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Abstract 15 
There are growing numbers of studies on climate change impacts on forest hydrology but limited 16 
attempts have been made to use current hydroclimatic variabilities to constrain projections of future 17 
climatic conditions. Here we used historical wet and dry years as a proxy for expected future extreme 18 
conditions in a boreal catchment. We showed that runoff could be underestimated by at least 35% 19 
when dry year parameterizations were used for wet year conditions. Uncertainty analysis showed 20 
that behavioural parameter sets from wet and dry years separated mainly on precipitation related 21 
parameters and to a lesser extent on parameters related to landscape processes. While uncertainties 22 
inherent in climate models (as opposed to differences in calibration or performance metrics) 23 
appeared to drive the overall uncertainty in runoff projections under dry and wet hydroclimatic 24 
conditions. Hydrologic model calibration for climate impact studies could be based on years that 25 
closely approximate anticipated conditions to better constrain uncertainty in projecting extreme 26 
conditions in boreal and temperate regions. 27 
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1 Introduction 31 
There are growing numbers of studies on climate change impacts on  watershed hydrology but these 32 

are usually based on long-time series that depict average system behaviour (Bonan, 2008; Lindner et 33 

al., 2010: Tetzlaff et al., 2013). As a result, limited attempts have been made to use extreme dry and 34 

wet conditions to assess plausible future conditions. Increasing numbers of studies are showing the 35 

importance of ensemble projections to create a matrix of possible futures, where the mean provides 36 

a statistically more reliable estimate than can be obtained from a single realization of possible future 37 

conditions (Bosshard et al., 2013; Dosio and Paruolo, 2011; Oni et al., 2014a; Raty et al., 2014). 38 

However, the predictive uncertainty of precipitation projections is still larger than that for 39 

temperature (Teutschbein and Siebert, 2012). This inherent uncertainty might further increase in the 40 

warmer future as precipitation dynamics become less consistent due to a shift in winter precipitation 41 

patterns toward rainfall dominance (Berghuijs et al., 2014; Dore, 2005).  42 

It is unequivocally believed that climate is a first order control on watershed hydrology (Oni et al., 43 

2015a, b; Vörösmarty et al., 2000). Although climate change is a global phenomenon (IPCC, 2007), it 44 

will likely also alter local catchment water balances (Oni et al., 2014b; Porporato et al., 2004). 45 

Prolongation of drought regimes or increasing frequency of storm events observed in different parts 46 

of the world (Dai, 2011; Trenberth, 2012) calls for greater attention on how to constrain uncertainty 47 

in predicting extreme dry and wet conditions. While the frequency of hydroclimatic extremes might 48 

be low under present day conditions (Wellen et al., 2014), there could be intensification of 49 

precipitation events globally as climate changes (Chou et al., 2013). Otherwise, preparations for the 50 

future could be undermined by our inability to properly simulate or project new conditions outside 51 

our current modelling conditions.  52 

Models are useful tools in hydrology and runoff has become a central feature in the modelling 53 

community to assess cumulative impacts (Futter et al., 2014; Lindström et al., 2010). Hydrological 54 

modelling has benefitted immensely from the use of long term runoff series from monitoring 55 

programs to gain insights on change in fundamental system behaviour (Karlsson et al., 2013) and to 56 

aid our understanding of watershed responses to both short and long term environmental changes 57 

(Wellen et al., 2014). While conceptualization of many of these hydrologic models is based on 58 

average natural rainfall-runoff processes derived from long term series, both simple and complex 59 

models still performed well in simulating long term dynamics at the watershed scale (Breuer et al., 60 

2009; Li et al., 2015; Vansteenkiste et al., (2014a). Growing complexity in hydrologic models has led 61 

to increasing equifinality (Beven, 2006) due to multi-dimensionality of compensatory parameter 62 

spaces. However, extensive explorations of parameter spaces in complex models have also helped to 63 

gain further insights on system behaviour beyond simple models.   64 
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Uncertainty in model predictions depends on the length of time series used for calibration and 65 

validation (Larssen et al., 2007). Despite strong arguments against the use of the term “validation” 66 

(Oreskes et al., 1994), it is still a norm in the hydrologic modelling community to calibrate to one 67 

condition and reevaluate the model on different conditions (Cao et al., 2006; Donigiang, 2002; Wilby, 68 

