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Abstract 14 
There are growing numbers of studies on climate change impacts on forest hydrology but limited 15 
attempts have been made to use current hydroclimatic extremes to constrain future climatic 16 
conditions. Here we used historical wet and dry years as a proxy for expected future extremes in a 17 
boreal headwater catchment. Hydrologic modelling assessments showed that runoff could be 18 
underestimated by at least 35% when dry year parameterization was used for wet year conditions. 19 
Uncertainty analysis showed that behavioural parameter sets from wet and dry year separated 20 
mainly on precipitation related parameters and to a lesser extent on parameter sets related to 21 
landscape processes. While inherent uncertainty in climate models still drives the overall uncertainty 22 
in runoff projections, hydrologic model calibration for climate impact studies should be based on 23 
years that best approximate future conditions to constrain uncertainty in projecting future 24 
conditions. 25 
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1 Introduction 29 
There are growing numbers of studies on climate change impacts on  forest hydrology but these are 30 

usually based on long-time series that depict average system behaviour (Bonan, 2008; Lindner et al., 31 

2010: Tetzlaff et al., 2013). As a result, limited attempts have been made to use current 32 

hydroclimatic extremes to assess plausible future conditions. These trends in predictive uncertainty 33 

might continue beyond our current projecting capability if the level of human activities and 34 

greenhouse gas emission continues. Increasing numbers of studies are showing the importance of 35 

ensemble projections to create a matrix of possible futures, where the mean provides a statistically 36 

more reliable estimate (Bosshard et al., 2013; Dosio and Paruolo, 2011; Oni et al., 2014a; Raty et al., 37 

2014) instead of using a single climate model to represent the future. This has helped in part to 38 

constrain the predictive uncertainty and/or uncertainty in precipitation downscaling that is still larger 39 

than that of temperature (Teutschbein and Siebert, 2012). This inherent uncertainty might further 40 

increase in the warmer future in northern latitudes and high altitude catchments as precipitation 41 

dynamics become less consistent due to a shift in winter precipitation patterns toward rainfall 42 

dominance (Berghuijs et al., 2014; Dore, 2005).  43 

It is unequivocally believed that climate is a first order control on watershed hydrology (Oni et al., 44 

2015; Vörösmarty et al., 2000). As a result, runoff has become a central feature in the modelling 45 

community (Futter et al., 2014; Lindström et al., 2010) to understand watershed responses to both 46 

short and long term environmental changes (Wellen et al., 2014). Conceptualization of many of these 47 

hydrologic models has been based on average long term natural rainfall-runoff processes. However, 48 

average conditions may not best reflect processes operating under changing conditions. As a result, 49 

all models have their inherent uncertainties that can be amplified when projecting future conditions. 50 

The predictive uncertainties resulted from hydrologic models is due in part to issues of 51 

conceptualization, scaling and connectivity of processes between the landscape mosaic of a 52 

watershed (Tetzlaff et al., 2008; Ren and Henderson-Seller, 2006).  No consensus has yet been 53 

reached regarding whether the uncertainty due to differences in hydrologic model structures and/or 54 

calibration strategies would be greater than the unresolved uncertainty inherent in climate models 55 

when projecting hydrologic conditions in boreal ecozones. 56 

Although climate change is a global phenomenon (IPCC, 2007), it will likely also alter local catchment 57 

water balances (Oni et al., 2014b; Porporato et al., 2004). Prolongation of drought regimes or 58 

increasing frequency of storm events observed in different parts of the world (Dai, 2011; Trenberth, 59 

2012) calls for greater attention on how to constrain uncertainty in predicting extreme events. While 60 

the frequency of hydroclimatic extremes might be low under present day conditions (Wellen et al., 61 

2014), there could be intensification of precipitation events globally as climate changes (Chou et al., 62 
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2013). Otherwise, preparations for future hydroclimatic extremes could be undermined by our 63 

inability to properly simulate or project new conditions expected in the future.  64 

One way to constrain the uncertainty in hydroclimatic projections is to utilize historical wet and dry 65 

years as a proxy for the future conditions expected as climate changes.  Here we used hydrological 66 

and meteorological observations in dry and wet years in a long term monitored headwater 67 

catchment in northern Sweden. The objectives of this study were to: 1) to utilize long term field 68 

observations to gain insights into present extreme hydroclimatic behaviour; 2) to model the extreme 69 

behaviour using multi-criteria goodness-of-fit metrics; 3) to quantify the uncertainty in our current 70 

predictive practices that is based on long term series; 4) to conduct a robust parameter uncertainty 71 

assessment that will help to gain further insights into plausible differences in hydrologic behaviour in 72 

dry and wet years; and 5) to use an ensemble of climate change scenarios to test whether  our 73 

current predictive uncertainty regarding future extremes could be attributed to inherent 74 

uncertainties in climate models or be driven by differences in hydrologic model calibration strategies. 75 

