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Abstract. Oceanic-atmospheric climate modes, such as El Niño Southern Oscillation (ENSO), are known to affect the local 

streamflow regime in many rivers around the world. A new method is proposed to incorporate climate mode information into 10 

the well-known Ensemble Streamflow Prediction (ESP) method for seasonal forecasting. The ESP is conditioned on an 

ENSO index in two steps. First, a number of original historical ESP traces are selected based on similarity between the index 

value in the historical year and the index value at the time of forecast. In the second step, additional ensemble traces are 

generated by a stochastic ENSO-conditioned weather resampler. These resampled traces compensate for the reduction of 

ensemble size in the first step and prevent degradation of skill at forecasting stations that are less affected by ENSO. The 15 

skill of the ENSO-conditioned ESP is evaluated over 50 years of seasonal hindcasts of streamflows at three test stations in 

the Columbia River basin in the U.S. Pacific Northwest. An improvement in forecast skill of 5 to 10% is found for two test 

stations. The streamflows at the third station are less affected by ENSO and no change in forecast skill is found here.  

1 Introduction 

The Ensemble Streamflow Prediction (ESP) forecasting method is a common way to produce seasonal outlooks of river 20 

volumes. It is used by River Forecasting Centers of the National Weather Service (NWS-RFC) and other U.S. agencies 

(Druce, 2001; Pica, 1997; McEnery et al., 2005). The ESP uses historical time series of mean areal precipitation (MAP) and 

mean areal temperature (MAT) and considers these as representative of the local climate (Twedt et al., 1977; Day, 1985). 

The historical MAP and MAT series are used as meteorological forcings to a hydrologic model to generate an ensemble of 

streamflow forecasts. The number of ensemble traces is equal to the number of historical years because every trace 25 

corresponds to a particular historical year. The initial model state is the current state of the watershed of interest, which is 

obtained from an update run with data-assimilation of recent gauge data. Depending on the type of watershed and the time of 

year, the initial conditions can affect the streamflows for several months ahead (Wood and Lettenmaier, 2008; Li et al., 

2009; Shukla and Lettenmaier, 2011; Yossef et al. 2013). This gives the ESP predictive ability over a climatological forecast, 

i.e. a distribution of historical streamflows (Franz et al., 2003).  30 
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Despite the great improvements in general circulation model (GCM)-based seasonal forecasting over the past decades 

(Leung et al., 1999; Hamlet and Lettenmaier, 1999; Wood et al., 2002; Clark and Hay, 2004; Wood et al., 2005; Wood and 

Lettenmaier, 2006; Yuan et al. 2015;), the ESP method is still the current practice at most NWS-RFC. One of the reasons for 

this is that ESP uses the same type of meteorological input, i.e. historical MAP and MAT, as is typically used for calibration 

of the hydrologic models (Pica, 1997). GCM input typically needs to be downscaled and bias-corrected before it can be 5 

applied to hydrological modeling at the sub-basin scale. A second reason is that the ESP allows for a sampling of non-

meteorological variables, such as water demand, from the same historical years as the meteorological inputs. The fact that all 

variables are taken from the same historical year automatically preserves any cross-correlation between them, which is 

important for water resources planning.  

In the original ESP, the historical MAP and MAT series represent the average climate, that is, every historical year is treated 10 

as an equally likely future scenario. In many regions, however, the local climate is known to be teleconnected to inter-annual 

to decadal fluctuations in oceanic-atmospheric circulation patterns, such as the El Niño-Southern Oscillation (ENSO) and 

Pacific Decadal Oscillation (PDO) (Ropelewski and Halpert, 1986, 1996; Kiladis and Diaz, 1989; Halpert and Ropelewski, 

1992; Diaz and Markgraf, 2000; McCabe and Dettinger, 2002). These fluctuations, or climate modes, affect the streamflow 

regime in U.S. rivers (Redmond and Koch, 1991; Kahya and Dracup, 1993; Dracup and Kahya, 1994; Piechota and Dracup, 15 

1996; Piechota et al., 1997; Mantua et al., 1997; Beebee and Manga, 2004; Tootle et al., 2005; Tootle and Piechota, 2006; 

Tootle et al., 2007; Abudu et al., 2010; Lu et al., 2011; Gedalof et al., 2012; Sagarika et al., 2015).  

