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Abstract. A global constant value of the extinction coefficient (Kd) is usually specified in lake models to parameterize water 

clarity. This study aimed to improve the performance of the 1-D Freshwater Lake (FLake) model using satellite-derived Kd 

for Lake Erie. The CoastColour algorithm was applied to MERIS satellite imagery to estimate Kd. The constant (0.2 m-1) and 

satellite-derived Kd values as well as radiation fluxes and meteorological station observations were then used to run FLake for 10 

a meteorological station on Lake Erie. Results improved compared to using the constant Kd value (0.2 m-1). No significant 

improvement was found in FLake simulated lake surface water temperature (LSWT) when Kd variations in time were 

considered using a monthly average. Therefore, results suggest that a time-independent, lake-specific, and constant satellite-

derived Kd value can reproduce LSWT with sufficient accuracy for the Lake Erie station.  

A sensitivity analysis was also performed to assess the impact of various Kd values on the simulation outputs. Results show 15 

that FLake is sensitive to variations in Kd to estimate the thermal structure of Lake Erie. Dark waters result in warmer spring 

and colder fall temperatures compare to clear waters. Dark waters always produce colder mean water column temperature 

(MWCT) and lake bottom water temperature (LBWT), shallower mixed layer depth (MLD), longer ice cover duration, and 

thicker ice. The sensitivity of FLake to Kd variations was more pronounced in the simulation of MWCT, LBWT, and MLD. 

The model was particularly sensitive to Kd values below 0.5 m-1. This is the first study to assess the value of integrating Kd 20 

from the satellite-based CoastColour algorithm into the FLake model. Satellite-derived Kd is found to be a useful input 

parameter for simulations with FLake and possibly other lake models, and with potential for applicability to other lakes where 

Kd is not commonly measured. 

Keywords: Water clarity, extinction coefficient, MERIS, CoastColour, FLake, Lake Erie, lake water temperature 

 25 

 

 



2 

 

1 Introduction 

There has been significant progress made in recent years in the representation of lakes in regional climate models (RCM) and 

numerical weather prediction (NWP) models. Lakes are known to be an important continental surface component affecting 

weather and climate, especially in lake-rich regions of the northern hemisphere (Eerola et al., 2010; Martynov et al., 2012; 

Samuelsson et al., 2010). They can influence the atmospheric boundary layer by modifying the air temperature, wind and 5 

precipitation. Therefore, consideration of lakes in NWP/RCM is essential (Kheyrollah Pour et al., 2012, 2014b; Martynov et 

al., 2010). In order to account for lakes in NWP/RCM, a description of energy exchanges between lakes and the atmosphere 

is required (Eerola et al., 2010). Lake surface water temperature (LSWT) is one of the key variables when investigating lake-

atmosphere energy exchanges (Kheyrollah Pour et al., 2012). There are various approaches to obtaining LSWT and integrating 

it in NWP models, such as through climatic observations, assimilation and/or lake parameterization schemes (Eerola et al., 10 

2010; Kheyrollah Pour et al., 2014a). Currently, LSWT is broadly modelled in NWP models using one-dimensional (1-D) lake 

models as lake parameterization schemes (Martynov et al., 2012). For instance, the 1-D Freshwater Lake (FLake) model 

performs adequately for various lake sizes, shallow to relatively deep (artificially limited to 40-60 m depth (Kourzeneva et al., 

2012a)), located in both temperate and warm climate regions (Kourzeneva, 2010; Martynov et al., 2010, 2012; Mironov, 2008; 

Mironov et al., 2010, 2012; Samuelsson et al., 2010; Kourzeneva et al., 2012a; Kourzeneva et al., 2012b). 15 

One of the optical parameters required as input in the FLake model is water clarity. This variable is considered as an apparent 

optical property and is parameterized using the light extinction coefficient (Kd) to describe the absorption of shortwave 

radiation within the water body as a function of depth (Heiskanen et al., 2015). A global constant value of Kd is usually used 

to run lake models, including FLake. For example, Martynov et al. (2012) coupled FLake in the Canadian Regional Climate 

Model (CRCM) by specifying a Kd value equal to 0.2 m-1 (Martynov, pers. comm., 2015) for all North American Lakes, 20 

including Lake Erie for years 2005-2007. Heiskanen et al. (2015) evaluated the sensitivity of two 1-D lake models, LAKE and 

FLake, to seasonal variations and the general level of Kd for simulating water temperature profiles and turbulent fluxes of heat 

and momentum in a small boreal Finnish lake. Modelled values were compared to those measured for the lake during the ice-

free period of 2013. The study found a critical threshold for Kd (0.5 m-1) in 1-D lake models. Heiskanen et al. (2015) concluded 

that for too clear waters (Kd < 0.5 m-1), the model is much more sensitive to Kd. The study recommends a global mapping of 25 

Kd to run the FLake model for regions with clear waters (Kd < 0.5 m-1) for future use in NWP models. The authors also suggest 

that this global mapping can be time-independent (i.e. with a constant value per lake). 

The global mapping of Kd can be derived from satellite imagery. Potes et al. (2012) used empirically derived water clarity 

from space-borne Medium Resolution Imaging Spectrometer (MERIS) measurements to test the sensitivity of FLake to this 

parameter. The sensitivity analysis was conducted using two Kd values, representing the expected extreme water clarity cases 30 

for their study (1.0 m-1 for clear water and 6.1 m-1 for dark water). The importance of lake optical properties was evaluated 

based on the evolution of LSWT and heat fluxes. Their results showed that water clarity is an essential parameter affecting the 

simulated LSWT. The daily mean LSWT increased from 1.2 ºC in clear water to 2.4 ºC in dark water (Potes et al., 2012). 
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Water clarity measurements are included in water quality monitoring programs; however, global measurements of clarity are 

not yet available. Satellite remote sensing can provide water clarity observations to the modelling communities at higher spatial 

and temporal resolutions, to fill the gap of field measurements.  