2 Method 76 

2.1 Study site 77 
This modeling exercise was carried out in Svartberget (64o 16’N, 19o 46’ E), a 50 ha headwater boreal 78 

catchment part of the Krycklan experimental research infrastructure in northern Sweden (Fig. 1) 79 

(Laudon et al., 2013). Svartberget has two headwater streams, one of which drains a completely 80 

forest landscape while the other drains a headwater mire. The catchment has a long term mean 81 

annual temperature of about 1.8oC. The minimum temperature of -9.5oC occurred in January and 82 

maximum temperature of 14.5oC occurred in July. The catchment receives a mean annual 83 

precipitation of 610 ± 109 mm with more than 30% falling as snow (Laudon and Ottosson-Löfvenius, 84 

2015). Snow cover usually lasts between November and May (Oni et al., 2013). The catchment has a 85 

long term mean annual runoff of 320 ± 97 mm with subsurface pathways dominating the delivery of 86 

runoff to streams. Spring melt represents the dominant runoff event in the catchment and lasts 4 to 87 

6 weeks. Modelling results presented here were based on the long-time series of precipitation, air 88 

temperature and runoff from a weather and flow monitoring station at the outlet of Svartberget. 89 

Forest cover includes a century old Norway spruce (Picea abies) and Scot pine (Pinus sylvestris) with 90 

some deciduous Birch species (Betula spp). Sphagnum sp dominates the mire landscape. Svartberget 91 

has gneissic bedrock overlain by compact till of about 30 m thickness to the bedrock. The catchment 92 

elevation ranges from 235-310 m above sea level and was delineated using DEM and LIDAR (Laudon 93 

et al., 2011).   94 
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2.2 Climate downscaling 95 
We used 15 different regional climate models (RCMs) from the ENSEMBLES project (Van der Linden 96 

and Mitchell, 2009) in the downscaling and analysis presented here (Table 1).  All the RCMs had a 97 

resolution of 25 km and were under A1B emission scenarios. Precipitation and temperature values 98 

(2061-2090) were obtained by averaging the values of the RCM grid cell with center coordinates 99 

closest to the center of the catchment and of its eight neighboring grid cells. Due to the coarse 100 

resolution of global climate data, we bias-corrected each RCM using precipitation and air 101 

temperature data from a weather station (1981-2012) located within the Svartberget catchment. The 102 

distribution mapping method was used for bias-correction of the 15 RCMs presented here. This was 103 

achieved by adjusting the theoretical cumulative distribution function (CDF) of RCM-simulated 104 

control runs (1981-2010) to match the observed CDF.  These were then applied to adjust the RCM-105 

simulated scenario runs for the future (2061-2090). Downscaling or RCM bias corrections presented 106 

here were fully described in Jungqvist et al. (2014) and Oni et al. (2014, 2015).  107 

2.3 Modelling and analysis 108 
PERSiST is a semi-distributed bucket type rainfall-runoff model with a flexibility that allows modelers 109 

to specify the routing of water following the perceptual understanding of their landscapes (Futter et 110 

al., 2014). This feature makes PERSiST a useful tool to simulate streamflow from landscape mosaic 111 

patches at a watershed scale.  The model operates on a daily time scale with inputs of precipitation 112 

and air temperature. The spatial interface requires an estimate of area, land cover proportion and 113 

reach length/width of the hydrologic response units. In the PERSiST application presented here, we 114 

used three buckets to represent the hydrology of Svartberget. These include snow, upper soil and 115 

lower soil buckets. In the snow routine bucket, the model utilized a simple degree day 116 

evapotranspiration and degree day melt factor (Futter et al., 2014). Although the maximum rate of 117 

evapotranspiration could be independent of wet and dry years as used in this study, the actual rate 118 

of evapotranspiration could be influenced by the amount of water in the soil and by an 119 

evapotranspiration adjustment parameter. The latter is an exponent for limiting evapotranspiration 120 

that adjusts the rate of ET (depending on water depth in the bucket or how much is 121 

evapotranspired). The snow threshold partitions precipitation as either rain or snow. The model also 122 

simulates canopy interception for snowfall and rainfall to the uppermost bucket.  123 

The quick flow bucket simulates surface or direct runoff in response to the inputs of rainfall or 124 

snowfall as a function of soil moisture saturation. Partitioning of the runoff generation process 125 

between the quick flow and lower soil buckets (upper and lower) is defined in the square matrix 126 

