

antecedent rainfall (API2 = 7-18 mm; except for one event with 0 mm), positive Ci values (0.07-0.38), and short 10 

durations (0.3-1.7 h). In contrast, 12 and 9 rainfall and throughfall events, respectively, plotted above the threshold for 

wet conditions (Eq. 4; Figure 7c). The nine events with throughfall above the threshold were variable in length (0.42-

11.8 h) and average storm intensity (4.7-54.1 mm h-1). The three events in which incident rainfall exceeded the threshold, 

but throughfall did not, were similar in canopy interception (Ci = 0.20-0.23); duration (3.4-4.6 h); and event intensity 

(7.1-7.7 mm h-1).Nearly all of the 12 largest events (Table 2) plot on or above the threshold for wet conditions (Eq. 4; 15 

Figure 7d). The long-duration event #1 (56.6 h) plotted well below all thresholds (Figure 7d). Throughfall for three 

events (#54, #56, and #156) plotted well above the threshold for dry conditions demonstrating their potential for 

landslide generation, despite having relatively short durations (about 2-3 h) (Table 2; Figure 7d). Collectively, these 

comparisons show the limited potential of canopy interception to reduce the probability of landslide initiation during 

large annual storms (e.g., those listed in Table 2), particularly under wet antecedent conditions.   20 

   

5. Discussion 

Our estimated 3-year interception loss from a tropical secondary forest in northern Thailand based on 167 storms with 

total precipitation ≥ 8 mm was 12%. Interception losses for all individual events ranged from -29% to 38% and from 

-1% to 11% during the 11 largest storms. Overall, we found that events with larger total precipitation had lower rates 25 

of interception compared to smaller events (albeit weakly correlated), which agrees with most other studies (e.g., Filoso 

et al., 1999; Keim et al., 2004; Germer et al., 2006; Reid and Lewis, 2009; Bäse et al., 2012). Although the canopy storage 

capacity is quite variable, especially during small events, based on data in Figure 4b, the upper limits of canopy storage 

appear to be about 35% of rainfall for small events increasing to nearly no storage in the largest events. Given the 
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spatially distributed gutter system we employed to collect throughfall under this secondary forest stand, we believe our 

estimates are realistic within a measurement error of about 6%.  

The measured interception losses in this tropical secondary dipterocarp forest are on the low side of most ranges 

reported for temperate and semi-arid canopies (e.g., Xiao et al., 2000; Iida et al., 2005; Reid and Lewis, 2007; Kato et 

al., 2013; Allen et al., 2014; Swaffer et al., 2014; Nanko et al., 2016). However, our values and variabilities are very 5 

similar to those reported in an open tropical Brazilian rainforest with many palm trees (10.2±5.6%) where similar 

magnitudes and numbers of storms were recorded (Germer et al., 2006). Interception losses in other native and 

secondary Amazonian forests have been reported in the range from about 6% to 22% (Lloyd and Marques, 1988; 

Elsenbeer et al., 1994; Filoso et al., 1999; Tobón Marin et al., 2000; Bäse et al., 2012; Zanchi et al., 2015). Several studies 

in both native and plantation forests in southeast Asia that experience monsoon storms reported similarly low 10 

interception losses in the range of about 7 to 20% (Sinun et al., 1992; Dykes, 1997; Konishi et al., 2006; Ziegler et al., 

2009; Tanaka et al., 2015). Given that the preponderance of the research on canopy interception has been conducted 

in temperate and arid or semi-arid environments, it is not surprising that this secondary tropical forest in Thailand has 

relatively lower canopy interception during intense monsoon events.  

These slightly lower values of interception we measured may reflect a combination of factors that vary among 15 

individual events. Stable isotope differences between throughfall and rainfall during low intensity events show the 

complexity of pre-event storage on contributions to throughfall in a conifer forest in the Oregon Cascades, but indicate 

that the release of residual water stored in canopies may be significant (Allen et al., 2014). Given the wet, humid 

conditions at the Thailand site, it is possible that pre-event canopy wetness may have augmented throughfall during 

large events as evidenced by high soil moisture and/or API2. In other large events, it appears that the higher maximum 20 

20-min wind speed was a factor in dislodging water from within plot and surrounding canopies to restrict interception. 

