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July 15th, 2016 
 
Dear Prof. Franssen, 
 
We thank the editor and 3 reviewers for their insightful comments and constructive criticism. In 
the uploaded files you will find a clean revised manuscript, a marked up manuscript and a 
detailed response to reviewer’s comment. We look forward to publication of this manuscript in 
HESS. 
 
Sincerely, 
 
Trenton E. Franz   
 
 
Editor Decision: Reconsider after major revisions (22 Jun 2016) by Prof. Harrie-Jan 
Hendricks Franssen 
Comments to the Author: 
 
Dear Dr Avery, 
 
Your manuscript “Incorporation of globally available datasets into the cosmic-ray neutron probe 
method for estimating field scale soil water content” has been subjected now to review by three 
reviewers. Two of them recommended major revision and one of them minor revision. I think the 
paper can be reconsidered after major revision. �
�

The main points to be handled are:�
1. The advantage of using globally available soil datasets should be demonstrated more 
convincingly. 
 
The third reviewer suggested changing the title to indicate that this paper is most appropriately 
used for rover applications. The new title is “Incorporation of globally available datasets into 
the roving cosmic-ray neutron probe method for estimating field scale soil water content”. 
Standard best practices of local calibrations should still be used for fixed probes. This point was 
made several times throughout the manuscript (L22-24, L558-562). 
 
2. Some variables which also influence neutron intensity (e.g. below-ground biomass) should be 
considered as well. 
 
We have added text and citations for the need to incorporate below ground biomass. Details are 
provided in the response to reviewer 1 (see L255-260 for specific language).  
  
3. The relation between neutron intensity and soil moisture content should be modelled 
according the model by Köhli et al. (2015). �
�

We have added text describing this weighting procedure (L266-268). Unfortunately, only the 
nominal locations of sampled points were recorded during data collection and understanding of 
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probe response at the time. Therefore, we decided to use the simpler averaging technique instead 
of the more rigorous Köhli et al. (2015) sampling design. We also indicate that this is a first step 
towards incorporating global and regional datasets and expect future efforts to using higher 
spatial resolution products like SSURGO and Polaris (Chaney et al., 2016). The following text 
was added: 
 
L555-558:“We note that this analysis is a first step in the incorporation of existing soil 
databases that will no doubt continue to increase in spatial resolution and accuracy. Given the 
increasing use of the roving CRNP technology, we anticipate similar analyses and procedures 
will be undertaken on regional and local scales from existing and new databases as they become 
available.”�
�

In your answer to the main points and detailed comments, please indicate how comments have 
been handled exactly, indicating also whether text has been deleted and what the position of 
newly included text blocks is. I am looking forward to the new version of the paper. 
 
The remainder of this document highlights the changes made and new location in the marked up 
manuscript that is provided in addition to the clean manuscript.  
 
Best regards, 
 
Harrie-Jan Hendricks Franssen - editor - 
 
 
H. Bogena (Referee) 
h.bogena@fz-juelich.de 
Received and published: 22 March 2016 
 
The mobile monitoring of cosmic-ray neutrons using cosmic rovers is a promising way to non-
invasively measure soil moisture at larger scales. However, for the processing of cosmic rover 
data ancillary information is needed (e.g. soil and vegetation properties). This paper describes 
and tests methods to provide this information using commonly available data sets. The 
manuscript is well written, however it contains some unclear or incomplete scientific reasoning 
that need to be amended (see comments below). 
 
General comments: 
This study investigates relationships between vegetation indices from optical remote sensing and 
above ground biomass. However, there is already a vast amount of literature on this topic, see 
e.g. Kumar et al. (2015) and Duncan et al. (2016) for recent reviews on this topic. Thus, the 
findings of this study should be discussed also in the light of results from existing literature. For 
instance, already established relationships could be compared with those from this study or could 
be used to extend the presented method to other vegetation types. 
 
We thank the reviewer for the updated literature and have investigated the suggested literature. 
The field of remote sensing and available indices on vegetation characteristics is growing at an 
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enormous rate given the interest in precision agriculture, food and water security, by both public 
and private industry.  
We have added the following text:  
L370-374:” We note that a variety of vegetation indices exist in the literature (c.f. Kumar et al. 
2015 and Duncan et al. 2016) and that this analysis is a first step for use with maize and 
soybean. We anticipate that other vegetation indices may be more appropriate with use in other 
crops or vegetation types and more research is needed in this area.”. 
 
The usefulness of the derived soil properties from the GSDE data for CNRP rover applications 
needs to be better documented. At the moment, I am not fully convinced that the GSDE data is 
actually useful for CNRP rover applications.  
 
We anticipate this is a first guess for a study or useful for rover applications in novel or austere 
environments. For example, the US government is interested in the rover technology and has 
supported research for assessing things like battlefield condition, which include information on 
soil strength and stability. The ability to make realtime soil moisture maps in hostile 
environments is of practical application to governments. In addition the monitoring of long 
transects, say a rover mounted on a train or commercial vehicle would be labor intensive for 
detailed sampling efforts.  
In order to highlight this as a first step we have changed the title and added the following text to 
the discussion: 
L558-562: “We note that this analysis is a first step in the incorporation of existing soil 
databases that will no doubt continue to increase in spatial resolution and accuracy. Given the 
increasing use of the roving CRNP technology, we anticipate similar analyses and procedures 
will be undertaken on regional and local scales from existing and new databases as they become 
available.”. 
 
First, it is recommended to determine these parameters from in-situ soil samples anyway (L503-
505). 
 
Yes, for the highest quality datasets it would still be advisable to collect local samples. I am not 
sure that will ever change for use of available soil datasets. We are excited about the possibility 
of using CONUS datasets like Polaris, which is a new 30 m product generated for high-
resolution land surface modeling (Chaney et al., 2016, Geoderma). This same procedure can be 
used for incorporating the Polaris dataset in future roving CRNP work. 
 
For instance, Franz et al. (2015) simply used the average values of these parameters derived from 
in-situ soil samples to successfully determine soil moisture for an area of 12 *12 km using the 
CNRP rover. A 12 *12 km area already seems to be the maximum area achievable by CNRP 
rover applications due to the speed limitation dictated by the CNRP sensitivity.  
 
This scale and driving speed was selected in order to provide a soil moisture map at the critical 
agricultural 0.8 km resolution. For coarser spatial resolutions higher driving speeds and larger 
sampling areas would be appropriate. For example, this summer the UNL and USACE rovers 
have been used in tandem in the SMAPVEX16 Iowa campaign. The dual rovers cover 36x36 km 
for validation against SMAP. We have found the pixel can be driven in 6 hours to collect a 1 km 
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product. Direct soil and vegetation sampling of a 36x36 km grid very labor intensive requiring a 
team of 25+ individuals. We note that the Chrisman and Zreda 2013 paper also covered a large 
pixel. 
 
Secondly, given the very low spatial resolution of the GSDE soil data, it will most likely not 
provide any useful spatial information for such a small area.  
 
Agreed, we are currently using SSURGO for Nebraska based work. For other countries, 
particularly in the developing there may be very poor national scale soil data bases. We would 
only recommend the GSDE for long transects, larger watershed sampling campaigns, or use in 
austere environments where SSURGO type data is not available. We are also excited about the 
new Polaris 30 m resolution dataset (Chaney et al. 2016). We know other regional databases 
exist and will be better for use in rovering. We emphasize that this is a first step and a similar 
methodology can be used with higher resolution and regional databases (L558-562).  
 
Thirdly, the substantial uncertainties of relationships between the GSDE data and CNRP 
calibration parameters may lead to very uncertain calibration results (see also my specific 
comment L329). Thus, regional soil data bases like SSURGO in the USA or the soil information 
system FISBo in Germany would be more promising for CNRP rover applications.  
 
Note that the GSDE data is derived from SSURGO following Shangguan et al. (2014). For hi-
resolution surveys we would also suggest use of SSURGO and Polaris. We imagine other 
regional datasets exist as well, such as FISBo in Germany. The LSM community has generated a 
variety of products to support their increasing grid resolutions.  
 
The error propagation method is useful to derive first guess estimates of the uncertainties 
involved in the proposed method. However, a stronger test would be the application of the 
method using data from existing CRNP rover applications (e.g. Christman et al. (2013), Dong et 
al. (2014), Franz et al. (2015).  
 
Yes, this is a first approximation as suggested. Not totally sure what the reviewer is suggesting. 
In fact, the lattice water and soil bulk densities used in Chrisman, Dong and Franz are part of 
the dataset presented here. Seems having new independent samples to compare against would be 
most useful and avoid some circularity. We have suggested best practices for future rover 
surveys in 4.3, which include local soil sampling and independent SWC comparisons. Given the 
interest in the rover technology we anticipate other research groups will provide new datasets 
and strategies to generate the most accurate SWC information. 
 
This study excludes below ground biomass, which can be a significant hydrogen pool depending 
on vegetation type (e.g. Bogena et al., 2013, Franz et al., 2013). Thus, the presented method 
should be extended by this factor. For instance, the plant specific root-shoot ratio could be used 
to calculate below ground biomass from above ground biomass (see e.g. Peichl et al., 2012). 
 
Correct. However, we note that the above ground biomass estimates used to compute N0 slope 
and intercept corrections implicitly include below ground biomass in the N0 estimate. This 
means the method depends on the repeatability of below ground biomass development with 
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above ground biomass that is measured. This is essentially what the reviewer is suggesting by 
using a plant specific root-shoot ratio. We note this as an alternative procedure to encourage 
future directions and independent validations of the N0 biomass correction factors for above and 
below ground biomass.  
We have added the following text: L256-260:” We also refer the reader to Coopersmith et al. 
(2014) and Baatz et al. (2015) for further discussion of CRNP use in forest canopies and Bogena 
et al. (2013) for a discussion of below-ground biomass and litter layers. In addition, plant 
specific root-shoot ratios (Peichl et al., 2012) or allometric relationships (Jenkins et al., 2003) 
may be used to derive a better understanding of the impact of time-varying below-ground 
biomass on N0. This is an open and challenging research area and beyond the scope of the 
current work.”. 
 
Specific comments: 
L60-61: This is not entirely true. In fact in-situ measurements of soil moisture have certain 
correlation lengths that can be used to infer larger scale information (e.g. Korres et al., 2015). 
 
Thank you for the suggested paper, we have modified the text. 
L65-67:“However, these sparse networks are difficult to place in the context of the surrounding 
landscape given the multifractal behavior that soil moisture fields exhibit (Korres et al. 2015).” 
 
L70: A more recent review on non-invasive sensing of soil moisture dynamics from field 
to catchment scale is given by Bogena et al. (2015). 
 
Thank you for the suggested paper, we have updated the citation. 
 
L78: According to Köhli et al. (2015) the footprint diameter ranges between 160 and 
210 m. 
 
We have updated the test to be more general here in the introduction and more specific in the 
methods. See comments below. 
L88-90: ”CRNPs estimate the area-average SWC because neutrons are well mixed within the 
footprint of the sensor which typically has a radius of several hundred meters and depths of tens 
of decimeters (Desilets and Zreda 2013, Köhli et al., 2015).” 
 
L91: Baatz et al. (2014) is more appropriate here. This paper deals with CRNP calibration, 
whereas Baatz et al. (2015) describes a method for biomass correction of CRNP count rates. 
 
The citation was changed. 
 
L94: Add a citation, e.g. Baatz et al. (2015) 
 
The citation was added. 
 
