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ENSO-Conditioned Weather Resampling Method for Seasonal 

Ensemble Streamflow Prediction 

Joost V.L. Beckers, Albrecht H. Weerts, Erik Tijdeman and Edwin Welles 
 

This memo includes a point-by-point response to the comments by the Editor and two Anonymous Referees. For 5 

each point, we indicate the changes that were made to the manuscript. At the end of this document is a marked-
up manuscript version showing all changes.  
 

RESPONSE TO EDITOR’S COMMENTS 

Editor Decision: Reconsider after major revisions (02 May 2016) by Maria-Helena Ramos 10 

Comments to the Author: 

The authors are acknowledged for the answers to the two referees and are encouraged to submit a revised 

version of their manuscript. Please, specifically, consider the major remarks of the referees, namely: 

- include omitted results to show if the method is actually robust; 
This has been done, see Figure 7 and 8.  15 

 
- provide more evidence that “several climate mode indices and combinations of indices for ensemble member 
selection and conditioning of the subsampler were evaluated” as mention in Section 3.2 by the authors; 
The aim of this paper is to explain the method and demonstrate its use in a simple test case: a limited number of 
test basins and a single climate index (MEI). It is shown how the method performs for two test basins where the 20 

streamflow is correlated with MEI and for a test basin that is not strongly affected by the climate signal, in this 
case Libby. An optimization of the method for a larger number of test basins using other climate signals (including 
PDO) will be done by BPA. This is mentioned in the discussion. Results of that optimization study may be 
published separately at a later time. 
 25 

 - clarify how parameters were tuned or determined, indicating when cross validation was performed or not (and 
explaining the reasons behind the choices made); 
The parameter setting is explained in Sect. 3.2. We add the following additional information: 

 The climate index MEI was chosen from several candidates (SOI, ENSO3.4, PDO) based on a 
correlation analysis. The correlation analysis was done between the index values in December and the 30 

annual flow volume in the next year for the period 1948-2008. The MEI has the highest correlation 
(around 0.5 for DWR and HHW, 0.35 for LYD) with the historical streamflows for the three sub-basins 
and was therefore selected for this case study. PDO has the second highest correlation (around 0.35 for 
all three sub-basins). The correlation analyses were repeated for different months (lead times) and for 
different historical periods and the results showed a consistent picture that MEI is the strongest 35 

teleconnection at these lead times and PDO is the second strongest.  

 It is also explained in section 3.2 how the value of the weight w was determined: based on the 
autocorrelation of the MEI signal (Figures 3 and 4). It is explained why a value of 25 was found 
appropriate for forecasting at the seasonal time scale. 

 The choice for the number of ESP sub-samples is based on heuristic techniques. Several values were 40 

tested (see Figure 7). From this Figure, a combination of 10 subsampled members gives the best skill, 
but larger values also produce a positive skill. In Sect. 5, the optimal value of 10 sub-samples is 
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compared to values found in comparable methods from literature: “The optimal number of traces was 
found to be 10 in the current application, which is close to the values of 7 found by Werner et al. (2004), 
12 by Najafi et al (2012) 5 and 9 by Bradley et al. (2015). Apparently, a selection of 15% to 20% of 
original ESP traces gives the best performance for this type of ESP subsampling.”  

A cross-validation using split datasets was not done because the resampling method relies on a large historical 5 

dataset. Splitting the dataset into a calibration and validation set would increase the uncertainty and reduce the 
skill. The results from a split dataset would therefore not be comparable to the results for the full dataset. Also 
note that none of the studies mentioned above (Werner et al., 2004; Najafi et al, 2012; Bradley et al., 2015) 
includes a cross validation of parameter settings.  
 10 

 - provide details on the methodology, as stressed by Referee 2; 
More details were given where requested by Referee 2.  
 
 - provide enhanced figures for the results, such as these can be better evaluated. 
This was done. 15 
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RESPONSE TO COMMENTS FROM REFEREE #1 

Anonymous Referee #1 

Received and published: 7 March 2016 
 
In this paper, the authors propose a technique that combines a post-processing step – i.e., sub-sampler of raw 5 

ensemble streamflow prediction (ESP) outputs based on climate index similarity – with a pre-processing step that 
generates synthetic precipitation and temperature time series via resampling, based on climate index similarity, to 
force hydrologic model simulations and re-populate the previously sub-sampled ensemble forecast. The method 
is applied in three catchments located in the Pacific Northwest, using the SAC-SMA and Snow-17 models, for 
seasonal (May-June) streamflow forecasting. The authors conclude that their framework is an improvement in 10 

skill (RMSE, Brier Score and Continuous Ranked Probability Score) over both standard ESP and climate-based 
subsampling. 
 
The paper is in general well written and well organized, the proposed technique is scientifically sound and the 
results are quite interesting. Further, the connection with the existing literature on this topic is nicely conducted. In 15 

my opinion, the manuscript has a lot of potential for publication in HESS, but the authors need to clarify some 
methodological choices, revise some statements, and include omitted results to show if the method is actually 
robust. 
 
Major comments: 20 

1. Why didn’t the authors include the results for improvement in skill (as in Figure 9) for Libby and Hungry Horse? 
I think that showing the results at these locations is critical to demonstrate that the proposed technique is an 
advance over raw ESP and climate-based subsampling (see comment #14 for more details on this). 
Figures for Hungry Horse and Libby have been added as additional frames in Figure 8 (formerly Figure 9). For 
Hungry Horse the improvement in skill is smaller than for Dworshak. For Libby, there is no gain or loss in forecast 25 

skill.  
 
2. P4, L29: It is inferred from this paragraph that the reference date is set to the day when the forecast is 
initialized. Further, it is also mentioned that "the year of the reference date even has the highest probability of 
being re-selected". However, later in the paper the authors mention that "the year of reforecast was excluded 30 

from the subsampling and resampling schemes" (P8, L24). These statements are confusing, so the authors 
should clarify what was actually done. In my opinion, the year of the reference date (or initialization time) should 
NOT be included in the subsampling/resampling procedures, since that year is the one forcing the forecast. 
The year of hindcast is excluded from the resampling to be able to assess the forecasting skill. At the start of the 
resampling procedure, the reference date is equal to the forecast date. That year is excluded from the 35 

resampling, so a different historical year must be selected in the first resampling round. In the next resampling 
round, however, the reference date is set to a date in the historical year that was selected in the first round. That 
year is not excluded from the resampling, so it can be selected again.  
 