Many studies have shown that storage of water in tree canopies is reduced under windy conditions (e.g., Hutchings et 

al., 1988; Llorens and Gallart, 2000; Xiao et al., 2000; Keim and Skaugset, 2003; Kato et al., 2013). While wind can 

increase evaporation and dry the canopy during storms (e.g., Kelliher et al., 1992; Xiao et al., 2000), it may increase 

measured throughfall by increasing canopy drip, changing the angle of incoming rainfall, and capturing wind-blown 25 

rain from adjacent trees (Xiao et al., 2000; Ziegler et al., 2009). Non-vertical rainfall, which is common during windy 

conditions associated with many monsoon storms, is also often under-recorded by small, standard gauges (Kamph and 

Burges, 2010). Finally, canopy “drip points” or “pour points” may develop, where intercepted water is channelled 

preferentially to the collector (Konishi et al., 2006; Ziegler et al., 2009); these points are dynamic and change as canopies 

develop and environmental conditions change during the storm. Throughfall measurements during four moderate-30 
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sized events with anomalously low Ci values (indicated as outliers in Figures 3 and 4) may also have been affected by a 

combination of these factors.  

It should be noted that we did not account for losses due to interception of litter cover on the forest floor, which 

in some ecosystems can be significant (e.g., Kelliher et al., 1992; Gerrits et al., 2010). Nevertheless, such interception 

would be little affected by forest removal and subsequent regeneration, unless significant site disturbance occurred 5 

during logging. Thus, the ultimate influence of changes in litter interception on pore water pressures at soil depths that 

could trigger landslides are expected to be minimal (Dhakal and Sullivan, 2014).   

We found no strong evidence of canopy smoothing of incident rainfall on throughfall during large events; such 

intensity smoothing has been suggested as a factor in moderating peak pore water pressures within soil mantles, thus 

reducing the risk of shallow landslides (Rowe et al., 1999; Keim and Skaugset, 2003; Keim et al., 2004; Reid and Lewis, 10 

2009). The throughfall data we present from northern Thailand are unique in terms of number of events and temporal 

resolution, which allows us to better assess peak responses related to rainfall inputs. During six of the largest events 

that would potentially trigger landslides, throughfall intensity actually exceeded rainfall intensity during the largest storm 

peaks in five of the six events (Figure 5). In event #63, which had the lowest peak intensity of these six events, peak 

rainfall intensity exceeded peak throughfall intensity. Although the peak intensities of rainfall and throughfall differed 15 

amongst events, little smoothing (i.e., flattening) of throughfall peaks relative to rainfall peaks was evident. While a few 

studies have alluded to intensity smoothing by forest canopies on throughfall regime (Xiao et al., 2000; Keim et al., 

2004, 2006; Nanko et al., 2016), only one presented specific evidence of intra-storm smoothing (i.e., flattening) of 

rainfall peaks (Xiao et al., 2000). The only storm that Xiao et al. (2000) presented was small (13 mm) and low-intensity 

compared to the monsoon events in northern Thailand, and only throughfall under one oak was assessed. In some 20 

cases, the smoothing effects are derived through modelling (Keim et al., 2004, 2006), but even in these cases, the effects 

on pore water pressure in the substrate during events were low.  

Furthermore, only soil moisture in the surface horizon was responsive to individual rainfall peaks during the same 

six large events shown in Figure 5. Soil moisture increases at the depth of 1 m were highly dampened, lagged the rainfall 

peak by nearly an hour or more, and never approached saturation (Figure 6). Because of the absence of a constricting 25 

permeability layer at shallow depths in these deeply weathered soils, most potential failure planes occur at depths of 2 

m or greater. At the depth of 2 m only very minor increases in soil moisture (≤ 0.01-0.02 m3 m-3) were recorded during 

five of the six large events and no soil moisture response at 2 m was measured during event #54 (Figure 6). This 

dampened or lack of soil moisture response at depth, shows that even during events with higher peak rainfall versus 

throughfall inputs (e.g., event #63; Figure 5e), the impact on pore water pressure at the depth of a potential failure 30 

plane would be small (Figure 6e). We did not assess the effect of slope shape on soil moisture response. It is possible 
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that higher canopy interception during small events just preceding (e.g., one to a few days) a large storm, could mitigate 

soil moisture response at depth to some extent.   