In recent years, a number of algorithms have been devised to retrieve different water optical parameters, including water clarity, 

from satellite observations for coastal (ocean) and lake waters (Attila et al., 2013; Binding et al., 2007, 2015; Olmanson et al., 5 

2013; Potes et al., 2012; Wu et al., 2009; Zhao et al., 2011; Zolfaghari and Duguay, 2016). Turbid inland and coastal waters 

are optically more complex compared to open ocean, and large optical gradients exist. There is more than only one component 

(phytoplankton species, various dissolved and suspended matters with non-covarying concentrations) in coastal waters and 

lakes that determines the variability of water-leaving reflectance. Considering this complexity, the development of algorithms 

for coastal waters and lakes is more challenging. MERIS, which operated from March 2002 to April 2012, collected data from 10 

the European Space Agency’s (ESA) Envisat satellite. The spatial resolution and spectral bands settings were carefully selected 

in order to meet the primary objectives of the mission; addressing coastal monitoring from space. The best possible signal-to-

noise ratio, additional channels to measure optical signatures as well as the relatively high spatial resolution of 300 m are some 

of the specific instrument characteristics (Ruescas et al., 2014). In 2010, ESA launched the CoastColour project to fully exploit 

the potential of MERIS instrument for remote sensing of coastal zone waters. CoastColour (CC) is providing a global dataset 15 

of MERIS full resolution data of coastal zones that are processed with the best possible regional algorithms to produce water-

leaving reflectance and optical properties (Ruescas et al., 2014). 

The objectives of this study were to: 1) evaluate satellite-derived Kd values for a large lake in the Great Lakes region; 2) apply 

the evaluated satellite-derived Kd in FLake model to investigate the improvement of model performance to reproduce LSWTs, 

compared to previous studies using a constant Kd value of 0.2 m-1. Therefore, three different values of Kd were used in the 20 

simulations: yearly average, monthly average, and a constant value of 0.2 m-1 to evaluate the impact of a time-independent, 

lake-specific Kd value in simulating LSWT; and 3) understand the sensitivity of the FLake model to variations in Kd, based on 

the analysis of simulated LSWT, mean water column temperature (MWCT), lake bottom water temperature (LBWT), mixed 

layer depth (MLD), and water temperature isotherms during the ice-free season on Lake Erie (from April to November). The 

impact of Kd variations on ice dates (freeze-up, break-up, and duration) and ice thickness was also evaluated.  25 

2 Data and Methods 

2.1 Study Site and Station Observations 

Lake Erie (42° 11′N, 81° 15′W; Fig. 1) is a large shallow temperate freshwater lake covering a surface area of 25,700 km2. 

The lake is characterized by three basins: shallow western, central, and deep eastern basins with maximum depths of 19 m, 25 

m, and 64 m, respectively. Lake Erie is monomictic with occasional dimictic years (Bootsma & Hecky, 2003). It is the 30 

shallowest and smallest by volume of the Laurentian Great Lakes (Daher, 1999). These characteristics make Lake Erie unique 

from the other Great Lakes.  
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The meteorological forcing variables required for FLake model runs include solar (shortwave) and longwave irradiance, air 

temperature, air humidity, wind speed, and cloudiness. These data were collected from different stations shown in Fig. 1. Mean 

daily air temperature, wind speed and water temperature measurements were obtained for years 2003-2012, from the National 

Data Buoy Center (NDBC) of NOAA, station 45005 (41°40' N, 82°23' W, and depth: 12.6 m). Air temperature is measured 4 

m above the water surface and anemometer height is 5 m above the water surface to measure the wind speed, whereas the 5 

water surface is at 173.9 m above mean sea level. Water temperature is measured at 0.6 m below the water surface. The NDBC 

station was selected to perform simulations with FLake, since water temperature observations collected at the buoy station can 

be used to evaluate the model output. The other meteorological forcing variables required for model simulations at the NDBC 

station were obtained from nearby stations. Air humidity, and cloudiness were available in a daily format from EC-Ontario 

Climate Center (OCC) for the Windsor station (climate ID: 6139525) (2003-2012). This station is a near-shore station close to 10 

the NDBC station. The distance between OCC and NDBC stations is less than 81 km. Incoming radiation fluxes data was 

supplied by the National Water Research Institute (NWRI), Environment Canada (EC), from a station located in the western 

basin of Lake Erie. Daily shortwave irradiance measurements were available only for 2004 and 2008. Therefore, a daily time 

series of solar irradiance for the entire study period (2003-2012) was completed for the NDBC station using solar irradiance 

model data (see Sect. 2.2). Longwave irradiance was measured only in 2008 at the NWRI station. An empirical equation (see 15 

Sect. 2.2) was therefore employed to obtain longwave irradiance for the full period of study (2003-2012). 

FLake requires information on water transparency (downward light Kd) as input for model runs. MERIS satellite imagery was 

used to derive Kd for the NDBC station during the study period. The method is described in details in Sect. 2.3. Available 

Secchi disk depth (SDD) field measurements were collected by EC research cruises on board the Canadian Coast Guard Ship 

Limnos and utilized in this study to evaluate the satellite-derived water clarity. The cruise visited Lake Erie at a total of 89 20 

distributed stations in five different years (September 2004; May, July, and September 2005; May and June 2008; July and 

September 2011; and February 2012).  

2.2 Shortwave and Longwave Irradiance 

The SUNY model, a satellite solar irradiance model, has been developed to exploit Geostationary Operational Environmental 

Satellites (GOES) for deriving solar irradiance using cloud, albedo, elevation, temperature, and wind speed observations 25 

(Kleissl et al., 2013). The basic principles of solar-irradiance modelling based on inputs from geostationary satellites and 

atmospheric models are described in Kleissl et al. (2013). Data from these sources are used to generate site and time specific 

high-resolution maps of solar irradiance with the SUNY model. The daily mean solar irradiance data for the present study was 

obtained from the second version of the SUNY model (Version 2.4), available in SolarAnywhere® 

(https://www.solaranywhere.com). The model provides a gridded data set with a spatial resolution of one tenth of a degree (ca. 30 

10 km). The solar irradiance data was extracted from a tile corresponding to the NWRI station for 2004 and 2008, when 

observations were available for evaluation, and also for FLake model run on Lake Erie for the full study period (2003-2012). 

There is a strong agreement (R2 = 0.93) between model-derived and measured solar irradiance at the NWRI station. The SUNY 

https://www.solaranywhere.com/
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model slightly underestimates observations by 2.18 Wm-2 (N = 362, RMSE = 21.58 Wm-2, MBE = -2.18 Wm-2, I_a = 0.88; 

see Sect. 2.5 for details). 

 

Longwave irradiance was computed on a daily basis using the equation of Maykut and Church (1973), as implemented in the 

Canadian Lake Ice Model (CLIMo) (Duguay et al., 2003): 5 

 

𝐸 = 𝜎𝑇4(0.7855 + 0.000312𝐺2.75)                                                                                                                                  Eq. (1) 

 

where 𝑇 is the air temperature at screen height (ºK) and 𝐺 is the cloudiness in tenth from meteorological stations. 