L96: “exploit” instead of “harness” 
 
The text was changed. 
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L103: “instead” instead of “in lieu” 
 
The text was changed. 
 
L109: CONUS was explained in the abstract, but it would be good to explain it here 
again because of readers ignoring the abstract. 
 
The text was changed. 
 
L133: “Köhli” 
 
The text was changed. 
 
L144: see comment L78 
 
The text was changed. 
 
L147: “Köhli” 
 
The text was changed. 
 
L147-148: Köhli et al. also investigated effects of vegetation and SWC. 
 
Thank you, we have updated the citation and added more description about the (Köhli et al., 
2015) footprint calculations. 
 
L152: Change into “Baatz et al. (2014)” 
 
The citation was changed. 
 
L170: The geomagnetic latitude is not a factor for the neutron counts correction. It is only used 
for the scaling of neutron counts to a specific location. 
 
From rover calibration across Nebraska we have found that the estimate of p0 (reference 
pressure) and scaling factor must be consistent for a single rover calibration function at different 
locations. In order to estimate a site’s p0 and scale factor we use latitude, longitude, and 
elevation in the COSMOS scaling calculator 
(http://cosmos.hwr.arizona.edu/Util/calculator.php). This ensures that each new site or rover 
survey point has the same values and neutrons are corrected in the same way. We have added 
the language of scaling factor for completion (L209-212). 
 
L212-213: To solve the calibration function, information on depth-weighted average soil water 
content is needed as well. In addition, the depth-weighted average of mentioned parameters 
should be used to account for the decreasing sensitivity of the CRNP with depth (see e.g. Köhli 
et al., 2015). Furthermore, below ground biomass can be an important hydrogen pool for certain 
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vegetation types especially during dry conditions, e.g. sugar beet, spruce forest etc. (see Bogena 
et al., 2013). 
 
Perhaps it is unclear but we only trying to solve for the average soil water content from neutron 
counts. The issue of depth sensitivity may indeed be important, particularly during infiltration 
events where a step function of water content may exist. In addition, these step functions may 
also be present in soil horizons or root development, making vertical integration challenging for 
a nonlinear sensitivity function. We will mention these issues but prefer to deal with the 
challenge of horizontal measurements only in this paper instead of the more complex issue of 
horizontal and vertical variability of parameter data. We believe this will keep the focus of the 
paper on global datasets clearer. In addition, we note the collected in-situ datasets did not 
always vertically resolve the calibration datasets. Finally we not that the GSDE and SSURGO 
datasets do allow for depth information to be extracted and we recommend future research using 
this and more complete and vertically resolved calibration datasets. This is highlighted in the 
discussion.  
 
The following text was added here: L264-271: ” In the simplest form, the calibration function 
summarized in equations (1-4) requires depth-average estimates of three soil parameters,	"#$, 
"%&' , and (), and two vegetation parameters *+, and *-,. We note that depth-weighted 
average parameters, belowground biomass and depth-weighted SWC are needed to fully 
understand the decreasing sensitivity of the CRNP with depth as recommended elsewhere 
(Bogena et al., 2013 and Köhli et al., 2015). As a first step, here we will only consider depth and 
area-average properties given the resolution of the global remote sensing products. We expect 
future work to improve on these analyses as regional datasets contain higher spatial resolution 
data.”.  
 
 
L217: “Köhli” 
 
The text was changed. 
 
L237: “Global Soil Dataset” 
 
The text was changed. 
 
L249: This step needs a better explanation. 
 
This involves expert knowledge by a soil pedologist, here Prof. Mark Kuzila. The method follows 
expert knowledge and the NRCS soil taxonomy handbook. The reference to the NRCS handbook 
was added. 
 
L258-259: In which cases “taking mean values” were preferred over “taking linear 
relationships”? 
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We only used the linear relationships where a significant p value was found (<0.05). The 
following text was added: L323-325: “A statistically significant p value (<0.05) was used to 
discriminate between using the mean values and linear relationship.”.  
 
L268: Actually, only one vegetation index is presented here. 
 
The text was changed. 
 
L271 “...65 ha large.” 
 
The text was changed. 
 
L288-289: This information is not needed. 
 
The text was changed. 
 
L329: This is not the point. The problem actually is that the slope of the correlation strongly 
deviates from the 1:1 line in both cases. The error for soil organic carbon is larger than the 
organic carbon content of most of the samples. This questions the reliability of the GSDE data 
set for local applications like the cosmic-ray rover. 
 
We agree the SOC data is very poor from the GSDE and in situ samples. Better estimates of SOC 
are needed. The following text was added for clarification L 406-409:” We note that the slope of 
the relationships for soil bulk density and soil organic carbon is different from 1 and can lead to 
biased results. Caution should be used for using these estimates as opposed to local in-situ 
sampling.”. 
 
L348: add an adjective like e.g. reasonably 
 
The text was changed. 
 
L362: “the” instead of “these” 
 
The text was changed. 
 
L428-430: Better data sets are not only needed for higher resolution applications, but also to 
increase the reliability of the calibration function. 
 
The text was changed. 
 
L434-435: The impact of soil organic carbon (SOC) on the calibration strongly depends on the 
total SOC amount and on the vertical distribution. For arable land SOC are relatively low and 
homogeneously distributed in the A-horizon due to land management activities. However, in 
grassland and forest sites, high SOC amounts and strong SOC gradients typically exist in the top 
soil (e.g. Bogena et al., 2013). 
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Thank you. The following text was added: L531-543: “For arable land we note that organic 
carbon has a relatively small impact on the calibration function as it is multiplied by several 
factors in the calibration equation, and relatively low and homogeneously distributed in the A-
horizon due to land management activities. However, in grassland and forest sites, high SOC 
amounts and strong SOC vertical gradients typically exist in the top soil and may need to be 
quantified with local in-situ sampling (e.g. Bogena et al., 2013). For rover survey experiments in 
these areas, we suggest that SOC be sampled with composite samples, particularly between sites 
with varying land use histories which can be identified using historical land cover maps.”  
 
L463-465: Actually, this is an argument for adding more vegetation types in the analysis to 
increase the relevance of the paper. 
 
We added the following text: L578-579: “We refer to the reader to Duncan et al. (2015) and 
Kumar et al. (2015) for a recent review of vegetation indices in remote sensing.”. 
 
L501-517: This section is not a conclusion and thus should be moved to the discussion section. 
 
Thank you. The text was moved to subsection 4.3 in the discussion on best rover practices. 
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Anonymous Referee #2 
Received and published: 8 April 2016 
General comments 
The manuscript focuses on the mobile application of cosmic-ray neutron soil moisture probes 
(CRNP) and tests the reliability and accuracy of globally/continentally available data sets to 
provide information to support the calibration procedure. The relationship between CRNP 
measured low-energy neutron concentration and soil moisture can be strongly affected by 
changes in soil texture/soil type, surrounding vegetation, organic carbon content in the upper soil 
layer.  Therefore, an operational procedure to provide information about CRNP calibration 
parameters for larger scales is of critical importance and relevance for the mobile application of 
CRNP. The paper is generally well written and easy to follow. However, especially the overview 
of CRNP and its calibration in the method section (chapter 2.1 - 2.3.) require a deeper revision.   
In  2015,  Köhli  et  al.   revised  the  footprint  characteristics  for  soil  moisture monitoring with 
cosmic-ray neutrons substantially.  Although the authors cite Köhli et al.  (2015) several times, 
key insights of the Köhli paper are omitted or reported incorrectly.  By improving the physical 
representativeness of the underlying neutron transport model, Köhli et al. (Ibid.) revealed the 
highly dynamic nature of the CRNP footprint (horizontal and vertical) and redefined the 
footprint radius to range from 130 to 240 m. Furthermore,  Köhli et al.  revealed the high 
sensitivity of the CRNP to soil moisture (and other affecting properties) in the first tens of meters 
around the probe resulting in the need for a dynamically weighted average of CRNP-affecting 
properties within the probe’s footprint (very recently applied and successfully tested by 
Heidbüchel et al. (2016)). While the manuscript mentions results of “recent neutron transport 
modeling” (l 145-146), the only given number for the CRNP support volume is the outdated 
“circle of � 300 m radius” (l 144).  Although the authors mention the need for an adjustment of 
the sampling pattern for in-situ calibration (“in the light of recent modelling”, 217-219), the 
sampling scheme presented in detail in the paper is based on results from 2012.  Also here it 
would be desirable to provide a more detailed discussion of the importance of a weighted 
sampling scheme. All these aspects impact the interpretation of the CRNP signal and are of 
critical relevance for mobile CRNP applications. Even though the aspects mentioned above did 
not affect directly the interpretation of the manuscript’s main topic (evaluation of accuracy of 
globally available data sets for CRNP calibration), the reviewer recommends a more intense 
discussion of the current state of knowledge about the CRNP theory and its importance for the 
mobile CRNP application.   More comments on this topic can be found in the “Specific 
comments” section of this review. Despite these critical remarks, the manuscript is of high 
interest for the CRNP community and the manuscript’s topic is well suited for the journal and the 
journal readers.  I recommend a moderate revision before the article is considered for 
publication. 
 
We thank the reviewer for their comments and concerns. Per the issue of the footprint 
characteristics we have had detailed discussions with Darin Desilets of HydroInnova about its 
refinement following Köhli et al 2015. It seems there is some on going discussion within the 
community that should be a central topic for the upcoming COSMOS workshop in August 2016 
in Denmark. We hope that this issue and others with the calibration function, sampling method, 
sampling frequency etc. will be resolved at that time. We have added more exact language to the 
introduction and summarize conclusions from the Köhli et al. 2015 paper. Please see responses 
to specific comments below. 



	 11	

 
Specific comments 
1. L 50-52: Delete “(�36 km)” and “(e.g.�2-5 cm ... Entekhabi et al., 2010)” since this 
is repeated and described again with the same citations in the following paragraph. 
 
We have deleted some of the superfluous text. 
 
2. L 66: I assume that the footprint is given square kilometers. 
 
We have updated the text to reflect 36 by 36 km. 
 
3. L78-79: The authors mention here the footprint radius of “�300 m” and underpin this by a 
citation of Köhli et al (2015). Since Köhli et al. revealed a reduced footprint radius (see also 
comments above) this is a wrong citation and should be corrected using the correct numbers. 
 
We have changed the language to several hundred meters and give more details in the methods 
section about the specific dimensions described in Desilets and Zreda 2013, Köhli et al., 2015. 
 
4.  L109:  Since it is introduced for the first time (except from the abstract), “CONUS” 
should be written out here. 
 
We have updated the text. 
 
5.   L132:  The  use  of  the  term  “energy  levels”  is  unusual  in  unbound  particle  sys- 
tems.   Energies of free atmospheric neutrons can be approximated as a continuum 
throughout the elastic scattering spectrum.  Better use “well-known energy spectrum” 
or “continuous energy spectrum”. 
 
Thank you. We have updated the language to continuous energy spectrum. 
 
6.  L135-136:  “(i.e., the neutrons which are primarily measured by the moderated de- 
tector)” repeated information, compare line 130. 
 
The text was removed. 
 
7.  L 145-148:  The authors mention new findings regarding the CRNP footprint and 
its  dependency  upon  vegetation,  soil  moisture,  atmospheric  water  vapor,  elevation, surface 
heterogeneity.  Since Köhli et al.  (2015) investigated all of these aspects the citation should be 
placed at the end of the sentence.  Furthermore, it would be highly desirable to discuss the 
impact of the dynamic nature of the CRNP footprint on the applicability for mobile surveys. 
 