(Table 2). The evapotranspiration adjustment parameter sets the rate at which ET can occur when 127 

the soil is no longer able to generate runoff and this was set to 1 in the upper soil box. Maximum 128 
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capacity is the field capacity of the soil that determines the maximum soil water content held. The 129 

time constant specifies the rate of water drainage from a bucket and requires a value of at least 1 in 130 

PERSiST. The relative area index determines the fraction of area covered by the bucket and is also set 131 

to 1 for our simulations. Infiltration parameters in each bucket determine the rate of water 132 

movement through the soil matrix. The model is based on series of first order differential equations 133 

that are solved sequentially following the bucket order in the square matrix. More detailed 134 

information about PERSiST parameterization and equations is provided in Futter et al. (2014). 135 

Parameter values and ranges used in the Monte Carlo analysis are listed in Table 3. 136 

The model was calibrated against streamflow to generate present day runoff conditions. Initial 137 

manual calibration was performed on the entire time series to minimize the difference between the 138 

simulated and observed runoff. The manual calibration also helps to identify a suite of parameters 139 

and their ranges to be used in the Monte Carlo analysis by varying each parameter value such that 140 

the Nash-Sutcliffe (NS) value for the overall period of simulation dropped close to zero. This helped 141 

to determine the ranges to use in the Markov Chain Monte Carlo (MCMC) analysis for the wet and 142 

dry year simulations. The MCMC tool utilizes the Metropolis-Hasting algorithm and was described in 143 

Futter et al. (2014). The best parameter sets (top 100) were selected based on highest NS statistics 144 

from untransformed/log transformed data and other performance metrics (e.g. variance of 145 

modeled/observed series, absolute volume difference, root mean square and R2). These top 100 146 

parameter sets are referred to as behavioural parameters henceforth. The behavioural parameters 147 

were subjected to further analyses to determine hydrologic behaviour in dry and wet years. These 148 

include the cumulative distribution function (CDF) of behavioural parameters to determine the 149 

sensitive parameters and discriminant function analysis (DFA) to determine the dominant 150 

parameter(s) that separate the hydrology of wet from dry years. Wet years were defined as the 151 

hydrologic years with runoff exceeding 430 mm/yr or 40% higher than average annual runoff (1995, 152 

2002, 2005 and 2010). Dry years were defined as the hydrologic years with runoff less than 150 153 

mm/yr or less than 50% of average annual runoff (1987, 1992, 2000 and 2001). Hydrologic year was 154 

September 1 of a year to August 31 of the following calendar year. The bias corrected future climate 155 

series from ensemble of climate models (Table 1) were used to project future extremes using 156 

different goodness of fit metrics.  157 

3 Results 158 

3.1 Analysis of long term climate and hydrology series 159 
Preliminary analysis showed that the Svartberget hydroclimate was highly variable and thus helped 160 

to partition the long term series into dry and wet years (SI 1). As a result, both dry and wet year 161 

5

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-7, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 20 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



conditions were different in terms of climate and cumulative runoff patterns. The cumulative 162 

distribution of the dry/wet year series (Fig 2a) showed that dry year precipitation (462 ± 102 mm) 163 

was only 64% of precipitation observed in wet year (716 ± 56 mm). Similar patterns were observed in 164 

runoff dynamics (Fig. 2b) where total runoff in dry years (129 ± 35 mm) was 29% of total runoff 165 

observed in wet years (449 ± 19 mm). Runoff response was 63% of total precipitation that fell in wet 166 

years and 28% of precipitation in the dry year regime. These were summarized in Table 4. Mean 167 

annual temperature was 2.4 oC in wet versus 1.8 oC in dry years.  168 

When assessed on a seasonal scale, both precipitation and runoff were higher in almost all months in 169 

wet compared to dry year condition (Fig. 3) but differed in terms of seasonal patterns. While runoff 170 

peaked in May in both wet and dry years reflecting spring snowmelt dynamics that characterize 171 

Svartberget, runoff magnitude differed. Peak precipitation events occurred in summer months with 172 

additional autumn peaks in wet year. However, there was a shift in precipitation patterns with lowest 173 

precipitation depth occurring between February/March in dry year compared to April in wet year. 174 

Result also showed that temperature in wet and dry years were similar on average, while winter 175 

months were generally slightly warmer during wet years and summers slightly warmer in dry year 176 

(Fig 3c). 177 

3.2 Future climate projections 178 
Results showed that there was less agreement between the observed series and uncorrected 179 

individual RCMs (SI 2a, b). However, bias correction helped to reduce the uncertainty by providing a 180 

better match for the ensemble median of the air temperature and precipitation with their 181 

corresponding observed series (SI 2c, d). Results showed that ensemble median performed better in 182 

fitting the observed air temperature than precipitation. Results also showed a possible increase in air 183 

temperature by 2.8-5oC (median of 3.7oC) and possible increase in precipitation by 2-27% (median of 184 