3. P8, L2: The authors state that "several climate mode indices and combinations of indices for ensemble 40 

member selection and conditioning of the subsampler were evaluated". However, from the same paragraph it is 
implied that MEI was selected because it provided the highest correlation with historical streamflow. Did the 
authors actually test several combinations of climate indices? Moreover, it has been shown that PDO strongly 
affects interannual variability of runoff in this region (e.g., McCabe, G.J., Wolock 2014; Sagarika et al. 2015). Did 
the authors perform any experiments including both MEI and PDO in the subsampling process? I think this 45 

manuscript would greatly benefit if - at least for the subsampler method - additional experiments showing the use 
of PDO were included. My guess is that the poor results obtained at Libby may be related to this issue. 
The aim of this paper is to explain the proposed method and demonstrate its use in a simple test case: a limited 
number of test basins and a single climate index. This proof of concept includes demonstrating how the method 
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performs for a test basin that is not strongly affected by the climate signal, in this case Libby. An optimization of 
the method for other locations in the Columbia River basin and using other climate signals (including PDO) will be 
done by BPA. This is mentioned in the discussion. Results of that optimization study may be published separately 
at a later time.  
 5 

Minor comments: 
4. P1, L23: The authors should note that the hydrologic model does not necessarily have to be conceptual in ESP 
frameworks. 
Agreed. We removed the word ‘conceptual’.  
 10 

5. Throughout the manuscript: the authors refer to “reforecasts” or “forecasts in retrospect” when reporting 
results, but it might be better to use the word “hindcasting” (Beven and Young 2013). 
We changed ‘reforecasts’ into ‘hindcasts’ (4 instances). The first time that the term ‘hindcast’ is mentioned, we 
add ‘(reforecasts)’ in brackets for clarity. The term ‘reforecasts’ is also used in literature, e.g. by Werner (2004) 
and Wood (2002).  15 

 
6. P2, second paragraph: the text may be enriched by adding a few more references (Hamlet and Lettenmaier 
1999; Tootle et al. 2007; Abudu et al. 2010; Sagarika et al. 
2015). 
Thanks for this suggestion. We added these references.  20 

 
7. P2, L18: Several studies recommend developing custom climate indices for the basin(s) of interest using 
reanalysis datasets (e.g., Grantz et al. 2005; Regonda et al. 2006; Block et al. 2009; Opitz-Stapleton et al. 2007; 
Bracken et al. 2010; Mendoza et al. 2014), instead of using standard climate indices for predicting seasonal 
runoff volumes. This point could be made in the introduction. 25 

We feel that these custom climate indices should be part of the optimization of the method for a specific area and 
lead time of interest. Our paper focuses on explaining the basic method and demonstrating its use in a simple 
test case of three locations and a single climate index. Optimization of the method for a larger study area using 
multiple indices and/or custom climate indices would be a separate study. BPA is currently carrying out the 
optimization and results of that may be published at a later time (see also our answer to point 3).  30 

 
8. P2, L21: The reference is missing here. 
This was corrected. 
 
9. P5, L17: A better title for section 3 would be “Example Application”. 35 

Agreed, we changed the title.  
 
10. P7, Table 1: It would be more informative to add mean basin elevation (or elevation range), mean annual 
runoff and mean annual precipitation (mm/yr), and runoff ratio. I 
think that powerhouse capacity is not relevant here.  40 

Agreed. We added average elevation, mean runoff, precipitation and runoff ratio and removed powerhouse 
capacity.  
 
11. I strongly encourage the authors to improve the quality (resolution) of Figures 1, 4, 5, 7 and 8. This is critical 
to enhance the readability of the paper. 45 

The figures were improved.   
 
12. Figures 7 and 8: The authors could merge the results displayed here into a single figure, using different colors 
for different methods (for instance, red for subsampler, and black for combined subsampler-resampler), and 
keeping the title of x-axis label as “Number of historical years in ensemble”. This would allow a direct comparison 50 
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between the proposed method and the benchmark technique (i.e. only sub-sampling). I also think that the authors 
should add two additional panels (similar to the one described) with results of CRPSS – which is in my opinion a 
much more interesting score to assess the skill of ensemble systems – and RMSE. Further, it should be 
mentioned in the caption that results are averaged over lead times of 1-12 months. 
Figures 7 and 8 were combined and two additional panels with CRPS and RMSE results were added.  5 

 
Results are averaged over lead times 3 to 12 months, because the skill for 1 and 2 months is poor. The fact that 
the skill scores are averaged is mentioned in the caption. 
 
13. Figures 7-9: The captions indicate that results are for May-June flows, but the text refer to June flows. What is 10 

actually being presented? If results are for May-June flows, are these aggregated (i.e. how many values are used 
for computing the scores, Nyears or 2 x Nyears)? Is the 80% flow computed from all monthly streamflow values, 
or only from May and June historical flows? 
What is shown are the verification scores for forecasts of monthly streamflows for May and June. This was 
clarified in the text. 15 

 
14. Figure 9: As pointed in comment #1, the authors are encouraged to add and discuss results for Libby and 
Hungry Horse in this figure. This could be done by or adding two panels (b and c, for instance), or extra lines with 
different colors for each basin. The improvement in skill could also be compared to that obtained from using only 
subsampling (the benchmark method) to understand the added value of re-populating the ensemble. 20 

Additional panels were added to Figure 8 (formerly Figure 9) for Libby and Hungry Horse and results are 
discussed in the text. The gain in forecast skill for these subbasins is less than for Dworshak. For Libby there is 
no gain in forecast skill.   
 
15. P13, L10-16: The authors might want to re-word or delete a couple of sentences. For instance, they point for 25 

Figure 8 that “in contrast to Fig. 7, the BSS for all test basins are now positive over the full range”, which is NOT 
true for the Libby reservoir (there are still negative BSS values). Moreover, the authors mention that “a mix of 10 
historical years from the subsampler ESP and 40 additional resampled traces produces the best result for these 
sub-basins”, which is inaccurate again when looking at Libby (higher BSS is obtained using five historical years). 
The small negative score for Libby and the positive skill for five historical years are attributed to uncertainty/noise 30 

in the calculation, i.e. statistical uncertainty related to the limited number of hindcasts. We rephrased these 
sentences to: 
“in contrast to the skill of the subsampler forecasts, the subsampler-resampler produces in general a positive skill 
over the full range. The marginal loss of skill for Libby is attributed to statistical uncertainty of the skill score 
calculation.” 35 

“a mix of 10 historical years from the subsampler ESP and 40 additional resampled traces produces in general 
the best result for these sub-basins” 
 
Suggested minor edits: 
16. P1 L23: “forcing” -> “forcings”.  Agreed, changed. 40 

17. P2, L27: “case study” -> “case study basin”. Agreed, changed. 
18. P2, L26: “weigh” -> “weight”.   Agreed, changed. 
19. P3, L19-21: “Sect.” -> “Section”.  No change made, we think this is HESS-style  
20. P5, L13: “needs” -> “need”.   Agreed, changed. 
21. P7, L9: “of e.g.” -> “with”; “into the states” -> “into model states”. Rephrased to:  45 

‘… blending in recent snow pack and streamflow gauge data into model states’ 
22. P8, L1: “parameter tuning” -> “parameter calibration”.  Agreed, changed. 
23. P12, L18: “the most variation” -> “the largest variation”. Agreed, changed. 
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RESPONSE TO COMMENTS FROM REFEREE #2 

Anonymous Referee #2 

Received and published: 14 March 2016 
 
This paper presents a two-pronged approach for conditioning ESP forecasts on ENSO conditions. In the first 5 

step, a sub-sample of ESP forecasts are selected from an ensemble (e.g. of size 50) by conditioning on a climate 
index. This reduces the number of ensemble members. In the second step, the ensemble is augmented to the 
original size by sampling precipitation and temperature from the historical record, conditioned on the climate 
index, and thereafter producing additional ESP forecasts. I think the paper presents a pragmatic approach to 
incorporating climate information into ESP forecasts and for enlarging the ensemble size. These types of 10 

technique are of wide interest in the hydrologic ensemble forecasting community. The writing is generally of 
publication quality but several figures need improvement. 
 