We have added the following language and citations to be clearer. The changing footprint with 
respect to mobile surveys was not discussed. We hope discussions and outcomes from the next 
COSMOS workshop will help pave a way forward. 
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L172-178: “Recent neutron transport modeling has further refined the footprint area to be a 
function of atmospheric water vapor, elevation (Desilets and Zreda, 2013), surface heterogeneity 
(Köhli et al., 2015), vegetation (Köhli et al., 2015), and SWC (Köhli et al., 2015). Köhli et al. 
(2015) found the footprint to range between 130 and 240 m in radius depending on conditions. 
Despite the varying footprint characteristics, the large measurement area at tens of hectares 
make this non-invasive technique an ideal complement to long-term surface energy balance 
monitoring around the globe.”. 
 
8.   L173:  The term “correction factor” has been used four times in the last 5 lines, please 
rephrase. 
 
We have removed some of the repetition (L209-213). 
 
9.  L217-L219: “In light of recent modelling ... reduced footprint area”.  How does this recent 
finding affect the mobile application of CRNP? 
 
I am not really sure it does for simplistic applications. Currently, the corresponding author 
assumes the centroid of measurement location (middle point after driving 1 minute) is a point 
and then performs spatial interpolation on those series of survey points. However, the elliptical 
shape and weighting function could be considered in the geostatistical analysis more explicitly. 
This would require advanced spatial interpolation techniques not provided by standard software. 
Certainly this is an open area of research for a skilled scientist in computational and statistical 
methods. Unclear how important this will be in light of other errors in the calibration method. 
 
The following text has been added for clarification L264-278:” In the simplest form, the 
calibration function summarized in equations (1-4) requires depth-average estimates of three 
soil parameters,	"#$, "%&' , and (), and two vegetation parameters *+, and *-,. We note that 
depth-weighted average parameters, belowground biomass and depth-weighted SWC and needed 
to fully understand the decreasing sensitivity of the CRNP with depth as recommended elsewhere 
(Bogena et al., 2013 and Köhli et al., 2015). As a first step, here we will only consider depth and 
area-average properties given the resolution of the global remote sensing products. We expect 
future work to improve on these analyses as regional datasets contain higher spatial resolution 
data. In order to estimate depth and area-average soil parameters, Zreda et al. (2012) and Franz 
et al. (2012) recommended averaging 108 individual in-situ soil samples from 18 locations 
(every 60 degrees and radii of 25, 75, 200 m) and six depths (every 5 cm from 0-30 cm) within a 
CRNP footprint. In light of recent modeling work (Köhli et al. 2015), this sampling pattern may 
need to be adjusted to be more representative of encountered conditions (such as shorter 
sampling distances due to reduced footprint area). Given the mixture of previously published 
datasets and new datasets used here, we decided to use the original sampling location 
description.”. 
 
10.   L260:  Delete “,and lattice water” since the test for lattice water relationships is described 
above. 
 
We have removed text.  
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11.   L302-308:  Excessive of the verb “use” - used six times within five consecutive sentences. 
 
We have changed verb use to avoid excess usage.  
 
12.  L323-324:  I recommend to delete the sentence “Other than 1 outlier...” here, since this is 
repeated and discussed in section 4.1. 
 
We have removed text.  
 
13. L330-333: Repetition of L 241-244 
 
We have removed text to avoid repetition of Greacen citation. 
 
14: L350: Change to “Figure 4a and 4b”. 
 
We have changed text. 
 
15: L365: Instead of “MODIS product and derived equation” it might be better to write “MODIS 
product in combination with the derived equations”. 
 
We have changed text. 
 
16: L381: Change the title since it is the same like the title for chapter 2.6 
 
We have changed chapter to “Results of GSDE Soil Properties Error Propagation Analysis”. 
 
17:  L393-394:  Why  is  this  sentence  given  in  italic  letters?   Furthermore,  I  find  the 
formulation misleading.  “Future sampling efforts” probably won’t “minimize the range of bulk 
densities”. But it can certainly increase the accuracy of bulk density estimation. 
Bulk density itself is affected by the land use and can be a very dynamic parameter (e.g. 
due to agricultural cultivation measures) and this dynamic nature it a further challenge 
for the mobile CRNP application.  This issue should be mentioned.  The incorporation 
of land use information can increase the accuracy of bulk density estimation. 
 
This is a key point and area that the users of the cosmic-ray probe should be aware of. The 
impact of land use on bulk density or soil organic carbon will be better highlighted. Perhaps a 
better definition is identifying the 5 and 95% quantiles of bulk density at a survey location. 
Therefore, more samples may indeed resolve these quantile estimates by eliminating the 
influence of outliers.  
We have added to the following text for clarification of this key point. 
L484-486: “Therefore, future sampling efforts or evaluations of available datasets should seek 
to improve the accuracy of bulk density, meaning better estimates of the mean, standard 
deviation, quantiles, and impact of land use practices on bulk density.”. 
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18:  L405-407: “This strong correlation is significant because large portions or the ... regions are 
made up of mollisol soils”.  I did not understand this sentence.  A “large portion” isn’t an 
explanation for the significance, is it? 
 
We mean that a majority of the collected samples came from the mollisol group. Therefore the 
correlation for all samples with clay percent will be more heavily weighted to the mollisol soil 
group, which is highly correlated to clay percent. Clearly more samples are needed to resolve 
this issue amongst soil groups. 
We have changed the phrase large portion to large areas for clarification. 
 
19:  L477-479:  “...given the relatively small change in BWE... in forests, we would expect small 
change in N0 through time”. CRNP measurements in forest can be challenging for several other 
reasons.  Bogena et al.  (2013) revealed the importance of the litter layer and its dynamic water 
content for CRNP calibration.  Heidbüchel et al. (2016) found strong deviations in N0 
calibrations for different times of the year and recommend a two-time calibration to catch 
seasonal variations in aboveground biomass. Furthermore, they found a considerable influence of 
root biomass on the CRNP signal.  
 
The additional citation and discussion was added for forest areas. Reviewer 1 also points out 
that the vertical distribution of SOC or bulk density may be more important there.  
L594-596:”For a more complete discussion of CRNP calibration in forests and estimates of time 
varying changes in N0 please see Bogena et al., 2013 and Heidbüchel et al., (2016).” 
 
20.  L503:  “minimum of 7” is a strong recommendation for a value which should be 
dependent on the individual site heterogeneity.  Since there is no statistical proof for 
this statement, I suggest to avoid a concrete number. 
 
This is more of a rule of thumb found as good practice used by the authors. We have removed 
reference to 7.  
 
21.  L505:  Why is N0 a correction factor?  Please clarify to which function and which 
parameters you are referring to. 
 
N0 is not a correction factor but calibration parameter dependent on vegetation conditions that 
may change through time. We have changed language for clarity. 

1) L601-603:” Collect a series of full calibration datasets ("#$, "%&' , (), *+,, *-,) in 
differing land use and soil types to estimate the instrument specific slope and intercept 
for dependence of 12 with BWE.”. 

 
22.  L507:  The influence of road type has not been discussed in this work.  Please 
explain the reasons for this recommendation. 
 
This is briefly discussed in Chrisman 2013 and Franz 2015. The asphalt will be much drier than 
say a dirt road and influence the neutron counts. The reference to Chrisman and Zreda 2013 was 
added. 
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23. L507: replace “in missing areas” by “data gaps”. 
 
The text was changed. 
 
References:  Bogena H.R.,  Huisman J.A.,  Baatz R.,  Franssen H.J.H.,  Vereecken H. 
(2013) Accuracy of the cosmic-ray soil water content probe in humid forest ecosys- 
tems:  The  worst  case  scenario.   Water  Resources  Research  49:5778-5791.   
DOI:10.1002/wrcr.20463.  
Heidbüchel I., Güntner A., Blume T. (2016) Use of cosmic-ray neutron sensors for soil moisture 
monitoring in forests. Hydrol. Earth Syst. Sci. 20:1269-1288. Köhli M., Schrön M., Zreda M., 
Schmidt U., Dietrich P., Zacharias S. (2015) Footprint characteristics revised for field-scale soil 
moisture monitoring with cosmic-ray neutrons. Water Resour. Res. 51:5772-5790. 
 
 
Anonymous Referee #3 
 
General comments 
The paper covers many of the issues facing those currently using, or planning to use, roving 
CRNPs and as such is very timely. It is well written and the results are well presented. I suggest 
only minor revisions before the paper is acceptable for publication in HESS. I think the title 
might best be modified to ensure the reader knows this is about the roving CRNP method rather 
than about the static CNRP method where the variables in question will likely be assessed 
directly and in detail. 
 
We have changed the word probe to rover in the title to reflect the mobile technology and 
emphasis of this paper. The reviewer is correct in that fixed probes should still rely on best local 
calibration practices. 
 
 
Some discussion on the likely relative influence of the different pools of hydrogen would also be 
useful. As it stands now the reader has no idea if the relative impact of BWE or lattice water or 
SOC are as important or far less that the SWC which I imagine actually dominates the count rate. 
There is some discussion later in the paper but maybe this could be raised earlier in the paper too 
to set the scene. The importance of some of the poorer correlations diminishes somewhat when 
you bear this in mind. 
 
Indeed. The quantification of the relative hydrogen pools in McJannet et al. 2014 does a nice 
job. The introduction makes this point in L158-163. We have added the phrase “somewhat” to 
help emphasize the lesser importance of the other pools.  
L164-169: “Water in the near surface soil (i.e. SWC) is one of the largest sources of hydrogen 
present in terrestrial systems (McJannet et al. 2014). Thus, relative changes in the intensity of 
epithermal neutrons are overwhelmingly due to changes in the SWC. However, the shape of the 
calibration function (see section 2.2) is somewhat modified by local soil and vegetation 
parameters (Zreda et al. 2012) reflecting the variation of background hydrogen levels across 
landscapes.” 
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Can you standardise the terminology around neutron energy. The terms ‘epithermal’ and ‘low 
energy’ have been used interchangeably. 
 
We have replaced all instances with low-energy, save the first reference (L156). Details about 
the detector response and isolation of certain energies is currently being investigated by Mie 
Andreasen and the University of Copenhagen group. Supporting manuscripts are anticipated to 
be out later this year. 
 
Specific comments 
 
L24 delete ‘using’ 
 
The text was changed. 
 
L33 including forests too as a biomass source 
 
The text was changed. 
 
L34 the signal is accounted for not minimised 
 
The text was changed. 
 
L75 ‘measure’ not ‘measures’ 
 
The text was changed. 
 
L77 CRNPs 
 
The text was changed. 
 
L130 low energy or epithermal – can you stick with one 
 
The text was changed to low-energy 
 
L201 is fwe not equivalent to (18.01528 * 5) /162.1406 = 0.5556? 
 
The fwe=0.494 was updated in Franz et al. 2015 GRL, per the reviewer instructions. 
 
L230 chosen from one 
 
The text was changed. 
 
L371 I think some discussion is warranted here (or later) about the actual  
water equivalent (kg/m2 or mm) that is held in the crop. I suggest this because this helps to give 
the reader an idea about the magnitude of this correction. If biomass water equivalent of 1 mm is 
equal to only 0.0033 cm3/cm3 for a soil depth of 300 mm then corrections for many less dense 
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crops may not be needed or fall within the noise of CRNP measurements. Maybe it is also true 
that the highest BWE coincides with highest moisture and vice versa so the effects are further 
minimised in relation to SWC estimates. 
 
