
Main changes in the revised version and detailed answers to the reviewers 
 

 

We thank the reviewers for their comments and suggestions, which helped us to improve our paper. 

The main changes in the revised version concern the following issues: 

- We added some sentences in order to: i) better explain how PET was considered, ii) present 

the KGE results of the calibration and validation of the hydrological model, as requested by 

two reviewers, iii) add pragmatic results on the interpretation of the hydrographs, as requested 

by one reviewer, which clarifies the role of the bias correction methods in improving forecast 

quality. 

- We shortened considerably the paper, as suggested by two reviewers and by the Editor, by 

cutting several words and shortening several sentences, which we thought could be deleted or 

rephrased without affecting the message the paper conveys. We also deleted an entire section 

on the corrective factors, which we believe was not essential for the comprehension of the 

main findings of the paper.  

All other minor changes and answers to the reviewers are detailed below. 

Reviewer 1 

 

Reviewer’s comment (RC): While the Introduction is well balanced and gives useful 

insight on previous work on the topic and also references supporting the envisaged 

methodology, I found that the final paragraphs should possibly include more 

information on the novelty of the present manuscript. Also in the methodological 

section some more referencing is needed. See minor comments for this. 

Authors’ reply (AR): We changed the following in the Introduction to better emphasize the novelty of 

our study (end of line 29, beginning of line 30, page 3): “Despite these recent works, and to the 

knowledge of the authors, no previous study has compared bias correction methods and their impact on 

streamflow forecasting in a systematic way, with a focus on understanding how the main attributes of 

forecast performance are impacted by bias correction.  

This paper aims to provide insights into the way bias correcting seasonal precipitation forecasts can 

contribute to the skill of seasonal streamflow predictions, notably in terms of overall performance, 

reliability, sharpness and skilful lead time. It investigates the potential of bias corrected ECMWF System 

4 forecasts to improve streamflow forecasts at extended lead times over 16 catchments in France. An 

in-depth comparison of eight variants of linear scaling and distribution mapping methods applied over 

the 1981-2010 period is presented. Section 2 presents…” 
 

 

RC: 4–4-15: We learn here about the meteorological forcing. It is clear to me how you 

use precipitation, but as a forecast and as SAFRAN product. Concerning Potential 

Evapotranspiration (PET), only SAFRAN is declared. I’d like you to declare which PET 

is used in retrospective forecasts forced by the ECMWF products. If it is from ECMWF, 

you should state why you are not post-processing it. If you use SAFRAN, you should be 

able to assess how much uncertainty are you neglecting by using the best observed 

estimates of PET instead of using a forecasted value (which you need to do as soon as 

you will deploy the system in real-time). In our experience, for basins not affected 

by snow-melt, the post-processing of relative-humidity data (an important proxy the 

evaporation demand by the atmosphere) helps improving the estimation of hydrological 

droughts (Jörg-Hess et al., 2015). 

AR: The potential evapotranspiration (PET) used to force the hydrological model is, in fact, the mean 

interannual PET. For a given day of the year, the estimated PET on this day is assumed to be the mean 

of all PET computed for this day of the year, in all available years. Here, the mean interannual PET is 

the average of the PET calculated for each year from 1958 to 2010. PET for each year is calculated using 

SAFRAN. Regardless of the precipitation scenario fed to the model (historical precipitations or System 

4), the PET scenario used as input to the model is always the same: the series of mean interannual PET 



corresponding to the forecast period. With this setup, we can focus on the changes in skill that can solely 

be attributed to the bias correction of precipitations, which is in the aim of our study. Adding the 

uncertainty of temperature forecasts in the analysis would in fact require a different framework. For 

instance, we would need to set up multi-variable bias corrections to take into account the dependencies 

between precipitation and temperature, or we would need to consider the impact of observed trends in 

time series of observed temperatures in some regions in France prior to post-processing and ESP 

forecasting. This is beyond the scope of this study, although interesting for further investigations and 

specific operational setups.  

In the revised version, we clarified the way PET is considered by adding this sentence in Section 2.1: 

“The interannual potential evapotranspiration was then computed in each catchment, i.e. for a given day 

of the year, we computed the average potential evapotranspiration for this day over all available years 

(1958 to 2010)”, and the following in Section 2.2: “Here, the series of interannual potential 

evapotranspiration corresponding to the forecast period was systematically used as input to the 

hydrological model. With this setup, we aimed to isolate the influence of precipitation forecast inputs 

on the quality of streamflow forecasts.” 

 
 

RC: 4-25: I just reviewed another paper on seasonal forecasting where authors did not 

show any score concerning their calibration/validation and I amended it. Same here. 

I am happy with a table as supplementary material. 

AR: The table below summarizes the scores obtained in calibration and validation of the GR6J model. 

In the revised version, we added the following sentence in Section 2.2: “We obtained an average KGE 

of 0.95 in calibration and 0.94 in validation over the sixteen catchments. The bias obtained in simulation 

ranges from 0.95 to 1.02.” 

 

  

Catchment 
Calibration 

KGERQ 

Validation 

KGERQ 

Validation 

C2MQ 

Validation 

Bias 

1 0.93 0.92 0.75 0.99 

2 0.93 0.92 0.65 0.97 

3 0.94 0.94 0.64 0.95 

4 0.94 0.94 0.72 0.98 

5 0.94 0.94 0.69 1.00 

6 0.95 0.95 0.77 1.02 
7 0.95 0.95 0.79 0.97 

8 0.97 0.97 0.87 0.98 

9 0.97 0.97 0.84 1.01 
10 0.89 0.88 0.58 1.00 

11 0.95 0.95 0.81 0.96 

12 0.95 0.95 0.82 0.96 
13 0.93 0.93 0.86 0.95 

14 0.96 0.96 0.88 0.97 

15 0.97 0.97 0.84 0.98 
16 0.95 0.94 0.81 0.96 

 
 

RC: 24–18: I like this evaluation very much, just, I miss some quantification 

supporting the description based on visual inspection you are giving. Be pragmatic. 
AR: Thank you very much for this suggestion. The MAE and coverage probability provide a good 

quantification to support the description. The values of MAE, coverage probability 90% (COV 5-95) 

and 50% (COV 25-75) obtained by each forecasting system over the displayed period (April 2004 to 

April 2007) are shown below. They show that the ensembles based on past precipitations and past 

streamflow (HistQ and ESP) are more accurate over the chosen period (lower MAE values), but that 

EDMD-m performs better in terms of coverage probability. We included this quantitative analysis in the 

interpretation of the hydrographs, as suggested by the reviewer. 

 
 HistQ ESP LS-m EDMD-m 

MAE (m3/s) 3.81  4.06 4.26 4.26 

COV 90 % (5-95) 97 % 92 % 85 % 89 % 

COV 50 % (25-75) 66 % 60 % 46 % 51 % 

 

 



RC: 25-3: The discussion section is here quickly merged with the conclusions. The 

only link to current literature one is expecting here merely consists in a enumeration 

of possible post-processing of the forecasts with currently available methods. Here 

some more effort has to be shown to make also this section a valuable part of the 

manuscript. 
AR: The reviewer is right that this section reflects more our conclusions. A posteriori, we think that 

sections 6.3 and 6.4 reflect the discussions, putting the results into a broader perspective. We thus 

renamed the last section “Conclusions”. 
 

 

RC: 26–2: You address here the issue of implementation in operational systems. Again, 

declare how you deal the PET, and then re-evaluate the potential for real-time 

operations. 

AR: We added some sentences to better explain how PET was considered (see reply above) and we 

deleted the sentence on operational issues to avoid introducing a discussion that is not the focus of this 

paper. 

 
 

RC: 2–11: I guess here you should give one or two references for the statistical 

models, too. Eg. Some approaches relating winter snowpack to summer-flows (e.g.: 

Godsey et al., 2014; Jenicek et al., 2016). 

AR: Thank you for pointing out to these interesting references. We added Jenicek et al. (2016) 

(mentioning references therein) as suggested. 

 
 

RC: 5–4: Please support the “one-year-leave-out cross-validation method” with a 

reference. 

AR: We added the following reference and changed the “one-year-leave-out” denomination to “leave-

one-year-out” for consistency:  

Arlot, S. and C. Alain. A survey of cross-validation procedures for model selection. Statist. Surv. 4 

(2010), 40-79. doi:10.1214/09-SS054. http://projecteuclid.org/euclid.ssu/1268143839. 

 
 

RC: 6 -2: Please support “Precipitation and streamflow forecasts are evaluated with 

deterministic and probabilistic scores commonly used in ensemble forecasting” with a 

reference, e.g. Brown et al EVS paper. 

AR: In the process of reducing the length of the paper, this sentence was removed. Yet, references 

supporting the evaluation criteria can be found in Section 3.3. 

 
 

RC: 8-15: Nice idea to use the ensemble of past-streamflow observations as a reference. 

If you would “sort-out” some past years by means on analogues techniques you might 

get a very challenging set of members for your ensemble forecast. Have you tried this? 

AR: This is precisely the topic of another paper that we have just submitted to this special issue. It is 

available here: http://www.hydrol-earth-syst-sci-discuss.net/hess-2016-285/  

 
 

RC: 8-22: Another interesting feature here. This definition of gain is very 

elucidative. Can you maybe elaborate on pro and contra of this kind of “gain” 

definition with respect to scores based on cost-loss considerations?. Why choosing 

such a large gap of day between the classes? Have you tried to make a 30-day moving 

window? Or a 15-days moving window? 

AR: Thank you for the comment. We chose to evaluate the gain in terms of anticipation in response 

time, rather than in terms of relative economic value (REV), for instance, since cost-loss considerations 

would need an evaluation of (or additional assumptions on) mitigation costs, avoidable losses, as well 

as unavoidable losses for each studied catchment. Here, we may assume that increasing the anticipation 

response time could increase time for preparedness, which would decrease costs and losses related to 

missed events or actions taken with no or little anticipation to a critical situation. The cost-loss approach 

would need to be applied considering this evolution of forecasting with time since in a seasonal 

forecasting system one has several forecasts or months ahead to detect a potential critical situation and 

http://projecteuclid.org/euclid.ssu/1268143839
http://www.hydrol-earth-syst-sci-discuss.net/hess-2016-285/


act accordingly. Actions and consequences would need to be stratified according to the time available 

for action in order to have this aspect reflected in an evaluation score.  

The gap was chosen to help represent the improvements due to bias correction at a monthly time scale 

of reference. It seemed to us that a month ahead could be a good minimum of time necessary to adapt 

any mitigation actions once a critical situation is forecasted by a seasonal forecasting system. As shown 

in Figures 8 and 9, this choice seems to be appropriate to a joint representation in a plot, while 

differentiating situations for a useful analysis.   

We did not try to use windows larger than 7 days. The objective of the rolling mean was to smooth the 

skill curves and remove the high frequency variations of the skill at the daily time step. Seven days 

appeared to be enough to smooth the curves, while keeping the moving mean as a good estimate of the 

gain in lead time. 

 
 

RC: 9 – 2 & 9 -19: Both in Figure 2 & 4 CRPSS is showing increasing skill at weeks 5 

and 9. We are also used to “struggle” in interpreting such cycles. Do you have some 

ideas on your particular case here? 

AR: We have also spent some time trying to interpret these cycles. Despite a closer look at the data and 

the scores, under different angles, we could not see any systematic reasons for these cycles. We think it 

may be related to several correlated aspects, such as the type of forecasting model/system, the forcings, 

the behaviour of the catchment, etc. 

 
 

RC: 11 – Figure 4: How would look like this figure if you use the “ensemble based on 

past streamflow” as a reference? 

AR: The following figure represents the IQRSS and the CRPSS of the streamflow forecasts without bias 

correction, when the ensemble based on past streamflow is used as reference. It can be compared to 

Figure 4 to see that the skill is higher with this reference, and to Figure 13 to see that bias correction has 

also increased the skill of forecasts with regard to past streamflow. 

 

 
 
 

RC: 13 – Figure 6: Right margin is cropped. Additionally, the “too wet”=red is not 

really intuitive. 

AR: We exchanged the blue and red colours in the scale so that blue corresponds to overestimation 

and red corresponds to underestimation. We also increased the right margin. 

 
 

RC: 13 – 2: “the 2-month” or the “month-2”? If you mean the one for the second month 

of the forecast I would find more adequate to use “month-2”. 

AR: We agree with the reviewer and changed the occurrences of “the 2-month” to “month-2” in the 

revised version. 

 



 

RC: 17 – Figure 8 (and later 9): I like such Figures because the train my brain. Tell 

me if I am reading it wrong: If a look at a certain score in a certain season than 

for a particular bias correction method a percentage of the basins is showing 

improvement in lead time. Of this percentage a distinct portion shows improvement of 

let’s say 60 to 90 days. So largest improvement is in the PIT-Skill in summer and 

Winter for the EDMD methods.  

Right? 

AR: Thank you. Your reading of the figure is absolutely correct. 

 
 

RC: 22 – 8: This would be the only heading with a question mark. Maybe replace this 

with a sentence 

AR: In fact, the question mark was a typo and we removed it. 

 
 

RC: 23 – Figure 15: is there any special reason (beside readability) for having 

different scales in the three panels? 

AR: No, there is no special reason, apart to zoom in on the case of the CRPSS. Following this comment, 

we changed the figures and used the same scales in the axes. 

 

 

Reviewer 2 

 

Reviewer’s comment (RC): 

   • The study uses mainly modelled streamflow as a reference. Nevertheless, I miss 

some indication of the hydrological model performance in the 16 basins. This is 

particularly relevant since also the observed streamflow is used as a reference 

forecast in one part of the manuscript, and this analysis would critically depend 

on systematic biases of the hydrological model. 

 

Authors’ reply (AR): Reviewer 1 also recommended indicating the performance of the hydrological 

model (see our reply above). We added the following sentence in Section 2.2: “We obtained an average 

KGE of 0.95 in calibration and 0.94 in validation over the sixteen catchments. The bias obtained in 

simulation ranges from 0.95 to 1.02.” 

 
 

RC:   • The manuscript covers a large body of results and is therefore lengthy. I 

think that it could be streamlined without losing too much information. 

AR: We cut several words and sentences along the text and removed an entire sub-section concerning 

the corrective factors (Section “Comparison of bias correction factors for LS and EDMD methods”), 

which reduced the length of the paper. 
 

 

RC: Over all, I suggest acceptance of the manuscript after my comments have been taken 

into account. I’m looking forward to the revised manuscript. 

AR: We thank the reviewer for this positive appreciation of our paper. 
 

 

RC: Page 3, line 1: Some reference needed to support the statement that linear scaling 

and distribution mapping are widely used methods in seasonal forecasting. 

AR: We added a reference to the review paper of Yuan et al. (2015). 
 

 

RC: Page 4, line 13: Which parametrization was used to derive potential 

evapotranspiration? 

AR: The calculation of the evapotranspiration was done prior to this study and is embedded in the 

database we used. It follows the Oudin formula, which can be found in Equation (2) of the reference 

Oudin et al. (2005). K1 is set to 100 and K2 to 5, as shown in Equation (3) of this same paper. This 

reference is cited in the paper. 



 

 

RC: Page 4, line 23: What is meant by interannual potential evapotranspiration? I 

would have understood the manuscript in such a way that potential evapotranspiration 

is derived from raw, i.e. non-bias-corrected, forecasts, but in this case, the term 

interannual potential evapotranspiration does not make sense. I probably misunderstood 

something and would like that the authors clarify the manuscript in that respective. 

