
C4  

 

Hydrol. Earth Syst. Sci. Discuss., 
doi:10.5194/hess-2016-89-RC2, 2016 
© Author(s) 2016. CC-BY 3.0 License. 

 
 
 
 

 

Interactive comment on “Major flood dominates 14 
year sediment and nutrient budgets for two 
subtropical reservoirs” by K. R. O’Brien et al.  

 
Anonymous Referee #2  

 

Received and published: 8 July 2016 
 

 
 

Reviewer 2 General comments: 

This paper deals with some important issues about the challenges that are faced in 
some catchments and reservoirs where peak flows, despite very rare, have a huge 
influence on the load budget. On the same time these peak flows are the most difficult 
to monitor and represent very short time periods which complicates data interpretation. 

The paper is generally well written with a fluent and precise language and very few 
grammatical errors. The paper is well structured and both data and methods are de- 
scribed in sufficient detail and it is an interesting data set with a long time series of 
both flow and nutrient and sediment concentrations. In that sense I find that the paper 
does have a sufficient quality and some relevance for the general readership of HESS. 
However, I find that the weak part of the paper is the fact that I do not see that this 
paper makes a substantial contribution to our current knowledge about nutrient bud- 
get estimations or nutrient and sediment transport processes. It is fairly well known 
that peak flows can contribute substantially to transport of nutrients and sediment and 
that monitoring of these peak flows are difficult because any time averaging (which is 
mostly done during normal flow periods) introduces a huge uncertainty on the peak 
flow load estimates. Therefore I suggest that it could be considered if this paper might 
be more suitable for a targeted engineering journal, for instance with special interest in 
reservoir and dam dynamics and their impacts on freshwater ecosystems. 

Author response: We thank the reviewer for their de tailed response, and 
constructive advice. The reviewer recognizes the qu ality and importance of 
the paper, and noted that it was “well-structured”,  with “interesting data set 
with a long time series of both flow and nutrient a nd sediment 
concentrations” and of “sufficient quality and some  relevance for the general 
readership of HESS.” 

We agree that the paper is suitable for HESS reader ship, and that we must 
ensure it makes a “substantial contribution to our current knowledge about 
nutrient budget estimations or nutrient and sedimen t transport processes”.  

To this end, our paper highlights the hazards of pr esenting sediment and nutrient 
budgets in static form, particularly in catchments with highly episodic flow. This 
finding applies to catchment budgets generally, and  is not restricted to 
reservoirs. The evidence is taken from a comprehens ive long-term dataset. Our 
paper does not therefore simply convey that peak fl ows contribute to nutrient and 
sediment budgets or that these events are difficult  to monitor, but goes far 
further, making a substantial contribution to curre nt knowledge on the 
fundamental nature of budget estimations and transp ort processes.  

We agree there is room to articulate this important  contribution more clearly and 
have clarified this in our revision, for example by : 

• Modifying the title to “Sediment and nutrient budge ts are inherently 
dynamic: evidence from a long-term study of two sub tropical reservoirs”.  

• Modifying the Discussion, as outlined below, to emp hasize the paper’s 
key conclusion: that catchment budgets are inherent ly dynamic, 
particularly in river systems with episodic flow.  

• The Discussion now also explains the significance o f the reservoir 
siltation rates for regional water supply.  

Reviewer 2: There is an excessive use of references to supplementary material. I 
find it somewhat problematic that such a large part of the paper relies on 
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supplementary material. In my opinion supplementary material should function as a 
supplement, not as an essential extension of the paper. I therefore suggest that the 
supplementary material is critically reviewed and condensed. 

Constructing a comprehensive catchment budget is di fficult, due to the 
issues in reconciling data collected over a variety  of spatial and temporal 
scales, and in estimating uncertainty (Walling and Collins 2008, Parsons 2011, 
Carpenter et al. 2015).  

We have included in Supplementary Material the calc ulations and 
assumptions we used in our robust quantification of  uncertainty. This 
ensures confidence in our final uncertainty estimat es, and provides a 
thorough method for others constructing a catchment  budget. This highly 
detailed and specific technical information would d istract from the main 
findings if included in the main body. Additionally , we are confident that 
readers who choose not consult this Supplementary M aterial will understand 
our paper. We have therefore decided to retain the information in the 
Supplementary Material.  

We would certainly agree, under the Editor’s advice , to this material being 
critically reviewed.  

Reviewer 2: Generally I think that the Conclusion section is more a Perspectives 
section. I suggest that the conclusion should be rewritten to sum up the findings 
rather than discussing perspectives and implications. 

Author response: We have modified the conclusion to include clearer reference 
to the findings of the current study.  

Specific comments 
 

Reviewer 2: P. 7 line 5: You write that you do not expect a good relationship 
between TN and turbidity. However in the plot (Fig. S2) the relationship looks just as 
good as for TP and TSS? Could you comment on this? 

Author response: Relationships with turbidity are c ommonly used to estimate 
[TSS], and less commonly for [TP], which is strongl y associated with 
sediment. It is unusual to estimate [TN] from turbi dity because dissolved 
compounds typically make up a large component of to tal nitrogen, we have 
done so here because no other data is available dur ing the critical January 
2011 flood period. We have modified the text to cla rify this point.   

Reviewer 2: P 8 line 15: For output loads the uncertainty is estimated as deviation of 
Method 3 from method 4, but why is method 4 used? and not one of the others? 

Author response: We have added the following senten ce to the text: “Thus the 
estimated uncertainty is the difference between loa ds estimated from monthly 
monitoring, and the loads estimated from daily turb idity readings. Monthly 
monitoring and turbidity datasets were both complet e for these time periods 
(water years 2008 and 2009).” 

Reviewer 2: P 8 line 6: In method 3 why are loads not calculated based on the two 
monthly measurements, rather than just one? Would two measurements not give a 
better estimate, simply due to less interpolation and more real data? 

Author reponse: Monthly monitoring occurred once pe r month, at the surface 
and the bottom. Surface and/or bottom concentration s were used to 
calculated loads, depending on the method of reserv oir release, as explained 
in section 2.3.1.  

Reviewer 2: P. 11 line 19:  Do you mean flow-TSS correlations as conducted by 
Grinham et a. 

(2012). Slightly confused with what is your method and what is done by others. 

Author response: Agreed, this is ambiguous, we have  modified the sentence 
to read “Thus the TSS inputs to Wivenhoe calculated  by Grinham et al. (2012) 
using the event-mean and flow correlation methods a re one and two orders of 
magnitude, respectively, above our estimate of 0.2 Mt (Table 2).”  

 

Reviewer 2: P. 13 line 3-4: You repeat what you just said above about the size of the 
relative uncertainty compared to input and output uncertainty. 

Author response: Agreed, we have deleted the second  sentence.  

Reviewer 2: P 13 line 7: That uncertainty is high in unmeasured elements is quite 
trivial I think. You could either leave this out or state it differently. 

Agreed, we have rephrased this to state “uncertaint y is particularly high in 
quantities which are calculated from other budget t erms, rather than 
independently determined”.  
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Reviewer 2: P. 12-13: There is a really large focus on this other study, but I do not 
see clearly how this study advances our knowledge compared to the Parson (2011) 
paper? 

Author response: We have clarified this significant ly in the text, and 
particularly in the final paragraph of this section : “Therefore we propose that 
Parsons’ three principles of catchment budgets can be refined to two 
principles: 1. Budgets should be presented as time- series rather than static 
quantities to clearly display temporal variability and 2. Uncertainty should be 
quantified for all budget terms, and accounted for in any interpretation of 
results. “ 

Reviewer 2: P. 13 line 13-15: Do you mean comparison between methods 1-4 or 
comparison be- tween the two different reservoirs? Please clarify. 

Author response: We agree, this sentence was ambigu ous, and has been 
rephrased as follows “This point is illustrated by the uncertainty in retention 
and trapping efficiency of water, sediment and nutr ients (Tables 2-3), as 
follows.”  

Reviewer 2: P. 13 line 20-24. Are you more confident using trapping efficiency during 
peak flows or in general? I do not find it completely clear why you come to the 
conclusion about more confidence in trapping efficiency than in retention, since both 
are a function of inflow? 

Author response: Both. We’ve modified the paragraph  as follows to make 
these points clearer: "Correct propagation of uncer tainty also affects 
interpretation of reservoir budgets. Uncertainty is  higher over shorter time 
periods, and thus confidence in budget values is lo wer for the flood year than 
for the whole study period (Tables 2-3). Net retent ion of TSS, TN and TP 
occurred over the 14 year study period in both rese rvoirs, except for TP in 
Wivenhoe, where uncertainty was higher than the dif ference between input 
and output loads. The flood year dominated the rete ntion of TSS, TN and TP in 
both reservoirs (e.g. 25 % and 40 % of TSS retained  in Somerset and 
Wivenhoe were captured during the flood year), howe ver the higher relative 
uncertainty in the values determined for this short er timeframe means that 
retention of water, sediment and nutrients in both reservoirs in the flood year 
was only significantly different to zero for TSS in  Somerset.  

