Preprints
https://doi.org/10.5194/hess-2016-79
https://doi.org/10.5194/hess-2016-79
08 Mar 2016
 | 08 Mar 2016
Status: this preprint was under review for the journal HESS but the revision was not accepted.

Combining cross-hole geophysical and vadose zone monitoring systems for vadose zone characterization at industrial contaminated sites

Natalia Fernández de Vera, Jean Beaujean, Pierre Jamin, David Caterina, Marnik Vanclooster, Alain Dassargues, Ofer Dahan, Frédéric Nguyen, and Serge Brouyère

Abstract. Water flow and solute transport through a fractured vadose zone underneath an industrial contaminated site in Belgium were studied with a new methodological concept. The Vadose Zone Experimental Setup (VZES) combines a vadose zone monitoring system (VMS) with cross-borehole geophysics. The VMS provides continuous chemical and hydraulic information at multiple depths in the vadose zone. When combining such information with multidirectional subsurface imaging from geophysical measurements, flow and transport can be characterized at a scale that covers the spatial variability of the subsurface. The setup was installed on site and monitoring was carried out under natural recharge conditions. Results reveal quick rises in water content as a response to rainfall events in the upper and intermediate part of the vadose zone (down to 3.65 m depth). Macropore, micropore, matrix and preferential flow mechanisms are identified at these depth ranges. At greater depths, flow dynamics is slower and dominated by matrix flow. The governance of water flow mechanisms at different directions is controlled by the heterogeneous distribution of geological materials. Results from sampled waters across the vadose zone reveal that the chemistry of water collected from matrix is different from that collected from fractures. In addition, analysis of heavy metals indicates that Ni is leaching across the vadose zone, and its release might be a consequence of pyrite oxidation from backfilled materials. Results obtained from VZES indicate that the combination of different techniques providing in situ quantitative and qualitative information improves conceptual models of flow and transport in a heterogeneous subsurface.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Natalia Fernández de Vera, Jean Beaujean, Pierre Jamin, David Caterina, Marnik Vanclooster, Alain Dassargues, Ofer Dahan, Frédéric Nguyen, and Serge Brouyère
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Natalia Fernández de Vera, Jean Beaujean, Pierre Jamin, David Caterina, Marnik Vanclooster, Alain Dassargues, Ofer Dahan, Frédéric Nguyen, and Serge Brouyère
Natalia Fernández de Vera, Jean Beaujean, Pierre Jamin, David Caterina, Marnik Vanclooster, Alain Dassargues, Ofer Dahan, Frédéric Nguyen, and Serge Brouyère

Viewed

Total article views: 1,749 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,138 519 92 1,749 109 122
  • HTML: 1,138
  • PDF: 519
  • XML: 92
  • Total: 1,749
  • BibTeX: 109
  • EndNote: 122
Views and downloads (calculated since 08 Mar 2016)
Cumulative views and downloads (calculated since 08 Mar 2016)
Latest update: 14 Dec 2024
Download
Short summary
Soil and groundwater remediation at industrial contaminated sites require suitable field instrumentation for subsurface characterization. The proposed method provides chemical, hydraulic information and images from the subsurface via customized sensors installed in boreholes. Their installation at a brownfield allows flow and transport characterization of water and contaminants across a heterogeneous subsurface. The results proof the effectiveness of the method for characterization purposes.