2005). This has made split-sample testing a popular way of assessing the internal working process of 69 

a model in hydrologic study (Klemeš, 1986) to ensure that model is not over-tuned or over-70 

parameterized before embarking on future projections. While modelling staged under this 71 

framework is usually based on average system conditions depicted by long term series, it may not 72 

fully reflect processes operating under very dry and wet hydroclimatic conditions. This can also be 73 

due in part to inherent structural uncertainties in models (Butts et al., 2004; Refsgaard et al., 2006, 74 

Vansteenkiste et al., 2014b) that can stem from conceptualization, scaling and connectivity of 75 

processes between the landscape mosaic patches of a watershed that the models are representing 76 

(Tetzlaff et al., 2008; Ren and Henderson-Seller, 2006).  This is the case of Karlson et al. (2013) that 77 

showed increasingly large predictive uncertainty when their model was tested on over a century long 78 

record due to non-stationarity of the historical series. It is therefore inevitable that this level of 79 

uncertainty will be amplified when projected into the unknown future where, unlike at present, we 80 

have no data to confirm our findings (Refsgaard et al., 2014). However, no consensus has yet been 81 

reached regarding whether the uncertainty due to differences in hydrologic model structures and/or 82 

calibration strategies would be greater than the unresolved uncertainty inherent in climate models 83 

when projecting hydrologic conditions in boreal or temperate ecozones. 84 

One way to constrain the uncertainty in hydroclimatic projections is to utilize historical wet and dry 85 

years as a proxy for the future conditions expected as climate changes.  This is analogous to 86 

differential split-sample test previously used (Coron et al., 2012; Klemeš, 1986; Seibert, 2003; 87 

Refsgaard and Knudsen, 1996) but is less commonly used in hydrology (Andreassian et al., 2014; 88 

Refsgaard et al., 2014). Here we used hydrological and meteorological observations in dry and wet 89 

years in a long term monitored headwater catchment in northern Sweden. The objectives of this 90 

study were to: 1) utilize long term field observations in Svartberget to gain insights into hydroclimatic 91 

behaviour in dry and wet years as a proxy to future climate extremes and 2) quantify the uncertainty 92 

in our current predictive practices that is based on such long term series. Such uncertainty 93 

quantification will allow us to assess the limitations and uncertainties in hydrological model based 94 

climate change impact analysis related to the hydrological model calibration strategies and to 95 

compare these with the uncertainty related to the climate models. 96 

 97 
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 98 

2 Data and method 99 

2.1 Study site 100 
This modeling exercise was carried out in Svartberget (64o 16’N, 19o 46’ E), a 50 ha headwater boreal 101 

catchment within the Krycklan experimental research infrastructure in northern Sweden (Fig. 1) 102 

(Laudon et al., 2013). Modelling results presented here were based on the long-time series of 103 

precipitation, air temperature and runoff (1981-2012) from a weather and flow monitoring station at 104 

the outlet of Svartberget. Svartberget has two headwater streams, one of which drains a completely 105 

forest landscape while the other drains a headwater mire. The catchment has a long term mean 106 

annual temperature of about 1.8oC with minimum (January) and maximum (July) mean monthly 107 

temperatures of -9.5°C and 14.5°C. The catchment receives a mean annual precipitation of 610 ± 109 108 

mm with more than 30% falling as snow (Laudon and Ottosson-Löfvenius, 2015). Snow cover usually 109 

lasts from November to May (Oni et al., 2013). The catchment has a long term mean annual runoff of 110 

320 ± 97 mm with subsurface pathways dominating runoff delivery to streams. Spring melt 111 

represents the dominant runoff event in the catchment and lasts 4 to 6 weeks. Forest cover includes 112 

a century old Norway spruce (Picea abies) and Scot pine (Pinus sylvestris) with some deciduous birch 113 

species (Betula spp). Sphagnum sp dominates the mire landscape and riparian zones (Ledesma et al., 114 

2016). Svartberget has gneissic bedrock overlain by compact till of about 30 m thickness to the 115 

bedrock. The catchment elevation ranges from 114-405 m above sea level and was delineated using 116 

DEM and LIDAR (Laudon et al., 2013).   117 

2.2 Climate models 118 
We used 15 different regional climate models (RCMs) from the ENSEMBLES project (Van der Linden 119 

and Mitchell, 2009, Table 1).  All RCMs had a resolution of 25 km and were based on Special Report 120 

on Emission Scenario (SRES) A1B emission scenarios. The SRES A1B represents a balanced growth of 121 

economy and greenhouse gas emission in the future (IPCC, 2007). The old greenhouse gas scenario 122 