The phase of most climate modes is quantified by climate indices that are evaluated and published monthly. Taking this 

information into account in streamflow forecasting could enhance its skill. Several methods have thus been developed to 

incorporate climate index information into the ESP. They can be classified into pre- and post-processing schemes (Werner et 20 

al. 2004; Kang et al. 2010). In the pre-processing approach, the MAP and MAT ESP inputs are modified to match the 

predicted climate anomalies (Perica, 1998). Hay et al. (2009) applied a climate-mode-dependent adjustment of hydrologic 

model parameters. Another pre-processing alternative is to generate synthetic input time series by random resampling of 

monthly MAP and MAT from historical years that have similar climate index values (Werner et al., 2004).  Although some 

improvement of forecast skill was reported, Werner et al. (2004) concluded that these pre-adjustment techniques are 25 

computationally cumbersome and less suited for operational usage than post-processing techniques. Kang et al. (2010) also 

found the post-processing schemes more effective than pre-processing schemes in a Korean case study.  

In the post-processing approach, the ESP output, i.e. the ensemble of hydrographs, is transformed to incorporate climate 

mode information. One technique is to weight the ensemble traces according to the similarity between climate indices in the 

historical year and the year of forecast (Croley II, 1996, 2003; Stedinger and Kim, 2010; Madadgar et al., 2012; Najafi et al., 30 

2012; Bradley et al., 2015). Instead of a weighting scheme, Hamlet and Lettenmaier (1999) used a selection of ESP traces 

according to a classification of historical years based on ENSO and PDO climate indices. Although their results showed an 

improved specificity of the ensemble forecast, the classification leads to a reduction of ensemble traces, because the number 

of historical years in each class is obviously less than the original number of ensemble traces. A reduction of ensemble size 
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generally leads to a degradation of the statistical properties of the ensemble forecast and to a reduction of forecast skill 

(Richardson, 2001; Ferro, 2007).  

Although less obvious, this problem also arises in other ensemble post-processing schemes. The effective ensemble size is 

reduced by applying weights to ensemble traces. To be effective, the information that is added to the ensemble by the 

weighting should be in balance with the reduction of the forecast uncertainty (Weijs and van der Giesen, 2013). However, to 5 

obtain a coherent forecast for a large watershed, the forecasting must be done using a single set of weights for all forecasting 

stations, although the influence of the climate modes may differ per station. A weighting scheme that produces good results 

for stations that are influenced by a particular climate mode may not perform well for stations that are less affected by this 

climate mode. The forecast skill for these latter stations may be compromised by the weighting scheme. This problem has 

been underexposed in previous studies. Najafi et al. (2012) mentioned the loss of forecast skill for smaller ensemble size and 10 

used a modified skill score to remove the effect (Weigel et al., 2007). This conceals the negative effect that a weighting 

scheme could have on quantile estimates for stations that are less affected by climate modes.  

In this study, an ESP conditioning method on climate mode information is described that produces a gain in forecast skill at 

stations that are affected by climate modes, while avoiding a loss of skill at other stations. The method is a combination of 

pre- and post-processing. The post-processing involves a selection of traces from the original ESP. In a pre-processing step, 15 

a number of new ensemble traces are generated by a monthly weather resampler. The newly generated traces augment the 

ensemble up to the original number of traces and all ensemble traces are weighted equally. This preserves the statistical 

properties of the ESP ensemble and avoids loss of forecast skill due to reduction of (effective) ensemble size.  

The method is explained in detail in Sect. 2. The study region and the data used are described in Sect. 3. Sect. 4 includes the 

results obtained applying the method to the study area and a forecast skill assessment relative to the standard ESP. Sect. 5 20 

discusses the results.  

2 Method 

The proposed method consists of two parts: a subsampler, which selects ensemble traces from the original ESP and a 

resampler, which generates additional ensemble traces.  

2.1 Subsampler procedure 25 

The subsampler procedure is a k-nearest neighbor (k-NN) type scheme, similar to the schemes used by Werner et al (2004) 

and Najafi et al. (2012). The selection is based on similarity between the climate index value at the time of forecast and the 

value on the same day of a historical year. The selection can be based on a single climate index or on multiple indices. In the 

case of multiple indices the similarity criterion is the Euclidian distance in (multi-)index phase space. Weights can be applied 

to each index-dimension to represent the relative importance of each index. The choice of indices and their optimal weights 30 
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will depend on the region of interest. A correlation analysis of climate index versus historical streamflows is a 

straightforward way to find the strongest teleconnections.  