 10 

Longwave irradiance calculated from Eq. 1 was evaluated against observations from the NWRI station, only available in 2008. 

The two datasets are highly correlated (R2 = 0.74) with the equation underestimating measured irradiance by 0.86 Wm-2 (N = 

194, RMSE = 17.74 Wm-2, MBE = -0.86 Wm-2, I_a = 0.76). Model-derived incoming shortwave and longwave fluxes were 

used as input in FLake model simulations for subsequent analyses in NDBC station over the 2003-2012 period. 

2.3 Satellite-Derived Extinction Coefficient 15 

MERIS operated on-board the ESA Envisat polar-orbiting satellite until April 2012. The sensor was a push-broom imaging 

spectrometer which measured solar radiation reflected from the Earth’s surface at high spectral and radiometric resolutions 

with a dual spatial resolution (300 m and 1200 m). Measurements were obtained in the visible and near-infrared part of the 

electromagnetic spectrum (across the 390 nm to 1040 nm range) in 15 spectral bands during daytime, whenever illumination 

conditions were suitable, and with a full spatial resolution of 300 m at nadir, with a 68.5̊ field-of-view. MERIS scanned the 20 

Earth with a global coverage of every 2-3 days. 

In this study, a total of 326 full resolution archived MERIS images encompassing the NDBC station in Lake Erie were acquired 

from CC (Version 2) products through the Calvalus on-demand processing service for the period of 2003-2012. The level 2 

products are generally geolocated geophysical products and CC Level2W products are the result of in-water processing 

algorithms to derive optical parameters from the water leaving reflectance. These parameters include inherent optical properties 25 

(IOPs), concentrations of some water constituents, and other optical water parameters such as spectral vertical Kd. The IOP 

parameters are first derived applying two different inversion algorithms: neural network (NN) and Quasi Analytical Algorithm 

(QAA). The derived IOPs are then converted to estimate constituents’ concentrations and apparent optical properties (AOP), 

including diffuse Kd for different spectral bands applying Hydrolight simulations (Ruescas et al., 2014).    

The diffuse Kd product (the average value between visible spectral bands) in CC Level2W data was extracted for the pixel at 30 

the geographic location of the NDBC station. The satellite-derived Kd values were also extracted for pixels on the same day 

and location as the Limnos cruise stations to evaluate the CC-derived diffuse Kd values against SDD in situ data collected 
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during Limnos cruises. A valid pixel expression was defined in all pixel extraction steps that excluded pixels with properties 

listed in Table 1. 

2.4 FLake Model and Configuration 

The FLake model is a self-similar parametric representation (assumed shape) of the temperature structure in the four media of 

the lake including water column, bottom sediments, and in the ice and snow. The water column temperature profile is assumed 5 

to have two layers: a mixed layer with constant temperature and a thermocline that extends from the base of mixed layer to the 

lake depth. The shape of thermocline temperature is parameterized using a fourth-order polynomial function of depth that also 

depends on a shape coefficient CT. The value of CT lies between 0.5 and 0.8 so that the thermocline can neither be very concave 

nor very convex. FLake has an optional scheme for the representation of bottom sediments layer, which is based on the same 

parametric concept (De Bruijn et al., 2014; Martynov et al., 2012). The system of prognostic equations for parameters is 10 

described in Mironov (2008).  

The prognostics ordinary differential equations are solved to estimate the thermocline shape coefficient, the mixed layer depth, 

bottom, mean and surface water column temperatures, and also parameters related to the bottom sediment layers (Martynov et 

al., 2012; Mironov, 2008; Mironov et al., 2010). The same parametric concept is applied for the ice and snow layers, using 

linear shape functions (Martynov et al., 2012). The mixed layer depth is calculated considering the effects of both convective 15 

and mechanical mixing, also accounting for volumetric heating which is through the absorption of net shortwave radiation 

(Thiery et al., 2014). The non-reflected shortwave radiation is absorbed after penetrating the water column in accordance with 

the Beer-Lambert law (Gordon, 1989).  

Stand-alone FLake simulations were conducted for the NDBC station. The setup condition of NDBC buoy station, such as 

height of wind measurement (5 m), height of air temperature sensor (4 m), and the geographic location and depth of this site 20 

were used to configure the model. The measured meteorological parameters and model-derived irradiance were also used to 

force the FLake model. A fetch value of 100 km was used to run all simulations. It was found that there is only little sensitivity 

to modifications in this parameter for Lake Erie. The same result was found for Lake Kivu in Thiery et al. (2014). The bottom 

sediments module was switched off in all simulations and the zero bottom heat flux condition is adopted. The initial 

temperature value for the upper mixed layer and the lake bottom were 4°C. Mixed layer thickness had the initial value of 3 m. 25 

The simulations were run in a daily time step (using daily forcing data) for 2003-2012. 

The ability of FLake to reproduce the observed temperature variations using different Kd values was tested by comparing the 

simulated LSWT to the corresponding in situ observations in the NDBC station. Also, the model sensitivity to variations in 

water clarity was assessed studying the LSWT, MWCT, LBWT, MLD, isotherms, ice phenology, and ice thickness.  

2.5 Accuracy Assessment  30 

To assess the model outputs, three statistical indices were calculated: the root mean square error (RMSE), the mean bias error 

(MBE), and the index-of-agreement (I_a). RMSE is a comprehensive metric that combines the mean and variance of model 
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errors into a single statistic (Moore et al., 2014). The MBE is calculated as the mean of modelled values minus the in situ 

observations. Therefore, a positive (negative) value of this error shows an overestimation (underestimation) of the parameter 

of interest. I_a is a descriptive measure of model performance. It is used to compare different models and also modelled against 

observed parameters. I_a was originally developed by Willmott in the 1980s (Willmott, 1981) and a refined version of it was 

presented by Willmott et al. (2012). The refined version, which was adopted in this study, is dimensionless and bounded by -5 

1.0 (worst performance) and 1.0 (the best possible performance). These statistical indices are considered as robust measures 

of model performance (e.g. Hinzman et al., 1998; Kheyrollah Pour et al., 2012; Willmott and Wicks, 1980). 