AR: For a given day of the year, the estimated PET on this day is assumed to be the mean of all PET 

computed for this day of the year, in all available years. Here, the mean interannual PET is the average 

of the PET calculated from observed temperatures for each year from 1958 to 2010. 

In the revised version, we clarified the way PET is considered by adding one sentence in Section 2.1 

and one sentence in Section 2.2 (see also our reply to Reviewer 1 above). 
 

 

RC: Page 5, lines 3-4: Just a comment, nothing to change: leave-one-year-out might 

result in the validation years not being really independent, as interannual serial 

correlation might be quite high. Maybe it would be interesting to test larger block 

sizes in future studies. 

AR: Definitely. This point was also recently raised in a HEPEX bog post by colleagues from CSIRO 

(http://hepex.irstea.fr/how-good-is-my-forecasting-method-some-thoughts-on-forecast-evaluation-

using-cross-validation-based-on-australian-experiences/). We think that a more-than-one-year-leave-

out procedure could potentially fit better for one of our catchments, which has a high base-flow index. 

We believe that its impact on the other catchments would be lower, given the length of our calibration 

periods. Also, the impact is expected to be lower when calibrating the hydrological model than when 

implementing the bias corrections. In any case, it would certainly be interesting to test it in a future 

study, where more catchments could also be included and focus could be put on this aspect. 
 

 

RC: Page 6, lines 21-25: In the case of EDM-m and GDM-m, only 29 data points are used 

to derive a cumulative distribution function for the reference data. This is a rather 

low number of data points, potentially leading to estimated cumulative distributions 

that are non-robust. Maybe, and this is of course rather speculative without analyzing 

the data, this could be a reason for the worse bias validation of EDM-m and GDM-m in 

Fig. 6. 

AR: This is also an interesting point and could, as suggested, partly explain the poorer performance of 

EDM-m and GDM-m. Nevertheless, it is also worth noting that it is difficult to have much more years 

available for the calibration of these correction methods, since the meteorological reforecast archive 

needs to be homogeneous (i.e., based on the same model) over the period. The fact that bias correction 

methods require long time series of forecasts is a well-known limitation in the field. 
 

 

RC: Page 6, lines 21-25: I’m not aware of a study that applied gamma distribution 

fitting for monthly precipitation data. Could you please cite a study to support the 

method GDM-m? I’m a bit worried that the gamma distribution might not be a good choice 

for monthly mean precipitation values. 

AR: The choice of a cumulative distribution function for precipitation (or streamflow) data is always a 

challenging one. The Gamma distribution is often assumed to be suitable and fitted to precipitation 

sums. Some examples of the gamma distribution fitted to monthly precipitations are:  
Zekai S. and A. G. Eljadid (1999) Rainfall distribution function for Libya and rainfall prediction, Hydrological 

Sciences Journal, 44:5, 665-680, DOI:10.1080/02626669909492266,  

Husak, G. J., Michaelsen, J. and Funk, C. (2007), Use of the gamma distribution to represent monthly rainfall in 

Africa for drought monitoring applications. Int. J. Climatol., 27: 935–944. doi:10.1002/joc.1441 

The gamma distribution is also often used when computing the SPI. Examples are:  
Lavaysse, C., Vogt, J., and Pappenberger, F.: Early warning of drought in Europe using the monthly ensemble 

system from ECMWF, Hydrol. Earth Syst. Sci., 19, 3273-3286, doi:10.5194/hess-19-3273-2015, 2015. 

X. Lana, A. Burgueño, M. D. Martínez and C. Serra: A review of statistical analyses on monthly and daily 

rainfall in Catalonia. 2009. Tethys (Journal of Weather & Climate of the Western Mediterranean), 6, 15–29, 

2009, doi:10.3369/tethys.2009.6.02. 

http://hepex.irstea.fr/how-good-is-my-forecasting-method-some-thoughts-on-forecast-evaluation-using-cross-validation-based-on-australian-experiences/
http://hepex.irstea.fr/how-good-is-my-forecasting-method-some-thoughts-on-forecast-evaluation-using-cross-validation-based-on-australian-experiences/


In the preliminary steps of our study, we visually compared several distributions to fit to monthly 

precipitations in the selected catchments. The gamma distribution showed the best fit to the empirical 

distributions. 
 

 

RC: Page 6, lines 25: It is unclearly written how exactly the EDM and GDM correction 

is applied to daily values. I assume it is done as such that the monthly values are 

corrected following the quantile mapping procedure. After that, a correction factor 

is estimated between the corrected and the uncorrected monthly mean value and this 

correction factor is applied to all daily values. The text on line 25 is though 

misleading as the actual correction in a quantile-mapping framework is the mapping of 

the uncorrected values to the cumulative probability space, from which a corrected 

value is derived following an inverse mapping based on the reference data. As the 

mapping is calibrated for monthly values, it cannot be used for daily values directly. 

Please clarify the text. 

AR: The reviewer has understood correctly how the EDM and GDM methods are applied. In order to 

clarify it in the revised version, we added the following sentence: “In the case of EDM and GDM, the 

monthly values are first corrected based on the distribution mapping procedure. Then, for a given month, 

the ratio of the corrected monthly value and the non-corrected ones is used to correct all daily values 

within this month.” 
 

 

RC: Page 8, lines 23-24: The first sentence in this paragraph is redundant. Consider 

removing it. 
AR: This was done and only one sentence appears in the revised version: “To investigate the gain in 

performance brought by bias correction methods, we use the raw (uncorrected) forecasts as reference in 

the computation of the skill scores.” 
 

 

RC: Page 8, lines 27-28: According to section 3.3, all data was first converted to 

weekly means, thus a seven-day moving average cannot be derived. Please clarify the 

contradictions. 

AR: When computing skill scores with reference to the ESP or historical streamflow, we computed 

scores based on weekly-averaged precipitation or streamflow. But when we computed the skill scores 

with reference to the raw System 4 forecasts (to calculate the UFL), scores were computed for daily 

values. In this case, the moving average allowed us to remove the high frequency variations in the skill 

scores while looking at the impact of bias corrections on daily forecast values.  

In the revised version, we clarified this point. We changed the first sentence of Section 3.3 which was 

too general to the following: “The quality of the forecasts was evaluated as a function of lead time and 

for the winter (December-January-February), the spring (March-April-May), the summer (June-July-

August) and the autumn (September-October-November) seasons”. 
 

 

RC: Page 9, line 12: Why is the value +0.1 and -0.1 for the deviations from the 

diagonal chosen? 

AR: Laio and Tamea (2007) propose to calculate the position of these “tolerance” lines to correspond 

to a significance test: « The Kolmogorov bands are two straight lines, parallel to the bisector and at a 

distance q(α)/sqrt(n) from it, where q(α) is a coefficient, dependent upon the significance level of the 

test α (e.g., q(α = 0.05) = 1.358, see D’Agostino and Stephens, 1986). The test is passed when the curves 

remain inside these confidence bands. ». In our case, the Kolmogorov significance bands should be 

approximately at 0.15 to correspond to a 5 % significance test. The 0.1 bands we use are thus a good 

conservative choice to test deviations from the diagonal.  
 

 

RC: Page 9, line 19: Unclear use of the word “translate”. 

AR: We replaced “translate” by “indicate” in the revised version. 
 

 

RC: Sections 4-6: The presentation of the results could be improved and shortened. 

When I read the manuscript, I would have liked to have the comparison of the raw and 

bias corrected forecasts closer together and I suggest combining the discussion of 



the raw and the EMDD corrected forecasts. It would be much easier for the reader to 

follow the discussion if, for e.g., figure 2 and 10 are to be combined into one 

figure. Similarly for all other seasonal skill score figures in sections 4 and 6. 

AR: The manuscript was shortened by removing sentences, repetitions and by removing a whole sub-

section. Concerning combining figures with and without bias correction from EDMD-m, this would in 

fact disturb the logic of the paper since, in between these figures, we propose an in-depth analysis of the 

impact of the bias corrections per month and for each tested method. We then preferred to keep the 

organization as it was first proposed. 
 

 

RC: Page 11, line 8-9: I thought that the reference forecast is the streamflow 

simulated using the reference precipitation. Thus, any model deficiencies regarding 

low flows should not affect the skill score as also the reference forecast would 

suffer from those deficiencies. Also, similarly as for the low flows, the PIT diagram 

reports difficulties to forecast the high flow. What could be the reason for this 

issue? The explanations give in the manuscript so far are not fully convincing. 

AR: The reference forecast in the computation of the skill scores uses the hydrological model (in all 

figures but Figure 13), and model deficiencies cannot be detected based on the graphs of skill scores, as 

well noted by the reviewer. Here, however, the explanations proposed on lines 8-9 refer to the PIT 

diagrams of Figure 5 (which are not expressed as skill scores) and, more specifically, to the lack of 

reliability observed in the summer season (JJA). The tendency to have observations below the forecast 

range is obtained with both the streamflow simulated with System 4 precipitations (in red) and the 

streamflow simulated with the reference precipitation (in grey). This is why we make the assumption 

that this lack of reliability is due to the hydrological model rather than the precipitation forcings. We 

also should note that it is hard to distinguish between high and low flows based on the PIT diagram 

solely. In summer, we have observed an under-dispersion of forecasts, but also a strong tendency to 

have observations falling below the forecast range. From the hydrographs, we also observed that a large 

part of the observations falling in the lowest forecast range in summer can be associated with low flows. 

The PIT diagram thus needs to be analysed together with the hydrographs to better separate the effects 

of under-dispersion on high or low flows.  
 

 

RC: Page 14, lines 19-23: The reasoning is unclear to me, probably due to an unclear 

explanation how the bias-correction works. If it is done in the way I described in 

the comment regarding EDM and GDM, I don’t think that the reasoning is correct. 

Everything stated for the monthly correction would also apply for the daily 

correction. Also on the daily time scale, the rank structure (see comment below) of 

the forecast is not the same as for the reference data. In both cases (monthly and 

daily correction), the distribution mapping should be able to correct differing rank 

structures and remove biases in the monthly mean effectively. In fact, I would have 

expected the daily correction to perform worse than monthly correction when evaluated 

on the monthly scale since it is not targeted to the monthly scale but the daily 

scale. I rather think it has to do with a higher sensitivity of monthly corrections 

to overfitting as evaluated within the cross-validation framework. Admittedly, 

distribution mapping can lead to unforeseen effects and it might very well be that 

I’m wrong. If the authors are convinced that their reasoning is correct, I would like 

them to describe in the reply a case where the distribution mapping fails in more 

detail, for e.g. by showing how the reference and forecast distribution look like and 

how the mapping fails to come up with a correct monthly mean value. 

Page 14, lines 19 and 21: Usage of the term “time structure” seems to be misleading. 

I understand this term in a way that it refers to the temporal sequence of values, 

i.e. that the day n in the reference corresponds to day n in the forecasts. However, 

distribution mapping does not have this requirement. It is rather the rank structure 

as I would call it: Rank n in the reference has to correspond to the rank n in the 

forecasts. Please correct the terminology or explain in more detail what “time 

structure” means. 

AR: We believe that compensation effects (linked to data aggregation) may occur when evaluating 

monthly values with bias corrected daily values. Since daily corrections are more numerous than 

monthly corrections, this can result in more flexibility and daily correction performing better than 

monthly correction when evaluated at the monthly scale. This is more or less similar to monthly 

correction performing well when evaluated at the yearly scale. However, as mentioned by the reviewer, 



this may also be linked to a “higher sensitivity of monthly corrections to overfitting”. Further studies 

would be necessary to conclude more firmly on this issue.  

Concerning “time structures”, we agree that the terminology may not be very clear. We meant that, for 

the DM methods to be efficient, the uncorrected and corrected values with the same rank (in their 

respective cumulative distributions) should also occur at the same time (e.g. as observed in the 

hyetograph). Therefore, the “time evolution” of values should be consistent and DM methods will be 

more efficient if they are applied on forecast hyetograph that are not too discrepant. We believe that this 

can go unnoticed in performance evaluation if daily values are corrected and aggregated at the monthly 

scale for evaluation. However, it will be harder to cover up if we apply and evaluate the corrections at 

the same time scale.  

In the process of reducing the length of the paper, this paragraph was removed in the revised version.  

 
 

RC: Section 5.2: In my opinion, this section does not give new information which is 

not already present in figure 6 (time varying bias-correction factors can be inferred 

from the panel “Before bias correction”) and I suggest removing it for the sake of 

shortening the result section. The only new aspect is that the correction factors for 

EDMD vary more than for LS, but this comparison is not valid in my point of view as 

one should not compare a mean correction factor with a correction factor for a quantile 

level. I’m pretty sure that if you would calculate the correction factor for the mean 

in the case of EDMD, it would be very similar to the LS factor. 

AR: The idea behind this plot was not to compare LS and EDMD average correction factors, but to give 

an additional element to understand the different features behind the LS and the EDMD methods. The 

main conclusions from this figure are that (1) EDMD can correct the frequency of null precipitations, 

whereas LS cannot, and (2) correction coefficients do not vary much from one application year to the 

other (especially with LS) and, therefore, in operational contexts, one can choose a more parsimonious 

calibration of the bias correction method applied.  

In the revised version, we followed the reviewer’s suggestion and removed this section. 
 

 

RC: Section 5.3 and figures 8 and 9: I very much like this analysis. I’m not sure 

though if I really understand the analysis completely. MAE is partly related to the 

bias analysis in figure 6, i.e. if biases in figure 6 are substantial, then MAE should 

be even larger since MAE does not allow for a compensation of errors. EDM-y and GDM-

y have large biases throughout the year in figure 6, and in some cases and particularly 

in summer, the bias is even larger than in the uncorrected data. However, in figure 

8 the two methods stick out for MAE and IQR in summer lead to skill improvements in 

all catchments up to a lead time >60 days. To me, this seems to be contradicting. 

Could you please explain this particularity? 

AR: Thank you. Fig. 8 reflects, somehow, the ability to bring skill to the (corrected) forecasts in terms 

of lead time and expressed as a percentage of catchments where improvements (comparatively to the 

raw forecasts used as reference) were seen. Even if EDM-y and GDM-y methods result in forecasts that 

still present some strong biases (as seen in, and commented from, Fig. 6), these may result in MAE 

values smaller than MAE values computed from the raw forecast. This is enough to characterize a 

relative gain in skill and, if this is observed over all lead times, the UFL will be >60 days and count in 

the percentage represented in Fig. 8. It seems contradictory at first sight, as well observed by the 

reviewer, but can, computationally, happen (e.g. due to the different aggregations: MAE is computed 

with daily values over a season, the bias is computed with monthly values over a month, or when biases 

change from under to over prediction or vice versa after correction). Overall, it is interesting to note that 

forecast skill is definitely hard to evaluate as there are many facets that one can look at. We tried to 

explore this in this paper and shed light on the different aspects that can better inform forecast users.   
 

 

RC: Page 19, line 1: If I read the figure 10 correctly, there are negative skill score 

values and therefore, the statement that the skill scores are always larger than zero 

does not hold. 

AR: You are right. We replaced the sentence with: “Nevertheless, bias corrected forecasts remain 

sharper than the reference (i.e., skill scores are mostly greater than zero).” 
 