17%). Although precipitation and temperature were projected to increase throughout the year, the 185 

temperature changes would be more pronounced during winter months irrespective of whether it 186 

was a dry or wet year (Fig. 3c). However, projected changes in precipitation followed similar patterns 187 

to historical wet year with more precipitation expected between late winter months through spring 188 

(Fig. 3a). Result also showed that the winter period with temperature below 0oC could be shortened 189 

as climate warms in the future (SI 2). 190 

3.3 Model calibrations and performance statistics 191 
Model behavioral performance followed similar patterns when metrics such as R2, NS and log NS 192 

were used (SI 3a-c) and could be used interchangeably to measure model performances. The model 193 

performed better when calibrated to wet and dry conditions (compared to long term) using NS 194 

metrics (SI 3b, c). Although no major improvements to model efficiency above NS of 0.79 and 0.81 195 
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were obtained in dry and wet years, respectively, we obtained a wider range of model performances 196 

in wet relative to dry year. The patterns of other performance metrics were different as we observed 197 

the highest RMSE in dry year and lowest RMSE in wet year condition (SI 3d). There was minimum AD 198 

range in the long term record and maximum range in dry year (SI 3e). Model performances based on 199 

the Var metric also showed the largest variability in dry year compared to the long term record and 200 

least Var in the wet year (SI 3f).  201 

3.4 Runoff simulations and behavioural prediction range 202 
Using the best performing parameter sets based on the NS statistic as an example, the model 203 

performed well in simulating the interannual runoff patterns but underestimated the peaks (SI 4). 204 

When resolved to their respective dry and wet year components, the model performed better in 205 

simulating runoff conditions in wet year despite its larger data spread and higher spring peaks than 206 

the dry year regime (SI 5). When parameterization for dry year was used for runoff prediction in wet 207 

years, runoff was underestimated by 35% due to significant uncertainty that stemmed from growing 208 

season months (Fig. 4). Modelling analysis presented here also showed that no single metric can be 209 

an effective measure of model performance under extreme conditions depicted in dry and wet years 210 

(Fig 5a- c). However, utilizing a behavioural mean of these different performance metrics (Fig. 5d-f) 211 

appeared to be a more effective way of calibrating to extreme hydroclimatic conditions.  While the 212 

behavioural mean performed better in simulating runoff dynamics in winter through spring in the 213 

long term record and significantly reduced the uncertainty in dry and wet years, larger uncertainty 214 

existed in summer through autumn months in dry and wet year compared to the long term record.  215 

3.5 Parameter uncertainty assessments 216 
While we observed a wide prediction range from behavioural parameter sets (Fig. 5), we have limited 217 

information on the underlining processes. Therefore, we subjected the behavioural parameter sets 218 

to further analysis to identify sensitive parameters and plausible patterns of hydrologic processes 219 

that differentiate dry and wet years (Fig. 6). The cumulative distribution function (CDF) of 220 

behavioural parameter sets showed both rain and flow multipliers were sensitive parameters in dry 221 

year and tended toward lower ranges. The rain multiplier was less sensitive in wet years unlike the 222 

flow multiplier. Long term simulations showed no sensitivity to the rain multiplier but were sensitive 223 

to the flow multiplier. We observed similar patterns of behaviour to flow multiplier in all the three 224 

hydrologic regimes (Fig. 6b). Result also pointed to the sensitivity of interception in wet year but all 225 

the three hydrologic regimes showed similar patterns for  the time constant (water residence time) 226 

in lower soil.  227 

We subjected the pool of behavioural parameters in dry and wet year regimes to discriminant 228 

function analysis (DFA) to identify the key parameters that separate the extreme hydroclimatic 229 
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conditions (Fig. 7). Result showed that both dry and wet years separated well in canonical space. 230 

However, the separation was driven mainly on quantitative parameters related to precipitation, 231 

interception and evapotranspiration on canonical axis 1 (Rmult, Int and DDE). The parameters 232 

separated to a lesser extent on processes related to snow parameters on canonical axis 2 (Smult, SM 233 

and DDM). 234 

3.6 Quantification of uncertainty in hydrologic projections  235 
We compared the effects of different performance metrics in wet and dry year regimes to constrain 236 

uncertainty in runoff projections under future hydroclimatic extremes in Svartberget catchment (SI 237 