Uncertainty in trapping efficiency (retention divid ed by input) is lower than 
uncertainty in retention, as outlined in Section 2. 4. Thus while retention was 
not significant for most loads during the flood per iod, trapping efficiency was 
quantifiable for all sediment and nutrients across the study period, and for 
TSS in both reservoirs and TN in Somerset during th e flood year (Table 2). 
Together, these findings engender greater confidenc e in the proportion of 
sediment and nutrients retained by the reservoirs ( i.e. trapping efficiency) 
than in the mass retained, and in budget terms calc ulated for multi-year 
periods.”  

Reviewer 2: P. 13. Line 24. Do you have any suggestions to how this could 
be achieved? 

Author response: The sentence has been modified to clarify this point: “For a 
fuller assessment of trapping efficiency in reservo irs with variable flow, such 
as Wivenhoe and Somerset, hydraulic retention shoul d be calculated on 
shorter (i.e. monthly) timescales, as outlined in L ewis et al. (2013).  

 

Reviewer 2: P. 13 line 27 – P 14 line 1-4: I suggest that this should be moved to the 
results section? 

Author response: Ideally this would appear in the r esults section, however we 
feel that it would confuse readers if presented ear lier, because the 
calculations use information from Grinham et al. 20 12 which is first 
introduced in the Discussion. The paragraph also us es the results to draw 
further conclusions. Therefore we propose to leave this section in the 
Discussion.  

Reviewer 2: P. 13 line 27 – P 14 line 1-4: I miss a comment of the 
importance/implications. Do you believe in these numbers, given the uncertainty in 
loads, and what is then concluded? I suppose that loss of storage volume seems 
not to be an issue in these two reservoirs, despite and overall net retention of 
sediment and nutrients? 

 

Author response: We have added extra text and an ad ditional reference to 
verify the numbers, and explain the significance fo r regional water supply. 
The additional text reads as follows:  
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“Using the input loads calculated in this study, de cline in storage volume is 
estimated as only 0.04 %-1.1 % for Wivenhoe over th e 14 year study period 
(Table 4), i.e. 0.003 %-0.1 % per year. Average ann ual decline in storage 
volume is two orders of magnitude lower in Wivenhoe  compared to Mosul 
Dam, Iraq, where reservoir volume reduced by more t han 10 % due to siltation 
between 1986 and 2011, i.e. 0.4 % per year on avera ge (Issa et al., 2015). While 
trapping efficiency of Wivenhoe is slightly less th an that estimated for Mosul 
Dam, the large difference in siltation between thes e two reservoirs is due 
primarily to the difference in sediment loads. Mosu l Dam has approximately 
ten times the storage volume of Wivenhoe, but sedim ent loads entering Mosul 
Dam are of order 100-1000 higher than those enterin g Wivenhoe (Issa et al., 
2015).  

While the relative siltation rates in both Somerset  and Wivenhoe may seem 
low (Table 4), the corresponding loss in water supp ly volume is regionally 
significant. We estimated that the decline in stora ge capacity over the study 
period was approximately 4 000 ML for Somerset loss  and 5 000- 12 000 ML 
for Wivenhoe (Table 4). Four of the 15 water supply  reservoirs in the region 
have capacity of less than 5 000 ML, and fewer than  half have a capacity 
greater than 12 000 ML (Leigh et al., 2010). Hence the volume of storage 
capacity lost in Somerset and Wivenhoe over the 14 year study period is 
equivalent to the closure of one of more of the sma ller reservoirs. Somerset 
and Wivenhoe supply water to southeast Queensland, a region of rapid 
population growth which has recently experienced ma jor drought, and where 
alternatives water sources have much higher greenho use gas intensity than 
water supplied from existing reservoirs (e.g. Hall et al. 2011). Therefore any 
economic assessment of methods to reduce the catchm ent sediment load in 
this region should account for costs associated wit h reservoir siltation and 
associated loss of water supply volume. Direct meas urement of reservoir 
volume is required for more accurate estimates of s torage loss due to 
siltation.” 

Reviewer 2: P 14 line 15-17: Is this your conclusion (this is the impression I get) or 
one by Lewis et al. (2013)? Either rephrase so that this is clear or delete reference. 

Author response: This sentence has been deleted.  

Reviewer 2: P. 14 Line 22: I do not understand this sentence. Less is released and 
this leads to net export? And where is Brisbane water supply located? Are water 
pumped from lake Wivenhoe to the water supply? Could you rephrase this sentence? 

Author response: We’ve clarified the sentence to re duce ambiguity as follows:  
“However Wivenhoe was frequently a net exporter of TN (Figure 7), typically 
during drought years when releases for water supply  were less than reservoir 
inflows (Figure 3).”  

Reviewer 2: P 1 line 30 p. 15 line 1-2: I suggest that this section is rewritten to be 
more specific about this particular study.  It is a rather general statement but as I 
understand it is based on the findings in this study? 

Author response: Yes, and it has been modified to m ake this clearer: “Ratios 
of total and dissolved inorganic N: P were substant ially higher in both 
reservoirs than in the UBR.” 

 

Reviewer 2: P. 15 line 9-10: This should be moved to the discussion session.  

Author response: As outlined earlier, we differ wit h the reviewer’s opinion on this 
matter, and await the Editor’s decision.  

Technical corrections 

Reviewer 2: P. 2 Line 16: please correct typing mistake in “reservpors”. 
Author response: corrected.  

 

Reviewer 2: Please be consistent in the use of spelling out “concentration” or writing 
in in brackets (example p. 10 line 2 and 16). 

Author response: As a matter of style, we feel it’s  preferable to write out 
concentration in some contexts, and use the bracket  notation in others. We 
will take the Editor’s advice on this matter.  

Reviewer 2: P. 13 line 6: please replace 
“than” with “that”. 
Author response: corrected.  

 

Reviewer 2: P. 14, line 27: You already defined DIN, no 
need to repeat it. 
Author response: DIN replaced with [DIN].  
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Reviewer 2: P 14, line 29: Please replace “dissolve” with “dissolved” and write “N and 
P” rather than N:P. 
Author response: corrected.  

Reviewer 2: Fig. 6. Please include units on y axis rather than in 
the figure text. 

Author response: corrected  
 

Reviewer 2: Figure S3. The figure would be easier to read if the plots were bigger 
relative to the text. 

Author response: corrected  

Reviewer 2: Figure S4. The figure would be easier to read if the plots were bigger 
relative to the text. 

Author response: corrected  

Reviewer 2: Table 1. I find this table very difficult to read and I suggest that it is 
restructured or left out as there is a quite comprehensive description of data in the 
main text. 

Author response: We leave this to the editor’s disc retion  

Reviewer 2: Table S4: What does “Method 3: Method 1”, is it the deviation 
between the two? 

Author response: the caption has modified to clarif y the difference 
between the two methods for estimating output loads  of sediment and 
nutrients: “Method 1 uses historical mean concentra tions and Method 3 
uses monthly monitoring data supplemented by turbid ity profile data.” 
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for two subtropical reservoirs 2 

Sediment and nutrient budgets are inherently dynamic: 3 

evidence from a long-term study of two subtropical reservoirs 4 
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 11 

Correspondence to: Katherine R. O’Brien (k.obrien@uq.edu.au) 12 

Abstract. Accurate reservoir budgets are important for understanding regional fluxes of sediment and 13 

nutrients. Here we present a comprehensive budget of sediment (based on total suspended solids, TSS), total 14 

nitrogen (TN) and total phosphorus (TP) for two subtropical reservoirs on rivers with highly intermittent flow 15 

regimes. The budget is completed from July 1997 to June 2011 on Somerset and Wivenhoe reservoirs in 16 

southeast Queensland, Australia, using a combination of monitoring data and catchment model predictions. A 17 

major flood in January 2011 accounted for more than 50% of the water entering and leaving both reservoirs in 18 

that year, and more than 30% of water delivered to and released from Wivenhoe over the 14 year study 19 

period. The flood accounted for an even larger proportion of total TSS and nutrient loads: in Wivenhoe 40% of 20 

TSS inputs and 90% of TSS outputs between 1997 and 2011 occurred during January 2011. During non-flood 21 

years, mean historical concentrations provided reasonable estimates of TSS and nutrient loads leaving the 22 

reservoirs. Calculating loads from historical mean TSS and TP concentrations during January 2011, however, 23 

would have substantially underestimated outputs over the entire study period, by a factor of up to ten. The 24 

results have important implications for sediment and nutrient budgets in catchments with highly episodic flow. 25 