 



RC: Page 20, line 3: If I read the figure 12 correctly, there are negative skill score 

values and therefore, the forecast performs sometimes worse than ESP, which is the 

opposite of what is stated on this line. 

AR: We changed the sentence to: “Overall, after bias correction, streamflow forecasts are sharper than 

ESP in most catchments and for most lead times”. 

 
 

RC: Page 20, lines 12-13: It is not clear to me why this is expected. I would expect 

that comparison to streamflow climatology is a harder check and therefore the 

skillfull lead time should be smaller than in the comparison to the baseline reference 

run since also the hydrological model bias deteriorates the skill. I surely 

misunderstand something but I think it would be good to add a bit more explanation in 

the manuscript. 

AR: It is usually expected that ensembles based on streamflow climatology have less skill than 

ensembles based on hydrological modelling, at least in the first lead times, because ensembles based on 

hydrological modelling benefit from knowledge of initial hydrologic conditions. For instance, here, the 

states of the GR6J model are first initialized by running the model with observed inputs for a year prior 

to the forecast date. Therefore, ensembles based on streamflow climatology are supposed to be less 

skilful for forecast lead times that are impacted by initial hydrologic conditions. In the revised version, 

in order to clarify this issue, the sentence was changed to: “Streamflow forecasts generated from…up 

to twelve weeks in some catchments. This was expected because ensembles based on hydrological 

modelling benefit from knowledge of initial hydrologic conditions.” 
 

 

RC: Page 22, line 4: As for the uncorrected forecast discussion, I do not understand 

why it is the hydrological model that causes the problems with low-flow 

overestimation. The reference data is also output of the same hydrological model 

driven by the reference precipitation data. I would therefore rather think that it is 

some characteristics in the input data which the bias-correction cannot correct for 

that causes the problem (for e.g. dry-spell lengths). If the authors still think their 

statement holds, I would like to have a bit more explanations why this can be the 

case. 

AR: The main discussion here is about reliability, which can clearly still be improved for streamflows. 

Comments on the model performance are linked to the analysis of the simulated and observed 

hydrographs, which complement the PIT analysis. The lack of reliability in streamflow forecasts may 

come from the input data, but not solely (as shown in Fig. 3, which analyses the reliability of the 

precipitation forcing). A lack of spread in hydrologic initial conditions may also play a role in the 

reliability of streamflow forecasts. That is why we referred to the needs of accounting for other sources 

of uncertainty, with, for instance, additional post-processing. 

 
 

RC: Page 27, lines 13-15: References needed 

AR: We added the following references: 
Hamlet, A. F. and Lettenmaier, D. P.: Columbia River Streamflow Forecasting Based on ENSO and PDO Climate 

Signals, J. Water Resour. Plan. Manag., 125(6), 333–341, doi:10.1061/(ASCE)0733-9496(1999)125:6(333), 

1999. 

van Dijk, A. I. J. M., Peña-Arancibia, J. L., Wood, E. F., Sheffield, J. and Beck, H. E.: Global analysis of seasonal 

streamflow predictability using an ensemble prediction system and observations from 6192 small catchments 

worldwide, Water Resour. Res., 49(5), 2729–2746, doi:10.1002/wrcr.20251, 2013. 

Werner, K., Brandon, D., Clark, M. and Gangopadhyay, S.: Climate index weighting schemes for NWS ESP-based 

seasonal volume forecasts., J. Hydrometeorol., 5(6), 1076–1090, 2004. 
 

 

RC: Section 6.4: Although I like the illustrative character of this section, it stands 

a bit loose within the rest of the manuscript. I suggest to either motivate the 

section better or, for the sake of brevity, to remove it. In my opinion, the main 

statements of this sections have already been made, i.e. increased sharpeness after 

bias-correction compared to ESP. 

AR: Thank you. Reviewer 1 also appreciated this figure and suggested some improvements, which we 

implemented in the revised version. We therefore added a quantification of what is shown in this figure. 

Notably, we show that the coverage probability of the streamflow forecasts is improved after bias 



correction compared to ESP (see our answers to Reviewer 1 for details). Additionally, studies have 

shown the need to combine statistical evaluations with visual evaluations. Even though this is hard to 

achieve in probabilistic forecasting, we wanted to propose a visual appreciation of the ensembles to have 

a better overview of how bias corrections affect streamflow forecasts. 
 

 

RC: Figure 2: “… and all seasons.” The figure only shows two seasons, please correct 

the caption. 

AR: Thank you for pointing this out. The caption was corrected in all occurrences of this problem. 
 

 

RC: Figures 3, 5, 11, 14: The dashed lines should be explained in the figure as well, 

and not just in the text describing figure 3. 

AR: The explanation for the dotted lines was added in the captions of the four figures. 
 

 

RC: Figure, 6: Although certainly correct, I do not see a reason why to transform the 

simple relative bias into 1-bias. I understand that this transformation turns the 

bias into a skill score. However, in my opinion, the interpretation is not following 

the one for skill scores anyway. The perfect bias-correction would not yield 1 but 0. 

I suggest plotting the relative bias without transformation. The scale would be much 

easier interpretable as it directly refers to a percentage over- or underestimation. 

AR: We used this transformation so that “no bias” corresponded to the null value, over-prediction 

corresponded to positive values and under-prediction corresponded to negative values. This 

representation of the scale seemed more intuitive, but the reviewer is right that the interpretation in terms 

of percentage is easier without this transformation. Figure 6 was modified in the revised version to take 

into account this reviewer’s comment. 
 

 

RC: Figures 8 and 9: Why are there different color scales for the different seasons? 

AR: The four colours are supposed to help the reader identify the four seasons throughout the article. 

These colours include the blue and red colours used throughout the paper: blue for winter, lighter blue 

for autumn, red for summer and lighter red for spring. In these figures, the four colour scales in the 

legend are needed to clarify the colour shades related to the percentage of catchments in each category 

(e.g. to avoid light blue (autumn) being mistaken for a shade of bright blue (winter)).  
 

 

RC: Figure 15: What are the colours standing for? There is probably also an error in 

the caption where it reads “shown for all seasons”. 

AR: The colours represent the four seasons as mentioned in the reply above. We added a legend for the 

colours in the figure. 
 

 

RC: Page 19, line 10: precipitation instead of precipitations 

AR: This was corrected in the revised version. 

 

 

 

Reviewer 3 

 

Reviewer’s comment (RC): 

Main points: 

1) My most important point is that the paper is too long. I suggest to set a hard (!) 

reduction requirement of at least 25% (number of words). It is up to authors to decide 

which parts they remove or shorten. Just a few suggestions from my side: discuss fewer 

bias correction methods, remove almost completely page 13 line 3 – page 14 line 7, 

remove third and fourth sentence of section 3.2.1. 



Authors’ reply (AR): We have cut several sentences along the text and removed an entire analyses 

concerning the corrective factors (Section Comparison of bias correction factors for LS and EDMD 

methods), which reduced the length of the paper. 
 

 

RC: 2) In the paper sharpness is discussed with the assumption that quality increases 

with sharpness. Mason and Stephenson (2008) write that “in the extreme case of no 

predictability, the forecast probability should always be equal to the climatological 

probability”. So, forecasts can be too sharp, which should be a conclusion from e.g. 

Figure 2, where sharpness for longer lead times is larger than that of the reference. 

So, the sharpness results and conclusions should be reconsidered. 

AR: We agree with the reviewer that sharpness in itself, as any other forecast quality attribute, is not 

necessarily an indicator of a perfect forecast. In our study we adopted the paradigm of Gneiting et al. 

(2007): « maximizing the sharpness of the predictive distributions subject to calibration ». This means 

that for two systems with equal levels of reliability, the best one is the sharper one (i.e., lower IQR score 

in our study). The evaluation of sharpness is thus complementary to the evaluation of reliability. That is 

the reason why we adopted the scores based on the PIT diagram and the IQR. In order to clarify this 

issue, we added the following sentence to Section 3.3.1: “In this study, we considered that for two 

reliable systems, the sharpest one is the best (Gneiting et al., 2007).” 
 

 

RC: 3) A better (and longer) introduction to PIT diagrams is needed. Since these 

diagrams are not well explained in the paper, I was not able to understand the PIT 

results. I suggest at least to write much more clearly how these diagrams are 

constructed, to show a figure like Figure 2 from Laio and Tamea, to clarify what PIT 

values (vertical axis of figures in paper) are and to add a text to the horizontal 

axis of the PIT diagrams displayed in the paper. How does the area in the diagrams 

measure reliability? Is the area also sensitive to bias? Is that acceptable? In 

Section 3.3.1. the text mentions “concentration of points” but only lines are shown 

in the diagrams. So, what do you mean by “concentration of points”? 

AR: The probability integral transform (PIT) histogram is used in forecast verification to evaluate if the 

empirical time series of PIT values (the PIT value is the value that the predictive cumulative distribution 

function associates with the observation at a given time step) has a uniform distribution (see also, 

Gneiting et al., 2005 [1], where it is also explained that “uniformity is usually evaluated in an exploratory 

sense, and one way of doing this is by plotting the empirical cumulative distribution function of the PIT 

values”). This is what we have done in our paper. In order to compare systems, we also evaluated the 

score defined as the “PIT area”, as proposed in the reference cited in the paper (Renard et al., 2010). 

The further the PIT curve is from the 1:1 diagonal, the less reliable the ensemble is. Therefore, the 

smaller the area between the curve and the 1:1 diagonal, the more reliable the ensemble is. The rank 

histogram or Talagrand diagram, proposed independently in the literature, is a similar measure. Gneiting 

et al. (2005) indicate that “If we identify the predictive distribution with the empirical cumulative 

distribution function of the ensemble values, this technique is seen to be equivalent to plotting a PIT 

histogram”. The visual inspection of the PIT diagram can be a useful assessment (on systematic biases 

or spread deficiencies), but forecast deficiencies may still be hidden behind the assessment (deficiencies 

in sharpness, for instance). That’s why we use (and recommend) the joint evaluation of other scores. We 

hope this clarifies our approach. We would like to avoid adding a figure that is already presented in 

another easy-to-access paper that we are referencing (Laio and Tamea, 2007), especially since we are 

asked to shorten the paper. However, to make the PIT interpretation clearer, we modified some sentences 

in the description of this score in Section 3.3.1, and we added a more explicit title to the x axes of the 

PIT diagrams in our figures. The terms describing and explaining the shapes of the PIT diagram do not 

refer to “points” anymore (we have linked our points with lines for a better visualization of the results 

of the 16 catchments in a unique PIT diagram, and we think that deleting references to “points” will 

make the PIT diagram easier to understand).  

[1] Probabilistic Forecasts, Calibration and Sharpness, Tilmann Gneiting Fadoua Balabdaoui and Adrian E. 

Raftery. Available here: https://www.stat.washington.edu/research/reports/2005/tr483.pdf  
 

 

RC: 4) PIT area, MAE and CRPS are all sensitive to bias, as far as I can see. This 

should be mentioned in Sections 3 and 7 and discussed in Section 7. 

https://www.stat.washington.edu/research/reports/2005/tr483.pdf


AR: The scores are described in Section 3.3.1, and details on their characteristics can be found in the 

references provided. The way they are impacted by bias correction is illustrated throughout the results 

and discussed in Section 7. 
 

 

RC: 5) Section 2.2 mentions that observations are used to initialize streamflow. What 

about the initialization of snow and soil moisture? These form important contributions 

to predictability. 

AR: The GR6J model is a conceptual, reservoir-based hydrological model. Its inputs are daily 

precipitation and potential evapotranspiration. These data are used to run the model and initialize its 

states, including the state of its reservoirs, prior to the forecast date. The upper reservoir of the model 

can be assimilated (although it is not equivalent to, as it is not a physically-based model) to a “soil 

moisture accounting” reservoir. Therefore, in a sense, this is also initialized. As for snow modelling, it 

is not represented in the version of the model used in our study. The catchments studied have a dominant 

pluvial regime and are not strongly influenced by snow. In Section 2.2, we mention the forecast updating 

of the model, which is a different procedure from the initialization. After initialization, the model goes 

through an “updating procedure”, common in hydrological forecasting, which, in our case, is based on 

the last observed discharge. We slightly changed the description of the model in the revised version 

(Section 2.2), which we hope will make this part of the paper clearer. 
 

 

RC: 6) Sections 3.2.1. and 3.2.2. about the bias correction methods need references. 

EDM and GDM seem to be have strange effects: a specific amount of daily precipitation 

is corrected differently for different years, depending on the monthly amount of 

precipitation. What is the motivation to possibly employ these two methods? Perhaps 

some of the investigated methods should not be considered at all, see point 1 about 

shortening the paper. I found LS-m and EDMD-m the most interesting methods. 

AR: Our motivation is to evaluate if EDM brings additional value regarding LS, notably in correcting 

bias for extreme precipitation, and whether the use of a fitted distribution (here, GDM) enhances 

performance or not. We also found LS-m and EDMD-m more interesting, but this comes from the 

progressive analysis of all the other methods too. We think it is important to show all the methods as 

they have different levels of complexity. References on the bias correction methods are already provided 

in the Introduction. We also added a reference to Yuan et al. (2015), which gives an extensive review 

of methods and a list of additional references.    
 

 

RC: Minor points: 

page 1, line 16: “contributes” instead of “contribute”. 

page 2, line 7: “widespread use of” instead of “the widespread of” 

page 2, line 21: remove “rather than by initial conditions”  
page 3, line 13: “varied between” instead of “derived from” 

AR: These points were corrected in the revised version. 
 

RC: The hydrological model also needs temperature as input to compute potential 

evapotranspiration. Write clearly how this input is constructed. 

AR: The calculation of the evapotranspiration was done following the Oudin formulation. This 

formulation can be found in Equation (3) of Oudin et al. (2005). It was computed based on the daily 

temperature from the SAFRAN reanalysis. We rephrased it in the revised version to make it clearer. 
 

 

RC: page 3, line 18: add “heavily” before “influenced” 

AR: This was corrected in the revised version.  
 

 

RC: page 3, line 23: replace “interannual” by “long-term mean”. Over which years? On 

a monthly basis? Also for hindcasts? 

AR: For a given day of the year, the estimated PET on this day is the mean of all PET computed for this 

day of the year, over all available years (with exception for the targeted year). Reviewer 1 and 2 also 

pointed out that the PET used in the article should be better explained (please, refer to the answers to 

their reviews). The following text was added in Section 2.1: “The interannual potential 



evapotranspiration was then computed in each catchment, i.e. for a given day of the year, we computed 

the average potential evapotranspiration for this day over all available years (1958 to 2010).” 
 

 

RC: page 3, section 2.2: motivate why the focus is solely on the influence of 

precipitation input. 

AR: This is a choice we made as we were focusing on catchments with a pluvial-dominated hydrological 

regime. We added the following sentence in Section 2.2: “This setup is also consistent with the fact that 

our catchment set is dominated by a pluvial regime”. 
 

 

RC: page 6, section 3.3: So, do the evaluations for lead week 1 for the winter include 

all the hindcasts made on December 1, January 1 and February 1? These are then 15 

members issued in December and January and 52 members issued in February. How do you 

deal with this inequality? And do the evaluations for lead week 6 for the winter 

include all the hindcasts made on November 1, December 1 and January 1? Explain this 

clearly. 