The number of ESP traces to be selected by the subsampler needs to be optimized. By selecting fewer traces, the forecast 

becomes more specific, as only the historical years most similar to the present year are included in the forecast. However, 

there is a trade-off between specificity and sampling error. With fewer years, the resolution of the ensemble decreases and 5 

the sampling error increases. This reduction of skill can be overcome by adding more ensemble traces as is done in this study 

by using a resampler. 

2.2 Resampler procedure 

The resampler generates new ensemble traces to augment the dismissed traces in the subsampler scheme. The new traces are 

generated by a monthly weather resampler that is loosely based on a method for daily rainfall resampling developed by 10 

Brandsma and Buishand (1998). The resampler generates synthetic time series of precipitation and temperature by sampling 

from the historical record. Instead of using full historical years, as in the standard ESP, individual months from different 

historical years are sampled and assembled into new meteorological time series. The selection of historical months is 

conditioned on similarity between climate indices. A monthly resampling period is chosen to preserve the within-month 

temporal correlations and because most climate indices are also defined on a monthly time scale. It is assumed that the 15 

resampled time series are realistic representations of future weather patterns and that they are equally likely to occur as the 

full historical years in the original ESP. 

The resampling procedure is as follows.  

1. To initiate the sampling, the reference date is set to the time of forecast.  

2. A historical year is selected by probability sampling, where the probability of selecting year y is a function of the 20 

weighted Euclidian distance between the climate index values on the reference date mi,r and on the same day of a 

historical year mi,y. A Gaussian-type distribution is adopted for this probability:  

   
2

, ,

1
expy i i y i r

i

P w m m
N

 
   

 
         (1) 

where wi is a factor that represents the importance of climate index i. N is a normalization factor so the sum of all Py 

equals one.  25 

3. From the selected historical year y, a month of climate indices and MAP and MAT values is added to the newly 

generated time series.  

4. A new reference date is set by advancing one month and replacing the year by the selected historical year. For 

example, if the first reference date was January 1
st
 2016 and the selected historical year is 1997, the new reference 

date will be February 1
st
 1997. Subsequently, we proceed with the next resampling round and search for a historical 30 

year that is similar to the new reference date (step 2).  
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When going through the selection procedure, the same historical year can be selected several times in consecutive 

resampling rounds. The year of the reference date even has the highest probability of being re-selected because it has the 

greatest similarity to the reference climate index. However, other historical years also have a non-zero probability of being 

selected. Therefore, the resampled time series typically consist of resampled months from several historical years. The 

resampling procedure can be repeated with different random seeds to generate an ensemble of synthetic weather time series. 5 

The weights wi in Eq. (1) can have any positive value (also larger than 1). Their values determine not only the relative 

importance of the climate indices i but also the stringency of the similarity criterion. The probability of selecting a historical 

year with a similar climate index becomes larger for large wi. This increases the persistence of the climate phase signal and 

its effect on the streamflow forecast. For small values of wi, historical months that have quite different climate indices will be 

selected. Consequently, the climate phase signal is lost after a few resampling rounds.  10 

A stringent similarity criterion will lead to the same historical years being selected every time. This will produce many 

similar or even identical traces that resemble full historical years. In order for the ensemble to accurately describe the 

uncertainty distribution, more variation in the ensemble traces is needed, which is achieved by setting a less stringent 

similarity criterion. The choice for an appropriate similarity criterion is thus a trade-off between conservation of the climate 

phase signal and generating sufficient variation in the ensemble traces.  15 

The weights wi for each index need to be tuned to produce the required persistence of the climate signal and variation of 

ensemble traces at the relevant forecast lead times. Criteria that can be used for persistence are for example the difference 

between climate indices in consecutive months and the autocorrelation function.  By adjusting wi and comparing the 

autocorrelation and month-to-month differences for the resampled time series, the optimal value is determined.   

3 Example Application 20 

3.1 Study area 

As a case study, the method was applied to seasonal streamflow forecasting at three forecasting stations (dams) on Columbia 

River tributaries in the U.S. Pacific Northwest (PNW), listed in Table 1. The watersheds are located in the Cascade Range 

(see Fig. 1), where runoff is dominated by snowmelt. The typical annual pattern displays a build-up of snowpack in winter 

and snow melt and runoff in spring. Figure 2 shows the median and variation of the monthly streamflows for the three 25 

stations. The flows are highest and have the most variation in the snow melt season (May-June).   
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Figure 1: Study area with the three test-stations and extent of sub-basins. Portland is at 45.5231° N, 122.6765° W.  