3 Results and Discussion 

3.1 Satellite-Derived Kd 

3.1.1 Variations of Kd at NDBC Station 10 

Fig. 2 shows the variations of CC-derived Kd for the NDBC station during the full study period (2003-2012). Lake Erie 

(specifically its shallow regions) is more susceptible to re-suspension of bottom sediments compared to the other Great Lakes, 

which leads to lower water clarity (Binding et al., 2010). The results from applying the CC algorithm on MERIS satellite 

imagery shows that the highest Kd values in the NDBC station occurs in the turn-over times in spring and fall. The maximum 

value of Kd was 3.54 m-1, estimated in April 2003. A minimum value of 0.58 m-1 was estimated in June 2007. The average 15 

value of Kd during the study period was 0.90 m-1 with a standard deviation of 0.38 m-1. Hence, these values, identified as the 

average, the lower, and the upper limits of clarity at the NDBC station were used to carry out a sensitivity analysis with FLake 

(see Sect. 3.2.2). 

3.1.2 Evaluation of CoastColour Kd 

The validation of satellite observations against in situ data is important, because the in situ data are still considered as the most 20 

accurate measurement of water clarity. The assessment of the satellite-derived Kd retrieval reliability highly depends on the 

comparison with independent in situ SDD measurements. The general form of the relationship between Kd and SDD was 

established by the pioneer study of Poole and Atkins (1929): 

𝑆𝐷𝐷 × 𝐾𝑑 = 𝐾                                                                                                                                                                      Eq. (2) 

where K is a constant value of 1.7 (Poole and Atkins, 1929). Following this important work, there were other studies that found 25 

a high variability of the constant value (K) depending on the type of the lake considered (Koenings and Edmundson, 1991). 

Armengol et al. (2003) showed that Kd and SDD are negatively correlated and they developed an empirical power relation 

between these two parameters.  

In this study, applying a cross validation approach, an empirical relation was developed between in situ measured SDD and 

CC-derived Kd. SDD measurements were conducted 117 times during cruises on Lake Erie from 2004 to 2012. These spatially-30 
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distributed measurements had minimum, maximum, mean, and standard deviation values of 0.2, 11, 3.69, and 2.68 m, 

respectively. CC Level2W satellite products were acquired on the same day as the in situ measurements. Applying defined 

flags produced 49 data pairs (matchup dataset) of CC observations of Kd and SDD in situ data that were collected on the same 

day and location.  

The matchup dataset was divided into training and testing data in 100 iterations. In each iteration, the data used for the 5 

equation’s training and evaluation were kept independent, where 70% of the sample was used for equation calibration and 

30% for evaluation. Ordinary least square regression was used in the calibration step of each iteration to relate the in situ 

measurements of SDD to the CC-derived Kd. Locally tuned equations were derived from this step and applied on SDD 

observations to predict Kd in testing matchup data. The statistical parameters of the model performance were derived between 

the estimated Kd from SDD observations and the paired CC-derived values. These steps were repeated for 100 iterations; and 10 

the final statistical indices, slope and power of the locally tuned equation was reported as the average of the ones derived over 

all iterations.  

Results from the above procedure show that Kd can be derived from SDD, using the equation  𝐾𝑑 = 1.64 × 𝑆𝐷𝐷−0.76, with a 

strong determination of coefficient value (R2 = 0.78). Arst et al. (2008) obtained a similar regression formula between SDD 

and Kd for the boreal lakes in Finland and Estonia representing different types of water, expanding from oligotrophic to 15 

hypertrophic. Because there is a good agreement between Kd and the corresponding ones estimated from in situ measured SDD 

(N = 49, RMSE = 0.63 m-1, MBE = -0.09 m-1, I_a = 0.65; Fig. 3), the satellite-derived water clarity were considered to be 

representative of Kd and were used in the modelling for this study.  

However, SDD is not always describing Kd values. SDD is a suitable characteristic to describe water transparency for small 

values of Kd. For high values of Kd (ranging above 4 m-1), Arst et al. (2008) and Heiskanen et al. (2015) suggested that SDD 20 

is unable to describe any changes in Kd. Fig. 3 also shows that SDD cannot describe the scatter of Kd for values above 4 m-1. 

Therefore, the estimation of Kd from in situ measurements of SDD should be used with caution. Direct measurements of Kd in 

the field is not widely available. These limitations motivate the investigation on the potential of integrating satellite-based 

estimations of Kd into lake models.   

3.2 FLake Model Results 25 

3.2.1 Improvement of LSWT Simulations with Satellite-Derived Kd 

Martynov et al. (2012) focused on 2005 to 2007 to run FLake at the NDBC station using a constant value of 0.2 m-1 for Kd. 

They simulated the lake properties using both realistic and excessive depths of 20 and 60 m, respectively, for a grid tile 

corresponding to the NDBC station. They showed that applying a more realistic lake depth parameterization improved the 

performance of the model to reproduce the observed surface temperature. In this section, Kd values were derived from the CC 30 

algorithm for different months during the same years (2005-2007) as in Martynov et al. (2012).  
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Table 2 displays the average Kd values for each month of these years. The monthly averaged values are only shown for the 

months of the year when both LSWT observations and CC–derived Kd values were available. The average value of Kd in these 

months in each year was considered as the average value of Kd for that year.  

Fig. 4 compares the results of different LSWT Flake simulations with observations at the NDBC station. LSWT observations 

had maximum values of 27.53 ºC, 26.48 ºC, and 25.46 ºC in August during 2005, 2006 and 2007. The minimum values of 2.71 5 

ºC, 7.3 ºC, and 3.42 ºC were observed in December 2005, and April in 2006 and 2007. The average LSWT observations in 

2005, 2006, and 2007 had values of 18.45 ºC, 17.12 ºC, and 17.75 ºC, respectively. Four different simulation schemes were 

made which were then compared to the observed LSWT. The simulated LSWT values in Fig. 4 were produced by first applying 

Kd = 0.2 m-1 from Martynov et al. (2012) using both the real lake depth at the station (12.6 m: CRCM-12.6) and also a tile 

depth corresponding to the station in their study (20 m: CRCM-20). Then, simulations using the yearly average CC-derived 10 

Kd for each year of study were plotted (Avg). The Kd values derived from the monthly average of each year were used to 

simulate the surface water temperature and produce a merged LSWT product (Merged). Both Avg and Merged simulations 

used the real lake depth at NDBC station (12.6 m). 