AR: The reviewer’s understanding is correct. We can thus have seasonal-based scores that involve 

forecasts with 15 or 51 members. This comes from the data setup of ECMWF. We only handled 

inequality when comparing ensemble of different sizes with the CRPS (as explained in the paper). 

Despite the inequality in the seasonal aggregation of scores, we note that this should not impact 

comparisons between seasons (since all seasons have a month with 51 members), and comparisons 

between raw and bias corrected forecasts (since aggregation is considered equally in both systems). 
 

 

RC: page 7, line 8: “coinciding with” instead of “superposed with”  

page 7, line 24: “Ranked” instead of “Rank” 

AR: These were corrected in the revised version. 
 

 

RC: page 8, line 6: What is the observation period? 

RC: page 8, line 14: From which period are the observations? 

AR: Observed precipitation data were available for the period running from 1958 to 2010. Observed 

streamflow data were available for different time periods, ranging from 36 years to 52 years depending 

on the catchment, and up to 2010. This was specified in Section 3.3.2 of the revised version. 
 

 

RC: page 8, line 23: “caused” instead of “brought”  

AR: This was corrected in the revised version. 
 

 

RC: page 8, line 28: “becomes negative”. What is done if there is more than one 

transition from a positive to a negative score? 

AR: If there are several transitions, the lead time of the first transition is considered. In the revised 

version, we added “first” before “lead time beyond which” to make this clearer. 
 

 

RC: page 9, line 28: “this is observed in the majority of catchments”. This does not 

seem to be the case. There is roughly an equal number of curves below and above zero. 

AR: The reviewer is right. In the process of shortening the paper, this sentence was removed in the 

revised version. 
 

 

RC: page 13, figure 6: I would expect no bias at all in the lower right and left 

panel. What is the cause of these biases? Are the remaining biases caused by the one-

year-leave-out method? If so, I would expect them to vary randomly around zero. 

AR: We also believe that they may be mainly due to the one-year-leave-out approach, especially when 

differences among the validation (target) year and the calibration period exist (e.g. for the wettest or 

driest years of the data period, which may not be of equal intensity). Depending on the “distance” 

between the target year and the calibration period this may cause a divergence from zero. 
 



 

RC: page 13, line 13: “in the easternmost part” instead of “at the most eastern part” 

AR: This was corrected in the new version. 
 

RC: page 14, line 30: add “cumulative” before “probability” 

AR: This section was deleted in the revised version in order to shorten the length of the paper. 
 

 

RC: page 17, figure 8: “Fraction of catchments” instead of “Number of catchments” 

AR: This was changed in Figure 8 and in Figure 9. 
 

 

RC: page 18, last line: As far as I can see the CRPS in not lower after bias correction. 

AR: The reviewer is right. We changed the sentence to “In some catchments, the values of IQR are 

lower, but bias corrected forecasts remain sharper than the reference (i.e., skill scores are mostly greater 

than zero)” to clarify this point. 
 

 

RC: page 19, line 3: replace “in regards to” by “with respect to” 

AR: This was corrected in the revised version. 
 

 

RC: I recommend to combine figure 2 with figure 10 into one figure, and figures 3 

with figure 11 into one figure, etc. The reader now has to turn over pages to compare 

the figures. 

AR: Combining figures with and without bias correction from EDMD-m, would in fact disturb the logic 

of the paper since, in between these figures, we propose an in-depth analysis of the impact of the bias 

corrections on forecast quality for each month and each tested method. We thus preferred to keep the 

organization as it was originally proposed. 
 

 

RC: Figure 15: how are seasons represented? 

AR: Strong blue is used for winter, lighter blue for autumn, red for summer and lighter red for spring. 

We added a legend for the four seasons represented in the figure. 
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Abstract. Meteorological centres make sustained efforts to provide seasonal forecasts that are increasingly skilful, which has

the potential to benefit streamflow forecasting. Seasonal streamflow forecasts can help to take anticipatory measures for a range

of applications, such as water supply or hydropower reservoir operation and drought risk management. This study assesses the

skill of seasonal precipitation and streamflow forecasts in France to provide insights into the way bias correcting precipitation

forecasts can improve the skill of streamflow forecasts at extended lead times. We apply eight variants of bias correction5

approaches to the precipitation forecasts prior to generating the streamflow forecasts. The approaches are based on the linear

scaling and the distribution mapping methods. A daily hydrological model is applied at the catchment scale to transform

precipitation into streamflow. We then evaluate the skill of raw (without bias correction) and bias corrected precipitation and

streamflow ensemble forecasts in sixteen catchments in France. The skill of the ensemble forecasts is assessed in reliability,

sharpness, accuracy, and overall performance. A reference prediction system, based on historical observed precipitation and10

catchment initial conditions at the time of forecast (i.e., ESP method), is used as benchmark in the computation of the skill.

The results show that, in most catchments, raw seasonal precipitation and streamflow forecasts are often more skilful than the

conventional ESP method in terms of sharpness. However, they are not significantly better in terms of reliability. Forecast skill

is generally improved when applying bias correction. Two bias correction methods show the best performance for the studied

catchments, each method being more successful in improving specific attributes of the forecasts: the simple linear scaling of15

monthly values contribute
:::::::::
contributes mainly to increasing forecast sharpness and accuracy, while the empirical distribution

mapping of daily values is successful in improving forecast reliability.

1 Introduction

Numerous activities with economic, environmental and political stakes benefit from knowing and anticipating future streamflow

conditions at different lead times. While flood forecasting requires forecasts up to several hours or days ahead, other areas such20

as water supply reservoir operations or drought risk management need forecasts for the months or season ahead. Regardless

of the considered lead time, streamflow forecasting
:::::::::
Streamflow

:::::::::
forecasting

:
systems are frequently updated

::::::::
developed to take

the latest useful information content into account (e.g. last observed discharges, soil moisture or snow cover) and developed to

make use of numerical weather model outputs to extend the range of skilful predictions.

1



Seasonal forecasts have shown to perfectly fall within a context of proactive risk management, for example, for drought man-

agement (e.g. Wilhite et al., 2000; Dutra et al., 2014; Mwangi et al., 2014; Wetterhall et al., 2015). Extended-range forecasting

systems can be valuable tools to help decision-makers in planning long-term strategies for water storage (Crochemore et al.,

2016) and to support adaptation to climate change (Winsemius et al., 2014). Nevertheless, several users still remain doubtful

whether seasonal forecasts can be trustworthy or skilful enough to enhance decision-making in an operational context (Rayner5

et al., 2005). Lemos et al. (2002) list the performance of seasonal forecasts, the misuse of seasonal forecasts by end-users and

the lack of consideration of end-users’ needs in the development of products as major obstacles to the widespread
:::
use of sea-

sonal forecasting in North-East Brazil. It is therefore crucial to assess the potential of available seasonal forecasting products

and communicate on the assets and shortcomings of the different approaches that can benefit
::
for

:
the water sector (Hartmann

et al., 2002).10

Seasonal forecasting methods in hydrology can be broadly divided into two categories: statistical methods,
:
which use a

statistical relationship between a predictor and a predictand
:::::::::::::::::::::::::::::::::::::::
(e.g. Jenicek et al., 2016, and references therein), and dynamical

methods,
:
which use seasonal meteorological forecasts as input to a hydrological model. More recently, mixed approaches have

been investigated in the attempt to take advantage of initial land surface conditions, seasonal predictions of atmospheric vari-

ables and the predictability information contained in large-scale climate features (see Robertson et al., 2013; Yuan et al., 2015,15

and references therein). Ensemble Streamflow Prediction (ESP; Day, 1985) is a dynamical method that is widely used to fore-

cast low flows and reservoir inflows at long lead times (Faber and Stedinger, 2001; Nicolle et al., 2014; Demirel et al., 2015).

It consists in using historical weather data as input to a hydrological model whose states were initialized for the time of the

forecast. The ESP method is also used along with the Reverse-ESP method to determine the relative impacts of meteorological

forcings and hydrological initial conditions on the skill of streamflow predictions (Wood and Lettenmaier, 2008; Shukla et al.,20

2013; Yossef et al., 2013). An alternative dynamical method consists in using seasonal forecasts from regional climate models

(RCMs) (Wood et al., 2005). This approach yields better results when seasonal predictability is enhanced by meteorological

forcingsrather than by initial conditions. Climate model outputs may also be more suitable to capture the specific climate con-

ditions at the time of the forecast, whereas ESP-based methods will be limited to the range of past observations and challenged

by climate non-stationarity.25

The use of climate model outputs in hydrology has however some methodological implications. Outputs
:::
For

:::::::
instance,

:::::::
outputs

are produced for grid scales that are usually too coarse for streamflow forecasting at the catchment scale. This
:::::
coarse

::::
grid

::::::
scales,

:::::
which can lead to errors in capturing forecast uncertainty and introduce significant

::::::
induce biases. Post-processing (including

bias correction techniques and downscaling procedures) is usually a necessary first step prior to using climate model outputs

to model streamflow. A range of methods has been proposed in the literatureand the best method usually depends on
:
,
::::
with30

::::::::::
performance

:::::::
varying

:::::::::
depending

::
on

:
the modelling chain being investigated and the studied area , with levels of performance

that may vary with the forecast horizon or the targeted application (Christensen et al., 2008; Gudmundsson et al., 2012).

Bias correction is usually an integral part of post-processing techniques applied to forecasting systems. Weather forecasting

has performed bias correction of numerical model outputs through model output statistics (MOS) for decades. In hydrologic

ensemble prediction systems, post-processing has become more and more popular in the last decade, particularly for medium-35

2



range ensemble forecasting (e.g. Weerts et al., 2011; Zalachori et al., 2012; Verkade et al., 2013; Madadgar et al., 2014; Roulin

and Vannitsem, 2015). In seasonal forecasting, two popular bias correction methods are linear scaling and distribution mapping

:::::::::::::::
(Yuan et al., 2015). Linear scaling corrects the mean of the forecasts based on the difference between observed and forecast

means, whereas distribution mapping matches the statistical distribution of forecasts to the distribution of observations. These

approaches , which can also be applied to improve the performance of ESP forecasts (Wood and Schaake, 2008), focus on5

increasing forecast skill and reliability, by reducing errors in the forecast mean and improving forecast spread.

Studies comparing different bias correction methods in seasonal hydrological forecasting are still rare in the literature. How-

ever, we can find studies reviewing and comparing methods to bias correct RCM outputs and quantify climate change impacts,

although their efficiency in this context is still a topic of discussion (Ehret et al., 2012; Muerth et al., 2013; Teutschbein

and Seibert, 2013). Teutschbein and Seibert (2012) compared six methods, among which linear scaling and parametric dis-10

tribution mapping, to bias correct RCM simulations of precipitation and temperature in Sweden. The authors recommended

using the distribution mapping method for current climate conditions. They also highlighted the need to assume that bias

correction procedures are stationary to correct future climate projections and evaluate changes in flow regimes. In Norway,

Gudmundsson et al. (2012) proposed a comparison of eleven methods to bias correct RCM precipitation. The methods derived

from distribution transformations (e.g. distribution
:
,
::::::::
including

::::::::::
distribution mapping based on fitted theoretical distributions),15

parametric transformations such as linear scaling, and nonparametric transformations such as distribution mapping based on

empirical distributions
::
or

::::::::
empirical

:::::::::::
distributions

:::
and

:::::
linear

:::::::
scaling. Their study highlighted the differences between the bias

corrections and the necessity to test methods prior to their application. The authors recommended using nonparametric meth-

ods since these methods were the most effective to reduce the bias and did not require any approximations of the empirical

distributions.20

The European Centre for Medium-range Weather Forecasts (ECMWF) produces seasonal forecasts from GCM simula-

tions (Molteni et al., 2011). Weisheimer and Palmer (2014) evaluated the reliability of the precipitation forecasts issued by

ECMWF System 4 on a scale ranging from "dangerous" to "perfect". Over the world, precipitation forecasts often fell within

the "marginally useful" category. In France, they were ranked as "marginally useful" during wet winters and summers, "not

useful" in dry winters, and "dangerous" in dry summers. Kim et al. (2012) also evaluated the skill of System 4 precipitation25

and temperature
:::::::
forecasts

:
at the global scale. Despite good overall performances, they identified systematic biases, e.g. a warm

bias in the North Atlantic. Several studies have proposed to bias correct ECMWF System 4 precipitation forecasts in different

contexts. Di Giuseppe et al. (2013) applied a spatially-based precipitation bias correction to improve malaria forecasts. Tram-

bauer et al. (2015) applied a linear scaling method to forecast hydrological droughts in Southern Africa. In the same context,

Wetterhall et al. (2015) applied a quantile mapping method to daily precipitation values, and showed that bias correction was30

able to improve the skill of the system to forecastsdry spell
::::::
forecasts.

::::::
Despite

:::::
these

:::::
recent

::::::
works,

::::
and

::
to

:::
the

:::::::::
knowledge

::
of

:::
the

:::::::
authors,

:::
no

:::::::
previous

:::::
study

:::
has

:::::::::
compared

::::
bias

::::::::
correction

::::::::
methods

:::
and

::::
their

::::::
impact

:::
on

::::::::::
streamflow

:::::::::
forecasting

:::
in

:
a
:::::::::
systematic

:::::
way,

::::
with

::
a

:::::
focus

::
on

::::::::::::
understanding

::::
how

::::
the

::::
main

::::::::
attributes

:::
of

::::::
forecast

:::::::::::
performance

:::
are

::::::::
impacted

::
by

::::
bias

:::::::::
correction.

:
This paper aims to further investigate the

::::::
provide

:::::::
insights

::::
into

:::
the

::::
way

:::
bias

:::::::::
correcting

:::::::
seasonal

::::::::::
precipitation

::::::::
forecasts

:::
can

:::::::::
contribute

::
to

::
the

::::
skill

::
of

:::::::
seasonal

::::::::::
streamflow

:::::::::
predictions,

:::::::
notably

::
in

:::::
terms

::
of35
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:::::
overall

::::::::::::
performance,

::::::::
reliability,

::::::::
sharpness

::::
and

:::::
skilful

::::
lead

:::::
time.

::
It

:::::::::
investigates

:::
the

:
potential of bias corrected ECMWF System

4 forecasts to improve streamflow forecasts at extended lead times . By comparing several
::::
over

:::
16

:::::::::
catchments

::
in

:::::::
France.

:::
An

:::::::
in-depth

::::::::::
comparison

::
of

::::
eight

:
variants of linear scaling and distribution mapping methods , the study provides insights into the

way bias correcting seasonal precipitation forecasts can contribute to the skill of seasonal streamflow predictions. Forecasts are

evaluated
::::::
applied over the 1981-2010 period in 16 catchments in France

:
is

::::::::
presented. Section 2 presents the catchment set, the5

forecast and observed data, as well as the hydrological model used. Section 3 presents the bias correction methods investigated,

as well as the calibration and evaluation frameworks adopted. Results are presented in Sections 4 to 6 for the quality of the raw

(uncorrected) and the bias corrected forecasts. In Section 7, conclusions and limitations are discussed.