One of the forecasting centres that use ESP for seasonal streamflow forecasting is Bonneville Power Administration (BPA). 

BPA is a self-financing federal agency based in Portland, Oregon, that markets the hydroelectric power from 31 dams in the 

Columbia River Basin (Bonneville Power Administration et al., 2001). The dams are operated following often competing 5 

needs and legal constraints, including hydropower production, supply of irrigation water, support of aquatic life and keeping 

the risk of undesirable peak flows and flooding at a minimum. Seasonal streamflow forecasting plays an important role in the 

dam operation planning and hydropower marketing. The high stakes on the energy market make even the smallest possible 

improvement in forecast skill worth pursuing. 

10 
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Table 1: Forecasting stations  and sub-basin properties. The mean flows, precipitation and runoff ratios are based on observations 

from 1949 to 2003.  

Station River Drainage 

area (km
2
) 

Mean 

elevation (m) 

Mean flow 

(m
3
/s) 

Mean annual 

precip.  (mm) 

Runoff 

ratio 

Libby  Kootenay 23,270  811 310 851 0.49 

Hungry Horse  Flathead 4,145  239 100 1174 0.63 

Dworshak  Clearwater 6,320  363 160 1283 0.62 

 

BPA uses an operational forecasting system based on NWS-CHPS (Community Hydrologic Prediction System,  Gijsbers et 

al, 2009) with ESP functionality for their seasonal streamflow outlooks (4 to 8 months lead time). The Sacramento Soil 5 

Moisture Accounting model (SAC-SMA) (Burnash et al, 1973; Burnash, 1995) and SNOW-17 snow accumulation and 

ablation model (Anderson, 1976) are used for simulating and forecasting the hydrologic processes per sub-basin at a 6-hour 

time step, taking mean areal precipitation (MAP) and mean areal temperature (MAT) per sub-area as inputs. The conceptual 

sub-basin models were calibrated on 55 years (1949-2003) of observational data. Initial (warm) states for the ESP forecasts 

are generated by running the models in operational mode, continuously blending in recent snow pack and streamflow gauge 10 

data into model states.  

The PNW climate is teleconnected with ENSO (Philander, 1990). The warm phase of ENSO (El Niño) is associated with 

warm and dry winters, whereas the cold phase (La Niña) has the opposite effect with colder and wetter than average winters 

(Ropelewski and Halpert, 1986; Redmond and Koch, 1991). Other climate phenomena have also been shown to influence the 

climate in the PNW (Lau and Sheu, 1988; Knight et al., 2006). The different climate modes may amplify or counteract each 15 

other, but each is considered to contain unique information that might have additional value for the streamflow predictions. 

The influences of these climate phenomena make the PNW an interesting case study for the climate-conditioned ESP.  

Historical weather time series for the three sub-basins (6 hourly MAP and MAT) covering a period from 1949 to 2003 were 

provided by BPA. Historical values for a range of indices describing various climate modes were obtained from NOAA-CPC 

(http://www.cpc.ncep.noaa.gov/data/indices/).  20 

 

http://www.cpc.ncep.noaa.gov/data/indices/
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Figure 2: Median monthly streamflow and 10% and 90% percentiles for the test locations Dworshak (DWR), Hungry Horse 

(HHW) and Libby (LYD). 

3.2 Experimental Setup and Parameter Calibration 

Several climate mode indices and combinations of indices for ensemble trace selection and conditioning of the subsampler 5 

were evaluated, including the Pacific Decadal Oscillation (PDO), Multivariate ENSO Index (MEI), El Niño index NINO3.4 

and Southern Oscillation Index (SOI). A correlation analysis was done between the index values in December and the annual 

flow volume in the following year. The MEI, as defined by Wolter (1998), showed the highest correlation with the historical 

streamflows at the three test stations in this study and was therefore used for conditioning of the case study forecasts. The 

MEI combines several meteorological observables in a single metric and is issued monthly as a two-month value.  10 

To tune the parameter w for this case study, several values were evaluated. Figure 3 shows the distribution of differences 

between climate indices in consecutive months for the historical MEI series (1871-2013) and three resampled time series 

with w-values of 10, 25 and 100. From this figure, a value of w=100 seems optimal. However, the autocorrelation function 

(Fig. 4) shows that the w=100 series has a higher autocorrelation than the historical time series. This can be explained by the 

fact that the historical series has a 2-3 year quasi-biannual frequency (Barnett, 1991). The autocorrelation turns negative after 15 

15 months lag time, indicating that a positive ENSO phase is most likely followed by a negative ENSO phase in the 

succeeding year and vice versa. This periodic behaviour cannot be reproduced by the basic lag-1 resampling method. The 

autocorrelation of the resampled time series simply decays to zero.  