6). Results showed that differences in model representation of present day conditions might be 238 

minimal (compared to the observed) but a wide range of runoff regimes were projected in the 239 

future. We also observed small difference in the range of runoff projections (derived from minimum 240 

and maximum parameter sets) using different model performance metrics.  Uncertainties inherent in 241 

climate models (as opposed to differences in calibration or performance metrics) appeared to drive 242 

the overall uncertainty in runoff projections to extreme hydroclimatic conditions. As wet year 243 

appeared to give more plausible projections of future condition expected in the boreal ecozone, and 244 

uncertainty in present day long term simulations is driven by dry year. We compared the runoff 245 

predictions using dry year parameterization to parameterization based on wet year to quantify our 246 

current predictive uncertainty. Results showed that future runoff could be under predicted by up to 247 

40% if the projections are based on dry year parameterization alone (Fig. 8). Both parametrizations 248 

projected a shift in spring melt from May to April in the future. However, ensemble projections 249 

showed that summer months could be a lot wetter (based on wet year parameterization compared 250 

to dry year) and wet year spring peak could be up to 43% more compared to projections based on 251 

wet year ensemble mean. 252 

4 Discussion 253 

4.1 Insights from long term hydroclimatic series 254 
Several studies have evaluated the impact of climate change on surface water resources (Berghuijs et 255 

al., 2014; Chou et al., 2013; Dore, 2005) but most of these were based on long term series that depict 256 

average system behaviour. However present day extremes, such as those derived from historical wet 257 

and dry years, can be used as simple proxies to gain insights that will aid our understanding of future 258 

hydroclimatic conditions. Using this approach we found that standard calibrations can result in 259 

underestimation of runoff by up to 35% due to high variability of hydroclimate series in northern 260 

boreal catchments. Several explanations can be offered for the high variability in the long term 261 

hydroclimate series at the study site.  First, snowmelt hydrology is important in understanding the 262 

boreal water balances due to their location in a high latitude environment (Brown and Robinson, 263 
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2011; Euskirchen et al., 2007; Dore, 2005; Tetzlaff et al., 2011, 2013). As a result, northern headwater 264 

catchments tend to show high variability (Brown and Robinson, 2011; Burn, 2008).  265 

We observed annual runoff yield to be 63% of total precipitation that fell in the wet year compared 266 

to 28% of total precipitation in dry year. More runoff yield in the wet year regime could be as a result 267 

of near field capacity of the soils throughout the year, leading to greater propensity for runoff 268 

generation. This can also imply more winter snow accumulation during the long winter period, 269 

resulting in higher spring melt that drives the overall water fluxes (Laudon et al., 2004). Less runoff 270 

yield in dry year could be attributed to higher soil moisture deficit and relatively more important 271 

evapotranspiration rates (Dai, 2013).   272 

We also observed differences in dry/wet year peak summer precipitation and a shift in the lowest 273 

precipitation in late winter/early spring. Despite the differences in precipitation, we observed similar 274 

patterns of runoff responses that only differ in terms of magnitude. This suggested that there was 275 

more effective rainfall (net available water) available to infiltrate, continuously recharge 276 

groundwater systems and generate runoff from upstream sources in wet year. Slightly warmer 277 

temperatures in summer months could drive more of growing season evapotranspiration in dry year. 278 

Small differences in temperature regime in wet and dry year, unlike precipitation, also explained why 279 

larger uncertainty still exists in precipitation downscaling using any scenario-based GCM as observed 280 

in SI 2. 281 

4.2 Multi-criteria calibration of hydrological models 282 
There has been considerable discussion about the calibrating procedure in the hydrological modelling 283 

community (Andreassian et al., 2012; Boij and Krol, 2010; Efstratiadis and Koutyiannis, 2010; Krause 284 

et al., 2005; Price et al., 2012). One of the key reasons for this is the difference in goodness-of-fit 285 

measures utilized in each model (Pushpathala et al., 2012). The most common strategy is to calibrate 286 

hydrologic models using the Nash and Sutcliffe (NS) statistic (Nash and Sutcliffe, 1970). However, 287 

many modelers believe that the NS-based method alone tends to underestimate variance in 288 

modelled time series as this metric could be biased toward high or low flow periods (Futter et al., 289 

2014; Jain and Sudheer, 2008; Pushpalatha et al., 2012). This is leading us to use of multi-criteria 290 

statistics in model calibrations to constrain predictive uncertainty in our hydrologic projections to 291 

extreme hydroclimatic events. Therefore, multi-criteria calibration objectives that assessed model 292 

performances using different goodness-of-fit metrics could aid our understanding of hydrologic 293 

behaviour to extreme hydroclimatic conditions in boreal catchments. Our observation of differences 294 

in model performances in terms of NS and other metrics presented here is expected as a three box 295 

model proposed by Seibert and McDonnell (2002) similarly showed good fit for NS but poor fit using 296 
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other metrics. However, lower model performance (based on NS) for the long term record is 297 

explainable as most hydrologic models are based on average system behaviour represented by long 298 

term rainfall-runoff processes (Futter et al., 2014; Oni et al., 2014b; Wellen et al., 2014).  299 