Firstly, quantifying inputs and outputs during major floods is essential for producing reliable long-term 26 

budgets. Secondly, sediment and nutrient budgets are dynamic, not static. Characterizing uncertainty and 27 

variability is therefore just as important for meaningful reservoir budgets as accurate quantification of loads. 28 

Formatted



 

2 
 

1 Introduction  1 

Over the past century, human activities have caused unprecedented changes in water, sediment and nutrient 2 

movement between the atmosphere, lithosphere, hydrosphere and biosphere (Rockström et al., 2009). Modification of 3 

these natural biogeochemical cycles on a range of scales has the potential to alter fundamental earth system processes and 4 

undermine the ecosystem services on which human societies depend (Steffen et al., 2015; Vörösmarty and Sahagian, 5 

2000). For example, artificial fixation of atmospheric nitrogen by humans exceeds fixation rates by all natural processes 6 

combined, contributing to a range of environmental problems including acidification, eutrophication and climate change 7 

(Gruber and Galloway, 2008; de Vries et al., 2013). The rate of application of P to erodible soil is unsustainable in many 8 

parts of the world (Carpenter and Bennett, 2011) and may threaten future food security (Cordell et al., 2009; Van Vuuren 9 

et al., 2010). 10 

Managing soil and nutrient resources more sustainably is therefore imperative, requiring reliable, quantitative 11 

sediment and nutrient budgets at local, regional and global scales (e.g. Syvitski et al., 2005; Radach and Pätsch, 2007; 12 

Metson et al., 2012). Reservoirs have a major impact on nutrient and sediment budgets due to their high residence times 13 

and burial rates relative to free-flowing rivers (Sherman et al., 2001; Friedl and Wüest, 2002; Bosch and Allan, 2008; Kunz 14 

et al., 2011). Reservoirs are also more effective than lakes at retaining both phosphorus (P) and nitrogen (N) (Harrison et 15 

al., 2009; Kõiv et al., 2011). Globally, reservpors reservoirs are estimated to trap 26 % of the modern export of sediment to 16 

the coastal zone, and billions of tonnes of sediment have been impounded within reservoirs since the mid-20th century 17 

(Syvitski et al., 2005). 18 

While quantifying sediment and nutrient loads is essential for closing local and regional nutrient budgets (Metson 19 

et al., 2012; Walling and Collins, 2008), estimating uncertainty in these loads is a major challenge (Walling and Collins, 20 

2008; Parsons, 2011; Carpenter et al., 2015). Sediment and nutrient retention in reservoirs depends on many factors, 21 

including delivery (which is related to catchment size, land use and geology and river discharge volumes), sediment particle 22 

size, storage capacity and water release practices (Issa et al., 2015; Mahmood, 1987; Graf et al., 2010; Leigh et al., 2010). In 23 

tropical and subtropical river systems, large and episodic fluctuations in discharge due to seasonal and inter-decadal cycles 24 

in rainfall patterns mean that large sediment and nutrient inputs can be delivered in relatively short time-frames (Kennard 25 

et al., 2010; Lewis et al., 2013). For example, in one reservoir in subtropical Australia, net phosphorus retention over a 6-26 

year drought period was driven by moderate-flow events over just 12 days (Burford et al., 2012). Thus reservoir budgets 27 

can vary across different time periods (Parsons, 2011). The greater the climatic variability in the catchment, the longer the 28 

budget timeframe required to capture representative data.  29 
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This study aims to complete budgets of sediment and nutrients (N and P) for two large subtropical reservoirs. The 1 

catchments of both reservoirs are characterised by high intensity episodic rainfall and runoff events, therefore the budgets 2 

are conducted over more than a decade to capture a wide range of climatic conditions. More specifically, the study 3 

assesses the effect of variability in flow on both the magnitude and uncertainty in sediment and nutrient loads entering, 4 

leaving and retained within the reservoirs. 5 

2 Materials and Methods 6 

Sediment and nutrient budgets were completed for Somerset and Wivenhoe reservoirs over 14 years from July 7 

1997 to June 2011. For this study, sediment is defined as the mixture of inorganic and organic matter, measured by dry 8 

weight of filtered solids, i.e. total suspended solids (TSS). Inputs and outputs of water, TSS, total N nitrogen (TN) and total P 9 

phosphorus (TP) were estimated using a combination of catchment model predictions and monitoring data, measured at 10 

intervals ranging from hourly to monthly. Output loads of TSS, TN and TP were estimated using four different methods to 11 

deal with missing data. 12 

2.1 Study area 13 

Somerset and Wivenhoe reservoirs are major drinking water and flood mitigation reservoirs in southeast 14 

Queensland, Australia (27
o 

24′S, 152 
o 

36′ E and 27° 7′ S, 152° 33′ E, respectively) linked by the Stanley River. The Stanley 15 

River was dammed to form Somerset reservoir in 1959, and the Wivenhoe dam wall was constructed further downstream 16 

below the confluence of the Stanley River and upper Brisbane River (UBR) in 1984 (Figure 1). The catchment areas of 17 

Somerset and Wivenhoe reservoirs are 1 340 and 7 020 km
2
, respectively. At full supply capacity, Somerset holds 0.380 18 

km
3
, with a mean water depth of 9.3 m and a surface area of 42 km

2
. Wivenhoe holds 1.165 km

3
 with a mean water depth 19 

of 10.5 m, and surface area 107 km
2
 (Leigh et al., 2015). Both reservoirs are eutrophic and warm-monomictic, with 20 

overturn in the austral autumn and stratification in the austral summer that results in anoxic bottom waters (Burford and 21 

O'Donohue, 2006). Water is released continuously from Wivenhoe reservoir for water treatment downstream. 22 

Mean annual rainfall in the region is 743 mm (Bureau of Meteorology, bom.com.au, Figure 2). Inflows enter 23 

Somerset reservoir primarily from the Stanley River. Controlled releases from Somerset reservoir combine with inflows 24 

from the Upper Brisbane River (UBR) and lateral inflows to supply Wivenhoe reservoir (Figure 1). Stanley River and UBR 25 

have highly unpredictable and intermittent flow regimes (Kennard et al., 2010), although major discharge events tend to 26 

occur in summer (the ‘wet season’). Therefore, ‘water years’ were defined from July to June in all analyses to capture the 27 

entire austral summer wet season within each water year. 28 
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During the study period, there were three above-average flow events of note: in February 1999 (water year 1998), 1 

February 2008 (water year 2007) and January 2011 (water year 2010). From 9-16 January 2011, a large flood with extreme 2 

rainfall occurred within the Wivenhoe and Somerset catchments (Seqwater, 2011). It was the second highest flood 3 

recorded in the lower Brisbane River over the past century (the highest was in 1974), and water from the Wivenhoe 4 

catchment contributed to significant flood damage downstream (van den Honert and McAneney, 2011). The February 1999 5 

and 2008 events were small by comparison (e.g. as indicated by rainfall volumes in Figure 2; see also van den Honert and 6 

McAneney, 2011). Therefore, water year 2010 (July 2010-June 2011) is referred to hereafter as the “flood year” and all 7 

other water years during the study period are denoted as “non-flood years”. The non-flood years (July 1997 to June 2010) 8 

comprised a range of hydrological conditions, including the 1999 and 2008 flow events and the 2001-2009 drought (Dijk et 9 

al., 2013) which was characterised by low rainfall and low inflows to both reservoirs (Leigh et al., 2015).  10 

2.2 Catchment inputs: flows, loads and uncertainty 11 

Daily flow and TSS, TN and TP loads from the catchments into Somerset and Wivenhoe reservoirs were estimated 12 

using the SourceCatchments (SC) model (Weber et al., 2009). The model was parameterized for hydrology and stream 13 

routing using one stream gauge in the Somerset catchment, and four stream gauges in the Wivenhoe catchment. The 14 

model used global, land-use-based event-mean concentrations (EMC) and dry weather concentrations (DWC), estimated 15 

from water quality information collected across the southeast Queensland region, with a particular focus on those event 16 

monitoring sites that adequately characterized the pollutant export from land uses and soil types typical of the regions 17 

being modelled. Calibration and validation were undertaken using a combination of manual and automated techniques. 18 

The event mean concentrations (EMCs) were derived from event monitoring and continuous sampling within the 19 

catchments of interest (Thomson et al. 2013), and thus implicitly represent the range of sediment and nutrient generation 20 

processes present within the catchment. The EMCs are attributed to land uses rather than specific generation processes. 21 