I have some issues with the clarity, execution and explanation of the science. If the authors can thoroughly 
address the issues, some of which are not simple, my opinion is the paper should eventually be published in 15 

HESS. General comments: 
 
1) A number of parameters are tuned on the basis of subjective analysis for the whole period of interest. Because 
this is a forecasting paper, the parameter values ought to be determined from an objective analysis that can then 
be cross-validated using a leave-out scheme. If the results are not cross-validated then the results are potentially 20 

inconclusive. Given that the results are marginal, and perform best for the period tuned to (4–6 months lead 
time), I suggest this is quite important. 
 
Ideally, the following elements would be cross-validated:  
a. The climate index selection  25 

b. The number of optimal ESP sub-samples selected  
c. The “weight”, w. If cross-validation isn’t used, justification is required. 
 
We believe that the parameter setting is not subjective. It is explained in the manuscript how the climate index 
selection was done and how the weight w was determined on statistical analysis of the climate signal before the 30 

actual hindcasts were made, i.e. without using hindcast information:  
a. The climate index MEI was chosen from several candidates (SOI, ENSO3.4, PDO) based on a 

correlation analysis with historical streamflow data. We added a sentence “A correlation analysis was 
done between the index values in December and the annual flow volume in the next year.” to clarify how 
this was done. The MEI has the highest correlation (around 0.5 for DWR and HHW, 0.35 for LYD) with 35 

the historical streamflows for the three sub-basins and was therefore selected for this case study. PDO 
has the second highest correlation (around 0.35 for all three sub-basins). These correlation analyses 
were repeated for different months (lead times) and for different historical periods and the results showed 
a consistent picture that MEI is the strongest teleconnection at these lead times and PDO is the second 
strongest.  40 

b. See below. 
c. It is explained in section 2.3, page 8 how the value of the weight w was determined, based on the 

autocorrelation of the MEI signal (Figures 3 and 4). It is explained why a value of 25 was found suitable 
for forecasting at the seasonal time scale.  

 45 

For the third parameter: the number of ESP sub-samples selected, several values were tested and results 
presented in Figure 7. A consistent positive forecast skill is found for two sub-basins, except for less than 10 sub-
samples. The reason for the poor scores for small numbers of sub-samples is explained in the text (see also 
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response to remark nr 2). The absence of a gain in forecast skill for the third sub-basin and the loss of forecast 
skill for short lead times are also explained.  
 
Based on Figure 7, a combination of 10 subsampled members and 40 resampled members is chosen as optimal 
in this case, but larger values also produce a positive skill. In Sect. 5, the optimal value of 10 sub-samples is 5 

compared to values found in comparable methods from literature: “The optimal number of traces was found to be 
10 in the current application, which is close to the values of 7 found by Werner et al. (2004), 12 by Najafi et al 
(2012) 5 and 9 by Bradley et al. (2015). Apparently, a selection of 15% to 20% of original ESP traces gives the 
best performance for this type of ESP subsampling.” Note that none of these studies included a cross validation 
of parameter settings.  10 

 
A cross-validation on split datasets indeed could provide insight into the uncertainty of the results. However, the 
uncertainty of the calculated verification scores would increase for a smaller dataset, so we are not sure if this 
analysis would be conclusive. In general, we feel that we have shown that the results are rational and robust to 
the choice of parameter settings.  15 

 
2) The results use the Brier score (for 80% exceedance probability forecasts) and CRPS as probabilistic 
measures. I think the paper would be much stronger if accuracy skill and reliability results were separated. 
Whether skill is attributable to accuracy or reliability or both may vary significantly with lead time. Also, it is stated 
repeatedly throughout the paper that a small effective number of ensemble members is associated with 20 

“degradation of the statistical properties” of the ensemble forecast. What exactly does this mean? I suggest be 
specific and explain exactly which properties are affected and how they are affected. This is particularly important 
in the results (P15 L6) and discussion (P15 L18–19). 
In answer to the first remark, we use three different skill metrics that are quite common in forecasting. They are 
related to typical usage of a probabilistic forecast, namely the best estimate or mean forecast (the accuracy of 25 

which is measured by RMSE), the probability of exceeding a critical threshold (measured by Brier score) and the 
overall reliability of the forecast probabilities (measured by CRPS). Many other skill scores and measures of 
forecast quality are possible but we feel that these three cover the most important aspects of a probabilistic 
forecast.  
 30 

In answer to the second remark, the effect of a reduction of ensemble size on verification scores is well-known. 
The effect of ensemble size on Brier score has been analysed extensively by Richardson (2001) and Ferro 
(2007). An extension to CRPS was done by Ferro et al (2008). The RMSE of the ensemble mean also increases 
with decreasing ensemble size (see e.g. Ho et al., 2013, Eqn (1) or Weigel 2007 for weighted ensembles). An 
ensemble of fewer members has a less accurate ensemble mean and is less well capable of accurately 35 

describing a probability distribution. In the manuscript, we explain this effect qualitatively and refer to existing 
literature where appropriate:  

 Page 3: “A reduction of ensemble size generally leads to a degradation of the statistical properties of the 
ensemble forecast and to a reduction of forecast skill (Richardson, 2001; Ferro, 2007; Ferro et al, 2008).“  

 Page 4: “…there is a trade-off between specificity and sampling error. With fewer years (ensemble 40 

members), the resolution of the ensemble decreases and the sampling error increases.”  

 Page 12, Line 20 and further: “The reduction of the number of ensemble members has an adverse effect 
on its statistical properties. The sampling uncertainty increases, which counteracts the gain in forecast 
skill from the climate mode information. The dashed lines represent the general behaviour of the forecast 
skill for a randomly reduced ensemble size, as described by Ferro (2007) for BSS. The analytical results 45 

for CRPSS and RMSE were derived from Ferro et al (2008), Eqn. 22 and Ho et al. (2013), Eqn. 1 
respectively.”  

 Page 15 (discussion): “It was shown that dismissing ensemble members from the ESP leads to a 
reduction of forecast skill for this sub-basin that is similar to the expected reduction for a randomly 
reduced ensemble, as described by Richardson (2001), Ferro (2007) and Ferro et al. (2008). “ 50 
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More references (Ferro et al. 2008; Ho et al. 2013) were added for effects on CPRS and RMSE as these scores 
were added to Figure 7 following a suggestion from reviewer nr 1. We believe that the general description of the 
effect and references to literature are adequate for this manuscript.  
 