The lower range of model performances in calibrating to the observed runoff in dry years is an 300 

indication of variable runoff generation processes associated with this wetness regime. Dry years 301 

cause drought-like conditions (Dai, 2011; Mishra and Singh, 2010) as a result of less water availability 302 

that reduce hydrologic connectivity within the catchment. However, the model performed better 303 

when applied to wet and dry years individually compared to the long term record based on NS 304 

statistics. This suggested that the mechanisms driving hydrologic processes in dry and wet years 305 

might be similar but their relative magnitude differs from long term average conditions (Grayson et 306 

al., 1997). Better performance to extreme conditions (compared to average long term) can also be 307 

attributed to the fact that NS or log NS are believed to be biased towards high flows and baseflow, 308 

respectively (Futter et al., 2014; Jain and Sudheer, 2008; Pushpalatha et al., 2012).  309 

However, NS statistics alone are not enough to assess model performances in climate-sensitive 310 

boreal headwater streams such as Svartberget. Other metrics such as the RMSE showed that dry year 311 

could be a major driver of the uncertainty we observed in simulating the long term record. A possible 312 

explanation could be that the soil moisture deficit is larger in dry year, leading to soil matrix or 313 

vertical flow (Grayson et al. 1997) that can only generate runoff after filling soil pore spaces 314 

(McDonnell, 1990). For example, soil pore spaces are usually not close to saturation under dry 315 

condition due to 1) intermittent precipitation events throughout the year and 2) several patchy 316 

source area of high water convergence that are characterized by local landscape terrain or soil 317 

properties (Fang and Pomeroy, 2008; Jencso et al., 2009).  Also higher rates of evapotranspiration 318 

coupled with low precipitation can contribute to a more spatially decoupled runoff and antecedent 319 

soil moisture conditions in dry years (Dai, 2013; Vicente-Serrano et al., 2010). Therefore, no single 320 

model performance metric can be effective in simulating the hydrology of extreme conditions, as our 321 

results showed that the mean of behavioural metrics outperformed any individual metric in dry and 322 

wet years under present day conditions.  323 

4.3 Parameter sensitivity in dry and wet year regimes 324 
Despite the fundamental issues of parameter equifinality (Beven, 2006) in models like PERSiST, more 325 

complex models have been shown to perform better in simulating runoff dynamics at the watershed 326 

scale (Li et al., 2015). The robust uncertainty assessment conducted here showed that extensive 327 

exploration of model parameter spaces could give some hints as to how hydrologic behaviour differs 328 

between wet and dry year regimes. A possible explanation for the non-sensitivity of the rain 329 
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multiplier in wet year could be attributed to a more consistent or stable precipitation feeding the 330 

system throughout the year compared to intermittent precipitation in dry year (Fang and Pomeroy, 331 

2008; McNamara et al., 2005). This can explain the smaller spring peak that characterizes the dry 332 

year regime or its non-sensitivity to interception unlike what characterize wet year regimes. 333 

However, sensitivity of the lower soil time constant followed similar patterns in dry and wet years 334 

unlike the upper soil box. Therefore, we could expect faster flow and higher runoff ratio in the wet 335 

years due to rapid response to precipitation events and more macropore flow (Peralta-Tapia et al., 336 

2015). This can lead to steady runoff generation due to 1) near saturation of soils and 2) greater 337 

connectivity between stream channels and upland areas (Bracken et al., 2013; Ocampo et al., 2006) 338 

that become disconnected in dry year. However, the patterns of the flow multiplier parameter 339 

suggested that both extreme conditions followed similar runoff generation processes. These 340 

suggested that the main physical mechanism to explain parameter sensitivity and hydroclimatic 341 

behaviour to extreme conditions were related to differences in their precipitation patterns rather 342 

than landscape-driven hydrologic processes. 343 

4.4 Drivers of hydrologic behaviour in dry and wet year regimes 344 
Even though equifinality limits the use of CDFs alone in identifying all sensitive parameters, DFA of 345 

behavioural parameters gave further insights on plausible differences in wet/dry hydrologic 346 

behaviour when projected on canonical space. This suggested that hydrological model 347 

parameterizations calibrated to high flow associated with wet year differ from parameterizations for 348 

long term or dry conditions. Therefore, parameter separation primarily on quantitative parameters 349 

(Rmult, Int and DDE) related to rainfall and evapotranspiration on canonical axis 1 suggested that 350 

climate is a first order control of hydroclimatic extremes in the boreal forest. This is consistent with 351 