In order to approximate the persistence of the historical climate index series, a weight w of 25 is chosen, which reproduces 

the autocorrelation of the historical MEI series at the relevant lead times for the seasonal forecasts, i.e. between 4 and 6 20 

months. 

The method was implemented as a module in Delft-FEWS, a hydrological forecasting and data management platform 

(Werner et al., 2013) upon which CHPS is built. The subsampler-resampler module was run from CHPS to generate 

meteorological forecasts with lead times up to 12 months for every month in the period 1949-2003. Next, ensemble 

streamflow hindcasts (reforecasts) were produced by running the hydrologic models, taking the subsampled and resampled 25 

MAP and MAT series as input. The year of hindcast was excluded from the subsampling and resampling schemes.  
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Figure 3: Distribution of MEI differences between consecutive months; historical series and three resampled time series with w-

values of 10, 25 and 100. 

 

Figure 4: Autocorrelation of MEI signal for the historical and three resampled time series with w-values of 10, 25 and 100. 5 

 

Figure 5 shows example hindcasts of (from top to bottom) climate index, monthly mean areal precipitation (MAP), monthly 

mean areal temperature (MAT) and monthly mean streamflow ensembles at forecasting station Dworshak, starting from 

reference dates December 1
st
 of 1973 (La Niña year), 1978 (neutral) and 1997 (El Niño year). The historical values are 

shown in red. Except for the shortest lead times in a few cases, the historical traces fall within the range of the ensemble. The 10 

MEI-, precipitation- and temperature ensembles for the three starting dates differ due to the conditioning of the resampler. 
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As a result, the streamflow ensembles have less spread than the original ESP and a better forecast skill, as will be shown in 

Sect. 4. 
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Figure 5: Resampled ensemble forecasts of (from top to bottom) MEI, MAP, MAT and streamflow at forecasting station 

Dworshak. Forecast dates are December 1st 1973 (left), 1978 (middle) and 1997 (right). The historical runs are shown in red. 

 

Figure 6 shows the number of unique ensemble traces as a function of lead time. Different behaviour is found for the three 

forecasts. The 1997 forecast starts off from a rather extreme positive MEI. The probability of resampling a different 5 

historical year depends on the difference in MEI. Since the number of historical years that have such extreme MEI values is 

limited, a small set of historical years gets re-sampled multiple times and the number of unique ensemble traces after 5 

resampling rounds is only 17. In contrast, the 1978 forecast starts off from an average MEI value, with many historical years 

with similar MEI values to resample from. As a result, each of the 50 ensemble traces is unique after 5 resampling rounds. 

 10 

 

Figure 6: Number of unique ensemble traces in 50-member ensembles of resampled time series (w=25), starting from December 

1st, 1978, 1973 and 1997. 

 

3.3 Forecast evaluation 15 

The skill of the forecasts was assessed in terms of Root Mean Square Error (RMSE) of the ensemble mean, Brier Score (BS) 

and Continuous Ranked Probability Score (CRPS). The RMSE is a direct measure of the accuracy of the mean forecast but it 

does not account for ensemble spread. The BS and CRPS are integral measures of ensemble forecast quality (Jolliffe and 

Stephenson, 2003; Wilks, 2006). The Brier score was computed for a threshold level at 80% exceedance probability of the 

monthly flow for each test station.  20 
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The subsampler-resampler method was run in parallel to the original ESP method within CHPS to enable a comparison. The 

skill metrics for the two methods were compared through relative skill scores, for example the Brier Skill Score (BSS):  

 
model

reference

BS
BSS 1

BS
             (2) 

Where the BSreference is the Brier Score of the standard ESP method. Likewise, the Continuous Ranked Probability Skill Score 

(CRPSS) and the relative improvement in RMSE are evaluated. The skill metrics were calculated using the Ensemble 5 

Verification System (Brown et al., 2010). The next section focuses on forecast skill for streamflows in May and June. These 

months have the largest variation (see Fig. 2), which makes the effect of an improved forecast more pronounced. 