(SRES based) became outdated in the meantime; the new Representative Concentration Pathway 123 

(RCP) based scenarios could have been used in current climate change impact studies. However, 124 

because the focus of this paper lies on the methodology rather than on the impact results, it is 125 

acceptable to rely on old SRES scenario in line with our other recent studies in this region (Jungkvist 126 

et al., 2014; Oni et al., 2014, 2015b). Precipitation and temperature values (2061-2090) were 127 

obtained by averaging the values of the RCM grid cell with center coordinates closest to the center of 128 

the catchment and of its eight neighboring grid cells. Due to systematic biases in RCM data and the 129 

spatial disparity between RCM grid cell and small catchment like Svartberget, post processing of RCM 130 
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data is required Teutschbein and Seibert, 2012; Ehret et al., 2012; Muerth et al., 2013). The 131 

distribution mapping method (Ines and Hansen, 2006; Boe et al., 2007) was used for bias-correction 132 

of the 15 RCM-simulated precipitation and air temperature series on monthly basis using data from a 133 

weather station (1981-2010) located within the Svartberget catchment. This was achieved by 134 

adjusting the theoretical cumulative distribution function (CDF) of RCM-simulated control runs 135 

(1981-2010) to match the observed CDF.  The same transformation was then applied to adjust the 136 

RCM-simulated scenario runs for the future (2061-2090). As some RCMs tend to simulate a large 137 

number of days with low precipitation (e.g. drizzle) instead of dry conditions, we applied a specific 138 

precipitation threshold to prevent considerable alteration of the distribution. RCM bias corrections 139 

presented here were fully described in Jungqvist et al. (2014) and Oni et al. (2014, 2015b).  140 

2.3 Modelling and analysis 141 
The Precipitation, Evapotranspiraton and Runoff simulator for Solute transport (PERSiST) is a semi-142 

distributed bucket type rainfall-runoff model with a flexibility that allows modelers to specify the 143 

routing of water following the perceptual understanding of their landscapes (Futter et al., 2014). This 144 

feature makes PERSiST a useful tool to simulate streamflow from landscape mosaic patches at a 145 

watershed scale.  The model operates on a daily time scale with inputs of precipitation and air 146 

temperature. The spatial interface requires an estimate of area, land cover proportion and reach 147 

length/width of the hydrologic response units. In the PERSiST application presented here, we used 148 

three buckets to represent the hydrology of Svartberget. These include snow, upper soil and lower 149 

soil buckets. In the snow routine bucket, the model utilized a simple degree day evapotranspiration 150 

and degree day melt factor (Futter et al., 2014). Although the maximum rate of evapotranspiration 151 

could be independent of wet and dry years as used in this study, the actual rate of 152 

evapotranspiration could be influenced by the amount of water in the soil and by an 153 

evapotranspiration (ET) adjustment parameter. The latter is an exponent for limiting 154 

evapotranspiration that adjusts the rate of evapotranspiration (depending on water depth in the 155 

bucket or how much is evapotranspired). The snow threshold partitions precipitation as either rain or 156 

snow. The model also simulates canopy interception for snowfall and rainfall to the uppermost 157 

bucket. In the modelling analysis presented here, we used three buckets to generate runoff 158 

processes in Svartberget. The quick flow bucket simulates surface or direct runoff in response to the 159 

inputs of rainfall or snowfall depending on antecedent soil moisture status. The runoff generation 160 

process was partitioned between the quick flow and lower soil buckets (upper and lower) following 161 

the square matrix described in Table 2.  162 

We utilized Monte Carlo analysis to explore parameter spaces using a range of parameter values 163 

listed in Table 3. The evapotranspiration adjustment parameter sets the rate at which ET can occur 164 
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when the soil is no longer able to generate runoff and this was set to 1 in the upper soil box. 165 

Maximum capacity is the field capacity of the soil that determines the maximum soil water content 166 

held. The time constant specifies the rate of water drainage from a bucket and requires a value of at 167 

least 1 in PERSiST. The relative area index determines the fraction of area covered by the bucket and 168 

is also set to 1 for our simulations. Infiltration parameters in each bucket determine the rate of water 169 

movement through the soil matrix. The model is based on series of first order differential equations 170 

that are solved sequentially following the bucket order in the square matrix. More detailed 171 

information about PERSiST parameterization and equations is provided in Futter et al. (2014).  172 