2 Data and hydrological model

2.1 Seasonal forecasts and observed data10

This study is based on daily
:::::
Daily

:
seasonal precipitation forecasts

::::
come

:
from ECMWF System 4 . System 4 provides a

51-member forecast ensemble ,
::::::
which

:::::::
provides

::::::::
ensemble

::::::::
forecasts for the next seven months at a TL255 (about 0.7◦) spatial

resolution(Molteni et al., 2011). ECMWF retrospectively produced forecasts ,
:
for the period running from 1981 to 2010 These

::::::::::::::::::
(Molteni et al., 2011).

::::::::
Forecasts

:
are composed of 51 ensemble members for February, May, August and November, and 15

members for the other months. For the purpose of
:
In

:
this study, the 1981-2010 forecasts were aggregated at the catchment scale15

(i.e., areal precipitations were computed for each catchment). Only
:
,
:::
and

::::
only

:
the first 90 days of the forecast horizon were

considered.

Observed precipitation data
:::::
Daily

::::::::
observed

:::::::::::
precipitations

:
used for the calibration and evaluation of the bias correction

methods come from the
:::
8x8

:::
km

::::
grid

::::::::
resolution

:
SAFRAN reanalysis of Météo-France (Quintana-Seguí et al., 2008; Vidal et al.,

2010). Daily values are available at an 8x8 km grid resolution covering France. They were also aggregated at the catchment20

scale. Mean areal potential evapotranspiration was computed for each catchment based on
::::
daily

:
observed temperatures from the

SAFRAN reanalysis (Oudin et al., 2005).
:::
The

:::::::::
interannual

::::::::
potential

:::::::::::::::
evapotranspiration

::::
was

::::
then

::::::::
computed

::
in

::::
each

::::::::::
catchment,

::
i.e.

:::
for

::
a

::::
given

::::
day

::
of

:::
the

::::
year,

:::
we

::::::::
computed

:::
the

:::::::
average

:::::::
potential

:::::::::::::::
evapotranspiration

:::
for

::::
this

:::
day

::::
over

::
all

::::::::
available

:::::
years

:::::
(1958

::
to

:::::
2010).

:
Daily streamflow data at the outlet of each catchment come from the French national archive (Banque Hydro).

2.2 Studied catchments and hydrological model25

The catchment set was selected from the database in Nicolle et al. (2014). It comprises 16 catchments spread over France
::
in

:::::
France

:::::
(Fig.

::
1) with a dominant pluvial regime. Catchments show an average solid fraction of precipitation below 10% and are

thus not
::::::
heavily influenced by snow. Their main characteristics are shown in Table 1, and their location in Fig. 1.

We applied the conceptual, reservoir-based GR6J hydrological model (Pushpalatha et al., 2011) at the daily time step.

The model is composed of
::
has

:
three reservoirs (one for the production function and two for the routing function), and one30

unit hydrograph to account for flow delays. The model inputs are daily precipitation and potential evapotranspiration at the
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Figure 1. Location of the 16 studied catchments in France,
:
identified by their numbers

:
(see Table 1for details).

catchment scale. The model output is the daily streamflow at the catchment outlet. Interannual potential evapotranspiration

was used to focus solely on the
::::
Here,

:::
the

:::::
series

::
of

::::::::::
interannual

:::::::
potential

::::::::::::::::
evapotranspiration

:::::::::::
corresponding

::
to
:::
the

:::::::
forecast

::::::
period

:::
was

::::::::::::
systematically

::::
used

::
as

:::::
input

::
to

:::
the

:::::::::::
hydrological

::::::
model.

::::
With

::::
this

:::::
setup,

:::
we

:::::
aimed

::
to

::::::
isolate

:::
the

:
influence of precipitation

::::::
forecast

:
inputs on

:::
the

::::::
quality

:::
of streamflow forecasts.

::::
This

:::::
setup

::
is

::::
also

::::::::
consistent

:::::
with

:::
the

::::
fact

:::
that

::::
our

:::::::::
catchment

:::
set

::
is

::::::::
dominated

:::
by

::
a

::::::
pluvial

::::::
regime.

:
The model was calibrated in each catchment with the Kling-Gupta Efficiency (Gupta et al.,5

2009) applied to root-squared flows.
:::
We

:::::::
obtained

:::
an

::::::
average

:::::
KGE

::
of

::::
0.95

::
in

:::::::::
calibration

:::
and

::::
0.94

::
in

:::::::::
validation

::::
over

:::
the

::::::
sixteen

:::::::::
catchments.

::::
The

::::
bias

:::::::
obtained

:::
in

:::::::::
simulation

:::::
ranges

:::::
from

::::
0.95

::
to

:::::
1.02. When the model is applied to forecast streamflow, the

:::::
model

:::::
states

:::
are

::::::::
initialized

:::
by

::::::
running

:::
the

::::::
model

::
in

:::::::::
simulation

::::
mode

:::
for

:::
the

::::
year

::::::::
preceding

:::
the

:::::::
forecast

::::
date.

::::
The last observed

streamflow at the time of forecast is
::::
then used to update the levels of the routing reservoirs before issuing the forecasts.
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3 Methods

3.1 Overview of the calibration-evaluation approach

Bias correction methods were calibrated and evaluated in each catchment over the 1981-2010 period. The one-year-leave-out

:::
The

::::::::::::::::
leave-one-year-out cross-validation method

:::::::::::::::::::::
(Arlot and Celisse, 2010) was applied to calibrate and evaluate the methods

::
the

::::
bias

:::::::::
correction

:::::::
methods

::
in

::::
each

::::::::
catchment

:
over independent periods

:::::
within

:::
the

:::::::::
1981-2010

::::::
period. Given a target application5

yearwithin the study period, all available years but the target year are used in the calibration process. Results of the calibration

are then applied to the target application year and bias corrected forecasts are evaluated against observations.

In the calibration step, we considered two approaches. The simplest calibration uses :
:::
(1)

:
all days of the years within the cali-

bration dataset . An alternative approach consists in calibrating
:::
are

::::
used,

:::
(2)

:
the bias correction methods

::
are

:::::::::
calibrated for each

calendar month. Additionally, since we are dealing with forecasts issued up to 90 days ahead, and since forecast performance10

varies with lead time, calibration also takes the lead time into account. In this study, lead
::::
Lead

:
times were grouped from 1 to

30 days, 31 to 60 days and 61 to 90 days ahead. The calibrated bias correction factors are then applied to the daily values of the

ensemble precipitation forecasts in the target application year. The hydrological model is forced by precipitation forecasts and

streamflow ensemble forecasts are obtained. The modelling chain is applied to raw and bias corrected precipitation forecasts.

Precipitation and streamflow forecasts are evaluated with deterministic and probabilistic scores commonly used in ensemble15

forecasting,
::::::
which

:::::
results

:::
in

:::::::::
streamflow

::::::::
ensemble

::::::::
forecasts.

3.2 Bias correction methods

We applied the linear scaling (LS) and the distribution mapping (DM) methods to the raw System 4 precipitation forecasts.

The DM method was applied following three variants: considering the empirical distribution of monthly values (EDM), a

fitted gamma distribution of monthly values (GDM), and the empirical distribution of daily values (EDMD). Each method was20

applied on a monthly (-m) or a yearly (-y) basis (Table 2).

3.2.1 Linear scaling of precipitations

The LS method
:::
LS consists in correcting the monthly mean values of the forecasts to match the monthly mean values of the

observations. A scaling factor (or bias) is calculated considering the ratio between the observed and the forecast (ensemble

mean) values. A scaling factor higher (lower) than 1 indicates that the mean ensemble forecast underpredicts (overpredicts) the25

mean observed value. A value of 1 indicates no bias in the forecasts. The scaling factor obtained through calibration is then

applied as a multiplicative factor to correct raw daily precipitation forecasts.

3.2.2 Distribution mapping of precipitations

The DM method
:::
DM

:
consists in correcting the precipitation forecasts so that their statistical distribution matches that of

the observations. There are several ways to match forecast and observed distributions or quantiles, and existing techniques30
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mainly differ on how the forecast and observed cumulative distribution functions (CDF) are considered. In some techniques,

a parametric distribution is fitted to the forecast and observed datasets, while in others the empirical distributions and linear

interpolations between data points or estimated quantiles are considered. In any case, observed and forecast CDFs must be

determined from long data series.

In this study, the calibration of the DM method was first carried out considering empirical (EDM) and gamma-fitted (GDM)5

distributions of observed and forecast (ensemble mean) precipitation values averaged monthly. A third variant considered

directly the empirical distribution of the daily values of the ensemble members (EDMD). These variants are listed in Table

2. After calibration, bias correction is applied to the daily precipitation forecasts of each application
::::
target

:
period. In the case

of EDM and GDM, all daily values are
:::
the

:::::::
monthly

::::::
values

:::
are

:::
first

:
corrected based on the correction suited to their monthly

average
:::::::::
distribution

::::::::
mapping

:::::::::
procedure.

:::::
Then,

::
for

::
a
:::::
given

::::::
month,

::
the

::::
ratio

:::
of

::
the

::::::::
corrected

:::::::
monthly

:::::
value

:::
and

:::
the

::::::::::::
non-corrected10

:::
one

::
is

::::
used

::
to

::::::
correct

:::
all

::::
daily

::::::
values

:::::
within

::::
this

::::::
month. In the case of EDMD, each daily precipitation value of each forecast

member is corrected individually.

3.3 Evaluation framework

For each catchment, daily forecasts are issued once every month, up to 90 days ahead, during the 1981-2010 period. The

quality of the forecasts was evaluated at the weekly time step (i.e., daily forecasts and observations are averaged over the15

week). Scores were computed as a function of lead time and for the winter (December-January-February), the spring (March-

April-May), the summer (June-July-August) and the autumn (September-October-November) seasons. Four criteria were used

to assess reliability, sharpness, accuracy and overall performance of the ensemble forecasts (Gneiting et al., 2007; Eslamian,

2015; Musy et al., 2015).

3.3.1 Evaluation criteria20

Reliability is a forecast attribute that refers to the statistical consistency between observed frequencies and forecast probabil-

ities. In this study, it is
:::
was

:
evaluated with the Probability Integral Transform (PIT) diagram (Gneiting et al., 2007; Laio and

Tamea, 2007). The PIT diagram is the cumulative distribution of the positions of the observation within the cumulative forecast

distribution . A reliable forecasthas a PIT diagram superposed
:::
PIT

::::::
values,

::::::
which

:::
are

::::::
defined

:::
by

:::
the

::::::
values

::
of

:::
the

:::::::::
predictive

:::::::::
distribution

::::::::
function

::
at

:::
the

::::::::::::
observations,

::::::::
computed

:::
at

::::
each

::::
time

:::::
step.

::
In

::::
the

::::
case

::
of

::
a
:::::::
reliable

::::::::
forecast,

:::
the

:::::::::::
observations25

::::::::
uniformly

:::
fall

::::::
within

:::
the

:::::::::
predictive

::::::::::
distribution

::::
and

:::
the

::::
PIT

:::::::
diagram

::::::::
coincides

:
with the 1:1 diagonal. If the PIT diagram

shows a curve
:
is systematically above (below) the diagonal, the observed values are too frequently located in the lower (upper)

parts of the forecast distribution, suggesting a systematic bias of the forecasts towards overprediction (underprediction). If the

points in the diagram are too concentrated in the vicinity of the end points (0 and 1), forecasts are too narrow and observations

fall more frequently than expected on
:::
PIT

:::::::
diagram

:::::
tends

::
to

::::::::
resemble

:
a
:::::::::
horizontal

::::
line,

::::::::::
observations

::::
fall

:::
too

:::::::::
frequently

::
in the30

tails of the forecast distribution
:
,
::::::::
indicating

::::
that

:::::::
forecasts

:::
are

:::
too

:::::::
narrow. On the contrary, too many points concentrated

:
if

:::
the

:::
PIT

:::::::
diagram

::
is

:::::
closer

::
to

::
a

::::::
vertical

::::
line,

:::
too

:::::
many

:::::::::::
observations

:::
fall in the midrange indicate a forecast distributionthat is

::
of

:::
the

::::::
forecast

:::::::::::
distribution,

::::::::
indicating

::::
that

::::::::
forecasts

:::
are too wide.

::
We

::::
also

::::::::::
represented

:::
the

:::::::::::
Kolmogorov

::::::::::
significance

:::::
bands

::
at
:::::

+0.1
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:::
and

::::
-0.1

::::
from

:::
the

::::::::
bisector,

:::::
which

::::::
ensure

::
a

:::
5%

:::::::::::
significance. In order to numerically compare results among catchments, we

also computed the area between the curve of the PIT diagram and the 1:1 diagonal, as proposed by Renard et al. (2010). The

smaller this areais, the more reliable the ensemble.

Sharpness is a property of the forecasts only. It refers to the concentration of the predictive distribution and indicates how

spread the members of an ensemble forecast are. In this study, sharpness was evaluated with the 90% interquantile range5

(IQR; Gneiting et al., 2007)
:::::
(IQR), i.e. the difference between the 95th

:

th
:
and the 5th

:

th
:
percentiles of the forecast distribution.

The final IQR score is the average of the interquantile range at each time step of the evaluation period. The narrower the

IQRis, the sharper the ensemble.
:
In

::::
this

:::::
study,

:::
we

::::::::::
considered

::::
that,

:::::
given

:::
two

:::::::
reliable

::::::::
systems,

:::
the

:::::::
sharpest

::::
one

::
is

:::
the

::::
best

::::::::::::::::::
(Gneiting et al., 2007).

:

The accuracy of the forecasts is assessed with the mean absolute error (MAE). The MAE computes the average (over the10

evaluation period) of the absolute difference between the forecast ensemble mean and the observed value. Smaller MAE values

correspond to more accurate forecasts.

Last
:::::
Lastly, the Continuous Rank

:::::::
Ranked Probability Score (CRPS) evaluates the overall performance of the forecasts. It

is defined as the integral of the squared distance between the cumulative distribution of the forecast members and a step

function for the observation (Hersbach, 2000). The CRPS score is the average of this integral computed at each time step of15

the evaluation period. The lower the CRPSis, the better the overall performance of the forecasts.

3.3.2 Skill scores

Forecast skill is evaluated by comparing the performance of a given forecast system with the performance of a reference

forecast. The skill score is computed for a given lead time i.

SkillScorei = 1− ScoreSyst
i

ScoreRef
i

(1)20

When the skill score is superior (inferior) to zero, the forecast system is more (less) skilful than the reference. When the skill

score
:
it is equal to zero, the system and the reference have equivalent skill.

The skill scores were computed for the probabilistic scorespresented in the previous section (.
:::::
They

:::
are noted PITSS, IQRSS

and CRPSShereafter). The reference used to evaluateprecipitation forecasts is based on past observations and is represen-

tative of the catchment climatology: for a given day and year, it is the ensemble of precipitation values observed on that25

same Gregorian day in other years of the observation period . The reference used to evaluate streamflow forecasts
:::::
(1958

::
to

:::::
2010).

::::
Two

:::::::::
reference

:::::::::
streamflow

::::::::
forecasts

:::
are

:::::
used.