Comparing LSWT in situ observations (Obs) with the modelled values in Fig. 4 demonstrated that in Avg and Merged 

simulations for 2005-2007, surface temperature was modelled warmer in spring (April-June) and colder in summer (July-15 

September) and fall (October-November) than in situ observations (spring: MBE Avg = 1.31 ºC, MBE Merged = 1.25 ºC; summer: 

MBE Avg = -0.72 ºC; MBE Merged = -0.75 ºC; fall: MBE Avg = -1.82 ºC, MBE Merged = -1.99 ºC; see Fig. 5 for seasonal-based 

performance of simulations). CRCM-12.6 and CRCM-20 were reproducing a colder LSWT in average with maximum under-

prediction in July-August (for 2005-2007: -2.93 ºC <MBEJuly-August<-0.99 ºC). Simulation with a larger depth (CRCM-20) 

tended to gain (lose) heat more slowly in spring (fall), compared to all other simulations.  20 

The overall performance of each simulation is summarized in Table 3 during the period of data availability. For all years, the 

average and merged simulations perform better than simulations using Kd (0.2 m-1) as in Martynov et al. (2012), with 

improvement in RMSE and MBE for both real depth and tile depth. In all three years, LSWT simulated from the Kd value 

employed in Martynov et al. (2012) resulted in an underestimation (CRCM-12.6: MBE= -1.52 ºC, -0.98 ºC, -1.08 ºC; CRCM-

20: MBE= -1.54 ºC, -1.09 ºC, -1.35 ºC; during years 2005, 2006, and 2007, respectively). In 2005, the average of Kd for the 25 

year demonstrates a better performance compared to the merged results; contrary to the results of 2007. However, for the 

merged results in 2006, the MBE was improved compared to the simulation using the average Kd; whereas its performance 

decreased in terms of RMSE. The extent of Kd variations in each month might not be captured by the available MERIS images 

due to cloud coverage in MERIS images or the absence of any satellite overpass. Therefore, a yearly-average Kd can be 

potentially closer to the actual value of Kd. For this reason, the merged results cannot always perform better than average 30 

simulations.  

Fig. 5 illustrates the scatterplots of simulated LSWT for all four different runs including three years of data (2005-2007), in 

comparison with the corresponding in situ observations. All simulated results were in a high agreement with in situ 

measurements. Fig. 5-a and -b show that the resulting LSWT from yearly average (Ave) and monthly average (Merged) Kd 
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were not significantly different, whereas simulations with yearly average Kd reproduced LSWT with improved RMSE and 

MBE values compared to monthly average (Avg: RMSE=1.54 ºC, MBE=-0.08 ºC; Merged: RMSE=1.57 ºC, MBE=-0.14 ºC). 

It is possible that the actual Kd value is best represented by the yearly average value. Therefore, using a constant annual open 

water season value for Kd could be potentially sufficient to simulate LSWT in 1-D lake models with relatively high accuracy 

(the range of Kd variations that brings the most sensitivity for the modelling is discussed in Sect. 3.2.2). Both CRCM 5 

simulations (Fig. 5-c: depths of 12.6 and Fig. 5-d: depth of 20 m) under-predicted LSWT (for LSWT values larger than ca. 

7ºC), with MBE values of -1.26 ºC and -1.37 ºC, respectively. The under-prediction of these model runs was stronger, 

particularly for LSWT above 12ºC, which can be explained by the Kd value used. This is because, no matter what depth is used 

in simulations (either actual or tile depth), both CRCM runs have larger MBE compared to Avg and Merged simulations. 

However, the CRCM-20 simulation tended to produce the coldest LSWT (the most under-prediction; MBE = -1.37 ºC). This 10 

is due to the lake depth value considered for the model run which corresponds to the tile depth as opposed to the other 

simulations that were based on using the actual depth at station. 

The time-dependent (monthly average) Kd did not improve simulation results for Lake Erie (Kd ranging from 0.58 to 3.54 m-1 

with average value of 0.90 m-1 during open water seasons of 2003-2012). However, comparing results from Fig. 5-a and –c 

showed improvement in LSWT simulations when a lake-specific value of Kd is used (Avg: RMSE=1.54 ºC, MBE=-0.08 ºC; 15 

CRCM-12.6: RMSE=1.76 ºC, MBE= -1.26 ºC). Under-prediction of LSWT decreased when the yearly-average CC-derived 

Kd values were used, rather than a generic constant value (0.2 m-1). Heiskanen et al. (2015) suggested that the effect of Kd 

seasonal variations on LSWT simulations are not significant for lakes with Kd values higher than 0.5 m-1 (e.g. Lake Erie). 

Therefore, in the absence of reliable values of the temporal evolution of Kd, a lake-specific, time-independent, and constant 

value of Kd can be used in 1-D lake models when the Kd values are higher than 0.5 m-1. 20 

Martynov et al. (2012) concluded that applying a more realistic lake depth parameterization improves the FLake model 

performance. Using the realistic lake depth (12.6 m) at the NDBC station slightly improves the model performance in 

reproducing LSWT compared to simulation employing the corresponding tile depth (20 m) (CRCM-12.6: RMSE=1.76 ºC, 

MBE= -1.26 ºC; CRCM-20: RMSE=1.88 ºC, MBE= -1.37 ºC) (Fig. 5-c and –d).  

3.2.2 Sensitivity of FLake to Kd Variations 25 

The sensitivity of FLake to different values of Kd to reproduce LSWT, MWCT, LBWT, MLD, isotherm, ice phenology and 

thickness was investigated in this section for year 2008. As indicated previously (Sect. 2.1), shortwave irradiance 

measurements were available in that year and longwave irradiance was also measured from May to October 2008. Therefore, 

longwave irradiance for the other months of 2008 was modelled as described in Sect. 2.2 to fill the temporal gaps. Fig. 6 

presents simulation results for LSWT, MWCT, and LBWT using the real lake depth at NDBC station, and the lowest, average, 30 

and highest values of Kd observed in the study period (minimum Kd=0.58 m-1, average Kd =0.90 m-1, maximum Kd =3.54 m-

1). The water temperature simulation from CRCM-12.6 (using Kd=0.2 and realistic depth at station) simulation was also plotted. 
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In the case of extreme clear water (CRCM-12.6), LSWT showed smoother variations during the open water season in 2008 as 

opposed to the darkest water simulation (maximum or Max) which displayed more abrupt LSWT variations (Fig. 6). This is 

because solar radiation is absorbed more in waters with low clarity due to existing particles in water. It penetrates less deeply 

and warms up only the shallow surface layer (which shows in lower LBWT; see Fig. 6-c) causing thinner mixing depth (Fig. 