3) The resampling approach performs poorly for short lead times. Particularly, as shown by Figure 9, the 5 

forecasts at short lead times are up to 16% worse. The resampler produces much too narrow forecasts for the 
first couple of months. This is a problem with the ad-hoc nature of the approach, the spread in the ensembles at 
any given lead time could be either too narrow or too wide or somewhere in between. What happens if the 
resampling begins several months prior to the forecast date (i.e. lag 2 or lag 3 MEI)? It’s a hard sell to say that 
forecasts get worse as lead time shortens. At what point should the forecasts be ignored? I encourage a 10 

resolution.  
To make full use of the information of the current climate signal we do not recommend starting the resampling 
several months prior to the forecast date. Instead, we describe a way to improve the performance at shorter lead 
times in Sect. 5: “The performance at short lead times can possibly be improved by introducing a random time 
shift in the historical resampling scheme. This would introduce more variability in the resampled traces without 15 

compromising the persistence of the climate phase signal. “  
 
The poor performance at short lead times is not necessarily problematic if the ESP is used only for forecasting at 
longer lead times (4 months or longer) and other techniques (e.g. NWP weather input) are used for forecasting at 
short lead times.  20 

 
Specific comments  
 
4) Abstract, last sentence: This needs to explicitly say when and where improvements of up to 10% are found 
and probably should also say that the results for short lead times are worsened. 25 

The forecast skill improvement of 5 to 10% for two sub-basins is mentioned as well as the lack of improvement 
for the third sub-basin. We choose not to mention the poor performance for short lead times in the abstract 
because the method is meant for seasonal forecasting at longer lead times, as the title says. The poor 
performance at 1 and 2 month lead time is discussed extensively in the results and discussion sections. A 
possible solution is described on Page 16, Line 15-16.  30 

 
5) P4 L1 suggests selecting climate indices based on correlations with MAT/MAP. But P8 4–5 reports MEI was 
selected on the basis of correlation with streamflow. Please make more consistent. 
We changed page 4 line 1 to “historical streamflows”. MAP/MAP would also be possible but that is not what was 
done here.  35 

 
6) MEI is a two-month index. Were two-month values of the other indices considered? 
Indeed two- and more-month averaged values of other indices were considered in the correlation analysis, but 
the results were no better than for the original indices.  
 40 

7) Equation (1): The summation appears to be the squared Euclidean distance (no square root). Also, how are 
indices in different units handled (is it implicitly through scaling/weighting)? 
The indices can be normalised or the weights w could carry units. In principle, the weights can have any positive 

value (as mentioned on Page 5, Line 3). 
 45 

8) Figure 2: It might be better to show percentile intervals rather than statistics based on normal distributions 
(unless of course the data is very normal). 
Agreed, the figure was changed to show median and 10% and 90% error bars.  
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9) P13 L10–13: The BSS is marginally negative for some cases for Libby Dam, so the statement saying BSS is 
positive for all cases needs correcting. Also, re the comment about Figure 8, the text says the BSS is a function 
of “number of the original ESP members”, but I think it means the number of sub-sampled years (hence less than 
50 on the x-axis is Figure 8). 
The number of the original ESP members is equal to the number of sub-sampled years 5 

 
10) The introduction states that section 5 summarises and concludes the paper, but section 5 is headed 
“Discussion”. Suggest renaming. 
We changed the outline in the introduction to: “Sect. 5 discusses the results.” 
 10 

11) P15 L10 should say in two of the test basins *at lead times greater than X* 
We changed this sentence to: “… by 5 to 10% in two of the test basins for lead times greater than 2 months.”  
 
12) P15 L13–15: Operational applications should be flexible enough to adapt to different methods if there’s a 
proven benefit. So this argument doesn’t carry a lot of weight. 15 

Operational applications typically require a coherent seasonal forecast over the entire basin. A separate 
calibration per sub-basin may affect the spatial correlations between the sub-basins.  
 
13) P16 L13–14: I’m confused by this. PDO was apparently investigated already in this study and disregarded. 
PDO was considered, but MEI was found to have a better overall correlation with the streamflows in the three 20 

sub-basins (see Sect. 3.2). Therefore, MEI was used in the single index example application, but PDO would be 
the first candidate in an extension to multivariate conditioning.  
 
Technical corrections (typing errors, etc.): 
14) Figure 2 and Table 1. Abbreviations do not match for Hungry Horse and Libby Dam. 25 

Agreed, changed accordingly. 
 
15) P12 L19 and elsewhere: Text refers to June flow instead of May–June flow. 
Agreed, changed accordingly. 
 30 

16) There are some instances of weigh and weighing instead of weight and weighting. Will be easy to find and 
correct.  
Two instances found and changed accordingly. 
 
17) Improve the figure quality. Many are blurry. 35 

Agreed, changed accordingly. 
 
18) Is Figure 5 one figure or four? There are four captions. 

Changed Figure 5 to one figure and one caption. 

 40 
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Abstract. Oceanic-atmospheric climate modes, such as El Niño Southern Oscillation (ENSO), are known to affect the local 

streamflow regime in many rivers around the world. A method is proposed to incorporate climate mode information into the 10 

Ensemble Streamflow Prediction (ESP) method for seasonal forecasting. The ESP is conditioned on an ENSO index in two 

steps. First, a number of original historical ESP traces are selected based on similarity between the index value in the 

historical year and the index value at the time of forecast. In the second step, additional ensemble traces are generated by a 

stochastic ENSO-conditioned weather resampler. These resampled traces compensate for the reduction of ensemble size in 

the first step and prevent degradation of forecast skill in sub-basins that are less affected by ENSO. The skill of the ENSO-15 

conditioned ESP is evaluated over 50 years of seasonal reforecastshindcasts of streamflows in three sub-basins of the 

Columbia River basin in the Pacific Northwest. An improvement in forecast skill up to 10% is found.of 5 to 10% is found for 

two sub-basins. The third sub-basin is less affected by ENSO and shows no improvement in forecast skill.  

1 Introduction 

The Ensemble Streamflow Prediction (ESP) forecasting method is a common way to produce seasonal outlooks of river 20 

volumes. It is used by River Forecasting Centers of the National Weather Service (NWS-RFC) and other U.S. agencies 

(Druce, 2001; Pica, 1997; McEnery et al., 2005). The ESP uses historical time series of mean areal precipitation (MAP) and 

mean areal temperature (MAT) and considers these as representative of the local climate (Twedt et al., 1977; Day, 1985). 

The historical MAP and MAT series are used as meteorological forcingforcings to a conceptual hydrologic model to 

generate an ensemble of streamflow forecasts. The number of ensemble traces is equal to the number of historical years 25 

because every trace corresponds to a particular historical year. The initial model state is the current state of the watershed of 

interest, which is obtained from an update run with data-assimilation of recent gauge data. Depending on the type of 

watershed and the time of year, the initial conditions can affect the streamflows for several months ahead (Wood and 

Lettenmaier, 2008; Li et al., 2009; Shukla and Lettenmaier, 2011; Yossef et al. 2013). This gives the ESP predictive ability 

over a climatological forecast, i.e. a distribution of historical streamflows (Franz et al., 2003).  30 
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Despite the great improvements in general circulation model (GCM)-based seasonal forecasting over the past decades 

(Leung et al., 1999; Hamlet and Lettenmaier, 1999; Wood et al., 2002; Clark and Hay, 2004; Wood et al., 2005; Wood and 

Lettenmaier, 2006; Tootle et al., 2007; Abudu et al., 2010; Yuan et al. 2015; Sagarika et al., 2015), the ESP method is still 

the current practice at most NWS-RFC. One of the reasons for this is that ESP uses the same type of meteorological input, 

i.e. historical MAP and MAT, as is typically used for calibration of the hydrologic models (Pica, 1997). GCM input typically 5 

needs to be downscaled and bias-corrected before it can be applied to hydrological modeling at the sub-basin scale. A second 

reason is that the ESP allows for a sampling of non-meteorological variables, such as water demand, from the same historical 

years as the meteorological inputs. The fact that all variables are taken from the same historical year automatically preserves 

any cross-correlation between them, which is important for water resources planning.  