4 Results 

The performance of the subsampler selecting historical years from the original ESP based on climate mode similarity was 

first evaluated without the addition of resampled time series. Figure 7 shows the BSS, CPRSS and relative reduction in 10 

RMSE of the resampler method in red as a function of the number of ESP ensemble traces. Skill scores reported here refer to 

May and June monthly flows and are averaged over forecast lead times between 3 and 12 months. The 50-year ensemble is 

identical to the original ESP and has a skill score of 0 by definition. Upon reducing the ensemble size, the forecast skill 

increases for two of the three test stations (Dworshak and Hungry Horse) as a result of dismissing historical years with 

dissimilar MEI values. This indicates that the climate mode conditioning is shifting the ensemble forecast towards the most 15 

probable outcome.  

 

 

Figure 7: Forecast skill of the subsampler method (in red) compared to subsampler-resampler method (in black) as a function of 

number of historical ESP ensemble traces. a. Brier Skill Score (80% threshold) b. CPRSS and c. relative reduction of RMSE. Skill 20 
scores are averaged over 50 years of hindcasts for May and June monthly streamflow at lead times between 3 and 12 months.  
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For one test station (Libby), the forecast skill decreases for smaller ensemble sizes. The reduction of the number of ensemble 

traces has an adverse effect on its statistical properties. The sampling uncertainty increases, which counteracts the gain in 

forecast skill from the climate mode information. The dashed lines represent the general behaviour of the forecast skill for a 

randomly reduced ensemble size, as described by Ferro (2007) for BSS. The analytical results for CRPSS and RMSE were 

derived from Ferro et al (2008), Eqn. 22 and Ho et al. (2013), Eqn. 1 respectively. The streamflow at Libby has the weakest 5 

correlation with MEI. Apparently, the MEI information has little additional value for the Libby streamflow forecasts and 

their skill follows this trend. For the other two stations the skill also drops below zero for ensemble sizes less than 10. 

Next, the forecast skill of the combined subsampler-resampler method was computed (black lines in Figure 7).  The 

ensemble traces that were dismissed in the subsampler are now replaced by resampled traces. The ensemble size is thus 50 in 

all cases. The forecast skill is still a function of the number of original ESP traces (full historical years), but in contrast to the 10 

subsampler forecasts, the subsampler-resampler produces a generally positive skill over the full range. The marginal loss of 

skill for Libby is probably due to statistical uncertainty of the skill score calculation (which could be verified by 

bootstrapping, but this is left for future studies). This demonstrates that the loss of skill from the reduction of ensemble size 

can be neutralized by additional ensemble traces from the resampler method. A mix of 10 historical years from the 

subsampler ESP and 40 additional resampled traces produces in general the best result for the three test stations in this case 15 

study.  

Figure 8 shows the forecast skill as a function of forecast lead time. A combination of 10 historical and 40 resampled traces 

is used for all lead times. Three different skill metrics are shown for the May and June monthly flow from the three test 

stations. A positive skill is found up to 12 months of forecast lead time for Dworshak and Hungry Horse. This confirms the 

persistent nature of the ENSO climate mode. Because of this persistence, the conditioning of the subsampler and resampler 20 

on the climate phase at the time of forecast produces a positive skill over several months up to a full year in the future. For 

Libby, no gain in forecast skill is found. 
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Figure 8: Improvement in May/June streamflow forecast skill of the subsampler-resampler (w=25) method relative to the standard 

ESP as a function of lead time for: a: Dworshak, b: Hungry Horse, c: Libby test stations. Three different skill metrics: CRPS, 5 
Brier Score and RMSE. 
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Figure 8 shows that for lead times of 1 or 2 months, the skill is negative. This is due to a small effective ensemble size of the 

resampled traces for the shortest lead times, as discussed in Sect. 3.2. In order to maintain climate mode information on the 

seasonal time scale, the similarity criterion was set fairly stringent (w=25). This produces good results for the 4 to 6-month 

lead times, but it causes the same small set of historical years to be selected in the first resampling rounds every run. 

Although the absolute number of ensemble traces is 50, a small subset of historical years keep re-appearing in the resampled 5 

time series at the shortest lead times. This has a negative effect on the statistical properties of the ensemble and on the 

forecast skill. For longer lead times, this effect vanishes (see Fig. 6).  