The model was calibrated against streamflow to generate present day runoff conditions. Initial 173 

manual calibration was performed on the entire time series to minimize the difference between the 174 

simulated and observed runoff based on Nash-Sutcliffe (NS) statistics. The manual calibration also 175 

helped to identify a suite of parameters ranges to be used in the Monte Carlo analysis by varying 176 

each parameter value following steps listed in Futter et al. (2014). The Monte Carlo tool works in 177 

such a way that the model was calibrated on NS-1 in line with other works (Senatore et al., 2011; 178 

Mascaro et al., 2013), so that NS value for the overall period of simulation tends toward 1. This 179 

helped to determine the ranges to use in the subsequent Monte Carlo analysis for the wet and dry 180 

year simulations. Starting from a random point, we sampled each parameter space 500 times before 181 

jumping to the next space (depending on whether the model performance was better or worse). We 182 

specified 100 iterations during the initialization of Monte Carlo tool so that 100 ensemble of credible 183 

parameter sets could be generated. This resulted in 50,000 (500 x 100) runs. In addition to Nash-184 

Sutcliffe statistics, the Monte Carlo tool also takes note of other metrics during sampling. The Monte 185 

Carlo tool utilizes the Metropolis-Hasting algorithm and its mode of operation was described in 186 

Futter et al. (2014).  187 

The best parameter sets (100 in this case) were selected based on highest NS statistics from 188 

untransformed/log transformed data. The parameter sets were also analyzed for other metrics such 189 

as variance of modeled/observed series (Var), absolute volume difference (AD), root mean square 190 

error (RMSE) and coefficient of determination (R2). These top parameter sets derived from the 191 

Monte Carlo tool are referred to as behavioural parameters henceforth. The behavioural parameters 192 

were subjected to further analyses to determine hydrologic behaviour in dry and wet years. These 193 

include the cumulative distribution function (CDF) of behavioural parameters to determine the 194 

sensitive parameters and discriminant function analysis (DFA) to determine the dominant 195 

parameter(s) that separate the hydrology of wet from dry years. Wet years were defined as 196 

hydrologic years with runoff exceeding 430 mm/yr or 40% higher than average annual runoff (1995, 197 

2002, 2005 and 2010). Dry years were defined as hydrologic years with runoff less than 150 mm/yr or 198 
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less than 50% of average annual runoff (1987, 1992, 2000 and 2001). Hydrologic year was September 199 

1 of a year to August 31 of the following calendar year. The bias corrected future climate series from 200 

the ensemble of climate models (Table 1) were used to drive PERSiST so as to project future 201 

hydrologic conditions under long term, as well as dry and wet year conditions.  202 

3 Results 203 

3.1 Long term climate and hydrology series 204 
Preliminary analysis showed that the Svartberget hydroclimate was highly variable and thus helped 205 

partition the long term series into dry and wet years as shown in Supplementary Information 1 (SI 1). 206 

As a result, dry and wet year conditions differed in terms of climate and cumulative runoff patterns. 207 

The cumulative distribution of the dry/wet year series (Fig 2a) showed that dry year precipitation 208 

(462 ± 102 mm) was only 64% of precipitation observed in wet years (716 ± 56 mm). Similar patterns 209 

were observed in runoff dynamics (Fig. 2b) where total runoff in dry years (129 ± 35 mm) was 29% of 210 

total runoff observed in wet years (449 ± 19 mm). Runoff response was 63% of total precipitation in 211 

wet years and 28% of precipitation in the dry year regime (Table 4). Mean annual temperature was 212 

2.4 oC in wet versus 1.8 oC in dry years.  213 

When assessed on a seasonal scale, both precipitation and runoff were higher in almost all months in 214 

wet compared to dry year conditions (Fig. 3) but differed in terms of seasonal patterns. While runoff 215 

peaked in May in both wet and dry years reflecting spring snowmelt dynamics that characterize 216 

Svartberget, runoff magnitude differed. Peak precipitation events occurred in summer months with 217 

additional autumn peaks in wet year. However, there was a shift in precipitation patterns with lowest 218 

precipitation in February/March in dry years compared to April in wet years. Winter months were 219 

generally slightly warmer during wet years and summers slightly warmer in dry years (Fig 3c). 220 