The comparisons of incident rainfall and throughfall to established intensity-duration landslide threshold 

relationships allow us to compare the potential for rainfall-initiated landslides in secondary tropical forests (throughfall 

measurements) versus cutover or converted sites (incident rainfall). Most large events had intensity-duration 5 

relationships that fell above global thresholds for potential landslide initiation during wet conditions. The three events 

that greatly exceeded the most conservative threshold (i.e., for dry conditions) were very short-duration (2-3 h), high 

average intensity (37-46 mm h-1) storms. Considering that peak rainfall intensity was generally not much greater than 

corresponding peak throughfall intensity during large events and that soil moisture response at depths where landslides 

may initiate (≥ 1 m) did not respond rapidly to peak rainfall inputs, it appears that canopy interception would have little 10 

influence on mitigating pore water accretion at depths where shallow landslides typically occur in this secondary tropical 

forest. Furthermore, similar behaviour of incident rainfall and throughfall during individual events with respect to 

intensity-duration thresholds for landslide initiation support our conclusion that canopy interception at the site has 

negligible influence on landslides for the rainfall conditions we observed. 

 15 

6 Limitations and recommendations 

There are some important limitations to our methods. In a prior study, Ziegler et al. (2009) compared the same troughs 

used herein with several movable tipping bucket gauges, finding no statistical difference between the two approaches. 

However, in the previous study, total event precipitation was examined, not minutely changes occurring over the course 

of storms. We caution that the trough method may create a somewhat confusing signal because the area-integrated 20 

pattern of throughfall, in which the records are delayed as water captured in the trough flows through the trough, 

compared to an individual rain gauge placed above the canopy. Nevertheless, at high rates of throughfall, through flow 

would be more efficient. Additionally, estimates of both throughfall and rainfall have errors. Measurements by tipping-

bucket rain gauges installed above a canopy are affected by turbulent exchange at this interface, and wind affects rainfall 

catch (e.g., Kamph and Burges, 2010). As mentioned before, the throughfall troughs had a large associated splash error 25 

during high-intensity events. While our attempt to correct the splash error resulted in reasonable total event values, 

individual minutely values could still have substantial errors; these would affect the time series we compare with 

measured rainfall (Figure 6). However, such limitations are inherent in most all studies reported in the literature (albeit 

typically not articulated).  

In future experiments, we urge researchers to minimize uncertainties by: (a) using troughs that are deeper to 30 

minimize splash loss; (b) collect ambient rainfall in more than one location, preferably gauges positioned just above 
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ground level with appropriate wind shields to minimize wind effects; (c) collect more throughfall values, potentially 

employing other types of collection devices to help interpret the measurements; and (d) preform a rigorous assessment 

of splash losses to facilitate error correction (again our splash error data are few). We also encourage researchers to 

spend time in the forest plots during events, recording the various types of phenomena that may affect the capture of 

throughfall over time, to help with the interpretation of data. Here, we re-emphasize that throughfall reaching the forest 5 

floor is highly variable in space and time. Multi-stored canopies can create wet and dry zones below them, which change 

over the course of a storm with respect to variable wind direction, changes in rainfall phenomena (rate, drop size), and 

changes in canopy wetness (e.g., Konishi et al., 2006). The oddities apparent in the data of some of our recorded storms 

(e.g., higher throughfall than rainfall during some periods, but not others) may possibly be related to inadequacies in 

our error correction; however, these may be realistic. For example, they may result because wind-driven rain is captured 10 

by portions of a large tree and then channelled directly to the throughfall trough (as was documented at the prior study 

site; Ziegler et al., 2009).  

We believe that these uncertainties do not undermine the integrity of our conclusions. While the uncertainties may 

prevent us from producing a high-precision budget of the portion of rainfall converted to throughfall at minutely scales, 

they do allow us to address the primary goals of this investigation, which are to assess whether secondary tropical 15 

canopies intercept sufficient rainwater during large storms to mitigate landslide initiation compared to open areas.             

7 Conclusions 

Our examination of the effects of canopy interception in a secondary dipterocarp forest of northern Thailand on 

the potential for shallow landslide initiation revealed some interesting findings. Compared to temperate and semi-arid 

forests, throughfall in our secondary forest plot was relatively high owing to wind effects (transferring rain water from 20 

surrounding trees and causing under-catch of precipitation), wet and humid antecedent conditions, and preferential 

channelling of canopy drip into collection troughs. Nevertheless, our throughfall measurements are in line with many 

values reported from both native and secondary forests in Amazonia and elsewhere southeast Asia.  