5 Discussion and conclusions 

The results in the previous section show that the subsampler-resampler method is able to improve the ESP forecast skill by 5 

to 10% in two of the three test stations in this case study for lead times greater than 2 months. This improvement seems 10 

modest compared to the 28% gain in forecast skill reported by Werner et al. (2004) and 27% by Bradley et al. (2015) who 

used similar post-processing methods. We note, however, that the performance may vary considerably per forecasting 

station. Werner et al. (2004) found a much smaller skill improvement of 4 and 6% for two other  stations, which is 

comparable to the results found in this study. Moreover, Werner et al. (2004) used a separate calibration of post-processing 

parameters  to arrive at a different set of weights for each test station. However, many operational applications require 15 

equally weighted ensembles for all forecasting stations in the area of interest. This requirement does not allow for a separate 

optimization of weights per station.  

For the third test station in our case study, Libby, no improvement of skill was found. The streamflows at this station have 

the weakest correlation with MEI and the local climate is least affected by ENSO. It was shown that dismissing ensemble 

traces from the ESP leads to a reduction of forecast skill for this station that is similar to the expected reduction for a 20 

randomly reduced ensemble, as described by Richardson (2001), Ferro (2007) and Ferro et al. (2008). The same effect 

occurs for the other two stations for very small sub-samples. A smaller ensemble has a less accurate ensemble mean and is 

less well capable of accurately describing a probability distribution. The subsample-resampler method resolves this issue. 

The additional traces from the resampler restore the forecast skill to that of the original ESP and the adverse effect of the 

dismissal of ensemble traces by the subsampler is neutralized by the resampled traces. This is an important advantage of the 25 

subsampler-resampler method in operational settings, where avoiding loss of forecast skill anywhere is at least as important 

as improving the skill for a few  forecasting stations.  

The subsampler-resampler method also has some practical advantages over alternative approaches. Firstly, the subsampler-

resampler produces an equal-likelihoods streamflow ensemble, in contrast to the ensemble-weighting schemes. Also, the 

total number of ensemble traces can be set equal to the original number of ESP traces. This facilitates a comparison between 30 

the forecast skill of the conditioned ESP and that of the unconditioned ESP. Even more importantly, it facilitates the 

migration of an operational forecasting system from a standard ESP to a climate-mode conditioned ESP, since the 
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downstream processes that use the streamflow ensemble as input do not need to be updated. Finally, the resampler method 

allows for a parallel sampling of non-meteorological variables from the historical record, with automatic preservation of 

cross-correlations. This is an important advantage for agencies like BPA that use these variables (e.g. power demand) in their 

water resources planning tools.  

There are several parameters in the subsampling-resampling method that must be reconsidered or recalibrated if the method 5 

is applied to other regions or lead times of interest. Firstly, the relevant climate modes should be identified for the region of 

interest. To simplify the test case in this study, we have used only a single climate index: MEI. Next, the number of original 

ESP traces to be selected in the subsampler should be set. The optimal number of traces was found to be 10 in the current 

application, which is close to the values of 7 found by Werner et al. (2004), 12 by Najafi et al (2012) and 9 by Bradley et al. 

(2015). Apparently, a selection of 15% to 20% of original ESP traces gives the best performance for this type of ESP 10 

subsampling.   

Another calibration parameter is the weight per climate index in the resampler procedure, which determines the persistence 

of the climate phase signal and the spread of the ensemble. It was found that a weight w=25 gave the best results for the 4- to 

6-month lead times of interest in this case study, although it leads to an underdispersed ensemble for the shorter lead times. 

A less stringent similarity criterion, i.e. a smaller w, would improve the spread for short lead times. However, this would lead 15 

to a less persistent climate phase signal and loss of forecast skill for the longer lead times.  

There are several opportunities for further improvement of the method. For the Columbia basin, a conditioning on other 

climate modes (e.g. PDO) could improve the forecast skill. This is being explored by BPA at the moment. The performance 

at short lead times can possibly be improved by introducing a random time shift in the historical resampling scheme. For 

example, instead of sampling a historical period April 1 – April 30, we shift 5 days back and sample March 27 – April 25. 20 

The time shifts would introduce more variability in the resampled traces without compromising the persistence of the climate 

phase signal. Another possible improvement is to employ GCM-based climate mode forecasts instead of the lag-1 

resampling procedure described in Sect. 2.2. This is left for future research.  
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