We have added the following text for clarification. 
L463-467:” We note that 1 kg/m2 is approximately equal to 1 mm of water or about 0.0033 
cm3/cm3 of SWC over 300 mm. This indicates that for relatively small changes in BWE it will be 
nearly indistinguishable from the noise in the CRNP measurements.”. 
 
L471 BWE at these levels of moisture must be very small and are probably insignificant in the 
corrections. Can you add these to strengthen this section? 
 
We have added the following text for clarification. 
L585-586:”By the end of senescence before harvest, the canopy water contents were down to 25-
35 wt. %, and thus very low BWE and minimal impact on low-energy neutron intensity.”. 
 
L493 “statistically significant different mean values” do you mean “statistically different mean 
values”? 
 
The text was changed. 
 
L503 where does the 7 come from? 
 
The exact number of 7 was removed but is a general rule of thumb.  
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Abstract 14	

The need for accurate, real-time, reliable, and multi-scale soil water content (SWC) 15	

monitoring is critical for a multitude of scientific disciplines trying to understand and predict the 16	

earth’s terrestrial energy, water, and nutrient cycles.  One promising technique to help meet this 17	

demand is fixed and roving cosmic-ray neutron probes (CRNP). However, the relationship 18	

between observed low-energy neutrons and SWC is affected by local soil and vegetation 19	

calibration parameters. This effect may be accounted for by a calibration equation based on local 20	
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	 2	

soil type and the amount of vegetation.  However, determining the calibration parameters for this 22	

equation is labor and time intensive, thus limiting the full potential of the roving CRNP in large 23	

surveys and long transects, or its use in novel environments. In this work, our objective is to 24	

develop and test the accuracy of globally available datasets (clay weight percent, soil bulk 25	

density, and soil organic carbon) to support the operability of the roving CRNP. Here, we 26	

develop a 1 km product of soil lattice water over the CONtinental United States (CONUS) using 27	

a database of in-situ calibration samples and globally available soil taxonomy and soil texture 28	

data. We then test the accuracy of the global dataset in the CONUS using comparisons from 61 29	

in-situ samples of clay percent (RMSE = 5.45 wt. %, R2 = 0.68), soil bulk density (RMSE = 30	

0.173 g/cm3, R2 = 0.203), and soil organic carbon (RMSE = 1.47 wt. %, R2 = 0.175). Next, we 31	

conduct an uncertainty analysis of the global soil calibration parameters using a Monte Carlo 32	

error propagation analysis (maximum RSME ~0.035 cm3/cm3 at a SWC = 0.40 cm3/cm3). In 33	

terms of vegetation, fast growing crops (i.e. maize and soybeans), grasslands, and forests 34	

contribute to the CRNP signal primarily through the water within their biomass and this signal 35	

must be accounted for accurate estimation of SWC. We estimated the biomass water signal by 36	

using a vegetation index derived from MODIS imagery as a proxy for standing wet biomass 37	

(RMSE < 1 kg/m2).  Lastly, we make recommendations on the design and validation of future 38	

roving CRNP experiments.   39	

 40	

1. Introduction 41	

By the year 2050, over nine billion people are predicted to inhabit the Earth (United 42	

Nations, 2015). The monumental task of feeding the projected global population will require a 43	

near doubling of grain production (FAO, 2009). As of today, the majority (~2/3) of water 44	
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consumption by humans is used for agriculture, where approximately half of all global food 48	

production comes from irrigated agriculture (Mekonnen et al., 2011). As such, an increase in 49	

food demand will put an even greater demand on fresh water resources, particularly an 50	

increasing reliance on groundwater (Mekonnen et al., 2011). The ability to model and forecast 51	

the hydrologic cycle will continue to play a major role in effective water resource management 52	

in the coming decades. Currently, most land surface models (LSM) aimed at characterizing the 53	

fluxes of water, energy, and nutrients, have relied on either sparse point scale SWC monitoring 54	

networks (Crow et al. 2012) or remote sensing products with large pixel sizes (~36 km) and 55	

shallow penetration depths (Kerr et al., 2010 and Entekhabi et al., 2010). A critical scale gap 56	

exists between these methods requiring innovative monitoring strategies (Robinson et al., 2008). 57	

Moreover, as LSMs continue to move towards highly refined spatial resolutions of 1 km or less 58	

(Wood et al., 2011), the need for accurate and spatially exhaustive SWC datasets continues to 59	

grow (Beven and Cloke, 2012). 60	

Estimating and monitoring SWC at the appropriate spatial and temporal scale for effective 61	

incorporation into LSMs has proven to be a difficult task. On one hand, monitoring networks at 62	

the regional (e.g., Nebraska Automated Weather Data Network; AWDN, Oklahoma Mesonet) 63	

and continental scales (Climate Reference Network; CRN, Soil Climate Analysis Network; 64	

SCAN) have continuously recording point sensors. However, these sparse networks are difficult 65	

to place in the context of the surrounding landscape given the multifractal behavior that soil 66	

moisture fields exhibit (Korres et al. 2015). Techniques such as temporal stability analysis 67	

(Vachaud et al., 1985) can help improve the representativeness of the monitoring networks but 68	

require a priori spatial information. On the other hand, remote sensing satellites using passive 69	

microwaves can monitor global SWC data every few days albeit with large spatial footprints (~36 70	
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by 36 km, Entekhabi et al., 2010 and Kerr et al., 2010). In addition, passive microwaves lack 77	

significant penetration depths (~ 2-5 cm Njoku et al., 1996), limiting their effectiveness as a 78	

remote sensing input for full root zone coverage in LSMs.  79	

Alternatively, the field of geophysics offers a variety of techniques to help fill the spatial 80	

and temporal gaps between point sensors and remote sensing products (Bogena et al., 2015). 81	

Bridging this gap requires both novel geophysical techniques and integrated modeling strategies 82	

capable of merging both point and remotely sensed data into a unified framework (Binley et al., 83	

2015). One promising geophysical technique to help fill this need is fixed (Desilets et al., 2010, 84	

Zreda et al., 2012) and roving cosmic-ray neutron probes (CRNP; Chrisman et al., 2013, Dong et 85	

al., 2014), which measure the ambient amount of low-energy neutrons in the air. The low-energy 86	

neutrons are highly sensitive to the mass of hydrogen, and thus SWC, in the near surface (Zreda 87	

et al., 2012). CRNPs estimate the area-average SWC because neutrons are well mixed within the 88	

footprint of the sensor which typically has a radius of several hundred meters and depths of tens 89	

of decimeters (Desilets and Zreda 2013, Köhli et al., 2015).  90	

To date, the CRNP method has been mostly used as a fixed system in one location to 91	

continuously measure SWC as part of a large monitoring network (Zreda et al., 2012, Hawdon et 92	

al., 2014). Recent advancements have allowed the CRNP to be used in mobile systems to 93	

monitor transects across Hawaii (Desilets et al., 2010), monitor entire basins in southern Arizona 94	

(Chrisman et al., 2013), compare against remote sensing products in central Oklahoma (Dong et 95	

al., 2014), and monitor ~140 agricultural fields in eastern Nebraska (Franz et al., 2015). In order 96	

to accurately estimate SWC, the CRNP method relies on a calibration function to convert 97	

observed low-energy neutron counts into SWC (Desilets et al., 2010, Bogena et al., 2013, see 98	

Sec. 2.2 for full details). The calibration procedure requires site specific sampling of both soil 99	
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and vegetation data in order to determine the required parameters. While the calibration of a 107	

fixed CRNP is fairly standardized (Zreda et al., 2012; Franz et al., 2012; Iwema et al., 2015, 108	

Baatz et al., 2014), the heterogeneous nature of soil and vegetation characteristics across a 109	

landscape makes the pragmatic calibration of the roving CRNP a significant challenge. 110	

Specifically, the presence of water within vegetation and the soil minerals may alter the shape of 111	

the local calibration function and thus accuracy of SWC (Baatz et al., 2015). The need for 112	

reliable, accurate, depth-dependent, and localized soil and vegetation spatial information for use 113	

in the calibration function is critical in order to fully exploit the potential of the roving CRNP to 114	

monitor landscape scale SWC across the globe. 115	

The objective of this study is to explore the utility and accuracy of currently available 116	

global soil and vegetation datasets (soil organic carbon, soil bulk density, soil clay weight 117	

percent, and crop biomass) for use in the calibration function. To accomplish our objective, we 118	

aimed to answer the following questions: 119	

1) Can global datasets of soil bulk density, soil organic carbon, and soil clay weight percent be 120	

used instead of in-situ sampling within reasonable error for use in the roving CRNP calibration 121	

function? 122	

2) Can the use of remotely sensed vegetation products, specifically the Green Wide Dynamic 123	

Range Vegetation Index (GrWDRVI) be used to quantify fresh biomass with reasonably low 124	

error (< 1 kg/m2) for use in the roving CRNP calibration function? 125	

To answer these questions, we tested the accuracy of these datasets against in-situ sample 126	

datasets of the same parameters. Existing in-situ datasets from across the CONtinental United 127	

States (CONUS) were combined with in-situ datasets from eastern Nebraska, which focused on 128	
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fast growing crops of maize and soybean. Specifically, we tested the accuracy and use of a ~1 136	

km global soil dataset (Shangguan et al., 2014). In addition, we examined the use of the Green 137	

Wide Dynamic Range Vegetation Index (GrWDRVI, Gitelson, 2004) derived from NASA’s 138	

MODIS sensor aboard the Terra satellite for use in estimating the amount of fresh crop biomass.  139	

 The remainder of the paper is organized as follows: In the Methods section, the CRNP 140	

method is first presented, with emphasis on the integration of the calibration function and soil 141	

and vegetation parameters to convert observed low-energy neutron counts into SWC. Next, in-142	

situ methods for estimating the soil and vegetation calibration parameters are discussed, which is 143	

followed by discussions on the soil and vegetation products available globally at ~1 km 144	

resolution. In the Results section, we first compare the in-situ soil sampling against the global 145	

datasets. Next, we develop a 1 km CONUS soil lattice water map using in-situ samples. We then 146	

compare the GrWDRVI against in-situ samples from Nebraska to estimate the changes in maize 147	

and soybean fresh biomass. Lastly, we present an error propagation analysis investigating the 148	

potential uncertainty of using the global soil calibration data vs. local in-situ sampling. The paper 149	

concludes with a discussion on best practice recommendations for calibrating and validating a 150	

roving CRNP experiment. 151	

 152	

2. Methods 153	

2.1 Overview of Cosmic-ray Neutron Probe 154	

The CRNP estimates area-averaged SWC via measuring the intensity of low-energy 155	

neutrons (i.e. ~epithermal) near the ground surface (Zreda et al. 2008, 2012). A cascade of 156	

neutrons with a continuous energy spectrum are created in the earth’s atmosphere when 157	
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incoming higher energy particles produced within supernovae interact with atmospheric nuclei 160	

(Zreda et al., 2012 and Köhli et al., 2015). After fast neutrons are created, they continue to lose 161	

energy during numerous collisions with nuclei in air and soil, and become low-energy neutrons 162	

that are detected with the probe. The abundance of hydrogen atoms in the air and soil largely 163	

controls the removal rate of low-energy neutrons from the system (Zreda et al. 2012). Water in 164	

the near surface soil (i.e. SWC) is one of the largest sources of hydrogen present in terrestrial 165	

systems (McJannet et al. 2014). Thus, relative changes in the intensity of low-energy neutrons 166	

are overwhelmingly due to changes in the SWC. However, the shape of the calibration function 167	