In the original ESP, the historical MAP and MAT series represent the average climate, that is, every historical year is treated 10 

as an equally likely future scenario. In many regions, however, the local climate is known to be teleconnected to inter -annual 

to decadal fluctuations in oceanic-atmospheric circulation patterns, such as the El Niño-Southern Oscillation (ENSO) and 

Pacific Decadal Oscillation (PDO) (Ropelewski and Halpert, 1986, 1996; Kiladis and Diaz, 1989; Halpert and Ropelewski, 

1992; Diaz and Markgraf, 2000; McCabe and Dettinger, 2002). These fluctuations, or climate modes, affect the streamflow 

regime in U.S. rivers (Redmond and Koch, 1991; Kahya and Dracup, 1993; Dracup and Kahya, 1994; Piechota and Dracup, 15 

1996; Piechota et al., 1997; Mantua et al., 1997; Beebee and Manga, 2004; Tootle et al., 2005; Tootle and Piechota, 2006; Lu 

et al., 2011; Gedalof et al., 2012).  

The phase of most climate modes is quantified by climate indices that are evaluated and published monthly. Taking this 

information into account in streamflow forecasting could enhance its skill. Several methods have thus been developed to 

incorporate climate index information into the ESP. They can be classified into pre- and post-processing schemes (Werner et 20 

al. 2004; anKang et al. 2010). In the pre-processing approach, the MAP and MAT ESP inputs are modified to match the 

predicted climate anomalies (Perica, 1998). Hay et al. (2009) applied a climate-mode-dependent adjustment of hydrologic 

model parameters. Another pre-processing alternative is to generate synthetic input time series by random resampling of 

monthly MAP and MAT from historical years that have similar climate index values (Werner et al., 2004).  Although some 

improvement of forecast skill was reported, Werner et al. (2004) concluded that these pre-adjustment techniques are 25 

computationally cumbersome and less suited for operational usage than post-processing techniques. Kang et al. (2010) also 

found the post-processing schemes more effective than pre-processing schemes in a Korean case study basin.  

In the post-processing approach, the ESP output, i.e. the ensemble of hydrographs, is transformed to incorporate climate 

mode information. One technique is to weighweight the ensemble traces according to the similarity between climate indices 

in the historical year and the year of forecast (Croley II, 1996, 2003; Stedinger and Kim, 2010; Madadgar et al., 2012; Najafi 30 

et al., 2012; Bradley et al., 2015). Instead of a weighting scheme, Hamlet and Lettenmaier (1999) used a selection of ESP 

traces according to a classification of historical years based on ENSO and PDO climate indices. Although their results 

showed an improved specificity of the ensemble forecast, the classification leads to a reduction of ensemble members, 

because the number of historical years in each class is obviously less than the original number of ensemble members. A 
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reduction of ensemble size generally leads to a degradation of the statistical properties of the ensemble forecast and to a 

reduction of forecast skill (Richardson, 2001; Ferro, 2007).  

Although less obvious, this problem also arises in other ensemble post-processing schemes. The effective ensemble size is 

reduced by applying weights to ensemble members. To be effective, the information that is added to the ensemble by the 

weighting should be in balance with the reduction of the forecast uncertainty (Weijs and van der Giesen, 2013). However, to 5 

obtain a coherent forecast for a large watershed, the forecasting must be done using a single set of weights for all sub-basins, 

although the influence of the climate modes may differ per sub-basin. A weighingweighting scheme that produces good 

results for sub-basins that are influenced by a particular climate mode may not perform well for sub-basins that are less 

affected by this climate mode. The forecast skill for these latter sub-basins may be compromised by the weighting scheme. 

This problem has been underexposed in previous studies. Najafi et al. (2012) mentioned the loss of forecast skill for smaller 10 

ensemble size and used a modified skill score to remove the effect (Weigel et al., 2007). This conceals the negative effect 

that a weighting scheme could have on quantile estimates for sub-basins that are less affected by climate modes.  

In this study, an ESP conditioning method on climate mode information is described that produces a gain in forecast skill in 

sub-basins that are affected by climate modes, while avoiding a loss of skill in other sub-basins. The method is a 

combination of pre- and post-processing. The post-processing involves a selection of traces from the original ESP. In a pre-15 

processing, a number of new ensemble traces are generated by a monthly weather resampler. The newly generated traces 

augment the ensemble up to the original number of traces and all ensemble traces are weighted equally. This preserves the 

statistical properties of the ESP ensemble and avoids loss of forecast skill due to reduction of (effective) ensemble size.  

The method is explained in detail in Sect. 2. The study region and the data used are described in Sect. 3. Sect. 4 includes the 

results obtained applying the method to the study area and a forecast skill assessment relative to the standard ESP. Sect. 5 20 

summarizes and concludesdiscusses the paperresults.  

2 Method 

The proposed method consists of two parts: a subsampler, which selects ensemble members from the original ESP and a 

resampler, which generates additional ensemble members.  

2.1 Subsampler procedure 25 

The subsampler procedure is a k-nearest neighbor (k-NN) type scheme, similar to the schemes used by Werner et al (2004) 

and Najafi et al. (2012). The selection is based on similarity between the climate index value at the time of forecast and the 

value on the same day of a historical year. The selection can be based on a single climate index or on multiple indices. In the 

case of multiple indices the similarity criterion is the Euclidian distance in (multi-)index phase space. Weights can be applied 

to each index-dimension to represent the relative importance of each index. The choice of indices and their optimal weights 30 
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will depend on the region of interest. A correlation analysis of climate index versus MAP/MAThistorical streamflows is a 

straightforward way to find the strongest teleconnections.  

The number of ESP traces to be selected by the subsampler needs to be optimized. By selecting fewer traces, the forecast 

becomes more specific, as only the historical years most similar to the present year are included in the forecast. However, 

there is a trade-off between specificity and sampling error. With fewer years, the resolution of the ensemble decreases and 5 

the sampling error increases. This reduction of skill can be overcome by adding more ensemble members as is done in this 

study by using a resampler. 

2.2 Resampler procedure 

The resampler generates new ensemble members to augment the dismissed traces in the subsampler scheme. The new traces 

are generated by a monthly weather resampler that is loosely based on a method developed by Brandsma and Buishand 10 

(1998). The resampler generates synthetic time series of precipitation and temperature by sampling from the historical 

record. Instead of using full historical years, as in the standard ESP, individual months from different historical years are  

sampled and assembled into new meteorological time series. The selection of historical months is conditioned on similarity 

between climate indices. A monthly resampling period is chosen to preserve the within-month temporal correlations and 

because most climate indices are also defined on a monthly time scale. It is assumed that the resampled time series represent 15 

realistic and equally likely representations of future weather as the full historical years in the original ESP.  