6-d). The high temperature of this shallow layer causes an increase in latent and sensible heat fluxes. Therefore, the shallow 5 

mixed layer exchanges heat faster with the atmosphere, resulting in sudden surface water temperature variations as opposed 

to clear waters. The fast heat exchange with atmosphere resulted in warmer LSWT during spring (start of heating season) and 

colder LSWT in fall for dark water as opposed to clear one. On average, the darkest water simulation (Max) resulted in 0.09 

ºC higher LSWT compared to the average (Avg) simulation, whereas the clear water (minimum or Min) simulation produced 

on average 0.02 ºC colder LSWT during 2008. CRCM-12.6 simulation with Kd value of 0.2 resulted in a larger difference 10 

compared to Avg simulation, 0.55 ºC colder LSWT. The comparison of the simulated LSWT results showed that FLake 

simulated LSWT was not significantly sensitive to Kd values when this value varied in the range of our Min to Max Kd. 

However, the sensitivity increased rapidly for Kd values less than our Min (0.58 m-1). This result supported the study of Rinke 

et al. (2010) that the thermal structure of lakes is particularly sensitive to changes in Kd when its value is below 0.5 m-1. More 

recently, Heiskanen et al. (2015) confirmed the critical threshold of Kd (ca. 0.5 m-1). They suggested that the response of 1-D 15 

lake models to Kd variations is nonlinear. The models are much more sensitive if the water is estimated to be too clear. 

Heiskanen et al. (2015) recommended to use a value of Kd that is too high rather than too low in lake simulations, if the clarity 

of lake is not known exactly.  

The MWCT and LBWT in the darkest condition (Max) were less than for all other clear water simulations. This is because the 

lower layers in dark waters accumulate less heat during the heating season as opposed to clear waters which results in less heat 20 

storage and lower water column temperature in dark waters (Heiskanen et al., 2015; Potes et al., 2012). The MWCT decreased 

by 0.94 ⁰C (increases by 0.63 ⁰C) when maximum (minimum) Kd value was used instead of its average value during the study 

period. The MWCT increased by 2.25 ⁰C when using Kd value of 0.2 m-1 rather than the average value. Changes in Kd value 

from its maximum (minimum) to its average value also caused decrease (increase) of -0.67 ⁰C (0.67 ⁰C) in the LBWT. The 

increase in LWBT was even larger when Kd value of 0.2 m-1 was used instead of its average value (6.96 ⁰C). Therefore, Kd 25 

variations had a larger impact on MWCT and LBWT than on LSWT, and the largest difference was when Kd was estimated 

to be extremely clear.  

Fig. 7 displays the simulated isotherms derived from using different Kd values. It shows that the mixed layer in dark waters 

was warmer in spring and summer and colder in fall. There are a number of factors determining the mixed layer temperature 

in lakes, including the radiation fluxes (sensible heat, latent heat, and longwave radiation), and cooling effects from the water 30 

below. Persson and Jones (2008) concluded that for dark waters, the combination of these heating and cooling effects leads to 

a warmer epilimnion initially. The radiation is used to warm up a thinner layer in dark waters leading to higher (lower) 

temperatures in spring and summer (fall). However, a lower temperature in the mixed layer is followed due to the gradual 

decrease in radiative forcing and increased effect of cooling from the layers below. Fig. 7 also supports observations by Persson 
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and Jones (2008) and Heiskanen et al. (2015) that the depth of the thermocline layer is always deeper in clear waters due to 

the faster heat distribution between different underneath layers. The deepening of the thermocline layer in clear waters is faster 

compared to dark waters. The reason is related to heat transfer through convection, wind-induced mixing, and internal waves. 

The heat transfer in dark waters is slower due to the sharp density gradient between layers which forms an effective barrier for 

the mixing to deepen the thermocline. 5 

Fig. 6-d is focusing on the variations of the MLD in 2008, using different values of Kd (Min, Ave, and Max Kd, and CRCM-

12.6) in simulations. All simulations showed two turnover (complete mixing) events, spring and fall. Full mixing in spring 

was at the same time for all simulations; however, fall full mixing occurred at different dates for each simulation. Fall turnover 

in CRCM-12.6 was at the end of summer (August 28), while the other three runs show that the fall turnover took place in late 

fall, before ice forms. Full mixing in the Min simulation was in early November (November 3), earlier than the Avg and Max 10 

simulations (November 21).  

In the darkest water simulation (Max), the MLD was shallower than the other simulations (an average difference of 4.94 m in 

2008 between two simulations of Max and CRCM-12.6, with extreme Kd values). Clear waters have a deeper mixed layer 

when the solar radiation can penetrate further and distribute to a larger volume in the water column. Also, due to the weak 

density gradient in clear waters, wind-induced turbulent kinetic energy can destroy the density stratification to a deeper layer 15 

and form the mixed layer. This layer is shallower in dark waters, even with the same wind forcing. CRCM-12.6 produced a 

MLD of 3.47 m deeper compared to Avg simulation, whereas the Min (Max) simulations resuledt in MLD of 1.15 m (1.47 m) 

deeper (shallower) compared to the Avg simulation. Hence, clear water simulated deeper MLD; and the effect of Kd on the 

MLD was larger when the Kd value was estimated to be too clear. 

Fig. 8 shows the impact of Kd variations on lake ice phenology and thickness in winter 2008 (January-March). Freeze-up 20 

corresponds to the earliest date that the NDBC station is completely covered by ice, and the earliest date the station is 

completely free of floating ice is defined as break-up. The Avg simulation reproduced similar ice phenology as the Max 

simulation, whereas Min and CRCM-12.6 resulted in the similar break-up/freeze-up dates. The break-up in CRCM-12.6 and 

Min simulations were on March 23, one day earlier than Max and Avg simulations and freeze-up occurred on January 24, two 

days after Max and Avg simulations. CRCM-12.6 and Min simulations reproduced 1.28 and 1.27 cm thinner ice than Avg 25 

simulation in 2008, respectively. The darkest water (Max) reproduced 0.21 cm thicker ice in 2008 compared to the Avg 

simulation. The ice sheet formed later in clear waters (CRCM-12.6 and Min) and disappeared earlier compared to dark waters 

(Max and Avg), resulting in a shorter ice cover duration (3 days) and hence thinner ice in clear water simulations.  

Lake morphological properties determine ice cover as well as climatic factors. Among morphological aspects, lake depth is 

the most important factor that can impact the ice cover by influencing the amount of heat storage in the water and hence the 30 

time needed for the lake to cool and ultimately freeze (Brown and Duguay, 2010). For a given depth and climatic condition, 

however, the amount of heat storage is determined by water clarity. Dark waters store more heat in a shallower layer. Therefore, 

the heat can be transferred faster to the atmosphere through the lake surface, resulting in an earlier freeze-up as mentioned in 

Heiskanen et al (2015) that freeze-up occurs earlier in darker waters. However, as shown by simulations with 12.6 m, ice 
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phenology in NDBC station was minimally affected by Kd value in FLake. It must be noted that these results could not be 

verified due to the lack of ice phenology observations. For a larger depth or in a different model, the impact of Kd values in 

ice onset should be investigated.  