(see section 2.2) is somewhat modified by local soil and vegetation parameters (Zreda et al. 168	

2012) reflecting the variation of background hydrogen levels across landscapes. 169	

Using a standard neutron detector with a 2.54 cm layer of plastic, Zreda et al. (2008) first 170	

described the support volume the detector measures to be a circle of ~300 m in radius with 171	

vertical penetration depths of 12 to 76 cm depending on SWC. Recent neutron transport 172	

modeling has further refined the footprint area to be a function of atmospheric water vapor, 173	

elevation (Desilets and Zreda, 2013), surface heterogeneity (Köhli et al., 2015), vegetation 174	

(Köhli et al., 2015), and SWC (Köhli et al., 2015). Köhli et al. (2015) found the footprint to range 175	

between 130 and 240 m in radius depending on conditions. Despite the varying footprint 176	

characteristics, the large measurement area at tens of hectares makes this non-invasive technique 177	

an ideal complement to long-term surface energy balance monitoring around the globe. 178	

Currently, there are >200 fixed CRNP (personal communication with Darin Desilets of 179	

HydroInnova LLC, Albuquerque, NM) functioning in this capacity around the United States of 180	

America (Zreda et al., 2012), Australia (Hawdon et al., 2014), Germany (Baatz et al., 2014), 181	

South Africa, China, and the United Kingdom. The real-time SWC data provide critical 182	
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infrastructure for use in weather forecasting and data assimilation in LSMs (Shuttleworth et al., 195	

2013, Rosolem et al., 2014, Renzullo et al., 2014).  196	

In addition to the fixed CRNP measuring hourly SWC, a roving version of the CRNP has 197	

been used to reliably measure SWC at temporal resolutions as low as 1 minute (Chrisman et al., 198	

2013; Dong et al., 2014) providing the ability to make SWC maps over hundreds of square 199	

kilometers in a single day. Moreover, Franz et al. (2015) found that a combination of fixed and 200	

roving CRNP data in a statistical framework has the ability to form an accurate, real-time, and 201	

multiscale monitoring network. With the continued increase in observation spatial scales, the use 202	

of in-situ sampling in the traditional CRNP calibration procedure is no longer practical, thus 203	

requiring the use of alternative available datasets to improve its operability. The remainder of 204	

this work will first describe the availability of such global datasets and then test the accuracy of 205	

using the datasets in the CNRP calibration function.   206	

 207	

2.2 The Cosmic-ray Neutron Probe Calibration Function 208	

In order to convert observed low-energy neutron measurements into SWC, a series of 209	

scaling factors, correction factors, and calibration functions have been developed.  Zreda (2012) 210	

describes in detail the affects from changes in geomagnetic latitude, changes in incoming high-211	

energy cosmic-ray intensity, and atmospheric pressure. Rosolem et al. (2013) further describes 212	

changes in absolute air humidity near the surface. Following these four scaling and correction 213	

factors, the corrected low-energy neutron counts can be converted into SWC. Desilets et al. 214	

(2010) proposed the original calibration function (Eq. 1) valid for mass based gravimetric 215	

measurements which Bogena et al. (2013) further expanded for volumetric water content. The 216	
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calibration function has been successfully tested against direct sampling and point sensor 221	

measurements with RMSE < 0.03 cm3/cm3 across the globe including arid shrublands in 222	

Arizona, USA (Franz et al., 2012), semi-arid forests in Utah, USA (Lv et al., 2014), to humid 223	

forests in Germany (Bogena et al., 2013), and across ecosystems in Australia (Hawdon et al., 224	

2014). The original calibration function proposed by Desilets et al., (2010) is: 225	

!" =
$%

&
&%
'$(

− *+         (1) 226	

where !" (g/g) is the total gravimetric water content, *, = 0.0808,	*.= 0.3720, *+ = 0.1150 (see 227	

Desilets et al., (2010) for details), /(counts per time interval) is the aforementioned low-energy 228	

corrected neutron count rate, and /, (counts per time interval) is the theoretical counting rate at a 229	

location with dry silica soils. Zreda et al. (2012) illustrated that:  230	

!" = !0 + !23 + !456        (2) 231	

where !0 (g/g) is the gravimetric pore water content in the soil, !23 (g/g) is the soil lattice water, 232	

and !456  (g/g) is the soil organic carbon water equivalent. The volumetric soil water content, 233	

SWC, (cm3/cm3) is found by multiplying !0 by 78
79

, where :; (g/cm3) is dry soil bulk density and 234	

:< = 1 g/cm3 is the density of water.  235	

To account for effects of time varying above-ground vegetation on the low-energy 236	

neutron counts (Franz et al., 2013; Coopersmith et al., 2014), Franz et al. (2015) proposed the 237	

following additional correction factor to /,: 238	

/, =>? = @ ∗ =>? + /, 0       (3) 239	
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where /, 0  is the instrument specific estimate of /, with no standing biomass, =>? is the 242	

biomass water equivalent (kg/m2 ~ mm of water/m2), and @ is the slope of the relationship 243	

between /, and =>?, determined via in-situ calibration datasets. The =>? is further defined 244	

as: 245	

=>? = C>= − CD= + CD= ∗ E3F       (4) 246	

where C>= is the standing wet biomass per unit area (kg/m2 ~ mm of water/m2), CD= is the 247	

standing dry biomass per unit area (kg/m2 ~ mm of water/m2), and E3F = 0.494 is the 248	

stoichiometric ratio of H2O to organic carbon (assuming organic carbon is cellulose, C6H10O5). 249	

Using nine in-situ calibration datasets for maize and soybean crops, Franz et al. (2015) found 250	

their roving CRNP had a statistically significant linear relationship between /, and =>? 251	

yielding /, 0 = 518.34 counts per minute and	@ = −4.9506 (R2 = 0.515 and p-value = 0.03). 252	

We note the coefficients are less suitable for forest canopies given the need for a neutron 253	

geometric efficiency factor described further in the supplemental material of Franz et al. (2013). 254	

We also refer the reader to Coopersmith et al. (2014) and Baatz et al. (2015) for further 255	

discussion of CRNP use in forest canopies, and Bogena et al. (2013) for a discussion of below-256	

ground biomass and litter layers. In addition, plant specific root-shoot ratios (Peichl et al., 2012) 257	

or allometric relationships (Jenkins et al., 2003) may be used to derive a better understanding of 258	

the impact of time-varying below-ground biomass on N0. This is an open and challenging 259	

research area and beyond the scope of the current work. 260	

 261	

2.3 In-situ Soil and Vegetation Calibration Parameters 262	
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In the simplest form, the calibration function summarized in equations (1-4) requires 264	

depth-average estimates of three soil parameters,	!23, !456 , and :;, and two vegetation 265	

parameters C>= and CD=. We note that depth-weighted average parameters, belowground 266	

biomass, and depth-weighted SWC are needed to fully understand the decreasing sensitivity of 267	

the CRNP with depth as recommended elsewhere (Bogena et al., 2013 and Köhli et al., 2015). 268	

As a first step, here we will only consider depth and area-average properties given the resolution 269	

of the global remote sensing products. We expect future work to improve on these analyses as 270	

regional datasets contain higher spatial resolution data. In order to estimate depth and area-271	

average soil parameters, Zreda et al. (2012) and Franz et al. (2012) recommended averaging 108 272	

individual in-situ soil samples from 18 locations (every 60 degrees and radii of 25, 75, 200 m) 273	

and six depths (every 5 cm from 0-30 cm) within a CRNP footprint. In light of recent modeling 274	

work (Köhli et al. 2015), this sampling pattern may need to be adjusted to be more representative 275	

of encountered conditions (such as shorter sampling distances due to reduced footprint area). 276	

Given the mixture of previously published datasets and new datasets used here, we decided to 277	

use the original sampling location description. Zreda et al. (2012) found that a composite sample 278	

of 1 g of material gathered from each of the 108 samples was adequate to estimate !23 and !456 . 279	

These composite samples can be analyzed directly for lattice water (g/g), soil total carbon (TC, 280	

g/g), and inorganic carbon (TIC, g/g) determined by measuring CO2 after the sample is acidified 281	

(e.g. by Actlabs of Ontario Canada, Analysis Codes: 4E-exploration, 4F-CO2, 4F-C, and 4F-282	

H2O+/-). Franz et al. (2015) reported !456 = OP − OQP ∗ 1.724 ∗ E3F, where 1.724 is a 283	

constant to convert total organic carbon into total organic matter and E3F is given above. To 284	

estimate :; at each location, Zreda et al. (2012) used a 30 cm long split tube auger, which 285	
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contained six 5 cm diameter by 5 cm length rings. All samples were then averaged to get a 288	

composite value.  289	

In order to estimate standing wet biomass (SWB) and standing dry biomass (SDB) in 290	

maize and soybeans, Franz et al. (2015) measured average plant density in 1 m2 quadrats at each 291	

of the 18 sampling locations. In a subset of six sites (randomly chosen from one radius for each 292	

of the six transects) three plants were removed and placed in a paper bag for weighing within 293	

two hours (to minimize water loss). The plants were then dried for five days at 70o C and 294	

weighed again. Using the density of plants, wet weight, and dry weight, SWB and SDB can be 295	

determined at each site and averaged across the CRNP footprint. 296	

 297	

2.4 Global Datasets of Soil Properties 298	

Shangguan et al. (2014) compiled a thirty arc second (~1 km) Global Soil Dataset 299	

(GSDE) with 34 soil parameters in 8 layers (0–0.045, 0.045–0.091, 0.091–0.166, 0.166–0.289, 300	

0.289–0.493, 0.493–0.829, 0.829–1.383, and 1.383–2.296 m). In order to construct an average 301	

value relevant to the CRNP, we arithmetically averaged the top four layers in each grid location 302	

to form a composite value (~30 cm) over the CONUS. The GSDE contains estimates of soil bulk 303	

density and soil organic carbon. In order to construct a map of lattice water, we explored if any 304	

relationships existed between clay weight fraction and lattice water following the work of 305	

Greacen et al. (1981) using active neutron probe calibration procedures developed for Australian 306	

soils. In order to account for variations in chemical and physical weathering on lattice water 307	

(Zreda et al., 2012), we further partitioned the analyses based on soil order. A global soil order 308	

map with a resolution of five arc minutes (~ 8 km) containing 25 major soil classifications was 309	
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first uploaded to ArcMap (ESRI, v. 10.2.2) and clipped to the CONUS. The 25 soil 311	

classifications were then categorized into 12 major classifications of U.S. soil taxonomy (see Fig. 312	

1, personal communication with Prof. M. Kuzila, University of Nebraska-Lincoln, Soil Survey 313	

Staff, 1999). The reduction from 25 to 12 soil classifications allowed us to generate larger 314	

sample sizes for each classification from the available calibration datasets. Using the available 315	

lattice water samples from Zreda et al. (2012) and additional samples collected in-situ over 2014, 316	

we analyzed if any statistically significant relationships existed between GSDE clay weight 317	

percent and 61 in-situ lattice water samples for each of the US soil orders (Table S1). We note 318	

that this procedure could be used globally if in-situ lattice water samples were available for all 25 319	

soil taxonomic groups. From these relationships, a map of the CONUS lattice water weight 320	

percent was developed by using either the mean value of the in-situ lattice water or the linear 321	

relationships between clay weight percent (from the GSDE) and the lattice water in-situ samples. 322	