Few studies have reported intra-storm comparisons of incident rainfall and throughfall at temporal resolutions that 

could be used to assess effects on shallow landslide initiation (i.e. ≤ 1 h). While many of these investigations note 25 

smoothing effects of canopy interception on incident rain intensity, none show any physical evidence that canopy 

smoothing lowered soil moisture or pore pressures at depths that would reduce landslide susceptibility. Although our 

throughfall results from many large and intense monsoon events in northern Thailand were affected by instrumental 

errors (common in all studies of this type), our results indicate that these secondary tropical forest canopies have 

relatively small smoothing effects on incident rainfall peaks. We also show that soil moisture response is quite dampened 30 
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or even non-responsive at depths where potential failure planes exist in this region (≥2 m). These data coupled with 

our analysis of mean rain intensity – duration thresholds that are used to estimate lower global limits of rainfall 

conditions that may trigger shallow landslides, show that both rainfall and throughfall for the 11 largest events exceeded 

or reached thresholds for wet antecedent conditions and plotted very closely on the intensity – duration graph (Figure 

6d). As such, there is little evidence that canopy interception in this secondary tropical forest has a significant mitigating 5 

effect on shallow landslides. The possibility of intercepted rainfall during a small event prior to a large storm that would 

alter antecedent soil moisture, could potentially increase pore water pressure response at depth to a small degree. More 

likely and much better documented anthropogenic causes of landslide increases in similar tropical environments include 

root strength deterioration following timber harvesting, forest conversion, or swidden (e.g., Harper, 1993; Sidle et al., 

2006; DeGraff et al., 2012), roads and trails (e.g., Douglas et al., 1999; Chappell et al., 2004; Sidle and Ziegler, 2012), 10 

and possibly the effects of increased antecedent soil moisture following clearing or conversion of forest cover (Sidle et 

al., 2006; Sidle and Bogaard, 20016).             
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Figure 1: Site map of the Mae Sa experiment site in northern Thailand. Panel (a) shows the catchment location in 

Thailand, the topography and major stream channels. Panel (b) shows major land covers in the Mae Sa catchment 

including hillslope and plantation agriculture (AG, 23%), greenhouse agriculture (GH, 7%), urbanized or peri-urban 

areas (U, 8%), and forest cover with various degrees of disturbance (F, 62%). Grid cell dimensions are 2 x 2 km. 

Rectangles demarcate hydro-meteorological measurement sites. Streamflow, total suspended solids, particulate organic 5 

carbon, and particulate organic nitrogen were measured at the stream gage station 434. Rainfall is measured at all other 

numbered hydro-meteorological stations (rectangles). The throughfall investigation in this paper was conducted at 

station 429, where rainfall, throughfall, and soil moisture where monitored. 

Figure 2: (a) Stationary collector with six collection troughs (gutters). (b) Schematic of stationary gauge tipping bucket 

mechanism (located inside the collector base); the inset shows the dimensions for the collection troughs (gutters).  10 

Figure 3. (a) Canopy interception ratio (Ci) versus total event rainfall for all monitored events. The non-linear regression 

curve desribes the tendency for Ci to approach 0 as total rainfall increases.  (b) Ci plotted with respect to event duration 

(h).  (c) Ci plotted against 2-day antecedent precipitation (API2). (d) Ci plotted with respect to mean event intensity 

(mm h-1). The open circles and triangle in all panels refer to the 11 large and one long storm investigated in detail (Table 

2). The four events that plot below the dashed line are considered outliers.  15 

Figure 4. (a) Comparison of throughfall to runoff depths for the three years of study (2005-2007).  (b) Throughfall 

fraction of rainfall for events ranging in depths of 8 to 116 mm, during the three-year study. Uncertainty of any 

throughfall measurement is estimated to be ±6% (indicated in the figure for the case of throughfall = rainfall). The 

four values labelled “outliers” are exceptionally high estimates for which we cannot completely explain the possible 

errors. 20 

Figure 5. Five-minute running means of throughfall (solid) and rainfall (hashed) for the six largest storms (Table 2).   

Figure 6. Volumetric soil moisture response at three depths during the six largest events (Table 2). Events with initial 

surface soil moisture (0 cm) ≥ 0.40 m3 m-3 are considered to have wet antecedent conditions: #56 (116 mm of rainfall); 

#99 (111 mm); #156 (89 mm); and #158 (78 mm). The other two events, #54 (81 mm) and #63 (77 mm), are associated 

with drier antecedent moisture conditions (≤ 0.30 m3 m-3). All data are plotted as 20-minute aggregated values. Soil 25 

moisture curves in all panels correspond to surface (thin line), 1-m (hashed line), and 2-m (thick line) depths (key shown 

in panel a). The thickness of each rainfall bar has no meaning; each represents a 20-min value. 