The resampling procedure is as follows.  

1. To initiate the sampling, the reference date is set to the time of forecast.  

2. A historical year is selected by probability sampling, where the probability of selecting year y is a function of the 

weighted Euclidian distance between the climate index values on the reference date mi,r and on the same day of a 20 

historical year mi,y. A Gaussian-type distribution is adopted for this probability:  

   
2

, ,

1
expy i i y i r

i

P w m m
N

 
   

 
         (1) 

where wi is a factor that represents the importance of climate index i. N is a normalization factor so the sum of all Py 

equals one.  

3. From the selected historical year y, a month of climate indices and MAP and MAT values is added to the newly 25 

generated time series.  

4. The new reference date is set to the selected date in the historical year plus one month and a new search (step 2) is 

started.  

When going through the selection procedure, the same historical year can be selected several times in consecutive 

resampling rounds. The year of the reference date even has the highest probability of being re-selected because it has the 30 

greatest similarity to the reference climate index. However, other historical years also have a non-zero probability of being 
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selected. Therefore, the resampled time series typically consist of resampled months from several historical years. The 

resampling procedure can be repeated with different random seeds to generate an ensemble of synthetic weather time series. 

The weights wi in Eq. (1) can have any positive value (also larger than 1). Their values determine not only the relative 

importance of the climate indices i but also the stringency of the similarity criterion. The probability of selecting a historical 

year with a similar climate index becomes larger for large wi. This increases the persistence of the climate phase signal and 5 

its effect on the streamflow forecast. For small values of wi, historical months that have quite different climate indices will be 

selected. Consequently, the climate phase signal is lost after a few resampling rounds.  

A stringent similarity criterion will lead to the same historical years being selected every time. This  will produce many 

similar or even identical traces that resemble full historical years. In order for the ensemble to accurately describe the 

uncertainty distribution, more variation in the ensemble traces is needed, which is achieved by setting a less str ingent 10 

similarity criterion. The choice for an appropriate similarity criterion is thus a trade-off between conservation of the climate 

phase signal and generating sufficient variation in the ensemble traces.  

The weights wi for each index needsneed to be tuned to produce the required persistence of the climate signal and variation 

of ensemble traces at the relevant forecast lead times. Criteria that can be used for persistence are for example the difference 

between climate indices in consecutive months and the autocorrelation function.  By adjusting wi and comparing the 15 

autocorrelation and month-to-month differences for the resampled time series, the optimal value is determined.   

3 Study area and data 

3 Example Application 

3.1 Study area 

As a case study, the method was applied to seasonal streamflow forecasting at three projectslocations (dams) on Columbia 20 

River tributaries in the Pacific Northwest (PNW), listed in Table 1. The watersheds are located in the Cascade Range (see 

Fig. 1), where runoff is dominated by snowmelt. The typical annual pattern displays a build-up of snowpack in winter and 

snow melt and runoff in spring. Figure 2 shows the averagemedian and standard deviationvariation of the monthly 

streamflows for the three projectslocations. The flows are highest and have the most variation in the snow melt season (May-

June).   25 
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Figure 1: Study area with the three test-sites and extent of sub-basins. 

One of the forecasting centres that use ESP for seasonal streamflow forecasting is Bonneville Power Administration (BPA). 

BPA is a self-financing federal agency based in Portland, Oregon that markets the hydroelectric power from 31 projects in 

the Columbia River Basin (Bonneville Power Administration et al., 2001). The dams are operated following often competing 5 

needs and legal constraints, including hydropower production, supply of irrigation water, support of aquatic life and keeping  

the risk of undesirable peak flows and flooding at a minimum. Seasonal streamflow forecasting plays an important role in the 

dam operation planning and hydropower marketing. The high stakes on the energy market make even the smallest possible 

improvement in forecast skill worth pursuing. 

10 
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Table 1: Case study projectslocations and sub-basin properties. 

Project Location River Drainage 

area (km
2
) 

Mean 

elevation (m) 

Mean flow 

(m
3
/s) 

Powerhouse 

capacity 

(MW)Mean 

annual 

precip.  (mm) 

Runoff 

ratio 

Libby Dam (LYD) Kootenay 23,270  811 310 600851 0.49 

Hungry Horse (HHW) Flathead 4,145  239 100 4281174 0.63 

Dworshak (DWR) Clearwater 6,320  363 160 4001283 0.62 

 

BPA uses an operational forecasting system called the Community Hydrologic Prediction System (CHPS) with ESP 

functionality for their seasonal streamflow outlooks (4 to 8 months lead time). The Sacramento Soil Moisture Accounting 

model (SAC-SMA) (Burnash et al, 1973; Burnash, 1995) and SNOW-17 snow accumulation and ablation model (Anderson, 5 

1976) are used for simulating and forecasting the hydrologic processes per sub-basin at a 6-hour time step, taking mean areal 

precipitation (MAP) and mean areal temperature (MAT) per sub-area as inputs. The conceptual sub-basin models were 

calibrated on 30 years of observational data. Initial (warm) states for the ESP forecasts are generated by running the models 

in operational mode, continuously blending in recent gauge data of e.g. snow pack and streamflow gauge data into themodel 

states.  10 

The PNW climate is teleconnected with ENSO (Philander, 1990). The warm phase of ENSO (El Niño) is associated with 

warm and dry winters, whereas the cold phase (La Niña) has the opposite effect with colder and wetter than average winters 

(Ropelewski and Halpert, 1986; Redmond and Koch, 1991). Other climate phenomena have also been shown to influence the 

climate in the PNW (Lau and Sheu, 1988; Knight et al., 2006). The different climate modes may amplify or counteract each 

other, but each is considered to contain unique information that might have additional value for the streamflow predictions. 15 

The influences of these climate phenomena make the PNW an interesting case study for the climate-conditioned ESP.  

Historical weather time series for the three sub-basins (6 hourly MAP and MAT) covering a period from 1949 to 2003 were 

provided by BPA. Historical values for a range of indices describing various climate modes were obtained from NOAA-CPC 

(http://www.cpc.ncep.noaa.gov/data/indices/).  

 20 

Inserted Cells
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http://www.cpc.ncep.noaa.gov/data/indices/


 

18 

 

 

Figure 2: MeanMedian monthly streamflow and standard deviation10% and 90% percentiles for the test-basins Dworshak 

(DWR), Hungry Horse (HGHHHW) and Libby Dam (LIB(LYD). 

3.2 Experimental Setup and Parameter TuningCalibration 

Several climate mode indices and combinations of indices for ensemble member selection and conditioning of the 5 

subsampler were evaluated, including the Pacific Decadal Oscillation (PDO), Multivariate ENSO Index (MEI), El Niño 

index NINO3.4 and Southern Oscillation Index (SOI). A correlation analysis was done between the index values in 

December and the annual flow volume in the next year. The MEI, as defined by Wolter (1998), showed the highest 

correlation with the historical streamflows in three sub-basins of interest and was therefore used for conditioning of the case 

study forecasts. The MEI combines several meteorological observables in a single metric and is issued monthly as a two -10 

month value.  