::::
The

::::
first

:
is the Ensemble Streamflow Prediction (ESP), which corre-

sponds to the streamflow ensemble obtained when the reference precipitation ensemble is used as input to the hydrological

model. Pappenberger et al. (2015) highlight the importance of the reference chosen to compute skill scores and list a number

of options for streamflow forecasting. The ESP is a commonly used method in seasonal forecasting. It allows applying the30

same hydrological modelling setup to both the precipitation forecasts and the reference precipitation ensemble. Therefore,

differences in performance are mainly due to differences between the precipitation inputs to the model. One would expect that

precipitation and streamflow forecasts perform better than precipitation climatology or ESP, at least in the first lead times. At

8



longer lead times, natural variability should end up being a sound forecast. In our study, we also used an ensemble
:::
The

::::::
second

:::::::
reference

::
is
:

based on past streamflow observations (on the same day as the given forecast day
:
,
::
in

:
a
::::

36-
::
to

:::::::
52-year

::::::
period

::::::
running

:::
up

::
to

::::
2010) to evaluate performance. This allows to use as reference an ensemble that

:::::::
reference

::::::::
ensemble

:
does not use

any precipitation forecasts or hydrological model.

Finally, several studies have shown that the ensemble size induces a bias when computing skill scores with ensembles of5

different sizes. This bias usually leads to an underestimation of the skill of the forecast system when the system has fewer

members than the reference. Ferro et al. (2008) provide a synthesis of previous studies on the influence of ensemble size on

probability scores and propose a correction factor to remove the bias in the computation of CRPS skill scores. This correction

was applied to compute the CRPSS in this study. Since the ensemble size of System 4 precipitation forecasts varies with the

month, we used the ensemble size averaged over one year.10

3.3.3 Gain in lead time from bias correcting seasonal forecasts

Skill scores can be computed to indicate
:::
To

:::::::::
investigate the gain in performance brought by bias correction methods. To that

effect, we use the raw (uncorrected) forecasts as reference in the computation of the skill scores. An indicator of forecast

performance can be derivedfrom the evolution of these skill scores: the lead time up to which bias corrected seasonal forecasts

have more skill than raw forecasts. Nicolle et al. (2014) defined an indicator named UFL (Useful Forecasting Lead time) as15

"the
::
the

::::
first

:
"lead time beyond which model performance is not at least 20% better than benchmark performance". Here, we

considered the lead time beyond which the seven-day moving average of the skill score becomes negative. UFL values were

then grouped in four categories: (1) None: no improvement over the forecast reference, (2) <30: gain up to 30 days, (3) <60:

gain greater than 30 days and up to 60 days and (4) >60: gain greater than 60 days.

4 Quality of the raw seasonal forecasts20

4.1 Performance of raw precipitation forecasts

Figure 2 presents the evolution of IQRSS and CRPSS with lead time, for winter (DJF) and summer (JJA). Each line corresponds

to a catchment. Skill in sharpness and overall performance is very similar in winter and in summer (as well as in spring and

autumn, not shown). Precipitation forecasts are overall sharper than historical precipitations in the large majority of catchments

and up to long lead times. Some exceptions appear for lead times longer than three weeks, and especially in winter (wetter25

season in the majority of catchments). In terms of overall performance, precipitation forecasts clearly have skill up to two to

three weeks ahead for 7-day averaged areal precipitation. At longer lead times, they are equivalent or perform slightly worse

than historical precipitations.

Figure 3 shows the PIT diagrams for lead times of 30 and 90 days, for winter and summer. Grey lines represent the re-

liability of historical precipitations and coloured lines represent the reliability of System 4 precipitation forecasts in each30

catchment. Dotted lines represent deviations of +0.1 and -0.1 from the bisector
:::
the

::::::::::
Kolmogorov

::::::::::
significance

::::::
bands

::
to

:::::
ensure

::
a

9
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Figure 2. Skill of raw weekly precipitation forecasts as a function of the lead time for all catchments and all
::
for

:::
the

:::::
winter

:::::
(DJF)

:::
and

::::::
summer

::::
(JJA) seasons. The skill is computed based on the IQR (top) and the CRPS (bottom) and the reference is historical precipitations. Each

column corresponds to a target season. Each line represents the skill score in a catchment for forecast horizons within the target season.

:::
5%

::::::::::
significance

:::
test. The two seasons yield very similar results (also observed in spring and autumn, not shown). In all catch-

ments and for both lead times, historical precipitations are reliable, as expected. Seasonal precipitation forecasts also show

some reliability, but tend to overpredict precipitations in both seasons and at both lead times. The concentration of points in

the zero end points in most of the curves of the System 4 forecasts shows that low values of the observations are too often

falling in the lower tail of the forecast distribution. This effect tends to decrease with increasing lead time. This is an indication5

that forecasts are too narrow and overpredict the lowest observations. It can also translate
::::::
indicate

:
a difficulty of the system to

forecast null precipitation.

4.2 Performance of raw streamflow forecasts

Streamflow forecasts are generated by using raw seasonal precipitation forecasts as input to the hydrological model. Forecast

skill is evaluated using the ESP method as reference (Fig. 4). Differences in forecast skill between the winter and summer10

seasons are more noticeable when evaluating streamflow forecasts rather than precipitation forecasts. Streamflow forecasts

generated from raw precipitation forecasts are sharper than ESP up to twelve weeks ahead in most catchments (IQRSS above

zero in Fig. 4). Approximately, only four catchments stand out in both seasons with lower skill than ESP (six in spring and one

in autumn, not shown). However, even in these catchments, sharpness can be improved using seasonal precipitation forecasts

for lead times up to three weeks in winter (as well as in spring and autumn, not shown). Concerning overall performance15

(CRPSS in Fig. 4), skill can be observed for lead times up to four weeks in some catchments. In winter, as well as in spring

and autumn (not shown), this is observed in the majority of catchments, while in summer, this concerns only a couple of

10
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Figure 3. PIT diagram of raw precipitation forecasts (coloured lines) and historical precipitations (grey lines) for lead times of 30 days (top)

and 90 days (bottom). Each column corresponds to a target season. Each line represents the PIT diagram in a catchment for forecast horizons

within the target season.
:::::
Dotted

::::
lines

:::::::
represent

::
the

::::::::::
Kolmogorov

:::::::::
significance

:::::
bands

::
for

:
a
:::
5%

:::::::::
significance

::::
test.

catchments. At longer lead times, ESP and streamflow forecasts generated from raw precipitation forecasts
:::
raw

::::::::::
streamflow

:::::::
forecasts

:
are equivalent in most catchments for the winter season. In summer, as well as in spring and autumn (not shown), the

difference in skill at longer lead times is more pronounced and most catchments have a clearly negative skill in terms of overall

forecast performance.

PIT diagrams are shown for each catchment, for the winter and summer seasons, and for lead times of 30 and 90 days5

(Fig. 5). In winter and spring (not shown), ESP forecasts and seasonal streamflow forecasts generated from raw precipitation

forecasts
:::
and

:::
raw

::::::::::
streamflow

::::::::
forecasts show good reliability, although the curves above the diagonal indicate that forecasts

are slightly overpredicting streamflow. Streamflow forecasts for the autumn season (not shown) also show good reliability, but

with a tendency to underpredict streamflow. In summer (Fig. 5, right), streamflow forecasts from both , ESP forecasts and

forecasts generated from raw seasonal precipitation
::::
ESP

:::
and

::::
raw forecasts, show problems in forecast reliability. PIT curves10

clearly indicate a concentration of points at the end points of the diagram and, consequently, narrow ensemble forecasts. In

most catchments, 20% to 60% of observed values fall in the lowest interval of the forecast distribution or below it, i. e., outside

the forecast range. .
:
Although reliability is slightly improved with lead time, streamflow ensemble forecasts remain under-

dispersive at 90 days of lead time. This could be the result of at least two factors acting alone or jointly: a difficulty of the

hydrological model to reach the lowest streamflow values in the simulations of the recession periods, and the influence of not15

considering uncertainties in the hydrological initial conditions at the time of forecasting.

11
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Figure 4. Skill of weekly streamflow forecasts from raw precipitation forecasts as a function of the lead time for all catchments and all
::
for

:::
the

:::::
winter

::::
(DJF)

:::
and

::::::
summer

:::::
(JJA) seasons. The skill is computed based on the IQR (top) and the CRPS (bottom) and the reference is Ensemble

Streamflow Prediction. Each column corresponds to a target season. Each line represents the skill score in a catchment for forecast horizons

within the target season.

4.3 Summary of the quality of raw seasonal forecasts

Skill in the overall performance of System 4 raw precipitation forecasts, at the catchment scale and over a reference forecast

based on past observed precipitations, was observed up to two to three weeks in the studied catchments. When looking at

streamflow forecasts generated from the input of raw seasonal forecaststo a hydrological model
:::
raw

::::::::::
precipitation

::::::::
forecasts,

skill over the traditional ESP method was observed up to four weeks, but only in few catchments. The asset of System 45

raw precipitation forecasts and related streamflow forecasts over historical precipitations and ESP, respectively, resides mainly

in their sharpness. However, the evaluation of forecast quality shows also that forecasts are often too narrow and suffer from

underprediction or overprediction. Improving forecast reliability, while maintaining forecast sharpness is clearly a challenge. In

the following section, we investigate the presence of biases in System 4 precipitation forecasts and the impact of bias correction

on seasonal precipitation and streamflow forecasts.10

5 Bias correction of seasonal precipitation forecasts

5.1 Overview of the effectiveness of the bias correction methods

Forecast bias, i.e. the ratio between the mean observation and the average forecast ensemble mean, was computed for each

catchment over the 1981-2010 period. The bias was computed for each calendar month, but also considering the whole year.

Figure 6 shows the biases expressed as deviations from 1 (i.e., 1−Bias), before and after applying the bias correction methods.15

12
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Figure 5. PIT diagram of streamflow forecasts from raw precipitation forecasts (coloured lines) and Ensemble Streamflow Prediction (grey

lines) for lead times of 30 days (top) and 90 days (bottom). Each column corresponds to a target season. Each line represents the PIT diagram

in a catchment for forecast horizons within the target season.
:::::
Dotted

:::
lines

:::::::
represent

:::
the

::::::::::
Kolmogorov

:::::::::
significance

::::
bands

:::
for

:
a
:::
5%

:::::::::
significance

:::
test.

It illustrates the results obtained in four catchments at the 2-month
:::::::
month-2

:
lead time (i.e., considering the forecasts issued

for day 31 to day 60in the forecast range). The effectiveness of each bias correction method can be easily seen from the

coloured charts
:::::::
observed: unbiased forecasts have a deviation equal to 0 (whitecolour); positive deviations (redcolour) and

negative deviations (bluecolour) indicate overprediction and underprediction, respectively. A deviation equal to 0.75 (-3) can

be interpreted as the mean forecast being four times larger (smaller) than the mean observation. Overall, when computing the5

deviations for all monthly lead times of the forecast range, we observed that the biases vary more with the calendar month of

the forecast horizon than with lead time. For this reason, we only show the 2-month
:::::::
month-2

:
lead time.

In general, seasonal forecasts tend to overpredict precipitations over the year in most catchments. Overprediction tends to

occur near the end of the winter (rainy) season and throughout the spring season. Conversely, precipitations tend to be under-

predicted from the end of the summer (dry) season and until the beginning, and sometimes throughout, the autumn season.10

The four selected catchments illustrate the variety of conditions we encountered in the bias correction analysis. In catchment 2,

precipitations could be considered unbiased when carrying the analysis over the year. However, this result hides monthly un-

derpredicting and overpredicting biases which compensate over the year. In this catchment, forecasts tend to overpredict from

February to June and underpredict from July to October. The yearly result may also be a reflection of the lack of important

biases in the months of December and January, which are, climatologically, the rainiest monthsin this catchment. This type of15

variation in bias was also observed in catchments 6, 11, 12 and 13. In catchment 4, precipitation forecasts are strongly over-

13
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Figure 6. Deviation of the
:::

Bias
::
in precipitation bias from 1, for catchments 2, 4, 7 and 14, over the 1981-2010 period. The deviation

:::
bias

:
is

shown for the whole year (top line) and for each calendar month. The bias is only shown for lead times between 31 and 60 days. Blue-shaded

areas (negative values) represent a tendency of underpredicting
:::::::::::
overpredicting precipitations and red-shaded areas (positive values)

:::::::
represent

a tendency of overpredicting
:::::::::::
underpredicting

:
precipitations. The top left graph represents the bias of raw precipitation forecasts, and each of

the other graphs represents the bias after applying one of the bias correction methods.

predicting observations in all calendar months and thus over the year. This catchment stands out because in no other catchment

do we observe a similarly strong and systematic bias. This catchment is the one located at the most eastern
::::::::::
easternmost part of

France. Its main river (l’Ill) is a tributary of the Rhine river. It has its sources in the Jura mountains and receives several trib-

utaries from the Vosges mountains. In catchment 7, precipitations are overpredicted over the year, with the strongest positive

deviations concentrated during the rainy season, basically from November to April. The same behaviour is found in catchments5

5, 10 and 15. Interestingly, catchments with a clear overprediction, i.e. catchments following the patterns depicted in Fig. 6

for catchments 4 and 7, correspond to the catchments in which System 4 raw precipitation and streamflow forecasts showed

low skill in sharpness and/or overall performance. Last
:::::
Lastly, catchment 14 is representative of catchments 1, 3, 8, 9 and 16 in

the database. Forecasts slightly underpredict precipitations over the year, with a tendency to underpredict precipitations in all

seasons but the spring season, whose
::::
when

:
precipitations are slightly overpredicted.10

Figure 6 also presents the remaining biases after the application of the eight bias correction methodsto the raw precipitation

forecasts. We present the results over the whole year and for each month. The same four selected catchments illustrate the

results for the 2-month lead time.
:
. All correction methods are effective to correct biases of precipitation forecasts over the

year. However, this is not observed in the bias correction for each calendar month. Results
:::::
results

:
for the methods calibrated

14



on a yearly basis (LS-y, EDM-y, GDM-y, EDMD-y) show that the absence of bias over the year is mainly achieved through

an effect of compensation between over and underprediction among the calendar months. Particularly EDM-y and GDM-y

methods show a strong pattern of monthly biases, even after bias correction, towards overprediction of precipitations in winter

and spring, and underprediction in summer and autumn.

By construction
::::
When

:::::::
looking

::
at

:::::::
monthly

:::::
biases, monthly calibrated methods perform much better when looking at monthly5

biases
::
by

::::::::::
construction. LS-m and EDMD-m are particularly effective in all catchments. Forecasts corrected with EDM-m tend to

slightly underpredict precipitations, while forecasts corrected with GDM-m tend to overpredict precipitations. This may be an

effect of the application of distribution mapping based on monthly values. Distribution mapping requires that the time structure

of forecast and observed precipitation are coherent, so that upper forecast values are shifted towards upper observed values

and conversely. However, raw monthly forecast means from System 4 do not always reproduce the time structure of monthly10

observations and often fail to reach extreme monthly values. Therefore, correction factors obtained with a distribution mapping

based on monthly values show poorer performance, and the method can wrongly increase or decrease daily precipitation values.

Comparison of bias correction factors for LS and EDMD methods

The LS and EDMD methods showed more effectiveness in reducing bias in the precipitation forecasts. In order to better15

understand how the two methods compare, we plotted in Fig. 7 their correction factors for catchment 7 over the 1981-2010

period for the 2-month lead time. Black lines represent correction factors from LS. Each day, one correction factor is applied

to all members of the ensemble forecast at the 2-month lead time. Grey-shaded areas represent the range of correction factors

applied with EDMD, and darker grey lines represent the median correction factor. For EDMD, each precipitation value has a

specific correction factor depending on its probability of occurrence. Therefore, for a given day and lead time, the number of20

correction factors is equal to the number of ensemble members.