This attribution is relatively consistent with the spatial characterisation of sediment generation within the catchment as 22 

quite often the generation processes are strongly tied to the land management of particular land activities (unpublished 23 

data). For channel erosion, denuded areas within the river reaches which are aligned to land uses such as horticulture and 24 

grazing where land clearing activities have been conducted to the channel edge. Further improvements in the model would 25 

require better data representing individual processes which currently doesn’t exist for many parts of the catchment 26 

studied. 27 

Uncertainty in the SC model was estimated by comparing SC predictions with flow and loads measured at two 28 

gauging stations: Woodford Weir on the Stanley River, and Gregors Creek on the UBR (Figure 1, Table 1). Flow volume 29 

recorded for the gauging stations spanned many orders of magnitude, making it difficult to distinguish between zero flow 30 
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and missing data. Therefore, model predictions were only compared with non-zero recorded flows. When plotted against 1 

flow measured at the gauging stations, SC predictions in both the Stanley River and UBR were scattered around the 1:1 line 2 

on the log-log scale (Figure S1). Variability between gauged and predicted water input was highest at low flow, and lowest 3 

when predictions and data were integrated to a yearly time-step (Figure S1). The adjusted R
2
 for log annual flow (SC) vs log 4 

annual flow (gauged) was 0.96 for the Stanley River and 0.95 for the Upper Brisbane River (UBR), and the 95 % confidence 5 

interval for the slope contained 1.0 for both rivers. Root mean square error of the difference between measured and 6 

predicted flow was 70% of the mean annual flow, when averaged across the Stanley and UBR gauging stations for available 7 

data during the study period.  8 

Uncertainty in SC predictions of TSS and nutrients was more difficult to quantify, due to the limited data 9 

availability (Table 1). TN, TP and TSS loads predicted by SC were compared with event loads measured at the Stanley River 10 

and UBR gauging stations (Figure 1), for 32 and 15 high flow events, respectively, during the study period (Table 1). During 11 

each high flow event, the concentrations of TSS, TN and TP were measured by the local water authority, Seqwater, at the 12 

gauging stations. Water samples were automatically collected using a refrigerated autosampler triggered by the change in 13 

height of the depth-gauge above a base-flow threshold. For TN and TP, whole samples were kept on ice until frozen in the 14 

laboratory. They were later analyzed using the persulfate digestion method and run through an autoanalyzer (Burford and 15 

O'Donohue, 2006; APHA, 1995). For TSS samples, a known volume was filtered onto a pre-weighed and combusted glass 16 

fibre filter, then dried and reweighed (APHA, 1995). 17 

Loads were determined using the linear-interpolation method, with at least 10 measurements per event, and 18 

sampling on both rising and falling limbs of the hydrographs (Olley et al., 2014). TSS, TN and TP loads predicted by SC were 19 

well correlated with the loads estimated from the event-sampling data collected for both gauging stations (Figure S2). Total 20 

loads across all measured events differed from SC predictions by 24% for TSS, 45% for TN and 26% for TP (and 42% for 21 

flow) when averaged across the two sites, verifying that the SC predictions were consistent with flow and loads in the 22 

major tributaries during high flow events. However this information did not provide a measure of uncertainty in annual 23 

predicted loads to the two reservoirs.  24 

To estimate uncertainty in annual inputs, an empirical model was used to predict TN and TP loads at each gauging 25 

station based on measured daily flow (Kerr, 2009; Burford et al., 2012). The model was validated against the event loads 26 

(Figure S2) and then compared with SC predictions at daily, monthly and annual time steps using gauged flow data (Figure 27 

S1). Unfortunately an empirical model was not available for TSS.  28 

During high flow events, the empirical model predictions agreed with the SC predictions and the measured TN and 29 

TP event loads (Figure S2). Daily, monthly and annual predictions of both TN and TP from the empirical model agreed with 30 
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SC predictions (Figure S1). Difference between the two models was lowest for the Stanley River site (Woodford Weir), even 1 

though the empirical model was developed for the UBR. Variation between the models was lowest when information was 2 

integrated to an annual time-step (Figure S1). Over the entire study period, the root mean square difference between the 3 

two models as a proportion of mean annual loads was 60% for TN and 45% for TP, when averaged across the Stanley and 4 

UBR gauging stations. Uncertainty could not be estimated for TSS, and flow was the only variable for which SC predictions 5 

could be directly compared with data. Uncertainty in loads is unlikely to be lower than uncertainty in flow, which was 6 

estimated as 70 %, as outlined above. Therefore we assumed an uncertainty of 70% in annual SC model predictions of flow, 7 

TSS, TN and TP inputs to both reservoirs (Table S1).  8 

2.3 Reservoir outputs 9 

Loads of TSS, TN and TP exported from the reservoirs each month were calculated by multiplying concentrations 10 

([TSS], [TN] and [TP], in mg L
-1

) measured at the dam walls by the volumes of water released. The volume of monthly water 11 

released from each reservoir was determined by summing daily release values, except during the period 1 July 1997 to 30 12 

June 2001 for Wivenhoe reservoir, for which monthly release data were directly available (Table 1). 13 

2.3.1 Data sources: [TSS], [TN] and [TP] at dam walls 14 

Concentrations of TSS, TN and TP in water released from the reservoirs were determined from routine monthly 15 

monitoring and sub-daily turbidity profiles collected near the dam walls.  16 

Monthly monitoring data collected by Seqwater were available for surface and bottom concentrations of TSS, TN, 17 

TP, ammonium (NH4), nitrite plus nitrate (NO2+NO3), dissolved inorganic P (DIP) at the dam wall of each reservoir from July 18 

1997 to June 2011. Surface samples were taken using a 3 m depth-integrated sampler and bottom samples were taken 19 

using a van Dorn sampler. TN and TP samples were kept on ice until frozen in the laboratory. They were later analyzed 20 

using the persulfate digestion method and run through an autoanalyzer (Burford and O'Donohue, 2006; APHA, 1995). For 21 

dissolved nutrients, samples were filtered through 0.45 µm membrane filters in situ, and kept on ice until frozen in the 22 

laboratory. Samples were analyzed using standard colorimetric methods with an autoanalyzer (Burford and O'Donohue, 23 

2006; APHA, 1995). For TSS samples, a known volume was filtered onto a pre-weighed and combusted glass fibre filter, 24 

then dried and reweighed (APHA, 1995).Samples were filtered as needed in situ, stored on ice until frozen in the laboratory 25 

and processed using standard methods (Burford and O'Donohue, 2006; APHA, 1995). 26 

Depth profiles of turbidity (NTU) were also measured at the dam wall in each reservoir, recorded by a calibrated 27 

nephelometer deployed on a fixed buoy. Turbidity profiles at 1 m intervals through the water column were available 28 
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approximately every hour for water years 2009-2010 in Somerset reservoir and water years 2008-2010 in Wivenhoe 1 

reservoir (Table 1).  2 

In Somerset reservoir, water release occurs when the dam gates open from the bottom. For low release volumes, 3 

“bottom” waters are released, but at higher release rates water from higher in the water column will be entrained. To 4 

account for this, the concentrations of nutrients and TSS in the Somerset release water were assumed equal to bottom 5 

concentrations when daily release was < 500 ML d
-1

. At higher flows (i.e. ≥ 500 ML d
-1

), TSS and nutrient concentrations in 6 

the water released were assumed equal to the average of surface and bottom concentrations. Wivenhoe reservoir is a 7 

near-surface water-releasing reservoir, so monthly exports of nutrients and TSS were calculated from surface 8 

concentrations only. 9 

2.3.2 Estimating sediment and nutrient loads from turbidity profiles 10 

Monthly monitoring data were available for the entire 14 year study period, but data were missing for December 11 

2010 and January 2011, when release volumes and turbidity were both unusually high (Grinham et al., 2012). Turbidity 12 

profiles were available for December 2010 and January 2011, but were only available for a short portion of the entire study 13 

period (two water years in Somerset and three water years in Wivenhoe, Table 1). Hence the datasets needed to be 14 

combined in some way to provide a meaningful long-term budget for the reservoirs.  15 

The turbidity profile data could only be used to estimate loads released from the reservoirs if a meaningful 16 

relationship could be established between turbidity and sediment and nutrient concentrations ([TSS], [TP], and [TN]). It is 17 

quite common to develop local relationships between [TSS] and turbidity. Since P is strongly associated with sediment 18 

particles, a relationship between turbidity and [TP] might also be expected. However SinceBecause dissolved compounds 19 

typically make up a large component of [TN], so a strong the relationship between with turbidity and TN was not be 20 

expected to be as strong for [TN] as for [TSS] and [TP].  21 

Routine monthly surface and bottom measurements of [TSS], [TN] and [TP] were correlated with mean daily 22 

surface and bottom turbidity measured on the same day, where data from both sources were available (Table 1). Daily 23 

surface and bottom turbidity were determined from readings in the top 3 m and the bottom 2 m respectively, averaged 24 

across each day. Since the objective was to determine concentrations during turbid floodwaters when routine monitoring 25 

was unavailable, [TN] and [TP] were only used where NTU > 15. Turbidity data were cleaned prior to analysis: spikes 26 

associated with calibration were removed by inspection. Where gaps in the record were no greater than two days, they 27 

were replaced with the average turbidity of the preceding and subsequent day. 28 

Linear regression in matlab was used to determine the correlation coefficients for the relationship described by:  29 
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[y]=a+b NTU             (1)  1 

where [y] is [TSS], [TN] or [TP], and a and b are the corresponding intercept and slope (Table S2). Eq (1) was then 2 

used to calculate daily estimates for [TSS], [TN], [TP] from surface and bottom mean daily turbidity.  3 