Wellen et al. (2014), who showed that extreme conditions could be triggered in a watershed when 352 

precipitation reaches a threshold that can initiate saturation overland flow. This is because soils are 353 

always near saturation capacity under prolonged wet conditions (Grayson et al., 1997). This can 354 

explain the increase in hydrologic model uncertainty in capturing the peak runoff events in wet years 355 

unless parameter ranges that combined different performance metrics are considered. 356 

Unfortunately, we might face a new challenge of increased precipitation ranges in the future as 357 

climate changes (Chou et al., 2013; Dore, 2005). The separation of wet and dry years on snow 358 

process related parameters (Smult, SM and DDM) to a lesser extent on canonical axis 2 suggested 359 

that indirect landscape influences on snow processes could be important but is a second order 360 

control on runoff response to hydroclimatic extremes. This agrees with Jencso et al. (2009), who 361 

showed that landscape mosaic structures with their unique source contribution areas control the 362 

overall watershed response.  363 
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4.5 Implications for future climate projections 364 
All the 15 RCMs considered in this study projected a range of plausible futures in the Swedish boreal 365 

forest. Irrespective of the model performance metrics, results suggested that the future could be 366 

substantially wetter and could make drought conditions less severe in boreal ecozones. This could 367 

explain the large uncertainty in projecting runoff under extreme wet conditions. For example, dry 368 

year and long term parameterization were similar and runoff was under-predicted by 35% under the 369 

present day condition when parameterization in dry year was used for wet year. This was due to 370 

large predictive uncertainty in runoff dynamics (Fig. 4) that resulted from high evapotranspiration 371 

rates during the snow free growing seasons in dry year. This suggests that wet year calibration could 372 

give more credible projections of the future in the boreal ecozone as the distribution of precipitation 373 

in wet year is closer to the precipitation pattern expected in the future.  While our modelling results 374 

suggested negligible differences in runoff projections based on either dry year or long term 375 

parameterization, extreme hydrologic events related to wet conditions could become a more 376 

dominant feature in the boreal ecozone.  377 

These have implications on future climate change as both dry and wet year parametrization showed 378 

a consistent shift in spring melt patterns from May to April (Fig. 8). This temporal advance in spring 379 

melt patterns could result from altered distribution of snowfall and rainfall patterns in the winter 380 

(Berghuijs et al., 2014; Dore, 2005), and may likely have effects on soil frost in the upper layer 381 

(Jungkvist et al., 2014) or change in evapotranspiration rates (Jung et al., 2010; Vicente-Serrano et al., 382 

2010). Therefore, intensification of hydroclimatic regimes as climate changes in the future (Kunkel et 383 

al., 2013) could drive water quality issues to a new level in the boreal forest due to changes in the 384 

flux of organic carbon and aquatic pollutants. Furthermore, precipitation has been shown to have 385 

much larger biogeochemical implications for the boreal carbon balance than previously anticipated 386 

(Öquist et al., 2014).  387 

The large spread of mean annual runoff projected by each RCM in wet years is an indication of less 388 

agreement between RCMs when predicting future conditions. This suggested that inherent 389 

uncertainty in climate models, rather than differences in model calibrations, drive the overall 390 

uncertainty in runoff projections. However, hydrologic model calibration for climate impact studies 391 

should be based on years that closely approximate future conditions to best constrain uncertainty in 392 

predicting extreme conditions. 393 
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Table 1: List of RCMs from EU ENSEMBLE project used in study and their driving GCM. 

 

No. Institute RCM Driving 
GCM 

1 C4I RCA3 HadCM3Q16 

2 CNRM Aladin ARPEGE 

3 DMI HIRHAM5 ARPEGE 

4 DMI HIRHAM5 BCM 

5 DMI HIRHAM5 ECHAM5 

6 ETHZ CLM HadCM3Q0 

7 HC HadRM3Q0 HadCM3Q0 

8 HC HadRM3Q16 HadCM3Q16 

9 HC HadRM3Q3 HadCM3Q3 

10 ICTP RegCM ECHAM5 

11 KNMI RACMO ECHAM5 

12 MPI REMO ECHAM5 

13 SMHI RCA BCM 

14 SMHI RCA ECHAM5 

15 SMHI RCA HadCM3Q3 

  

17

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-7, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 20 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



Table 2: Square matrix used to partition runoff generation between buckets in PERSiST application 
presented here. For example, we conceptualized that 40% of the precipitation inputs are retained in 
the upper box, 60% are transferred to the lower box and 0% are transferred to the groundwater (row 
2) 

 

 Upper box Lower box Groundwater 
Upper box 0.4 0.6 0 
Lower box 0 0.5 0.5 
Groundwater 0 0 1 
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Table 3: Parameter notations, descriptions and ranges used in the MCMC analyses in this analysis   