Figure 7. Comparison of event rainfall (open circles) and throughfall (solid circles) intensity-duration relationships with 

modified Caine thresholds for shallow landslide initiation. (a) All 167 events are plotted against the general threshold 
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(Eq. 2). (b) Events associated with dry conditions (API2 < 20mm) are plotted against the threshold defined by Eq. 3. 

(c) Events associated with wet conditions (API2 ≥ 20mm) are plotted against the threshold defined by Eq. 4. (d) The 

12 largest storms summarized in Table 2 are plotted against all thresholds (Eqs. 2-4). Some apparently missing 

throughfall data points plot behind their paired corresponding rainfall value.  

 5 
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Table 1.  Number of events sampled each year and corresponding rainfall and throughfall totals. 
Year Events Mean depth Rainfall Throughfall Throughfall 

  (mm) (mm) (mm) (-) 
2005 52 22 1149 1037 0.90 
2006 59 28 1678 1450 0.86 
2007 56 22 1235 1078 0.87 
total 167 24 4062 3564 0.88 

Mean depth refers to the mean rainfall depth of the 52, 58, or 56 events in a given year (2005, 2006, 2007). Throughfall 
is listed as both a depth and a fraction of total rainfall.   
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Table 2. Characteristics of 12 large/long rainfall events considered in this analysis. 
 

Event RF TF Ci D I API2 Wind SM (0m) 

SM 

(1m) 

SM 

(2m) 

 Wetness 

 (0m) 

Wetness 

(1m) 

Wetness 

(2m) Wettingmax 

  (mm) (mm) (-) (h) (mm h-`) (mm) (m s-1) (m3 m-3) (m3 m-3) (m3m-3)  (-) (-) (-) (m) 

56 116.44 114.66 0.02 2.8 41.6 11 4.2 0.40 0.34 0.33  0.89 0.81 0.70 2 

99 111.14 106.07 0.05 16.4 6.8 16 3.7 0.45 0.41 0.37  0.87 0.81 0.78 2 

156 88.54 85.48 0.03 2.4 36.9 22 2.9 0.48 0.41 0.37  1.02 0.83 0.82 2 

85 78.04 69.43 0.11 19.3 4.1 1 2.2 0.44 0.41 0.37  0.89 0.81 0.70 2 

63 77.07 75.54 0.02 38.8 2.0 0 2.3 0.34 0.40 0.36  0.82 0.82 0.79 2 

96 70.95 63.65 0.10 29.7 2.4 52 2.7 0.46 0.41 0.37  0.87 0.83 0.80 2 

158 69.76 70.67 -0.01 16.4 4.2 6 1.8 0.45 0.42 0.37  0.98 0.83 0.81 2 

48 65.02 62.81 0.03 12.2 5.3 15 3.0 0.45 0.39 0.36  0.87 0.83 0.83 2 

115 78.64 70.10 0.11 10.6 7.4 1 2.2 0.30 0.34 0.33  0.80 0.70 0.68 1 

26 70.22 63.97 0.09 18.9 3.7 0 2.2 0.34 0.40 0.37  0.84 0.81 0.78 1 

54 81.28 80.87 0.00 1.8 45.6 0 3.2 0.17 0.34 0.33  0.77 0.65 0.68 0 

1 39.91 34.13 0.14 56.6 0.7 0 1.9 0.29 0.34 0.33  0.72 0.64 0.68 0 

 
 5 

RF is rainfall; TF, throughfall; Ci, canopy interception; D, duration; I, mean intensity (RF/D), API2, two-day antecedent precipitation index; Wind, 
maximum 20-min wind speed (recorded above the canopy); SMxm, soil moisture measured at 0-, 1- and 2-m depths; Wetness 0 and 1 m, is fraction of 
pore space filled with water (red highlighted values indicate the two storms where saturation occurred in the surface soil or was nearly achieved; and 
Wettingmax, the maximum soil depth (m) at which wetting during the event was measured by the soil moisture probes. The first 11 events are largest 
recorded (based on depth); event #1 is the longest (ranked only 23rd in size). Events are ranked by Wettingmax, then rainfall depth. 10 
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