2. 3.3 Reservoir outputs calculated from multiple data sources 4 

There were a number of ways in which the monthly monitoring and turbidity profile data could be combined to 5 

calculate sediment and nutrient outputs from Somerset and Wivenhoe reservoirs over the study period. We compared four 6 

such methods of estimating output loads:  7 

• Method 1 Mean historical concentration: Surface and bottom concentrations [TSS], [TN] and [TP] at dam 8 

wall sites in each reservoir were estimated from the mean concentration of monthly monitoring data 9 

1997-2011 (Table S3). This had the advantage of a consistent data source for the full timeframe of the 10 

study, and was justified because variation in release volume is orders of magnitude above variation in 11 

[TSS], [TN] and [TP] at the dam wall. However this method may underestimate the output loads of TSS, 12 

TN and TP during very large floods, when water leaving the reservoir has unusually high TSS and nutrient 13 

concentrations (e.g., Lewis et al., 2013). Note that mean [TSS] was determined from log-transformed 14 

data, due to small numbers of very high values;  15 

• Method 2 Monthly measured concentration, with missing data replaced by mean historical concentration 16 

(as defined in Method 1). This makes better use of the information available, but will not provide much 17 

advantage over Method 1 in dealing with the flood year, since monitoring data were unavailable for 18 

December 2010 and January 2011, when large volumes of water were released and turbidity at the dam 19 

wall was very high (Grinham et al., 2012); 20 

• Method 3 Monthly measured concentration, with missing data replaced by information from turbidity 21 

profiles where available, and by mean historical concentration otherwise. This enables better estimation 22 

of [TSS], [TN] and [TP] during January 2011, and does not rely on turbidity correlations where direct 23 

measurements of those concentrations are available;  24 

• Method 4 Concentration calculated from turbidity profiles, with missing data replaced by monthly 25 

measured concentrations where available, and by mean historical concentration otherwise. This makes 26 

best use of the high resolution turbidity profile information, but relies strongly on the correlation 27 

between turbidity and [TSS], [TN] and [TP].  28 
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The output loads of TSS, TN and TP used in the final budget were calculated from Method 3. The uncertainty in 1 

budget output loads (Table S1) was estimated at 40 % of TSS and TP and 10 % for TN, based on the relative mean 2 

difference between annual loads predicted by Methods 3 and 4 for the only non-flood years for which turbidity data were 3 

fully available: Somerset water year 2009, and Wivenhoe water year 2008-2009 (Table S1). Thus the estimated uncertainty 4 

is the difference between loads estimated from monthly monitoring, and the loads estimated from daily turbidity. Monthly 5 

monitoring and turbidity datasets were both complete for these time periods (water years 2008 and 2009).  6 

2.4 Reservoir budgets: inter-annual comparisons and propagation of error 7 

Annual accumulation of TSS, TN and TP in each reservoir was calculated as the sum of catchment inputs (SC model 8 

predications) and loads from the upstream reservoir (in the case of Wivenhoe), minus reservoir outputs. Where data were 9 

combined (e.g. Wivenhoe input loads were the sum of SC model predictions and Somerset output loads), uncertainty was 10 

determined using the law of propagation of errors, assuming that errors were independent (Ku, 1966). Thus errors in total 11 

loads over a given timeframe (
1

n

ii
X

=
∆∑ ) were calculated from the square root of the sum of squares of errors in 12 

individual loads ( iX∆ ): 13 

( ) ( )2

1 1

n n

i ii i
X X

= =
∆ = ∆∑ ∑          (2) 14 

Relative error in mean load was assumed to equal relative error in total load. Annual retention of TSS, TN and TP 15 

for each reservoir was compared against hydraulic retention time (reservoir volume at full supply divided by annual inflow 16 

volume). Trapping efficiency (TE) was calculated from input and output loads as follows: 17 

Input Output
TE

Input

−=          (3) 18 

In accordance with the law of propagation of errors, again assuming errors in input and output loads are 19 

independent (Ku, 1966), the uncertainty in trapping efficiency ΔTE was calculated from the relative errors in input and 20 

output loads (ΔInput/Input and ΔOutput/Output respectively) as follows: 21 

2 2

(1 )
Input Output

TE TE
Input Output

   ∆ ∆∆ = − +   
   

       (4) 22 
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3 Results 1 

The flood year (water year 2010: July 2010-June 2011) dominated inputs and outputs of water, sediment and 2 

nutrients for both reservoirs. Inputs of water, TSS, TN and TP to Somerset and Wivenhoe were 5-10 times higher in 2010 3 

than on average during the 13 non-flood years (Figure 3, Table 2). Reservoir outputs were approximately 10-50 times 4 

higher than during the non-flood years (Figure 3, Table 2). The biggest effect of the flood year was on output of TSS, which 5 

was 40 - 50 times higher in the flood year. Wivenhoe inflows were particularly impacted: whereas the input of water, 6 

sediment and nutrient to both reservoirs was very similar during non-flood years, inputs to Wivenhoe were more than 7 

double those to Somerset during the flood year. 8 

The flood month, January 2011, also had a major impact on the reservoir budgets. The volumes of water entering 9 

and leaving Somerset and Wivenhoe during January 2011 (i.e. 0.6% of the study period) accounted for 50% and 60% 10 

respectively of the loads total water volume inputs and outputs  for the 2010 water year, and 10% and 30% respectively of 11 

the loads over the entire study period (Table 2, Figure 4). The impact of the flood month on the total budget was greatest 12 

for TSS and nutrient loads. Based on [TSS], [TN] and [TP] estimated from the turbidity profiler at the dam walls, the loads of 13 

TSS and nutrient outputs from Somerset during January 2011 accounted for 50 -70% of output loads during water year 14 

2010, and 20-50% of output loads over the study period (Figure 4). The flood month had the greatest impact on Wivenhoe: 15 

TSS and nutrient exported in January 2011 accounted for 70-90% of export loads during the water year, and 40-70% of 16 

export loads over the entire 14 year study period.  17 

Inter-annual variability in water-release volumes from both reservoirs was much higher than variability in the 18 

[TSS], [TN] and [TP] at the dam wall during non-flood years (Figures 3, S3), implying that variation in reservoir output was 19 

driven by variation in the volume of water released rather than the concentrations of sediments and nutrients in the water. 20 

As a result, there was little difference between output loads estimated from historical mean concentrations (Method 1) 21 

and from monthly monitoring (Method 2) during non-flood years (Figure 5). The only non-flood year for which turbidity 22 

data wasdata were available for both reservoirs was 2009, and there was little difference between loads calculated using 23 

mean concentrations, monthly monitoring data or [TSS], [TN] and [TP] calculated from the turbidity profiler at the dam wall 24 

for that year (Methods 1-4, Figure 5). 25 

The combination of extremely high releases and unusually high turbidity, however, meant long-term historical 26 

mean concentrations did not provide a good estimate of reservoir outputs of TSS or TP during the flood year (Figure 5). 27 

Monthly monitoring data wasdata were unavailable during January 2011 (Table 1), when turbidity, inflows and releases of 28 

water were very high for both reservoirs (Figure 6). If TSS and nutrient outputs were estimated from mean concentrations 29 

(Methods 1 or 2), the TSS export during January 2011 and water year 2010 would have been underestimated by an order of 30 
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magnitude (Table S4). Additionally, TP output loads during this period would have been underestimated by a factor of two 1 

in Somerset, and five in Wivenhoe. However the mean concentrations provided a reasonable estimate for TN loads, 2 

because TN concentrations were less affected by the flood than TSS or TP (Figure 6).  3 

TSS trapping efficiency was very high during the non-flood period, regardless of the hydraulic residence time 4 

(Figure 7). While the majority of TN and TP delivered to both reservoirs over the entire non-flood period was retained 5 

(Table 3), Wivenhoe was a net exporter of TN in many water years (Figure 7) due to high concentrations of dissolved 6 

inorganic N accumulating in the bottom waters of the reservoir (Figure S3). In water year 2010 the net retention or export 7 

of water, TSS, TN and TP was less than the bounds of uncertainty (Table 3), with the exception of retention of TSS in 8 