3.3 Spatial and Temporal Variations in Kd 

As it was described in the previous section, variations in water clarity plays an important role in defining lake heat budget and 5 

thermal stratification and thus is a significant parameter for processes in the air-water interface. However, the long term spatial 

and temporal trends of water clarity cannot be achieved through discontinuous conventional point-wise in situ sampling. These 

observations can be provided from satellite measurements. This section demonstrates the strength of satellite observations to 

detect the spatial and temporal variations of Kd in Lake Erie. Spatial variations of Kd derived from the CC algorithm are shown 

in Fig. 9 for a selected day (3 September 2011). This particular day of 2011 was selected as the lake experienced its largest 10 

algal bloom in its recorded history in that year, before the new recent record of 2015 (Michalak et al., 2013; NOAA, 2015). 

The bloom was expanding from the western basin into the central basin. Algal bloom is one of the factors affecting the water 

clarity of Lake Erie (NOAA, 2015). Other parameters include the concentrations of suspended and dissolved matters in the 

lake. The western basin is the shallowest region of the lake; and therefore is the most vulnerable to sediment re-suspension 

that also results in reducing water clarity. The map shows that Lake Erie experienced different levels of clarity in various 15 

locations with an average Kd value of 0.90 m-1 (with standard deviation of 0.80 m-1, is shown as 0.90±0.80 m-1 hereinafter) 

over the entire lake on this particular day. The NDBC station is also shown on the satellite-derived map as a reference (with 

Kd = 0.87 m-1 on 3 September 2011). 

Since fully cloud-free MERIS satellite images for consecutive months were only available in 2010, four months (May-August 

2010) were selected to illustrate temporal variations in Kd on a monthly-basis for one selected year (Fig. 10). The spatial 20 

average of Kd over the full lake for the specific days in May, June, July, and August was 0.82±0.85 m-1, 0.72±1.10 m-1, 

0.73±1.20 m-1, 0.78±0.55 m-1, respectively. The western basin was always experiencing the lowest levels of water clarity in 

comparison to other regions of the lake, with a maximum Kd in May. This can be the result of a spring algal bloom, and also 

wind-driven re-suspension of sediments. Kd at the NDBC station for these selected days varied between 0.68 m-1, 0.62 m-1, 

0.66 m-1, and 0.85 m-1 from May to August 2010, respectively.  25 

Two MERIS images with full coverage of Lake Erie were only available in the month of May for two selected consecutive 

years (2008 and 2009) to show the inter-annual changes in Kd value. Hence, the MERIS images of May 2008 and May 2009 

were selected to show variations in Kd between the two years. Although the images are for the same month of the year, Kd still 

varied across the lake (Fig. 11). In the selected day of May 2008, a spatial average value of 0.77±0.49 m-1 was estimated for 

the entire lake, while on 17 May 2009 the spatial average value was 0.90±0.93 m-1. Comparing the estimated maps for the two 30 

years suggested that the spring bloom in 2009 was stronger than the one in 2008 for the western basin. However, algal bloom 

in all basins of Lake Erie for the complete year of 2008 was recorded as the third largest that the lake experienced before the 
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occurrence of the breaking record blooms in 2011 and 2015 (Michalak et al., 2013; NOAA, 2015). Kd value estimated for the 

NDBC station was 0.69 and 0.62 m-1 in 29 May 2008 and 17 May 2009, respectively. 

Spatial variability of Kd in Lake Erie shows that the simulated thermal structure of the eastern basin would potentially differ 

significantly from the one simulated for the western basin. The spatial variations of Kd have to be considered in Lake Erie 

simulations, specifically for the eastern basin, which has Kd values in the critical threshold range (less than 0.5 m-1). Therefore, 5 

in 3-D lake models, the spatial variations in Kd need to be taken into account. As well, a lake-specific constant value cannot 

be used for simulating the thermal structure of the full lake. Finally, the temporal variations of Kd did not significantly change 

the simulation results for the NDBC station. However, this needs to be confirmed for other locations of the lake, due to the 

importance of depth on the simulation results.  

4 Summary and Conclusion 10 

Spatial and temporal variations of Kd in Lake Erie were derived from the globally available satellite-based CC product during 

open water seasons 2003-2012. The CC product was evaluated against SDD in situ measurements. CC-derived Kd values, 

modelled incoming radiation flux data, in addition to complementary meteorological observations during the study period, 

were used to force the 1-D FLake model. The model was run for a selected site (NDBC buoy station) on Lake Erie, a large 

shallow temperate freshwater lake.  15 

FLake was run with the range of clarity values acquired from satellite observations. Results were compared to a previous study 

which assumed a constant Kd value due to the lack of data. Results clearly showed that applying satellite-derived Kd values 

improves FLake model simulations using a derived yearly average value as well as monthly averaged values of Kd. Although 

Kd varies in time, a time-invariant (constant) annual value is sufficient for obtaining reliable estimates of lake surface water 

temperature (LSWT) with FLake for Lake Erie NDBC station. It was also shown that the model is very sensitive to variations 20 

in Kd when the value is less than 0.5 m-1. This finding is in agreement with the study of Rinke et al. (2010) and the recent study 

of Heiskanen et al. (2015) who determined that the impact of seasonal variations of Kd on the simulated thermal structure is 

small, for a lake with Kd values larger than 0.5 m-1. The studies suggested that the response of 1-D lake models to Kd variations 

is nonlinear. The models are much more sensitive if the water is estimated to be too clear. Results of our study showed that 

the sensitivity to Kd variations was more pronounced in simulation results for mean water column temperature (MWCT), lake 25 

bottom water temperature (LBWT), and mixed layer depth (MLD) compared to LSWT. 