A statistically significant p value (<0.05) was used to discriminate between using the mean 323	

values and linear relationship. Additionally, in-situ samples of soil organic carbon, bulk density, 324	

and clay weight percent were compared against the same parameters derived from the GSDE.  325	

 326	

2.5 Global Datasets of Vegetation Properties 327	

In order to estimate SWB and SDB, we downloaded remotely sensed 500 m MODIS 328	

reflectance data from NASA’s Terra satellite (http://earthexplorer.usgs.gov/). To calibrate and 329	

validate the in-situ vegetation data to the remotely sensed vegetation estimates, we sampled two 330	

different agricultural areas in eastern Nebraska. The MODIS reflectance data were used to 331	

generate a widely used vegetation index (see detailed information below), and then calibrated 332	

against historical biomass data (2003-2013) from 3 fields near Mead, NE. Each field is part of 333	
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the AmeriFlux network (http://ameriflux.ornl.gov/) with data going back to 2001 (site 338	

description given in Suyker et al., 2005). Each field is approximately 65 ha in area.  Field 1 339	

(Mead Irrigated/US-Ne1, 41.1650°, -96.4766°) is irrigated with continuous maize. Field 2 (Mead 340	

Irrigated Rotation/US-Ne2, 41.1649°, -96.4701°) is irrigated with a rotation of maize and 341	

soybean. Field 3 (Mead Rainfed/US-Ne3, 41.1797°, -96.4396°) is rainfed with a rotation of 342	

maize and soybean. At these three fields, destructive biomass samples were collected 343	

approximately every two weeks at 6 different locations in the field, typically consisting of 30-35 344	

individual plants per sampling bout. From the destructive sampling bouts, we were able to 345	

compute SWB and SDB. The sites, with their long sampling records consisting of both rainfed 346	

and irrigated soybean and maize, are an ideal location for calibrating the remote sensing 347	

reflectance data and vegetation indices. In order to validate the derived vegetation index and 348	

coefficients from the above mentioned three sites, we used 4 bouts of destructive biomass 349	

sampling at two fields (each approx. 65 ha.) during 2014 near Waco, NE (Franz et al. 2015). The 350	

fields were irrigated maize (40.9482°, -97.4875°) and irrigated soybean (40.9338°, -97.4587°). 351	

SWB and SDB were collected following the protocol described in section 2.3.  352	

 A total of 924 MODIS images over the growing seasons (May to October) between 2003 353	

and 2014 were downloaded for calibration and validation of the corresponding destructive 354	

biomass samples at the five field sites in central and eastern Nebraska (note: MODIS images 355	

from the closest date to in-situ sampling were used with up to a 4 day offset). We extracted the 356	

MODIS reflectance data in the green and near-infrared electromagnetic spectrum range. Next, 357	

we removed any pixels that were skewed by incidental cloud cover (Nguy-Robertson & Gitelson, 358	

2015). The resulting data were then transformed from separate reflectance images into the Green 359	

Wide Dynamic Range Vegetation Index (GrWDRVI; Gietelson, 2004): 360	
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TU>DVWQ = 	 (,..∗YZ$[	\]^[$[Z_'`[ZZ])
(,..∗YZ$[	\]^[$[Z_b`[ZZ])

     (5)  365	

where near-infrared light (MODIS band 2) has wavelength between 841 and 876 nm and green 366	

light (MODIS band 4) has wavelength between 545 and 565 nm. The GrWDRVI has been shown 367	

to have better correlations with observed in-situ biomass as compared to other vegetation indices 368	

such as NDVI (Nguy-Robertson et al., 2012; Nguy-Robertson & Gitelson, 2015). We then 369	

investigated if any relationships existed between GrWDRVI and SWB and SDB. We note that a 370	

variety of vegetation indices exist in the literature (c.f. Kumar et al. 2015 and Duncan et al. 371	

2015) and that this analysis is a first step for use with maize and soybean. We anticipate that 372	

other vegetation indices may be more appropriate with use in other crops or vegetation types and 373	

more research is needed in this area.  374	

 375	

2.6 Error Propagation Analysis of GSDE Soil Properties 376	

We used a Monte Carlo analysis to estimate the expected uncertainty if the GSDE 377	

parameters were used instead of in-situ estimates. The statistical metrics of root mean square 378	

error (RMSE), mean absolute error (MAE), and bias describe the error propagation in the Monte 379	

Carlo simulation experiment. From the 61 CONUS in-situ samples and the GSDE soil properties, 380	

we estimated the mean difference and the covariance matrix for !23, !456 , and :;. With these 381	

data, we simulated 100,000 realizations of the “true” (i.e. from the in-situ sampling) and 382	

perturbed soil properties using a multivariate normal distribution. Using a range of observed 383	

neutron counts and solving equations (1-2) with the true and perturbed soil properties, we also 384	

estimated the true and perturbed SWC. In order to provide realistic constraints on the error 385	

propagation results, we assumed soil bulk density was constrained between 1.2-1.5 g/cm3, lattice 386	
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water between 1-8 wt. %, soil organic carbon between 0-8 wt. %, and SWC between 0.03-0.45 390	

cm3/cm3. Simulated and calculated values outside of these bounds were either reset to the 391	

minimum or maximum value or removed from the Monte Carlo statistics. A minimum threshold 392	

of 70% of simulated cases was used to compute all error statistics for each case. We note that the 393	

effects of growing biomass were not included here given the lack of available calibration datasets 394	

at all sites, but could be incorporated in future work following a similar methodology. 395	

  396	

3. Results 397	

3.1. Comparison of In-situ and Global Soil Calibration Parameters  398	

The comparisons between observed clay weight percent, soil bulk density, soil organic 399	

carbon and the GSDE values are summarized in Table S1 and Figure 2 a, b, c for the 61 400	

sampling sites within the CONUS. Other than 1 outlier (see discussion in 4.1.), the comparison 401	

between the mean observed and GSDE clay weight percent (of sites that had clay weight 402	

percent) behaved well (RMSE = 5.45 wt. %, R2 = 0.68) considering the difference in scale and 403	

methods. The comparisons between soil bulk density (RMSE = 0.173 g/cm3, R2 = 0.203) and soil 404	

organic carbon as it was during the various 2011-2014 sampling campaigns, (RMSE = 1.47 wt. 405	

%, R2 = 0.175) generally followed the same positive trend. We note that the slope of the 406	

relationships for soil bulk density and soil organic carbon is different from 1 and can lead to 407	

biased results. Caution should be used for using these estimates as opposed to local in-situ 408	

sampling. 409	

In order to construct a map of the CONUS lattice water, we investigated if any significant 410	

relationships existed between GSDE clay wt. % and observed lattice water for each US soil 411	
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taxonomic group (Table 1). We found that a significant linear relationship existed between clay 414	

wt. % and lattice water for all 61 sites (R2 = 0.183, p value <0.001). However, after partitioning 415	

the sites into soil taxonomic groups, only the mollisol taxonomic group yielded a statistically 416	

significant relationship (R2 = 0.539, p value <0.001). Therefore, in order to construct a CONUS 417	

lattice water map, we used the mean values for six taxonomic groups and neglected the 418	

remaining five taxonomic groups due to an inadequate number of samples (Figure 3). Figure 2d 419	

illustrates the comparison between the derived and observed lattice water for the 61 CONUS 420	

sites (RMSE = 1.299 wt. %, R2 = 0.315). Table S1 summarizes the observed and GSDE values 421	

for all 61 sites and Table 2 summarizes the mean difference and covariance matrix between the 422	

in-situ values and GSDE values. The mean difference and covariance differences were used in 423	

the error propagation analysis described in section 2.6 and 3.3. We note that each of the mean 424	

differences followed a normal distribution (see Table S1 for in-situ and GSDE values). 425	

 426	

3.2. Comparison of In-situ and Remotely Sensed Vegetation Calibration Parameters  427	

Using the 11 years of destructive vegetation sampling from 3 fields near Mead, NE, we 428	

found that the GrWDRVI was able to reasonably predict SWB when partitioning the data into 429	

maize and soybean, irrigated and rainfed, and green-up/mature and senescence periods of crop 430	

development (Figure 4 and Tables S2 and S3). Figure 4a and 4b illustrate the logistic functions 431	

that were used to predict SWB for maize green-up (RMSE = 0.88 kg/m2) and soybean green-up 432	

(RMSE = 0.47 kg/m2). We note that SWB relationships with GrWDRVI indicate that GrWDRVI 433	

values less than 0.25 equated to the absence of SWB. During senescence, we found that a second 434	

order power law function fit the data well. We found the maize senescence functions (DOY> 435	

210) needed to be further partitioned by irrigated and rainfed conditions as limitations in soil 436	
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water will occur more quickly with mature plants that utilize the entire root zone. The resulting 441	

functions for irrigated maize during senescence (RMSE = 0.75 kg/m2) and rainfed maize during 442	

senescence (RMSE = 0.92 kg/m2) behaved well. For the soybean senescence function 443	

(DOY>230), we found a single function behaved reasonably well for both irrigated and rainfed 444	

conditions (RMSE = 0.45 kg/m2). As expected from previous research (Ciganda et al, 2008; 445	

Peng et al. 2011), we found that the GrWDRVI was a poor predictor of SDB/percent water 446	

content of the vegetation. We will discuss the reasons and alternative strategies for estimating 447	

SDB in section 4.2. 448	

Using the derived relationships from the three study sites near Mead, NE, we applied the 449	

equations to our two study sites near Waco, NE (~ 88 km from Mead, NE, Figure 5 and Tables 3 450	

and 4). Figure 5 illustrates the time series of SWB using the 8 day MODIS product in 451	

combination with the derived equations for both field sites. The figure also illustrates the 452	

observed destructive sampling for 4 different sampling bouts. With the limited data, we found 453	

the time series of SWB calculated from the MODIS data followed the expected green-up and 454	

senescence SWB behavior for both the irrigated maize and soybean. The GrWDRVI derived SWB 455	

largely captured the maximum observed value for both the irrigated maize (6.58 kg/m2 vs. 6.2 456	

kg/m2) and irrigated soybean (2.61 kg/m2 vs. 1.81 kg/m2). The largest discrepancy was during 457	

the maize green-up period (DOY 183) where the observed value was 2.4 kg/m2 and ~4.0 kg/m2 458	

calculated from the GrWDRVI. While the derived equations behaved well for this limited 459	

validation dataset, the equations should be tested at additional sites where other crop and soil 460	

types may influence the function coefficients.  Overall, the equations and regression fits resulting 461	

in RMSE < 1 kg/m2 are within the uncertainty of destructive biomass sampling in crops (Franz et 462	

al., 2013; 2015). We note that 1 kg/m2 is approximately equal to 1 mm of water or about 0.0033 463	
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cm3/cm3 of SWC over 300 mm. This indicates that for relatively small changes in BWE it will be 466	

nearly indistinguishable from the noise in the CRNP measurements.  By having general SWB 467	

relationships (for eastern Nebraska) through time using the 8 day MODIS data, this could allow 468	

for reasonable biomass corrections to N0 with minimal effects (<0.01 cm3/cm3) on the overall 469	

estimation of SWC.  470	

 471	

3.3. Results of GSDE Soil Properties Error Propagation Analysis 472	

 In order to further assess the accuracy of our datasets, we synthetically altered the 473	

parameters via a Monte Carlo error analysis.  This was done using the GSDE soil parameters 474	