Somerset. 9 

As noted earlier, both the flood year and flood month had greater effects on Wivenhoe than Somerset. Wivenhoe 10 

has three times the full supply volume of Somerset, and four times the catchment area. Despite the difference in 11 

catchment area, mean inputs to Wivenhoe and Somerset were very similar during the non-flood period (hence the 12 

hydraulic retention time was typically shorter for Somerset, as shown in Figure 7). However during the flood year, inputs to 13 

Wivenhoe were double or triple those to Somerset (Table 2, Figure 3). Wivenhoe receives water from two sources: 14 

controlled releases from Somerset and episodic inputs from the catchment, which are dominated by flows from the UBR. 15 

Catchment flows account for about half (50-60%) of water inflows and the majority of TSS and nutrient inputs in both flood 16 

and non-flood years (Figure 3).  17 

 [TSS], [TN] and [TP] measured in the main tributary supplying inflows to Wivenhoe, the UBR, were typically 18 

greater than in water leaving the reservoirs (Figure S3). The proportion of dissolved nutrients and the N:P ratios, however, 19 

differed between the reservoirs and the river inputs (Figure S4). DIP concentrations were higher in the UBR than in either 20 

of the reservoirs, while dissolved inorganic N (DIN) concentrations where higher in the bottom waters of the reservoirs 21 

than in either the UBR or surface waters of the reservoirs (Figure S3). As a result, DIN:DIP and TN:TP ratios and the 22 

proportion of TN in readily bioavailable form (DIN) were all higher in the bottom of the reservoirs than in the rivers (Figure 23 

S4). In all cases, a higher proportion of P than N was available in dissolved inorganic form, and DIP:TP was higher in the UBR 24 

than in the reservoirs.  25 

4 Discussion 26 

4.1 Flood impacts on reservoir budgets: implications for monitoring and management  27 

Our budget calculations show that the January 2011 flood dominated inputs, outputs and retention of sediment 28 

and nutrient for both reservoirs over the 14 year study period. We have very high confidence in this conclusion because 29 
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the inputs calculated here for January 2011 represent a lower bound estimate. The catchment model and reservoir release 1 

data in this study predicted that 2.1 TL of water flowed into Wivenhoe during the peak of the flood (9-16 January 2011), 2 

which is 26 % lower than the 2.64 TL inflow estimated by Seqwater (2011). TSS input to Wivenhoe in January 2011 was 3 

estimated by Grinham et al. (2012) as 1.8 Mt, based on event mean concentrations, and 21 Mt, based on a correlation 4 

between flow and TSS. Thus the TSS inputs to Wivenhoe calculated by Grinham et al. (2012) using the event-mean and flow 5 

correlation methods These estimates are one and two orders of magnitude, respectively, above our estimate of 0.2 Mt 6 

(Table 2). Event mean concentrations do not account for the shape of the flood peak, and there is an order of magnitude 7 

difference between the loads estimated from the event mean concentration method and the flow-load correlations. This 8 

demonstrates the difficulty not only in determining loads for reservoir budgets, but also in finding meaningful estimates of 9 

uncertainty.  10 

Our uncertainty analysis was as thorough as possible given the data available, but our estimate of 70 % confidence 11 

in SC model predictions may not be valid for major floods. While the predictions of TSS loads generated by the SC model 12 

agreed well with measured loads in flow events at gauging stations on both the Stanley River and UBR, the January 2011 13 

event was so large in magnitude that it was outside the calibration range of the SC model and the rating curves at the 14 

gauging stations. Refining the estimates of input and output loads during January 2011 is the key to both reducing and 15 

better quantifying uncertainty in long-term sediment and nutrient budgets for the reservoirs. 16 

Reliable reservoir budgets require reliable data. During non-flood years, mean historical concentrations provided 17 

reasonable estimates of TSS and nutrient loads leaving the reservoirs. However calculating loads from historical mean TSS 18 

and TP concentrations during January 2011 would have underestimated outputs over the entire study period by a factor of 19 

2-10 (Figure 5, Table S4). Since extreme flow events generate both the highest inputs and outputs of TSS and nutrients, and 20 

the highest uncertainty in loads, more intensive monitoring data from high flow events is required to increase confidence 21 

in these long-term reservoir budgets. Reducing the frequency of routine monitoring and using these savings to fund 22 

measurements during extreme events may therefore be a cost-effective way to reduce uncertainty in reservoir budgets.  23 

The hydrological regimes of both Somerset and Wivenhoe are typical of the unpredictable and intermittent flow 24 

regimes found in rivers on the eastern coastal fringe of Australia (Kennard et al. 2010). Hence our findings will be 25 

particularly relevant in tropical and subtropical systems, where intra- and inter-annual variability are particularly high 26 

(Lewis et al. 2013). Because major floods play such a dominant role in the sediment and nutrient budgets of reservoirs with 27 

highly variable flow regimes, sustainable management of soil and nutrient resources will mean addressing sediment 28 

erosion and nutrient inputs during major floods. Land use change is the key factor responsible for changes in sediment and 29 

nutrient delivery to downstream water bodies throughout Australian catchments and no doubt in similarly modified 30 

landscapes beyond (Harris, 2001; Bartley et al., 2012; Powers et al., 2015). In the subtropical catchments of southeast 31 
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Queensland reservoirs, for example, river channel erosion is the main source of sediment inputs, and restoring riparian 1 

vegetation is the main mechanism by which these loads can be reduced (Wallbrink, 2004; Leigh et al., 2013; Olley et al., 2 

2014).   3 

4.2 Uncertainty and variability in reservoir budgets  4 

While catchment and reservoir budgets can be very useful, constructing accurate budgets is difficult due to limited 5 

availability of data, and the challenges in reconciling data collected on different spatial and temporal scales, and over 6 

different time periods. Given these issues, Parsons (2011) identified three criteria for useful catchment budgets: 1.an 7 

explicit statement of the timeframe over which it is valid; 2. quantities determined from the difference between measured 8 

loads should be treated with caution; and 3). uncertainty should be specified on all values. T This study heenables us to 9 

refine and update these three catchment budget principles of Parsons (2011) provide a useful framework for 10 

understanding the results of this study.  11 

 Parsons proposed that 1) specifying the timeframe of validity for catchment budgets is important; 2) quantities 12 

determined from the difference between measured loads should be treated with caution; and 3) uncertainty should be 13 

specified on all values. Our results highlight connections between these three principles. For example, Our results 14 

demonstrate that the timeframe of the budget affects the uncertainty in budget estimates in two ways. Firstly, if there are 15 

no systematic errors in budget loads, relative error in total loads will decline as duration of the study increases, as can be 16 

seen from Eq (2). This explains why relative uncertainty in mean loads over the non-flood years and retention over the 17 

entire study period are much lower than uncertainty during the flood year (Table 3). Secondly, budgets conducted over 18 

longer timeframes are more likely to capture a realistic representation of climatic conditions, particularly in tropical and 19 

subtropical systems where variation in flow can be extremely high (Kennard et al., 2010; Burford et al., 2012; Lewis et al., 20 

2013). Variation in input and output loads was very high even in the 13 non-flood years (Fig 3); the standard deviation of 21 

input and output loads was typically similar or equal to the mean load for both reservoirs (Table 2).  In systems such as our 22 

study sites, where flow is highly episodic, a static budget of water, sediment or nutrient loads will have limited value, and 23 

budgets are best presented as time series.  24 

While quantifying uncertainty in reservoir budgets is important (Parsons, 2011), it can be extremely difficult, due 25 

to the necessity of combining data and predictions from different sources, across different spatial and temporal scales 26 

(Walling and Collins, 2008; Hobgen et al., 2014). In this studyHere, we were able to quantify uncertainty in all loads, using a 27 

range of methods, including verification of the catchment model SC against both event loads and independent empirical 28 

models. Relative uncertainty was highest in reservoir retention (Table 3), because retention is the difference between input 29 

and output loads, and uncertainty in retention depends on the addition of input and output errors squared (Eq 2). This 30 

means the magnitude of retention is less than either input or output loads, but uncertainty in retention is higher than in 31 
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either inputs or outputs: hence relative uncertainty in retention can be very large (Tables 2-3). Full quantification of 1 

uncertainty in all components of the budget (Parsons’ third principle of catchment budgets) makes it clear than that 2 

uncertainty is particularly high in “unmeasured elements”quantities which are calculated from other budget terms, rather 3 

than independently determined (Parsons’ second principle).  Thus these two principles can be  4 

Thus ifcombined.  5 

Therefore we propose that Parsons’ three principles of catchment budgets can be refined to two principles: 1. 6 

Budgets should be presented as time-series rather than static quantities to clearly display temporal variability and 2.  7 

uUncertainty isshould be quantified for all budget terms, and the accounted for in any interpretation of results.  8 

variability in the system is adequately accounted for, then the three principles of catchment budgets proposed by 9 