Results of this study have important implications for the lake modelling community, demonstrating that integrating satellite-

derived lake specific Kd values can improve the performance of 1-D lake models compared to using a “generic” constant Kd 

value. Although field measurements of Kd are not widely available, this study evaluated the strength of satellite observations 

and introduces them as a reliable data source to provide lake models with global estimates of Kd with high spatial and temporal 30 

resolutions. However, the weakness of this method is that the availability of satellite-derived Kd product can be limited due to 

cloud coverage or satellite overpass. Also, the in situ measurements are still required for validating satellite observations, 
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because the in situ data collection remains the most accurate solution for water clarity measurement. The accuracy of the 

satellite-derived Kd product has to be verified for the water body of interest, especially for the ones with complex optical 

properties. After validation, the on-demand globally available CC product can be simply used for the water body of interest, 

as a source to fill the gaps in Kd in situ observations, and improve the performance of parameterization schemes and, as a 

result, further improve the NWP and climate models. Although MERIS is no longer active, the Ocean and Land Colour 5 

Instrument (OLCI) to be operated on the ESA Sentinel-3 satellite (launched on February 16, 2016) will provide continuity of 

MERIS-like data. OLCI has MERIS heritages and improves upon it with an additional six spectral bands. Therefore, 

investigation of the Sentinel-3 potential to provide lake modelling community with the water clarity information is the next 

step of the current study. Also, the possible improvement in FLake output, when forcing the model with air humidity data 

collected directly at the station, can be examined in the future studies.   10 
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Table 1 Flags of excluded pixels 

Level 1 Level 1P Level 2 

Glint_risk Land AOT560_OOR (Aerosol optical thickness at 550 nm out of the training range) 

Suspect Cloud TOA_OOR (Top of atmosphere reflectance in band 13 out of the training range) 

Land_ocean Cloud_ambigious TOSA_OOR (Top of standard atmosphere reflectance in band 13 out of the training 

range) 

Bright Cloud_buffer Solzen (Large solar zenith angle) 

Coastline Cloud_shadow NN_WLR_OOR (Water leaving reflectance out of training range) 

Invalid Snow_ice NN_CONC_OOR (Water constituents out of training range) 

 MixedPixel NN_OOTR (Spectrum out of training range) 

  C2R_WHITECAPS (Risk of white caps) 
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Table 2 CC-derived average values of Kd for each month (2005-2007). The values correspond to the time of year when water 

LSWT observations, as well as the CC derived Kd values, are available. 

Year Apr. May June July Aug. Sep. Oct. Nov. Avg. 

2005 -- 0.69 0.62 0.63 0.79 1.07 0.92 0.97 0.81 

2006 0.82 0.70 0.62 0.65 0.77 -- -- -- 0.71 

2007 0.86 0.72 0.64 0.65 0.76 -- -- -- 0.73 

 

 

 5 

 

 

 

 

 10 

 

 

 

 

 15 

 

 

 

 

 20 

 

 

 

 

 25 

 

 

 

 

 30 



22 

 

Table 3 Simulated LSWT compared to in situ observations (2005 – 2007). Period corresponds to the time of year when LSWT 

and Kd values were available. 

Period Kd RMSE MBE I_a 

2005 

May-Nov 

Avg2005 1.69 -0.86 0.87 

Merged 1.76 -0.95 0.86 

CRCM-12.6 1.88 -1.52 0.85 

CRCM-20 2.12 -1.54 0.83 

2006 

Apr-Aug 

Avg2006 1.40 0.59 0.89 

Merged 1.42 0.54 0.89 

CRCM-12.6 1.50 -0.98 0.89 

CRCM-20 1.47 -1.09 0.89 

2007 

Apr-Aug 

Avg2007 1.37 0.62 0.90 

Merged 1.35 0.57 0.91 

CRCM-12.6 1.78 -1.08 0.86 

CRCM-20 1.80 -1.35 0.87 
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Fig. 1 Maps showing Lake Erie in Laurentian Great Lakes and the location of stations where different parameters were 

measured. NDBC: National Data Buoy Center. NWRI: National Water Research Institute. OCC: Ontario Climate Center. 

CCGS: Canadian Coast Guard Ship. Vertical dashed lines separate different basins in the lake.  
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Fig. 2 Variations of CoastColour-derived Kd for the selected location during the study period (2003-2012). 
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Fig. 3 Relation between satellite-derived Kd and in situ SDD matchups. 
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Fig. 4 Daily LSWT simulation results in 2005 (a), 2006 (b), 2007 (c). Avg simulation is the CoastColour-derived average 

value for Kd during selected months of each year (0.81, 0.71 and 0.73 m-1, respectively). Merged simulation is based on merging 

simulation results for monthly average values of Kd. CRCM-12.6 and CRCM-20 used a constant value of Kd (0.2 m-1) with 

depth values of 12.6 and 20 m, respectively. The corresponding observations for LSWT are also plotted. Missing lines indicate 

no data.  5 
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Fig. 5 Modelled (y-axis) versus observed (x-axis) LSWT for yearly average, merged, CRCM-12.6, and CRCM-20 simulations 

during the ice-free seasons in 2005-2007. A linear fit (dashed line) and its coefficients are shown on the plot. The statistics 

related to the regression of parameters, and a 1:1 relationship (solid line) are also shown. The average LSWT values of Obs, 

Avg, Merged CRCM-12.6, and CRCM-20 simulations are 18.64 ºC, 18.56 ºC, 18.50 ºC, 17.38 ºC, 17.27 ºC. 
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Fig. 6 LSWT (a), MWCT (b), LBWT (c) and MLD (d) simulation results in 2008 for CRCM-12.6 (Kd=0.2 m-1) simulation and 

the lowest (Min, Kd=0.58 m-1), average (Avg, Kd=0.90 m-1), and the highest (Max, Kd=3.54 m-1) Kd values are shown.  
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Fig. 7 Isotherms in open water period 2008 for CRCM-12.6 (Kd=0.2 m-1) simulation and the lowest (Min, Kd=0.58 m-1), 

average (Avg, Kd=0.90 m-1), and the highest (Max, Kd=3.54 m-1) Kd values are shown. 
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Fig. 8 Ice thickness during 2008 for CRCM-12.6 (Kd=0.2 m-1) simulation and the lowest (Min, Kd=0.58 m-1), average (Avg, 

Kd=0.90 m-1), and the highest (Max, Kd=3.54 m-1) Kd values are shown. CRCM-12.6 and Min (Avg and Max) simulations 

reproduce similar ice thicknesses, which explains the missing (hidden) lines of CRCM-12.6 and Max simulations in the plot. 
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Fig. 9 Spatial variation of satellite-derived Kd in Lake Erie, on 3 September 2011. Location of NDBC station is shown on the 

map as a solid dot. 
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Fig. 10 Temporal and spatial variation of satellite-derived Kd in Lake Erie for different months of a year: May- August 2010. 

Location of NDBC station is shown on the map as a solid dot. 
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Fig. 11 Temporal and spatial variation of Kd in Lake Erie during May of two consecutive years: 2008 and 2009. Location of 

NDBC station is shown on the map as a solid dot. 

 