To tune the parameter w for this case study, several values were evaluated. Figure 3 shows the distribution of differences 

between climate indices in consecutive months for the historical MEI series (1871-2013) and three resampled time series 

with w-values of 10, 25 and 100. From this figure, a value of w=100 seems optimal. However, the autocorrelation function 

(Fig. 4) shows that the w=100 series has a higher autocorrelation than the historical time series. This can be explained by the 15 

fact that the historical series has a 2-3 year quasi-biannual frequency (Barnett, 1991). The autocorrelation turns negative after 

15 months lag time, indicating that a positive ENSO phase is most likely followed by a negative ENSO phase in the 

succeeding year and vice versa. This periodic behaviour cannot be reproduced by the basic lag-1 resampling method. The 

autocorrelation of the resampled time series simply decays to zero.  

In order to approximate the persistence of the historical climate index series, a weight w of 25 is chosen, which reproduces 20 

the autocorrelation of the historical MEI series at the relevant lead times for the seasonal forecasts, i.e. between 4 and 6 

months. 

The method was implemented as a module in Delft-FEWS, a hydrological forecasting and data management platform 

(Werner et al., 2013) upon which CHPS is built. The subsampler-resampler module was run from CHPS to generate 

meteorological forecasts with lead times up to 12 months for every month in the period 1949-2003. Next, ensemble 25 

streamflow hindcasts (reforecasts (forecasts in retrospect) were produced by running the hydrologic models, taking the 
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subsampled and resampled MAP and MAT series as input. The year of reforecasthindcast was excluded from the 

subsampling and resampling schemes.  

 

Figure 3: Distribution of ENSO-MEI differences between consecutive months; historical series and three resampled time series 

with w-values of 10, 25 and 100. 5 

 

Figure 4: Autocorrelation of ENSO-MEI signal for the historical and three resampled time series with w-values of 10, 25 and 100. 

 

Figure 5 shows example reforecastshindcasts of (afrom top to bottom) climate index, (b) monthly mean areal precipitation, 

(c) (MAP), monthly mean areal temperature (MAT) and (d) monthly mean streamflow ensembles, starting from reference 10 

dates December 1
st
 of 1973 (La Niña year), 1978 (neutral) and 1997 (El Niño year). The historical values are shown in red. 

Except for the shortest lead times in a few cases, the historical traces fall within the range of the ensemble. The MEI-, 
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precipitation- and temperature ensembles for the three starting dates differ due to the conditioning of the resampler. As a 

result, the streamflow ensembles have less spread than the original ESP and a better forecast skill, as will be shown in Sect. 

4. 
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Figure 5: Resampled ensemble forecasts of (from top to bottom) MEI, MAP, MAT and streamflow at test location Dworshak. 

Forecast dates are December 1st 1973 (left), 1978 (middle) and 1997 (right). The historical runs are shown in red. 
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Figure 6 shows the number of unique ensemble members as a function of lead time. Different behaviour is found for the 

three forecasts. The 1997 forecast starts off from a rather extreme positive MEI. The probability of resampling a different 

historical year depends on the difference in MEI. Since the number of historical years that have such extreme MEI values is 

limited, a small set of historical years gets re-sampled multiple times and the number of unique ensemble traces after 5 

resampling rounds is only 17. In contrast, the 1978 forecast starts off from an average MEI value, with many historical years  5 

with similar MEI values to resample from. As a result, each of the 50 ensemble traces is unique after 5 resampling rounds.  

 

 

Figure 6: The number of unique ensemble traces in 50-member ensembles of resampled time series (w=25), starting from 

December 1st, 1978, 1973 and 1997. 10 

 

3.3 Forecast evaluation 

The skill of the forecasts was assessed in terms of Root Mean Square Error (RMSE) of the ensemble mean, Brier Score (BS) 

and Continuous Ranked Probability Score (CRPS). The RMSE is a direct measure of the accuracy of the mean forecast but it 

does not account for ensemble spread. The BS and CRPS are integral measures of ensemble forecast quality (Jolliffe and 15 

Stephenson, 2003; Wilks, 2006). The Brier score was computed for a threshold level at 80% exceedance probability of the 

monthly flow for each sub-basin.  

The subsampler-resampler method was run in parallel to the original ESP method within CHPS, to enable a comparison. The 

skill metrics for the two methods were compared through relative skill scores, for example the Brier Skill Score (BSS):  
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model

reference

BS
BSS 1

BS
             (2) 

Where the BSreference is the Brier Score of the standard ESP method. The skill metrics were calculated using the Ensemble 

Verification System (Brown et al., 2010). The next section focuses on forecast skill for streamflows in May and June. These 

months have the mostlargest variation (see Fig. 2), which makes the effect of an improved forecast more pronounced. 

4 Results 5 

The performance of the subsampler selecting historical years from the original ESP based on climate mode similarity was 

first evaluated without the addition of resampled time series. Figure 7 shows the BSS, CPRSS and relative reduction in 

RMSE of the resampler method in red as a function of number of ESP ensemble members. Skill scores reported here refer to 

May and June flowmonthly flows and are averaged over forecast lead times between 13 and 12 months. The 50-year 

ensemble is identical to the original ESP and has a BSSskill score of 0. by definition. Upon reducing the ensemble size, the 10 

BSSforecast skill increases for two of the three sub-basins (Dworshak and Hungry Horse) as a result of dismissing historical 

years with dissimilar MEI values. This indicates that the climate mode conditioning is shifting the ensemble forecast towards 

the most probable outcome.  

 

 15 

Figure 7: SubsamplerForecast skill of the subsampler method: Brier Skill Score (80% threshold) of May-June streamflow 

forecasts (in red) compared to subsampler-resampler method (in black) as a function of number of historical ESP ensemble 

members. a. Brier Skill Score (80% threshold) b. CPRSS and c. relative reduction of RMSE. Skill scores are averaged over 50 

years of hindcasts for May and June monthly streamflow at lead times between 3 and 12 months.  

 20 

For one sub-basin (Libby Dam), the BSSforecast skill decreases for smaller ensemble sizes. The reduction of the number of 

ensemble members has a negativean adverse effect on its statistical properties. The sampling uncertainty increases, which 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0 10 20 30 40 50

B
ri

e
r 

s
k

il
l 

s
c

o
re

 

Nr historical years in ensemble

analytical result

Dworshak

Hungry Horse

Libby

a.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 10 20 30 40 50

C
R

P
S

S

Nr historical years in ensemble

analytical result

Dworshak

Hungry Horse

Libby

b.

-20%

-15%

-10%

-5%

0%

5%

10%

0 10 20 30 40 50

re
d

u
c

ti
o

n
 i

n
 R

M
S

E
 (

%
)

Nr historical years in ensemble

analytical result

Dworshak

Hungry Horse

Libby

c.



 

24 

 

counteracts the gain in forecast skill from the climate mode information. The dashed line representslines represent the 

general behaviour of the BSSforecast skill for a randomly reduced ensemble size, as described by Ferro (2007) for BSS. The 

analytical results for CRPSS and RMSE were derived from Ferro et al (2008), Eqn. 22 and Ho et al. (2013), Eqn. 1 

respectively. StreamflowsThe streamflow at Libby Dam havehas the weakest correlation with MEI. Apparently, the MEI 

information has little additional value for the Libby Dam streamflow forecasts and their skill follows this trend. For the other 5 

two sub-basins the BSSskill also drops below zero for ensemble sizes less than 10. 