Parsons (2011) will be met. 10 

 In systems such as our study sites, where flow is highly episodic, a static budget of water, sediment or nutrient 11 

loads will have limited value, and budgets are best presented as time series.  12 

4.3 Sediment and nutrient trapping  13 

Correct propagation of uncertainty also affects interpretation of reservoir budgets. Uncertainty is higher over 14 

shorter time periods, and . Comparison of the magnitudes and uncertainties in retention and trapping efficiency of water, 15 

sediment and nutrients (Tables 2-3)thus confidence in budget values is lower for the flood year than for the whole study 16 

period  (Tables 2-3)clearly illustrates this point, as follows. Net retention of TSS, TN and TP occurred over the 14 year study 17 

period in both reservoirs, except for TP in SomersetWivenhoe, where uncertainty was higher than the difference between 18 

input and output loads. The flood year dominated the retention of TSS, TN and TP in both reservoirs (e.g. 25 % and 40 % of 19 

TSS retained in Somerset and Wivenhoe were captured during the flood year), however the higher relative uncertainty in 20 

the values determined for this shorter timeframe means that . Uncertainty is higher over shorter time periods, however, as 21 

outlined earlier, so retention of water, sediment and nutrients in both reservoirs in the flood year was only significantly 22 

different to zero for TSS in Somerset.  23 

Uncertainty in trapping efficiency (retention divided by input) is lower than uncertainty in retention, as outlined in 24 

Section 2.4. Thus while retention was not significant for most loads during the flood periodIn contrast, trapping efficiency 25 

(retention divided by input) was quantifiable for all sediment and nutrients across the study period, and for TSS in both 26 

reservoirs and TN in Somerset during the flood year (Table 2). Together, these findings engender greater confidence in the 27 

proportion of sediment and nutrients retained by the reservoirs (i.e. trapping efficiency) than in the mass retained, and in 28 

budget terms calculated for multi-year periods. For a fuller assessment of trapping efficiency in reservoirs  with variable 29 



 

15 
 

flow, such as Wivenhoe and Somerset, hydraulic retention on should be calculated on shorter (i.e. monthly) timescales, as 1 

outlined in is required (Lewis et al. (, 2013).  2 

Retention of sediments in reservoirs can represent a loss of terrestrial productivity, and reduce the volume 3 

available for water supply and flood mitigation. For example, sedimentation in Mosul Dam, Iraq, reduced reservoir volume 4 

by more than 10 % between 1986 and 2011 (Issa et al., 2015). To determine volume occupied by sediment retained in 5 

Somerset and Wivenhoe over our study period, we divided the mass of sediment retained (Table 3) by an estimated 6 

sediment bulk density of 0.95 gcm
-3

, using the appropriate unit conversions. The sediment bulk density used here 7 

represented an average of the range reported by Avnimelech et al. (2001). For Wivenhoe, we used TSS inputs from two 8 

sources for January 2011: 1. TSS inputs from this study (Table 2) and 2) mean TSS input estimated by Grinham et al. (2012; 9 

): 11.4 ± 9.6 Mt). In the most extreme case (i.e. highest estimates of sediment inputs during January 2011), Wivenhoe 10 

storage volume is estimated to decline by only 1 % over the 14 year study period (Figure 5). Using the input loads 11 

calculated in this study, decline in storage volume over 14 years is estimated as only 0.04 %-01.1 % for Wivenhoe over the 12 

14 year study period (Table 4), i.e. 0.003 %-0.1 % per year. Average annual decline in storage volume is two orders of 13 

magnitude lower in Wivenhoe compared to For example, sedimentation in Mosul Dam, Iraq, reducedwhere reservoir 14 

volume reduced by more than 10 % due to siltation between 1986 and 2011 (Issa et al., 2015), i.e. 0.4 % per year on 15 

average (Issa et al., 2015). While trapping efficiency of Wivenhoe is slightly less than that estimated for Mosul Dam, the 16 

large difference in siltation between these two reservoirs is due primarily to the difference in sediment loads. Mosul Dam 17 

has approximately ten times the storage volume of Wivenhoe, but sediment loads entering Mosul Dam are of order 100-18 

1000 higher than those entering Wivenhoe (Issa et al., 2015). Direct measurement of reservoir volume is required for more 19 

accurate estimates of storage loss due to sedimentation. 20 

 While the relative siltation rates in both Somerset and Wivenhoe may seem low (Table 4), the corresponding loss 21 

in water supply volume is regionally significant. We estimated that the decline in storage capacity over the study period 22 

was approximately 4 000 ML for Somerset loss and 5 000- 12 000 ML for Wivenhoe (Table 4). Four of the 15 water supply 23 

reservoirs in the region have capacity of less than 5 000 ML, and fewer than half have a capacity greater than 12 000 ML 24 

(Leigh et al., 2010). Hence the volume of storage capacity lost in Somerset and Wivenhoe over the 14 year study period is 25 

equivalent to the closure of one of more of the smaller reservoirs. Somerset and Wivenhoe supply water to southeast 26 

Queensland, a region of rapid population growth which has recently experienced major drought, and where alternatives 27 

water sources have much higher greenhouse gas intensity than water supplied from existing reservoirs (e.g. Hall et al. 28 

2011). Therefore any economic assessment of methods to reduce the catchment sediment load in this region should 29 

account for costs associated with reservoir siltation and associated loss of water supply volume. Direct measurement of 30 

reservoir volume is required for more accurate estimates of storage loss due to siltation.Direct measurement of reservoir 31 

volume is required for more accurate estimates of storage loss due to sedimentation. 32 
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Clear differences between TSS, TN and TP retention were observed across both reservoirs, reflecting the different 1 

processing pathways of sediment, nitrogen and phosphorus in aquatic systems. TSS trapping was very high, with lower 2 

variability and relative uncertainty than TN and TP, and a stronger correlation to hydraulic residence time (Figure 7). This 3 

reflects sediment dynamics, which are strongly controlled by the physical processes of advection and settling. TP retention 4 

was lower and more variable than TSS retention in either reservoir, but was also related to hydraulic residence time (Figure 5 

7), similar to the findings of a long-term study of an arid lake system in Australia (Cook et al., 2010). P retention has been 6 

demonstrated in reservoirs throughout the world (Josette et al., 1999; Bosch and Allan, 2008). However TP retention was 7 

more variable than TSS retention because P can be transformed via chemical and biological processes into a range of 8 

organic and inorganic forms. TP is associated with the finer fractions of TSS, which are less likely to settle and hence more 9 

likely to be transported through the reservoir during periods of short retention time (Kerr et al., 2011), increasing the 10 

proportion of P likely to be transported through the reservoir during periods of overflow. A full analysis of residence time 11 

impact on TSS and TP retention is likely to require flow data on shorter timescales, e.g. daily rather than annual inflow 12 

(Lewis et al., 2013). 13 

Interpreting retention of N is more complicated than either TSS or TP. Whereas both nutrients and sediments can 14 

be deposited from the atmosphere and buried in sediments, N can also be exported via denitrification and imported 15 

through N fixation by cyanobacteria. These processes are not included in the budget, thus uncertainty in TN loads and 16 

retention will be underestimated. N is typically retained in reservoirs globally (Harrison et al., 2009), and was consistently 17 

retained in Somerset throughout the study period. However Wivenhoe was frequently a net exporter of TN (Figure 7), 18 

typically during drought years when Wivenhoe releases for Brisbane water supply were less than reservoir inflows (Figure 19 

3).  20 

The impact of reservoirs on downstream aquatic ecosystems depends of the form of nutrients released as well as 21 

the total loads (Kunz et al., 2011). Overall, TN is retained by both reservoirs over the study period (Table 3). However the 22 

concentration of dissolved inorganic nitrogen ([DIN) ] leaving the bottom of both reservoirs was typically higher than the 23 

concentration of DIN measured in the UBR during events (Figure S3), probably due to anoxic conditions in reservoir bottom 24 

waters (Burford and O'Donohue, 2006). Ratios of total and dissolved inorganic N: P were substantially higher in boththe 25 

reservoirs compared withthan in the UBR. Therefore the impacts of reservoirs on downstream nutrient conditions will 26 

depend on the timing and magnitude of sediment and nutrients loads into the reservoirs, trapping efficiency and 27 

transformation processes within the reservoirs themselves.  28 
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5. Conclusions  1 