 Notation Parameter description Min Max Units 

SN
O

W
 

     
SMt Snowmelt temperature -3 5 oC 
ISD Initial snow depth 40 120 mm SWE 
DDM Degree day melt factor 1 4 mm oC day-1 
DDE Degree day evapotranspiration 0.05 0.3 mm oC day-1 
GDT Growing degree threshold -3 3 oC 
Smult Snow multiplier 0.5 1.5 - 
RM Rain multiplier 0.5 1.5 - 
CI Canopy interception 0 4 mm day-1 

U
PP

ER
 B

O
X 

     
IWD_1 Initial water depth 40 100 mm 
RWD_1 Retain water depth 100 250 mm 
Infilt_1 Infiltration 1 15 mm day-1 
DRF Drought runoff fraction 0 0.5 - 
REI Relative evapotranspiration index 1 1 - 
EA_1 Evapotranspiration adjustment 1 10 - 

LO
W

ER
 B

O
X 

     
IWD_2 Initial water depth 80 250 mm 
Infil_2 Infiltration 1 15 mm day-1 
RWD_2 Retain water depth 200 200 mm 
TC_2 Time constant 2 50 days 
EA_2 Evapotranspiration adjustment 0 0 - 
InunT_2 Inundation threshold 80 150 mm 
     

G
RO

U
N

DW
AT

ER
      

IWD_3 Initial water depth 80 250 mm 
Infilt_3 Infiltration 0.1 10 mm day-1 
EA_3 Evapotranspiration adjustment 0 0 - 
RWD_3 Retain water depth 250 250 mm 
TC_3 Time constant 2 50 days 
     

RE
AC

H 

     
a Flow multiplier 0.004 0.762 - 
b Streamflow exponent 0.01 0.98 - 
ST Snow threshold temperature -2 3 oC 
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Table 4: Quantification of runoff and precipitation dynamics in wet and dry year using the observed 
series and simulated series from PERSiST 

 

 Observed series (%) Simulated series (%) 
Precipitation proportion (dry:wet year) 64  
Runoff proportion (dry:wet year) 29 29 
Runoff response to precipitation events   

Dry year 28 30 
Wet year 63 66 
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Figure 1: Map of Svartberget; a long term monitored headwater catchment in northern boreal 
ecozone of Sweden. The catchment (50ha) drains terrestrial area that consist of forest (80%) and 
upland mire (20%). Streamflow measurements were taken at downstream confluence point . 
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Figure 2: Cumulative plots of (a) precipitation and (b) runoff in dry (1995, 2002, 2005 and 2010) and 
wet (1987, 1992, 2000 and 2001) hydrologic years. Hydrologic year represent September 1 (day 1) to 
August 31 of the following year (day 365).  
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Figure 3: Seasonal patterns of (a) precipitation in dry and wet years versus ensemble mean of future 
precipitation projections, (b) runoff dynamics in dry and wet year and (c) temperature in dry and wet 
years relative to ensemble mean of future temperature projections.  
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Figure 4: Quantification of predictive uncertainty in runoff simulations when best parameter set 
(based on NS) calibrated for dry year was used for wet year.  
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Figure 5: Summary plots showing prediction range of seasonal runoff dynamics using different 
performance metrics in a) dry year, b) wet year and c) long term. (d) to (f) show the corresponding 
model performances using behavioural mean of the metrics in (a) to (c). 
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Figure 6:  Cumulative distribution function (CDF) of behavioural parameters (top 100 iterations from 
the MCMC) in wet and dry years versus long term record. (a) is the rain multiplier, b) is the flow 
multiplier, c) is and d) is the lower soil time constant that defines water residence time in the lower 
soil box. A rectangular distribution (straight line plot) defines parameter behaviours that were not 
sensitive (not left- or right-skewed).  
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Figure 7: Separation of the behavioural parameter sets (top 100 iterations from MCMC) in the dry 
and wet year hydrologic regimes using Discriminant Function Analysis (DFA). Wet and dry year 
hydrology separated mainly on parameters related to evapotranspiration (DDE), interception (Int) 
and rain multiplier (Rmult) on canonical 1. Parameters were separated on snow multiplier (Smult), 
snowmelt (SM) and degree day melt factor (DDM) on canonical 2. The circles represent normal 50% 
contours. Parameters are defined in Table 3 
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Figure 8: Example of range of runoff projection using wet year parameterization that closely depicts 
the future versus projected range based on dry year parameterization that drives the uncertainty in 
long term series. The projected range was simulated to constrain uncertainty in extreme wet and dry 
conditions in the future using the behavioural parameter sets (top 100 iterations from MCMC) for 
each of the 15 RCM scenario considered here (100 parameters by 15 RCMs = 1500 runs each for dry 
and wet year).Ensemble mean represents the mean of the 1500 realizations while long term depicts 
mean of the long term series.  
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