LS-y provides relatively constant bias correction factors over the study period. Since, on average, precipitations in catchment

7 are overpredicted by System 4 forecasts, this correction factor is smaller than 1. The bias correction factors are obtained

with the one-year-leave-out calibration framework. It is interesting to note that removing one year within the 30 years of the

calibration period has little impact over the calibrated correction factors, even for an extreme dry year such as 1989 in this25

catchment. With EDMD-y, correction factors vary for each day of the study period. These factors remain smaller or close

to 1. Their median values are smaller than the LS-y correction factors and the maximum values are slightly greater than the

LS factors. When calibrated monthly, correction factors obtained with LS-m depict a variation, ranging from 0.6 to 1.2. They

present a recurring pattern over the year, which follows what was shown in Fig. 6, i.e., that precipitations in catchment 7 are, on

average, overpredicted during the winter and spring seasons, leading to correction factors smaller than 1, and underpredicted30

from July to September, leading to bias correction factors greater than 1. This pattern in the factors indicates that the LS

method might be further simplified to provide correction factors that would solely vary with the calendar month, regardless

of the year, or in the case of LS-y, be constant over the target period. Correction factors computed with EDMD-m present a

similar pattern to the one observed with LS-m, but their range is more variable, with values between 0 and 1.4. This method is

15



particularly interesting because, as opposed to LS, it also corrects the frequency of precipitation days, given the null values of

some correction factors.

Bias correction factors applied to each day of the record period with the LS and EDMD methods. Correction factors are only

shown in the case of catchment 7 and for the second month lead of the precipitation forecasts. The top graph presents correction

factors obtained with LS and EDMD calibrated over the whole year, and the bottom graph presents correction factors obtained5

with LS and EDMD calibrated monthly.

5.2 Impact of bias correction on the useful forecasting lead time

The four criteria used to evaluate reliability, accuracy, sharpness and overall performance were applied to the precipitation

forecasts bias corrected with each of the eight bias correction methods. They were also applied to the seasonal streamflow

forecasts generated from inputting the different bias corrected precipitation forecasts to the hydrological model. Skill scores10

were computed with the raw seasonal precipitation
:::
Skill

::::::
scores

::
of

::::
bias

:::::::
corrected

::::::::::::
precipitations

:::
and

::::::
related

:::::::::
streamflow

::::::::
forecasts

::::
were

::::::::
computed

:::::
using

::::
raw

:
forecasts as referenceforecast for precipitation, and with the (raw) streamflow forecasts generated

from raw precipitation forecasts as reference forecast for streamflow. For each variable (precipitation and streamflow), each

::::::::
evaluation

:
criterion, each bias correction method, each catchment and each

::::::::
catchment

:::
and

:
season, we obtained the correspond-

ing UFL (Useful Forecasting Lead time) . We then
:::
and

:
evaluated the proportion of catchments falling in each UFL group (as15

defined in Section 3.3.3). Results are shown in Fig. 8
:
7 and Fig. 9

:
8, for precipitation and streamflow forecasts, respectively.

In Fig. 8
:
7, the two bias correction methods that stand out regarding overall performance (CRPS), in all seasons, are LS and

EDMD. This is in accordance with our previous results on the efficiency of each method to correct biases. When looking more

closely at improvements in the PIT criterion, as measured by the UFL, EDMD clearly stands out from the other methods. The

proportion of catchments with skill improvement over raw
::::::::::
precipitation

:
forecasts is almost always 100%, and skill is often ex-20

tended up to 60 days and more. The other methods are quite equivalent to each other, although LS performs slightly better, with

greater improvements in larger proportions of catchments, especially in winter and spring, for reliability (PIT), accuracy (MAE)

and overall performance (CRPS). In terms of sharpness (IQR), the best performing method varies with the season. Precipita-

tion forecasts in spring (MAM) are sharper when corrected with methods calibrated monthly, while forecasts in summer and

autumn are sharper with methods calibrated yearly. To effectively address the tendency to overestimate spring precipitations,25

the multiplicative correction factor of a monthly calibrated bias correction for the spring season will be smaller than 1, and

much smaller than the correction factor obtained with a yearly calibrated correction. Therefore, the spring interquartile range

will be further reduced by the method calibrated monthly than by the method calibrated yearly. This reasoning only applies to

LS, EDM and GDM since EDMD corrects each ensemble member independently.

Figure 9 shows the results for the streamflow forecasts.
:
8
:::::
shows

::::
that

:
LS and EDMD methods are able to extend the lead30

time of bias corrected predictions
:::::::::
streamflow

:::::::
forecasts

:
further than other methods, and for a higher proportion of catchments in

the large majority of seasons and criteria. Again, EDMD methods yield the best improvements in reliability. LS yields results

slightly better than EDMD in sharpness and accuracy. EDM and GDM clearly have lower performance, except in some cases

in sharpness and for spring and summer.
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Figure 7. Number
::::::
Fraction

:
of catchments (%) in each UFL value category, i.e. number

::::::
fraction of catchments in which bias corrections

increase the lead time up to which seasonal precipitation forecasts have skill in regards
::::
with

:::::
respect

:
to raw seasonal precipitation forecasts.

Each row corresponds to an evaluation criterion and each column corresponds to a season. Colour shades indicate the UFL category, i.e. the

lead time up to which precipitation forecasts are improved.

5.2 Summary of the comparison of bias correction methods

In general, LS and EDMD bias correction methods show good performance for precipitation
:::
and

:::::::::
streamflow

:
forecasts, although

in a distinct way. While EDMD clearly improves forecast reliability, LS shows better performance in improving sharpness . In

terms of streamflow forecasts, LS and EDMD are the methods that offer the best performance. Again, EDMD may be preferred

if focus is placed on forecast reliability, while LS may be preferred if sharpness and accuracyare the criteria one is looking to5

improve
::
and

::::::::
accuracy. Since streamflow forecasts generated from raw System 4 precipitation forecasts are already, in most of

the studied catchments, sharper than the ESP reference, but lack reliability (as shown in Fig. 4 and Fig. 5), it seems appropriate

to give priority to a correction method that improves reliability, while providing good overall performance. Therefore, in the

following, we will only consider the monthly calibrated version of EDMD (EDMD-m) to further investigate the skill of bias
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Figure 8. Number
::::::
Fraction

:
of catchments (%) in each UFL value category, i.e. number

::::::
fraction of catchments in which bias corrections

increase the lead time up to which seasonal streamflow forecasts have skill in regards
:::
with

::::::
respect to seasonal streamflow forecasts generated

from raw seasonal precipitation forecasts. Each row corresponds to an evaluation criterion and each column corresponds to a season. Colour

shades indicate the UFL category, i.e. the lead time up to which streamflow forecasts are improved.

corrected seasonal forecastsin the 16 selected French catchments. The monthly version is chosen to ensure that monthly biases

are removed and that the correction will perform relatively equally in all seasons, while avoiding the "mis-estimation" of

forecast skill (Hamill and Juras, 2006).

6 Skill scores of bias corrected seasonal forecasts

6.1 Performance of bias corrected precipitation forecasts5

Figure 10
:
9
:
(for sharpness and overall performance) and Fig. 11

::
10

:
(for reliability) present the skill of seasonal precipitation

forecasts bias corrected with EDMD-m. Skill scores are computed with historical precipitation as the reference. In order to
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Figure 9. Skill of weekly precipitation forecasts corrected with EDMD-m as a function of the lead time for all catchments and all
::
for

:::
the

:::::
winter

::::
(DJF)

:::
and

:::::::
summer

::::
(JJA) seasons. The skill is computed based on the IQR (top) and the CRPS (bottom) and the reference is historical

precipitations. Each column corresponds to a target season. Each line represents the skill score in a catchment for forecast horizons within

the target season.

better evaluate the impact of bias correction on forecast skill, the y-axes in Fig. 10
:
9 are the same as in Fig. 2. The comparison

of these two figures shows that bias correcting the raw System 4 forecasts reduces the differences in skill between catchments.

After bias correction, catchments present very similar evolutions of the skill with the lead time. We can also infer that, after

bias correction, in
::
In

:
some catchments, the values of IQR and CRPS are lowerthan before bias correction. Nevertheless,

:::
are

:::::
lower,

:::
but

:
bias corrected forecasts remain sharper than the reference (i.e., skill scores are always

:::::
mostly

:
greater than zero).5

In the catchments where the raw forecasts performed worse than historical precipitations (i.e., skill scores lower than zero in

Fig. 2), bias corrected forecasts become sharper and gain skillin regards to the reference. Forecast skill in overall performance

(CRPSS) is observed up to two to three weeks ahead, after which forecasts attain skill equal to that of the reference forecast.

Skill is improved in catchments that performed worse than the reference prior to bias correction (i.e., skill scores lower than

zero in Fig. 2). Figure 10
:
9 illustrates these findings for winter (DJF) and summer (JJA), but results are similar for spring and10

autumn (not shown).

Figure 11
::
10

:
shows that the most remarkable improvement in performance due to bias correction is achieved in reliability.

While precipitation forecasts had a tendency to overpredict prior to bias correction, bias corrected precipitations are reliable in

all catchments. Figure 11
::
10

:
shows the results for winter and summer, and for lead times of 30 and 90 days, but conclusions are

similar in the other seasons and lead times (not shown). Even though a slight tendency to overpredict precipitations
::::::::::
precipitation15

remains in winter for short lead times, the improvements are noticeable. The EDMD-m bias correction was able to address the

concentration of points in the zero end point observed in Fig. 3 for the raw forecasts.
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Figure 10. PIT diagram of precipitation forecasts corrected with EDMD-m (coloured lines) and historical precipitations (grey lines) for lead

times of 30 days (top) and 90 days (bottom). Each column corresponds to a target season. Each line represents the PIT diagram in a catchment

for forecast horizons within the target season.
:::::
Dotted

::::
lines

:::::::
represent

:::
the

:::::::::
Kolmogorov

:::::::::
significance

:::::
bands

:::
for

:
a
:::
5%

:::::::::
significance

:::
test.

6.2 Performance of bias corrected streamflow forecasts

The quality of the streamflow forecasts generated from the precipitation forecasts corrected with EDMD-m is investigated in

Fig. 12
::
11 and Fig. 13

::
12

:
(IQRSS and CRPSS) and in Fig. 14

::
13 (PIT diagrams). These figures can be compared to Fig.

4 and Fig. 5 which were obtained from the analysis of streamflow forecastsgenerated from raw precipitation forecasts
:::
for

:::
raw

::::::::::
streamflow

::::::::
forecasts. As seen with precipitation forecasts, bias correction also reduces the differences in streamflow5

forecast skill between catchments and seasons (Fig. 12
::
11). Again, this translates into a loss in skill in catchments with the

sharpest ensemble forecasts before bias correction, but also in a gain in skill in catchments where raw streamflow forecasts

had negative skill. Overall, after bias correction, streamflow forecasts are sharper than ESP in all catchments and seasons

(only the winter and summer seasons are shown but results are similar for the spring and autumn seasons)
::::
most

::::::::::
catchments

:::
and

:::
for

::::
most

::::
lead

:::::
times. In terms of overall performance (CRPSS), the skill of streamflow forecasts was largely improved,10

especially in catchments that had very low skill prior to bias correction (i.e., CRPSS values well below zero in Fig. 4). In

winter, autumn and spring, skill over the ESP reference is observed up to four weeks ahead in several catchments (even up

to five weeks ahead in spring and autumn), while in summer, it is observed up to two to three weeks. At longer lead times,

streamflow forecasts show an overall performance equivalent or slightly lower than the performance of the ESP method. Some

studies use past streamflow observations (referred to as streamflow climatology) as the reference forecast to assess the skill of15

streamflow forecasts (e.g. Trambauer et al., 2015; Wetterhall et al., 2015). Figure 13
::
12 shows the skill in overall performance

20



−1.5

−1.0

−0.5

0.0

0.5

1.0

IQ
R

S
S

DJF JJA

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

Lead time (weeks)

C
R

P
S

S

1 4 8 12

Lead time (weeks)

1 4 8 12

Figure 11. Skill of streamflow forecasts obtained from precipitation forecasts corrected with EDMD-m as a function of the lead time for all

catchments and all
::
for

:::
the

:::::
winter

:::::
(DJF)

:::
and

::::::
summer

:::::
(JJA) seasons. The skill is computed based on the IQR (top) and the CRPS (bottom)

and the reference is Ensemble Streamflow Prediction. Each column corresponds to a target season. Each line represents the skill score in a

catchment for forecast horizons within the target season.

and sharpness when streamflow climatology is used as referenceto calculate the skill of EDMD-m bias corrected forecasts.

As expected, streamflow
:
.
::::::::::
Streamflow forecasts generated from bias corrected precipitation forecasts are sharper and present

better overall performance than streamflow climatology, even for lead times of up to twelve weeks in some catchments.
::::
This

:::
was

::::::::
expected

:::::::
because

::::::::
ensembles

:::::
based

:::
on

:::::::::::
hydrological

::::::::
modelling

::::::
benefit

::::
from

::::::::::
knowledge

::
of

:::::
initial

:::::::::
hydrologic

::::::::::
conditions. In

one catchment (catchment 1), skill scores are systematically higher than the scores of the other catchments. In this catchment,5

streamflow climatology is very wide, with interannual variability of the same order of magnitude as interseasonal variability.

The PIT diagrams in Fig. 14
::
13 show that the reliability of streamflow forecasts is also improved after bias correcting

precipitation forecasts. In winter (DJF) and spring (not shown), streamflow forecasts are now reliable and equivalent to ESP,

although forecasts still show a slight tendency to overpredict streamflows. In autumn (not shown), streamflow forecasts are

also reliable in most catchments, but with a tendency to underpredict streamflows. Summer (JJA) streamflow forecasts are also10

more reliable than they were prior to
::::
after bias correction, but they still depict poor reliability and show that there is room for

improvements. As shown by other studies in ensemble forecasting (Zalachori et al., 2012; Verkade et al., 2013; Roulin and

Vannitsem, 2015), a simple bias correction of meteorological inputs is obviously not enough to achieve streamflow forecast

reliability. In our case, the difficulties of the hydrological model in reaching lower streamflow values remain. This highlights

the need for taking into account other sources of hydrological modelling uncertainties and including additional post-processing,15

targeting directly streamflow forecasts.
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Figure 12. Skill of EDMD-m debiased streamflow forecasts as a function of the lead time for all catchments and all
::
for

:::
the

:::::
winter

:::::
(DJF)

:::
and

::::::
summer

::::
(JJA) seasons. The skill is computed based on the IQR (top) and based on the CRPS (right) and the reference is historical streamflow.

Each column corresponds to the target season of forecast lead times. Each plotted line represents the performance of a catchment.

6.3 How improvements in precipitation forecasts propagate to streamflow forecasts?

We have seen that the use of reliable precipitation forecasts as input to a hydrological model does not automatically gen-

erate reliable streamflow forecasts. In order to further understand how improvements in precipitation forecasts propagate to

streamflow forecasts, we compared the skill scores of EDMD-m bias corrected precipitation forecasts with the skill scores of

the streamflow forecasts generated from these bias corrected precipitations. We focused the analysis on the four catchments5

previously selected as representative of the database, i.e. catchments 2, 4, 7 and 14.