Major floods are likely to dominated the 14 year long term sediment and nutrient budgets determined here for in 2 

reservoirs such as Somerset and Wivenhoe, subtropical reservoirs subject to episodic flow. Our results demonstrate that 3 

reliable sediment and nutrient budgets depend on the availability of Accurate quantification of inputs and outputsdata 4 

during high flow periods, and that such budgets may be inherently dynamic is therefore essential for reliable sediment and 5 

nutrient budgets. For these two subtropical reservoirs a Sstatic budgets of water, sediment or nutrients is would be 6 

meaningless at best, and misleading at worst,  for these reservoirs, because both the magnitude and timing of loads are 7 

highly dynamic. Understanding variability and uncertainty are therefore just as important as quantifying loads in 8 

characterizing reservoir budgets in regions with intermittent and variable flow. This is especially relevant in a world in 9 

which many once-perennial rivers are expected to transition to intermittent flow regimes (Döll and Schmied, 2012) and the 10 

pace of dam construction in many regions continues to escalate (Winemiller et al., 2016). 11 
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 1 

 2 

Figure 1: Somerset and Wivenhoe reservoirs in subtropical Australia. The major tributaries are Stanley River and Upper 3 
Brisbane River (UBR), respectively. Flow gauging stations are indicated. 4 
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 1 

Figure 2: Annual rainfall (mm per water year) measured at a rainfall station near Wivenhoe and Somerset reservoirs (Bureau of 2 
Meteorology, bom.com.au). Horizontal line shows long-term mean rainfall. 3 

 4 
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 1 

 2 

Figure 3: Annual input and output loads of water (ML y -1), TSS and nutrients (kt y-1) for Somerset (o) and Wivenhoe (►) 3 
reservoirs for water years 1997-2010, and the percentage contribution of Somerset to Wivenhoe input loads. 4 
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 1 

 2 

Figure 4: Summary of January 2011 input and output loads, as percentage of total loads in and out during the flood year, and 3 
across the entire study period 4 
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 1 

 2 

Figure 5: Comparison of four methods for calculating mean annual TSS, TN and TP output loads (kt y-1), using [TSS], [TN] and 3 
[TP] from: 1. ► Mean historical concentration of monthly monitoring data water years 1997-2010; 2. * Monthly monitoring, with 4 
missing data replaced by mean historical concentration; 3. ■ Monthly monitoring, with missing data replaced by concentration 5 
estimated from turbidity profiles, and mean historical concentration where turbidity data unavailable; 4. ● Turbidity profiles, 6 
with missing data replaced by monthly monitoring, and mean historical concentration otherwise. 7 
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Figure 6: [TSS], [TN] and [TP] (mg L-1) at dam outlets measured during monthly monitoring (round symbols), calculated from the 1 
daily measured turbidity profile (solid lines) and mean historical concentrations (broken lines). Surface concentrations are 2 
denoted by open circles and thin lines, bottom readings are closed circles and heavy lines. Note that TSS mean is from log-3 
transformed data.  4 
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 1 

Figure 7: Percentage of annual TSS, TN and TP loads retained in Somerset and Wivenhoe reservoirs compared to hydraulic 2 
residence time (y). Dashed line indicates zero trapping, boundary between net positive import and export. 3 
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Table 1: Summary of information used to construct reservoir budgets, including spatial and temporal resolution. S = Somerset 1 
reservoir, W = Wivenhoe reservoir. 2 

 Catchment inputs Reservoir releases  

Flow Flow gauged at sub-daily time-step 

S: Woodford Weir, Stanley River Jul 2002-Jun 2011 

W: Gregors Creek, UBR Jul 1997-Jun 2011 

Daily catchment flow predicted by Source 

Catchments (SC) model S & W: Jul 1997 – Jun 2011  

Monthly data 

S & W: Jul 1997 – Jun 2001 

Daily data 

S & W: Jul 2001 – Jun 2011 

 

TSS, 

TN, 

TP 

Daily catchment loads predicted by Source 

Catchments (SC) model-  

S & W: Jul 1997 – Jun 2011  

Catchment inputs at gauging stations estimated 

from flow and concentration measured during high 

flow events 

S: 32 events at Woodford Weir, Stanley River , 6 Dec 

2003 -26 Jul 2009  

W: 15 events at Gregors Creek, UBR 25 Dec 2002- 3 

Jul 2009  

TN, TP only: Daily loads at Woodford Weir and 

Gregors Crossing estimated from daily gauged flow 

using an empirical model (Kerr 2009) 

S & W: Jul 2002 – Jun 2011 

Concentrations measured monthly at the dam 

wall, top and bottom of water column 

S & W: Jul 1997 – May 2011  

Concentrations estimated from turbidity 

profiles taken hourly throughout the water 

column at the dam wall 

S: Jul 2009 – Jun 2011 

W: Jul 2008 – Jun 2011 

 3 

 4 
  5 
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Table 2: Inputs and output loads of water, TSS, TN and TP for Somerset and Wivenhoe reservoirs from June 1997 to July 2011 ± 1 
uncertainty, σ is the standard deviation of annual values over non-flood years. Water years are defined from July to June. Water 2 
year 2010 is the flood year, other years are non-flood years. January 2011 is the flood month. S = Somerset reservoir, W = 3 
Wivenhoe reservoir 4 

  5 

  Input loads 

 

Output loads 

  Mean,  

non-flood 

years  

 

Flood  

year 

 

Flood 

month  

Mean,  

non- flood 

years  

 

Flood  

year 

 

Flood 

month  

Water,  

109 m3 

(103 GL) 

S 

 

W 

0.32± 0.07 

σ= 0.21 

0.39 ±0.06  

σ= 0.36 

1.6 ±1.1 

 

4.2±1.8 

 

0.8 

  

2.7  

0.20 

σ= 0.16 

0.33  

σ= 0.32 

1.7 

  

4.8 

  

0.9 

  

2.9 

  

TSS, kt S 

 

W 

23±6  

σ= 19  

25±8  

σ= 37 

130 ±90 

  

310 ±200 

73 

  

235  

  

0.8±0.1 

σ= 0.9 

2.6±1 

σ= 7 

 27± 10 

  

120± 50 

  

19 

  

104 

  

TN, kt S 

 

W 

0.36±0.1  

σ= 0.27 

0.4  ±0.1 

σ= 0.5 

2.0 ±1.4 

  

4.5 ±2.4 

  

1.1 

  

3.1  

  

0.13±0.01 

σ= 0.14 

0.18 ±0.01 

σ= 0.22 

1.1 ±0.1 

  

3.4 ±0.3 

  

0.6 

  

2.2 

  

TP, kt S 

 

W 

0.04±0.01 

σ= 0.03 

0.04±0.01 

σ= 0.05 

0.2±0.14 

  

0.5±0.3 

  

0.1   

  

0.4  

  

0.01±0.002 

σ= 0.01 

0.01±0.004 

σ= 0.03 

0.14±0.06 

  

0.57±0.2 

0.1 

  

0.4 
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Table 3: Retention of water, TSS, TN and TP in Somerset and Wivenhoe reservoirs from June 1997 to July 2011. Water year 2010 1 
is the flood year. S = Somerset reservoir, W = Wivenhoe reservoir 2 

  3 
  Retention Trapping efficiency = 

Retention/Input loads 

  Entire  

study 

 period  

 

Flood  

year 

Entire 

study 

period  

 

Flood 

year 

Water,  

109 m3 

(103 GL) 

S 

 

W 

1.44±1.46 

  

0.21±1.91 

 

-0.14 ±1 

  

-0.56 ±2 

  

25±19% 

 

 2 ±20% 

-9±76% 

 

 -13 ±47% 

TSS, kt S 

 

W 

400± 120  

 

480± 230  

 

100 ±  90 

  

190 ±200 

  

92 ±3% 

 

76 ±12% 

79 ±60% 

 

61 ±30% 

TN, kt S 

 

W 

3.8±1.8 

 

4.0±2.6 

 

0.9 ±1.4  

 

1.1 ±2.4  

  

57 ±12%   

 

41 ±16%   

44 ±39%  

 

24 ±41% 

TP, kt S 

 

W 

0.40±0.19 

 

0.36±0.39 

 0.05 ±0.1  

  

-0.03 ±0.36 

60 ±14%      

 

33±28% 

26 ±60% 

 

-5±69% 
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Table 4. TSS retention and estimated decline in storage capacity for Somerset and Wivenhoe reservoirs from June 1997 to July 1 
assuming sediment bulk density of 0.95 gcm-3. * calculated from information in Table 2; ** input  of TSS in water year 2010 based 2 
on January 2011 TSS loads estimated by Grinham et al., 2012; all other information from Table 2.  3 

 4 

 TSS retention, kt Total decrease in storage 

capacity, km3 

Relative decrease in 

storage capacity  

Somerset*  400 ± 120  0.0042 ± 0.00013 0.11 ± 0.03 % 

Wivenhoe*  480 ± 230  0.0051± 0.00024 0.04 ± 0.02 % 

Wivenhoe**  11600 ± 9600  0.012±0.01 1.1 ± 0.9 % 


	hess-2016-89-author_response-version2.pdf (p.1-5)
	P_N_S_OBrienetal_2016_HESS_revisedSep_numbers.pdf (p.6-37)