Figure 8 showsNext, the BSS for forecasts fromforecast skill of the combined subsampler-resampler method, where the was 

computed (black lines in Figure 7).  The ensemble members that were dismissed in the subsampler are now replaced by 

resampled traces. The ensemble size is thus 50 in all cases and the BSS is. The forecast skill is still a function of the number 

of original ESP members (full historical years).  In), but in contrast to Fig. 7, the BSS for all test basins are now the 10 

subsampler forecasts, the subsampler-resampler produces a generally positive skill over the full range. The marginal loss of 

skill for Libby is attributed to statistical uncertainty of the skill score calculation. This demonstrates that the loss of skill 

from the reduction of ensemble size can be neutralized by additional ensemble traces from the resampler method. The 

improvement of skill in terms of RMSE and CRPS was also investigated and found in agreement with the Brier skill score 

(results not shown). A mix of 10 historical years from the subsampler ESP and 40 additional resampled traces produces in 15 

general the best result for thesethe three sub-basins in this case study.  

Figure 8 shows the forecast skill as a function of forecast lead time. A combination of 10 historical and 40 resampled traces 

is used for all lead times. Three different skill metrics are shown for the May and June monthly flow from the Dworshak 

sub-basin. The other twothree test basins show similar but less pronounced behaviour (results not shown).. A positive skill is 

found up to 12 months of forecast lead time for Dworshak and Hungry Horse. This confirms the persistent nature of the 20 

ENSO climate mode. Because of this persistence, the conditioning of the subsampler and resampler on the climate phase at 

the time of forecast produces a positive skill over several months up to a full year in the future. For Libby, no gain in forecast 

skill is found. 
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Figure 98: Improvement in May-/June streamflow forecast skill of the subsampler-resampler (w=25) method relative to the 

standard ESP as a function of lead time for DWR test site, three: a: Dworshak, b: Hungry Horse, c: Libby test sites. Three 5 
different skill metrics: CRPS, Brier Score and RMSE. 
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Figure 98 shows that for lead times of 1 or 2 months, the skill is negative. This is due to a small effective ensemble size of 

the resampled traces for the shortest lead times, as discussed in Sect. 3.1. In order to maintain climate mode information on  

the seasonal time scale, the similarity criterion was set fairly stringent (w=25). This produces good results for the 4 to 6-

month lead times, but it causes the same small set of historical years to be selected in the first resampling rounds every run. 

Although the absolute number of ensemble members is 50, a small subset of historical years keep re-appearing in the 5 

resampled time series at the shortest lead times. This has a negative effect on the statistical properties of the ensemble and on 

the forecast skill. For longer lead times, this effect vanishes (see Fig. 6).  

5 Discussion 

The results in the previous section show that the subsampler-resampler method is able to improve the ESP forecast skill by 5 

to 10% in two of the three test basins.sub-basins in this case study for lead times greater than 2 months. This improvement 10 

seems modest compared to the 28% gain in forecast skill reported by Werner et al. (2004) and 27% by Bradley et al. (2015) 

who used similar post-processing methods. We note, however, that the performance may vary considerably per sub-basin. 

Werner et al. (2004) found a much smaller skill improvement of 4 and 6% for two other sub-basins, which is comparable to 

the results found in this study. Moreover, Werner et al. (2004) used a separate calibration of post-processing parameters per 

sub-basin. Many operational applications require equally weighted ensembles for all sub-basins in the area of interest. This 15 

requirement does not allow for a per-sub-basin optimization.  

For the third sub-basin in our case study, Libby Dam, no improvement of skill was found. The streamflows in this sub-basin 

have the lowestweakest correlation with MEI and the local climate is least affected by ENSO. It was shown that dismissing 

ensemble members from the ESP leads to a reduction of forecast skill for this sub-basin because of that is similar to the 

degradation of statistical properties of the expected reduction for a randomly reduced ensemble. However, the, as described 20 

by Richardson (2001), Ferro (2007) and Ferro et al. (2008). The same effect occurs for the other two locations for very small 

numbers of sub-samples. An ensemble of fewer members has a less accurate ensemble mean and is less well capable of 

accurately describing a probability distribution. The subsample-resampler method resolves this issue. The additional traces 

from the resampler restore the forecast skill to that of the original ESP. The and the adverse effect of the dismissal of 

ensemble traces by the subsampler is neutralized by the resampler traces. This is an important advantage of the subsampler-25 

resampler method in operational settings, where avoiding loss of forecast skill anywhere is at least as important as improving 

the skill for a few sub-basins.  

The subsampler-resampler method also has some practical advantages over alternative approaches. Firstly, the subsampler-

resampler produces an equal-likelihoods streamflow ensemble, in contrast to the ensemble-weighting schemes. Also, the 

total number of ensemble traces can be set equal to the original number of ESP members. This facilitates a comparison 30 

between the forecast skill of the conditioned ESP and that of the unconditioned ESP. Even more importantly, it facilitates th e 

migration of an operational forecasting system from a standard ESP to a climate-mode conditioned ESP, since the 
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downstream processes that use the streamflow ensemble as input need not be updated. Finally, the resampler method allows 

for a parallel sampling of non-meteorological variables from the historical record, with automatic preservation of cross-

correlations. This is an important advantage for agencies like BPA that use these variables (e.g. power demand) in their 

water resources planning tools.  

There are several parameters in the subsampling-resampling method that must be reconsidered or recalibrated if the method 5 

is applied to other regions or lead times of interest. Firstly, the relevant climate modes should be identified for the region of 

interest. To simplify the test case in this study, we have used only a single climate index: MEI. Next, the number of original 

ESP traces to be selected in the subsampler should be set. The optimal number of traces was found to be 10 in the current 

application, which is close to the values of 7 found by Werner et al. (2004), 12 by Najafi et al (2012) and 9 by Bradley et al. 

(2015). Apparently, a selection of 15% to 20% of original ESP traces gives the best performance for this type of ESP 10 

subsampling.   

Another calibration parameter is the weight per climate index in the resampler procedure, which determines the persistence 

of the climate phase signal and the spread of the ensemble. It was found that a weight w=25 gave the best results for the 4- to 

6-month lead times of interest in this case study, although it leads to an underdispersed ensemble for the shorter lead times. 

A less stringent similarity criterion, i.e. a smaller w, would improve the spread for short lead times. However, this would lead 15 

to a less persistent climate phase signal and loss of forecast skill for the longer lead times.  

There are several opportunities for further improvement of the method. For the Columbia basin, a conditioning on other 

climate modes (e.g. PDO) could improve the forecast skill. This is being explored by BPA at the moment. The performance 

at short lead times can possibly be improved by introducing a random time shift in the historical resampling scheme. This 

would introduce more variability in the resampled traces without compromising the persistence of the climate phase signal. 20 

Another possible improvement is to employ GCM-based climate mode forecasts instead of the lag-1 resampling procedure 

described in Sect. 2.2. This is left for future research.  
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