(!23, !456 , and :;) as compared to using local sampling (Figure 6). The analysis revealed that 475	

for the given bounds of !23, !456 , and :;, the maximum RSME was around 0.035 cm3/cm3 at a 476	

SWC = 0.40 cm3/cm3. The asymmetric shape of all the curves is expected given the nonlinear 477	

calibration function given in Eq. (4) and the bounded nature of soil moisture. We found that :; 478	

was by far the most sensitive parameter, followed by !23 and then !456 . We expect the 479	

influence of vegetation changes to be small on the overall accuracy of SWC (<0.01 cm3/cm3) 480	

given the low RMSE described in section 3.2 (< 1 kg/m2, which is ~1 mm of water or 0.0033 481	

cm3/cm3 for a soil depth of 300 mm). We also note the critical factor in the error propagation 482	

analysis is the assumed range of :;, given that it is directly multiplied by the gravimetric water 483	

content in the calibration function. Therefore, future sampling efforts or evaluations of available 484	

datasets should seek to improve the accuracy of bulk density, meaning better estimates of the 485	

mean, standard deviation, quantiles, and impact of land use practices on bulk density. 486	

 487	
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4. Discussion 491	

4.1. Global Soil Calibration Parameters  492	

The correlation between observed and GSDE clay content was very strong (Figure 2a) for 493	

all 61 sites in the CONUS except for the site in south central Texas (29.9492o, -97.9966o). The 494	

site occurred near a transition from vertisol to alfisol soil taxonomic groups; the site may have 495	

been improperly categorized (Table S1) or may have straddled a sharp gradient in clay contents. 496	

The strong correlation of the GSDE clay content with the observed values allowed us to use the 497	

GSDE clay content in understanding the correlation between clay content and lattice water 498	

organized by US soil taxonomic groups (Table 1). A strong correlation was only found for clay 499	

content and lattice water for the mollisol soil taxonomic group (see Greacen, 1981; Zreda et al., 500	

2012). This strong correlation is significant because large areas of the Midwest and Great Plains 501	

regions of the United States are made up of mollisol soils.  Globally, mollisol soils comprise 502	

about 7% of the land surface (United Nations 2007) but contain some of the highest productive 503	

grassland and crop areas (i.e. Central USA, Argentina, Central Eurasia).  As such, the roving 504	

CRNP method remains applicable within grassland agricultural settings. No significant linear 505	

relationships with clay content were found for alfisol, aridisol, entisol, inceptisol, spodosol, or 506	

ultisol. Instead the mean value was assigned to the alfisol, aridisol, entisol, inceptisol, spodosol, 507	

and ultisol soil taxonomic groups when generating the CONUS map. We found the differences in 508	

most of the soil taxonomic mean values were statistically significant among different taxonomic 509	

groups given the small standard errors of the means (not shown but can be calculated from data 510	

in Table 1). The current analysis did not contain enough samples for the soil taxonomic groups 511	

of andisol, gelisol, histosol, oxisol, or vertisol to perform a linear regression or assign a mean 512	

value. We recommend future work to consider repeating the analysis for a larger dataset using 513	
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the FAO 2007 (United Nations 2007) soil classification of all 25 groups (also classified for our 515	

sites in Table S1). Given the widespread interest in both the fixed and roving cosmic-ray 516	

technology, a database of lattice water and clay content for each site could be developed. In 517	

addition, warehouses like the Natural Resources Conservation Service (NRCS) in Lincoln, NE 518	

contain stored samples from around the USA. This warehouse with others around the globe 519	

could be further sampled to help complete the global dataset for use by the cosmic-ray 520	

community. Finally, the NRCS regularly updates the Soil Survey Geographic Database 521	

(SSURGO), which contains higher spatial resolution and vertically resolved estimates of soil 522	

texture and structure (i.e. clay content and bulk density). With the defined regression 523	

relationships and soil taxonomic groups, better spatial maps of lattice water could be generated. 524	

This may become important for applications of the rover at scales less than 1 km, such as using it 525	

for applications in precision agriculture as well as increasing the reliability of the calibration 526	

function.   527	

The correlation between the observed and GSDE soil organic carbon was fairly poor, 528	

particularly at the high end (> 4 wt. %). The history of land use is critical in determining carbon 529	

pools and how they change through time (Post et al., 2000) and may not be well represented in 530	

the GSDE. For arable lands, we note that organic carbon has a relatively small impact on the 531	

calibration function as it is multiplied by several factors in the calibration equation, and is 532	

relatively low and homogeneously distributed in the A-horizon due to land management 533	

activities. However, in grassland and forest sites, high SOC amounts and strong SOC vertical 534	

gradients typically exist in the top soil and may need to be quantified with local in-situ sampling 535	

(e.g. Bogena et al., 2013). For rover survey experiments in these areas, we suggest that SOC be 536	
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sampled with composite samples, particularly between sites with varying land use histories 542	

which can be identified using historical land cover maps.  543	

Observed in-situ soil bulk density and GSDE bulk density exhibited a positive 544	

relationship, albeit with low R2.  The poor fit and sensitivity of the parameter in the calibration 545	

function increases the importance of identifying the range and variability of bulk density within 546	

the rover sample domain. The variability shown here by the standard deviation of the bulk 547	

density for the individual point samples within the 28 ha sample domain varied between 0.1 and 548	

0.2 g/cm3. Moreover, estimating the quantiles of bulk density at a site is key given the 549	

propagation of error analysis presented in section 3.3. Thus, this result supports direct sampling 550	

at key locations (along gradients of land use, soil taxonomic groups, etc.) to constrain the 551	

quantiles of expected bulk density values. We also suggest that for rover surveys in the USA 552	

(and regional elsewhere), additional higher resolution datasets like SSURGO, and its derivatives 553	

(e.g. Polaris, Chaney et al., 2016), be used instead of the 1 km GSDE (in particular bulk density 554	

data as a function of depth), as significant small scale variability may be averaged out. This may 555	

be critical to account for in future roving CRNP research areas, such as precision agriculture or 556	

small scale watershed monitoring where significant soil texture variation may exist at short 557	

length scales. We note that this analysis is a first step in the incorporation of existing soil 558	

databases that will no doubt continue to increase in spatial resolution and accuracy. Given the 559	

increasing use of the roving CRNP technology, we anticipate similar analyses and procedures 560	

will be undertaken on regional and local scales from existing and new databases as they become 561	

available.   562	

 563	

4.2. Global Remotely Sensed Vegetation Calibration Parameters  564	
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 The comparison of 11 years of destructive vegetation samples from maize and soybeans 567	

at 3 sites in eastern Nebraska indicated that the GrWDRVI was able to predict SWB in 568	

agricultural fields, especially when partitioned into green-up vs. senescence and irrigated vs. 569	

rainfed (Figure 4). However, as expected the GrWDRVI was unable to predict SDB. The main 570	

reason is as the plants begin to dry out during the late summer and early fall, leaves lose their 571	

chlorophyll and leaf structure beings to collapse thereby increasing reflected green and reducing 572	

near-infrared light (Ciganda et al. 2008; Peng et al. 2011). This is exaggerated by a change in the 573	

allocation of resources by the plant from leaves to grain, shifting where the majority of mass is 574	

located and thus weakening the capacity for the GrWDRVI to predict SDB. This biological 575	

investment of resources is more pronounced for maize than soybeans. As additional crops are 576	

included in this analysis, the location and development of the fruit and seed will impact the 577	

predictive relationships using vegetation indices. We refer to the reader to Duncan et al. (2015) 578	

and Kumar et al. (2015) for a recent review of vegetation indices in remote sensing.  579	

 While the developed regression relationships for maize and soybean (Table S3) were 580	

tested against independent biomass estimates from Waco, NE (Figure 5), we note that further 581	

validation is needed. In terms of a strategy for estimating SDB, we suggest that proxies such as 582	

crop type and growth stage be used. Franz et al. (2013 and 2015) found that in early stages, 583	

maize and soybean had canopy water contents from 75-90 wt. %. By the end of senescence 584	

before harvest, the canopy water contents were down to 25-35 wt. %, and thus very low BWE 585	

and minimal impact on the low-energy neutron intensity. If growth stage is not directly known, 586	

local meteorological observations, planting date, and crop variety can be used to compute 587	

proxies (e.g. growing degree days) or simulated from crop models (Allen et al. 1998). We note 588	

that having a reasonably accurate estimate of SWB and thus BWE (within ~ 1 kg/m2) is all that is 589	
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required to have a relatively small impact (< 0.01 cm3/cm3) on the estimated SWC. Finally, we 590	

note that this methodology is not applicable to areas with woody biomass. Following Franz et al., 591	

(2013), Hawdon et al., (2014), Baatz et al., (2015), and Coopersmith et al., (2014) we suggest 592	

other vegetation relationships (i.e. BWE vs. N0) be defined. However, given the relatively small 593	

changes in BWE over the year in forests, we would expect small changes in N0 through time. For 594	

a more complete discussion of CRNP calibration in forests and estimates of time varying 595	

changes in N0 please see Bogena et al., 2013 and Heidbüchel et al., (2016). 596	

 597	

4.3. Roving CRNP Survey Recommendations 598	

 With the continuing use of the roving CNRP we make the following recommendations on 599	

best calibration and use: 600	

1) Collect a series of full calibration datasets (!23, !456 , :;, C>=, CD=) in different land 601	

use areas and soil types in order to estimate the instrument specific slope and intercept for 602	

dependence of /, with BWE. 603	

2) In the rover sampling area, construct a map of land use including descriptions of: 604	

vegetation/crop type, planting date, variety, rainfed vs. irrigated, and gravel vs. paved 605	

roads vs. natural areas (see Chrisman and Zreda 2013 for a discussion of road influence 606	

on neutron counts). 607	

3) Collect a series of aggregate soil samples for soil organic carbon and lattice water around 608	

the survey area. The samples should be collected across land use, soil texture, and soil 609	

taxonomic groups. The GSDE or more local datasets like SSURGO and Polaris (Chaney 610	
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et al., 2016) in the USA can be used to select sites, cross validate samples, and fill in data 611	

gaps.  612	

4) Soil bulk density is the critical parameter in the calibration equations and overall 613	

accuracy of the cosmic-ray neutron method. Bulk density should be collected locally 614	

wherever possible to determine reasonable quantiles. More local datasets like SSURGO 615	

and Polaris in the USA will likely perform better at smaller scales than the 1 km GSDE. 616	

5) SWC validation datasets should be collected to independently assess the accuracy of the 617	

rover survey results. 618	

 619	

5. Summary and Conclusions 620	

In this work, we developed a framework using globally available datasets for estimating 621	

four (!23, !456 , :;, C>=)  of the five key soil and vegetation parameters needed by the roving 622	

cosmic-ray neutron method for estimating SWC in fast growing vegetation areas such as row 623	

crop production in agricultural areas. The remaining crop vegetation parameter (SDB) can be 624	

fairly well approximated by crop type, growth stage or simulated with crop models. The 625	

accuracy of the GSDE soil database was tested against 61 calibration datasets from the CONUS. 626	

We found that the 1 km GSDE compares well against observed clay content (V+ = 0.68)	but 627	

much poorer against soil bulk density (V+ = 0.203) and soil organic carbon (V+ = 0.175). 628	