Figure 15 presents the results for the
::
14

:::::::
presents

:::
the

:
CRPSS, IQRSS and the PITSS (PIT area) in these four catchments

:
,

::::
when

::::
raw

::::::::
forecasts

:::
are

::::
used

::
as

::::::::
reference. The reference forecast for the computation of the skill scores of the bias corrected

forecasts is the raw forecast. The skill thus represents a measure of the improvement due to bias correction. Skill scores were

averaged over lead times of 10 days to 90 days.10

In overall performance (CRPSS), bias correcting precipitation forecasts either led to a gain in skill in both precipitation and

streamflow forecasts, as in catchments 4 and 7 and in some seasons in catchment 2, or to a skill equivalent to the skill prior to

bias correction, as in catchment 14. Since catchments 4 and 7 were the ones with the most biased forecasts (cf. Fig. 6), there was

more room for improvement in these catchments. Catchment 14 had the smallest bias of the four catchments. Bias correction

had thus little impact on precipitation forecasts, and therefore also on streamflow forecasts. Interestingly, the improvement15

achieved in streamflow is always superior to the improvement achieved in precipitation, or equivalent when there was no gain

in skill. It seems therefore that a small improvement in the overall performance of precipitation inputs (as measured by the

CRPS) can translate in a greater improvement in streamflow forecasts.
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Figure 13. PIT diagram of streamflow forecasts obtained from precipitation forecasts bias corrected with EDMD-m (coloured lines) and

Ensemble Streamflow Prediction (grey lines) for lead times of 30 days (top) and 90 days (bottom). Each column corresponds to a target

season. Each line represents the PIT diagram in a catchment for forecast horizons within the target season.
:::::
Dotted

::::
lines

::::::::
represent

:::
the

:::::::::
Kolmogorov

:::::::::
significance

:::::
bands

::
for

::
a
::
5%

::::::::::
significance

:::
test.

If we look at the skill in sharpness (IQRSS) and in reliability (PITSS)of the ensemble forecasts, we observe different be-

haviours. In sharpness, a loss in skill was observed in catchments 2 and 14, while a gain was observed in catchments 4 and

7. When a gain was achieved, the gain is superior in streamflow forecasts than in precipitation forecasts. If we look at
::
In reli-

ability, skill was always improved by bias correcting the precipitation forecasts, with skill scores always superior to 0.3. The

gain in streamflow is mainly positive, but not always, as in the case of precipitation forecasts. Although the majority of skill5

scores are superior to 0.1, some values are below the zeroskill score line
::::
zero. The gain in reliability from the application of

bias correction to raw precipitation forecasts is, in general, superior in precipitation forecasts than it is in streamflow forecasts.

Based on our results, we can say that in catchments with small biases, here represented by catchments 2 and 14, overall

performance was mainly stable from precipitation to streamflow forecasts. However, in these catchments, a gain in reliability

was generally associated with a loss in sharpness. In catchments with greater biases, here represented by catchments 4 and 7,10

overall performance, sharpness and reliability were improved for both precipitation and streamflow forecasts by simply bias

correcting the precipitation forecasts.
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Figure 14. Skill scores of streamflow forecasts after correction with EDMD-m against skill scores of precipitation forecasts after correction

with EDMD-m. The skill score of forecasts corrected with EDMD-m is computed in regards to
::::
using raw forecasts

:
as

:::::::
reference. It is then

averaged over lead times 10 to 90 days to obtain a single value. Results are shown for all four seasons in four selected catchments (Catchments

2, 4, 7 and 14). Skill scores were obtained based on the CRPS (top), the IQR (middle) and the PIT diagram area (bottom). The 1:1 diagonal

corresponds to an equivalent performance increase in precipitation and streamflow.
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Figure 15. Hydrographs obtained with historical streamflow, ESP, seasonal forecasts corrected with LS-m and seasonal forecasts corrected

with EDMD-m in catchment 7 from 1 April 2004 until 1 April 2007. The vertical axis is logarithmic. The blue line represents the observed

streamflow. The grey shaded areas present the forecasts issued in the previous month, i.e. 31 to 60 days prior to the observations.

6.4 Example of forecast hydrographs in a selected catchment

Figure 16
::
15 presents the hydrographs of the forecasts obtained from historical streamflow (HistQ), ESP, and seasonal forecasts

bias corrected with LS-m and EDMD-m, from April 2004 to April 2007 in catchment 7. We show forecasts for lead times from

31 days to 60 days, i. e., forecasts issued in the previous month. .
:
Ensemble forecasts are represented by the median forecasts

and two prediction intervals: the 25%-75% interval containing 50% of the ensemble members (
::::::
interval

::::::::
(between

:::
the

:::
25th

::::
and5

:::
75th

::::::::::
percentiles; dark grey zone), and the 5%-95% interval with 90% of the ensemble members (

::::::
interval

::::::::
(between

:::
the

::
5th

::::
and

:::
95th

::::::::::
percentiles;

:
light grey zone). Observed streamflow is also shown. In this catchment, seasonal forecasts had a strong bias

and bias correction methods performed well.
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The hydrograph for historical streamflow
:::::
(HistQ

::::
plot)

:
represents the interannual variability in streamflow in the catchment,

except that the forecast year is excluded for cross-validation. It relies on past observations of streamflow and does not include

seasonal meteorological forecasts. We can see that
:::::::
Visually, the observations fall within the forecast ranges in most cases.

::::
The

:::::
actual

::::::::
coverage

::
of

:::
the

::::
90%

::::
and

::::
50%

:::::::::
prediction

::::::::
intervals

::
is

::::
97%

::::
and

::::
66%

::::::::::
respectively, which indicates , as expected with

climatology, good forecast reliability. However, the forecast lacks sharpnessduring low-flow periods
::::::
forecast

:::::::::::::
overdispersion5

:::
and

::::
poor

::::::::
sharpness. Accuracy of the median forecast

::::
(50th

:::::::::
percentile)

:
is, in general, good , although

:::
with

::
a

::::
mean

:::::::
absolute

:::::
error

::::::
(MAE)

::
of

:::
3.8

:::::
m3/s,

::::::::
although,

:::::::
visually,

:::
we

::::::
observe

::::
that too high and low peak flows are not well reproduced.

The forecasts obtained with the ESP method use past observations of precipitation as input to the hydrological model

rather than seasonal meteorological forecasts. They show visible improvements in sharpnessduring low flow periods, while

reliability seems preserved,
:::::::
notably

::::::
during

:::::::
low-flow

:::::::
periods.

::::
The

::::
90%

::::
and

::::
50%

:::::::::
prediction

:::::::
intervals

:::::::
actually

:::::
cover

::::
92%

::::
and10

::::
60%

::
of

:::
the

:::::::::::
observations,

::::::::::
respectively. Accuracy of the median forecasts seems equal or lower than observed with historical

streamflow
:::::
HistQ,

::::::
which

:
is
:::::::::
consistent

::::
with

::
an

:::::
MAE

::
of

:::
4.1

:::::
m3/s.

The hydrographs representing the streamflow forecasts obtained from bias corrected System 4 precipitation seasonal fore-

casts show forecasts that are sometimes even sharper than ESP forecasts, as seen, for instance, for the rising limb in 2005.

Overall, the observed streamflow falls within the forecast ranges. In some situations, as in the peak event in August 2004,15

prediction intervals of bias corrected seasonal forecasts, particularly in the EDMD-m case, are closer to observations than

ESP forecasts. In general, visual differences in quality between seasonal streamflow forecasts obtained from precipitation fore-

casts corrected with LS-m and EDMD-m are hardly noticeable. Although EDMD-m forecasts seem to present slightly larger

prediction intervals, which could result in better reliability but lower sharpness comparatively to LS-m,
:::
For

::::::::
instance, the ac-

curacy of their median forecasts is practically identical . The visual inspection of these graphs for all catchments indicates20

similar results. Although our analyses and evaluation criteria have indicated the
:::::::
identical

::::
with

:::
an

:::::
MAE

::
of

:::
4.3

:::::
m3/s.

::::::::
However,

::
the

:::::
90%

:::
and

::::
50%

:::::::::
prediction

:::::::
intervals

::
of

:
EDMD-m as the preferred method for the studied catchments, LS-m also yields good

improvements in precipitation and streamflow forecasts. Since this method is easier to implement, it can be an alternative

to the application of EDMD-m in operational forecasting systems
:::::::
forecasts

:::::::
actually

::::::
cover,

::::::::::
respectively,

:::::
89%

:::
and

::::
51%

:::
of

:::
the

:::::::::::
observations,

:::::
which

::::::::
indicates

:::::
better

::::::::::
performance

::
in
:::::
terms

:::
of

::::::::
reliability

::::::::::::
comparatively

::
to

:::::
LS-m,

:::
for

::::::
which

:::
the

:::::
actual

::::::::
coverage25

::
of

::::
these

:::::::::
prediction

:::::::
intervals

::
is

::::
85%

::::
and

::::
46%,

::::::::::
respectively.

7 Conclusions

We assessed the quality of ECMWF System 4 precipitation forecasts for seasonal streamflow forecasting in 16 catchments

in France. We evaluated areal precipitation forecasts over the catchments and streamflow forecasts generated from inputting

precipitation forecasts to a lumped hydrological model. Results show that, in most catchments, raw (uncorrected) System 430

precipitation forecasts are sharper than precipitation climatology (i.e., ensemble forecasts built from past observed precipita-

tions) in all seasons. However, raw precipitation forecasts show poor reliability and a tendency to overpredict precipitations.

Likewise, streamflow forecasts generated from raw System 4 precipitations are sharper, but far less reliable than forecasts based
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on the ESP approach (i.e., ensemble forecasts obtained from running the hydrological model with current initial conditions and

past observed precipitations). Yet, in overall performance, raw precipitation forecasts yield improvements up to two weeks

in all catchments over precipitation climatology, and streamflow forecasts yield improvements up to three to four weeks over

ESP in some catchments. In general, improving forecast reliability, while maintaining (or not diminishing too much) forecast

sharpness, was clearly a challenge for bias correction methods.5

An in-depth analysis of the biases of System 4 seasonal precipitation forecasts showed strong monthly biases sometimes

hidden at the scale of the year, depending on the catchment. Bias correction methods calibrated over the whole year were

therefore less efficient when evaluating forecasts over calendar months. In the majority of catchments, the empirical distribu-

tion mapping of daily values (EDMD) or the simple linear scaling method (LS) applied to raw System 4 precipitation forecasts

showed more effectiveness in correcting the yearly but also the monthly biases. These methods also gave the highest increase10

in overall performance for streamflow forecasting. Empirical distribution mapping of daily values calibrated for each calen-

dar month (EDMD-m) was particularly efficient to increase reliability of precipitation and streamflow forecasts, while linear

scaling (LS-m) led to higher improvements in sharpness and accuracy.

The EDMD-m bias correction method was further investigated to better understand its impact on the skill of bias corrected

seasonal forecastsin the studied catchments. Overall, the application of bias correction reduced the differences in forecast15

performance between seasons and catchments for precipitation and streamflow forecasts. Also, bias correction ensured that

precipitation and streamflow forecasts were at least equivalent in performance to the historical precipitations and streamflow

forecasts based on historical precipitations
::
the

::::
ESP

:::::::
method, respectively, up to three months ahead. In catchments with greater

biases, overall performance, sharpness and reliability were improved for both precipitation and streamflow forecasts by simply

bias correcting the precipitation forecasts. Overall performance was mainly stable in catchments with small biases. However,20

in these catchments, a gain in reliability was generally associated with a loss in sharpness. The evaluation of forecasts after

bias correction, for the purposes of operational applications on water and risk management, may therefore involve a trade-

off between sharpness and reliability. Furthermore, while precipitation forecast reliability is improved with bias correction,

the evaluation of streamflow forecast reliability shows that there is still room for improvement. Notably, bias correction of

precipitation inputs was not enough to achieve good reliability in summer streamflow forecasts. This highlighted the need for25

adding a step of streamflow post-processing to the forecasting system.

This study compared eight simple bias correction methods to correct precipitation seasonal forecasts and investigated how

one of them impacts
::::
they

::::::
impact the skill of streamflow forecasts. The catchments studied were not influenced by snowmelt

flows and thus only precipitation was considered in the bias correction procedures. In other contexts, it may be interesting to

also include bias correction of temperature forecasts, with appropriate methods to consider space-time interdependencies of the30

meteorological variables. The explicit consideration of temperature forecasts could also benefit the skill of low flow forecasts

in summer, when evapotranspiration can play a crucial role.

Several other approaches for post-processing and bias correction exist, for instance, based on MOS techniques, space-time

disaggregation schemes or Bayesian Model Averaging (Gneiting et al., 2005; Raftery et al., 2005; Liu et al., 2013; Hemri et al.,
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2014). These could be investigated to contribute to the comprehensive comparison of options for bias correcting precipitation

and temperature forecasts prior to seasonal streamflow forecasting.

Last
:::::
Lastly, other forecasting methods selecting historical precipitations based on climate indicators have been investigated in

the literature for seasonal hydrological forecasting in regions where strong correlations have been observed, e.g. in the United

States or in Australia
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hamlet and Lettenmaier, 1999; Werner et al., 2004; van Dijk et al., 2013). In France, weak correlations5

have often shown that climate indicators may not be adapted to forecast precipitations at the seasonal scale. However, the use of

indicators derived from seasonal forecasts could potentially improve the selection of past precipitation scenarios, which might

enhance the skill of ESP methods to forecast streamflow.
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Table 1. Number, name, surface, and mean annual precipitation, potential evapotranspiration and streamflow for the studied catchments.

# River Gauging station Surface

(km2)

Mean annual

precipitation

(mm/yr)

Mean annual

evapotran-

spiration

(mm/yr)

Mean annual

flow (mm/yr)

1 Andelle Vascoeuil 377 952 628 332

2 Orne Saosnoise Montbizot [Moulin Neuf Cidrerie] 501 735 696 163

3 Briance Condat-sur-Vienne [Chambon Veyrinas] 605 1100 706 427

4 Ill Didenheim 668 956 664 309

5 Azergues Lozanne 798 931 689 296

6 Seiche Bruz [Carcé] 809 732 696 181

7 Petite Creuse Fresselines [Puy Rageaud] 853 899 680 316

8 Sèvre Nantaise Tiffauges [la Moulinette] 872 898 712 331

9 Vire Saint-Lô [Moulin des Rondelles] 882 958 629 448

10 Orge Morsang-sur-Orge 934 658 680 131

11 Serein Chablis 1119 842 675 220

12 Sauldres Salbris [Valaudran] 1220 803 684 240

13 Eyre Salle 1678 1025 785 323

14 Arroux Etang-sur-Arroux [Pont du Tacot] 1792 981 655 390

15 Meuse Saint-Mihiel 2543 948 639 372

16 Oise Sempigny 4320 805 639 250

Table 2. Bias corrections applied: corresponding abbreviations, method used for calibration and description.

Abbreviation Calibration based on Description

LS-y the whole year
Linear scaling of monthly values

LS-m calendar months

EDM-y the whole year
Empirical distribution mapping of monthly values

EDM-m calendar months

GDM-y the whole year
Gamma distribution mapping of monthly values

GDM-m calendar months

EDMD-y the whole year
Empirical distribution mapping of daily values

EDMD-m calendar months
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