Surprisingly, of the six soil taxonomic groups we investigated, only mollisols showed a 629	

statistically significant correlation with clay content. The remaining five soil taxonomic groups 630	

we investigated did show statistically different mean values.  These mean values were used to 631	

generate a map (not complete) of lattice water for the CONUS. From 11 years of destructive 632	
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sampling of maize and soybean fields in eastern Nebraska, we found that the 8-day 500 m 634	

resolution MODIS derived GrWDRVI was highly correlated to SWB, particularly when 635	

partitioning the fields into green-up vs. senescence and irrigated vs. rainfed (RMSE < 1 kg/m2). 636	

A propagation of error analysis indicated that the range of bulk density values was the most 637	

sensitive calibration parameter. For the selected ranges, we found the GSDE vs. local sampling 638	

resulted in a maximum RMSE of 0.035 cm3/cm3 at a SWC = 0.40 cm3/cm3. Finally, a list of best 639	

practices for future roving CRNP experiments is provided.    640	
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 862	

Table Captions 863	

Table 1. Summary of mean, standard deviation of in-situ lattice water samples organized by USA 864	

soil taxonomic groups. The table also summarizes a linear regression analysis using the GSDE 865	

clay percent and in-situ sample. The last column indicates how the 1 km CONUS lattice water 866	

map was generated. Note NA stands for not applicable because of a lack of data. 867	

USA Soil 
Taxonomic 

Group 

Mean 
Lattice 
Water 

(Wt. %) 

Std. 
Lattice 
Water 

(Wt. %) 

Number 
of 

Samples 

Linear 
Regression 

Slope 

Linear 
Regression 
Intercept 

Linear 
Regression 

R2     

Linear 
Regression 

p value 

GSDE 
Derived 
CONUS 
Lattice 
Water 

Product 

Alfisol 4.31 1.36 9 6.09 -0.11 0.086 0.44330 Mean 

Andisol NA NA NA NA NA NA NA NA 

Aridisol 2.73 1.36 10 4.82 -0.15 0.095 0.38607 Mean 

Entisol 1.47 0.93 5 2.48 -0.14 0.233 0.41064 Mean 

Gelisol NA NA NA NA NA NA NA NA 

Histosol NA NA NA NA NA NA NA NA 

Inceptisol 4.98 0.28 2 NA NA NA NA Mean 

Mollisol 3.18 1.22 24 1.03 0.11 0.539 0.00004 Linear 

Oxisol NA NA NA NA NA NA NA NA 
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Spodosol 2.68 2.10 4 3.45 -0.11 0.020 0.85919 Mean 

Ultisol 2.82 2.33 6 0.28 0.20 0.229 0.33672 Mean 

Vertisol 5.18 NA 1 NA NA NA NA NA 

ALL 3.16 1.58 61 1.68 0.09 0.183 0.00066 NA 
 868	

 869	

Table 2. Top) Summary of mean difference between in-situ samples and GSDE values (Figure 3) 870	

for bulk density, lattice water and organic carbon. Bottom) Summary of covariance matrix of 871	

difference between in-situ values and GSDE values. The mean difference and covariance data 872	

were used in an error propagation analysis illustrated in Figure 6. 873	

  Bulk Density 
(g/cm3) 

Lattice Water 
(Wt. %) 

Organic Carbon 
(Wt. %) 

Mean Difference of in-situ 
value - GSDE value -0.10035 -0.05789 -0.07077 

Covariance matrix of in-situ value - GSDE value 

  Bulk Density 
(g/cm3) 

Lattice Water 
(Wt. %) 

Organic Carbon 
(Wt. %) 

Bulk Density (g/cm3) 0.0386 -0.0567 -0.2077 
Lattice Water (Wt. %)   1.6745 0.3624 

Organic Carbon (Wt. %)     3.5810 
 874	

 875	

 876	

 877	

 878	

 879	
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 880	

 881	

 882	

 883	

Table 3. Summary of 2014 GrWDRVI and calculated standing wet biomass for irrigated maize 884	

and irrigated soybean fields near Waco, NE. Note that the senescence equation was applied to 885	

DOY 209 for the irrigated maize field as planting date and development can vary locally. The 886	

drop in GrWDRVI between DOY 201 and 209 is a clear indicator of change in plant growth stage 887	

that can be used on a field by field basis. 888	

DOY 
(2014) 

GrWDRVI, 
Irrigated-

Maize 

GrWDRVI- 
Irrigated 
Soybean 

Calculated Standing 
Wet Biomass- 

Irrigated Maize 
(kg/m2) 

Calculated Standing 
Wet Biomass- 

Irrigated Soybean 
(kg/m2) 

153 0.23 0.23 0.00 0.00 
161 0.24 0.24 0.00 0.00 
169 0.32 0.28 0.53 0.06 
177 0.57 0.54 4.69 1.25 
185 0.55 NA 4.33 NA  
193 0.63 0.63 5.63 1.91 
201 0.61 0.71 5.34 2.48 
209 0.55 0.73 6.50* 2.61 
217 0.57 0.74 6.58 2.67 
225 0.50 0.73 6.27 2.61 
233 0.47 0.74 6.07 NA  
241 0.40 0.68 5.38 2.89 
249 0.43 0.64 5.73 6.77 
257 0.27 0.47 1.44 6.07 
265 0.25 0.44 0.00 5.83 
281 0.21 0.28 0.00 2.02 
289 0.21 0.26 0.00 0.78 
297 0.20 0.25 0.00 0.00 
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 889	

 890	

 891	

Table 4. Summary of 2014 observed standing wet biomass for irrigated maize and irrigated 892	

soybean fields near Waco, NE. The observations represent the aggregation of 18 plants collected 893	

at 6 different locations across the field on the sampling date.  894	

DOY (2014), 
Irrigated 
Soybean 

Observed Standing 
Wet Biomass- 

Irrigated Soybean 
(kg/m2) 

DOY (2014), 
Irrigated 

Maize 

Observed Standing 
Wet Biomass- 

Irrigated Maize 
(kg/m2) 

167 0.19 161 0.13 
196 1.63 183 2.40 
211 1.81 217 6.22 
259 1.63 259 0.30 

 895	

 896	

 897	

 898	

 899	

 900	

 901	

 902	

 903	
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 904	

 905	

 906	

Table S1. Summary of in-situ and GDSE soil information for 61 CONUS study sites (see 907	

supplemental material zip file). 908	

 909	

Table S2. Summary of observed standing wet biomass and MODIS derived GrWDRVI for each 910	

of the 3 fields near Mead, NE (see supplemental material zip file).  911	

 912	

Table S3. Summary of derived equations estimating standing wet biomass from GrWDRVI for 913	

maize and soybean partitioned into irrigated and rainfed areas and green-up (DOY< 210 for 914	

maize, DOY<230 for soybean) and senescence. Destructive biomass data is aggregated from 3 915	

fields near Mead, NE between 2003-2013 (Table S2). We note that the maize and soybean 916	

functions were bounded to provide realistic behavior at the observed GrWDRVI and destructive 917	

vegetation sampling bounds.  See main text for details. 918	

 919	

 920	

 921	

 922	

 923	
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 924	

 925	

 926	

Figure Captions 927	

Figure 1.  Map of soil taxonomic classification map over the Continental United States of 928	

America using the twelve USA soil taxonomic orders (data source FAO 2007 and personal 929	

communication with M. Kuzila). Note gelisols are not present in the CONUS. Black dots 930	

indicate 61 locations where we have in-situ composite/average samples for soil bulk density, soil 931	

lattice water, soil organic carbon, and clay weight fraction collected over a 12.6 ha circle and 932	

averaged over the top 30 cm (Table S1).  933	

 934	

Figure 2. Comparison between 61 in-situ composite sample and GSDE value from the closest 935	

pixel for a) clay weight percent b) soil bulk density, and c) soil organic carbon. d) Comparison 936	

between in-situ lattice water and derived values using GSDE clay weight fraction and soil 937	

taxonomic orders. See Table 1 for summary of data by taxonomic group, Table S1 for raw data, 938	

and Table 2 for statistical summary of differences between in-situ and GSDE product. Note error 939	

bars denote +/- 1 standard deviation.      940	

 941	

Figure 3. Derived 1 km resolution lattice water weight percent map using the GSDE clay percent 942	

and regression analyses organized by soil taxonomic classification. See Table 1 for estimates of 943	

the mean, standard deviation, and linear regression vs. clay percent organized by taxonomic 944	
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group. Black dots indicate 61 locations where we have in-situ composite/average samples for soil 945	

bulk density, soil lattice water, soil organic carbon, and clay weight fraction collected over a 12.6 946	

ha circle and averaged over the top 30 cm (Table S1). Missing areas indicate surface water 947	

bodies or soil taxonomic groups with no or limited in-situ lattice water sampling (see Table 1). 948	

 949	

Figure 4. Relationship between GrWDRVI and observed standing weight biomass for maize (a, 950	

c) and soybean (b, d) partitioned into green-up (DOY< 210 for maize, DOY<230 for soybean) 951	

and senescence. Destructive vegetation data is aggregated from 3 fields near Mead, NE between 952	

2003-2013 (Table S2). The regression coefficients and equations are summarized in Table S3. 953	

Note that the maize and soybean functions were subject to the constraints in order to provide 954	

realistic behavior at the observed GrWDRVI and destructive vegetation sampling bounds. See 955	

main text for details. 956	

 957	

Figure 5. Time series of standing wet biomass for two study sites (irrigated maize and irrigated 958	

soybean) near Waco, NE over the 2014 growing season. The graph contains the observed in-situ 959	

sampling in addition to the GrWDRVI estimates using the equations summarized in Table S3. 960	

See Table 3 for GrWDRVI values and Table 4 for in-situ estimates. 961	

 962	

Figure 6. Propagation of error analysis using Monte Carlo simulations of 100,000 soil parameter 963	

datasets of true soil parameters (i.e. soil bulk density, lattice water, soil organic carbon) and 964	

perturbed parameters with matching mean differences and covariance matrix between in-situ 965	

samples and GSDE derived parameters (see Table 2). Three error metrics are presented across a 966	



	
	

	 42	

range of neutron counts (and thus SWC values). Note that soil bulk density was constrained to 967	

1.2-1.5 g/cm3, lattice water was constrained from 1-8 wt. %, soil organic carbon was constrained 968	

from 0-8 wt. %, and soil water content was constrained from 0.03-0.45 cm3/cm3. Simulated and 969	

calculated values outside of these bounds were either reset to the minimum or maximum or 970	

removed from the Monte Carlo statistics. A minimum threshold of 70% of simulated cases were 971	

used to compute error statistics. 972	
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With the continuing use of the roving CNRP we make the following recommendations on best 

calibration and use: 

 Collect a series (minimum of 7) of full calibration datasets ("#$, "%&' , (), +,-, +.-) 

in differing land use and soil types to estimate the instrument specific slope and intercept for 

correction factor 01. 

 In the rover sampling area, construct a map of land use including: vegetation/crop type, 

planting date, variety, rainfed vs. irrigated, and gravel vs. paved roads vs. natural areas. 

 Collect a series of aggregate soil samples for soil organic carbon and lattice water around 

the survey area. The samples should be collected across land use, soil texture, and soil taxonomic 

groups. The GSDE or more local datasets like SSURGO in the USA can be used to select sites, 

cross validate samples, and fill in missing areas.  

 Soil bulk density is the critical parameter in the calibration equations and overall 

accuracy of the cosmic-ray neutron method. Bulk density should be collected locally wherever 

possible. More local datasets like SSURGO in the USA will likely perform better at smaller 

scales than the 1 km GSDE. 

SWC validation datasets should be collected to independently assess the accuracy of the rover 

survey results. 

	

	