3.2 Future climate projections 221 
There was less agreement between the observed series and uncorrected individual RCMs (SI 2a, b). 222 

However, bias correction helped to reduce the uncertainty on the historical time scale by providing a 223 

better match for the ensemble mean of the air temperature and precipitation with their 224 

corresponding observed series (SI 2c, d). The ensemble mean performed better in fitting observed air 225 

temperature than precipitation. There is also a possible increase in air temperature by 2.8-5oC 226 

(median of 3.7oC) and possible increase in precipitation by 2-27% (median of 17%). Although 227 

precipitation and temperature were projected to increase throughout the year, the temperature 228 

changes would be more pronounced during winter months irrespective of whether it was a dry or 229 

wet year (Fig. 3c). However, projected changes in precipitation followed similar patterns to historical 230 

wet years with more precipitation expected between late winter months through spring (Fig. 3a). 231 
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Result also showed that the winter period with temperature below 0oC could be shortened as climate 232 

warms in the future (SI 2). 233 

3.3 Model calibrations and performance statistics 234 
Model behavioural performance followed similar patterns when metrics such as R2, NS and log NS 235 

were used (SI 3a-c) and metrics could be used interchangeably to measure model performances. The 236 

model performed better when calibrated to wet and dry conditions (compared to long term) using 237 

NS metrics (SI 3b, c). It may be clarified that this is logical because otherwise (using the NS) too much 238 

weight is given to the central part of the distribution (due to many more values in that part). 239 

Although no major improvements to model efficiency above NS of 0.79 and 0.81 were obtained in 240 

dry and wet years, respectively, we obtained a wider range of model performances in wet relative to 241 

dry year. The patterns of other performance metrics were different as we observed the highest RMSE 242 

in dry years and lowest RMSE in wet year condition (SI 3d). There was minimum AD range in the long 243 

term record and maximum range in dry years (SI 3e). Model performances based on the Var metric 244 

also showed the largest variability in dry years compared to the long term record and least Var in the 245 

wet year (SI 3f).  246 

3.4 Runoff simulations and behavioural prediction range 247 
Using the best performing parameter sets based on the NS statistic as an example, the model 248 

performed well in simulating interannual runoff patterns but underestimated the peaks (SI 4). When 249 

resolved to their respective dry and wet year components, the model performed better in simulating 250 

runoff conditions in wet years despite its larger data spread and higher spring peaks than the dry 251 

year regime (SI 5). When parameterization for dry years was used for runoff prediction in wet years, 252 

runoff was underestimated by 35% due to significant uncertainty that stemmed from the growing 253 

season months (Fig. 4). Modelling analysis also showed that no single metric can be an effective 254 

measure of model performance under dry and wet year conditions (Fig 5a- c). However, utilizing a 255 

behavioural mean of these different performance metrics (Fig. 5d-f) appeared to be a more effective 256 

way of calibrating to extremely dry and wet hydroclimatic conditions.  While the behavioural mean 257 

performed better in simulating runoff dynamics in winter through spring in the long term record and 258 

significantly reduced the uncertainty in dry and wet years, larger uncertainty existed in summer 259 

through autumn months in dry and wet years compared to the long term record.  260 

3.5 Parameter uncertainty assessments 261 
While we observed a wide prediction range from behavioural parameter sets (Fig. 5), we have limited 262 

information on the underlining processes. Therefore, we subjected the behavioural parameter sets 263 

to further analysis to identify sensitive parameters and plausible patterns of hydrologic processes 264 

that differentiate dry and wet years (Fig. 6). The cumulative distribution function (CDF) of 265 
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behavioural parameter sets showed that both rain and flow multipliers were sensitive parameters in 266 

dry years. The rain multiplier was less sensitive in wet years unlike the flow multiplier. Long term 267 

simulations showed no sensitivity to the rain multiplier but were sensitive to the flow multiplier. We 268 

observed similar patterns of response to the flow multiplier in all three hydrologic regimes (Fig. 6b). 269 

Result also pointed to the sensitivity of interception in wet years but all the three hydrologic regimes 270 

showed similar patterns for  the time constant (water residence time) in lower soil.  271 

We subjected the pool of behavioural parameters in dry and wet year regimes to discriminant 272 

function analysis (DFA) to identify the key parameters that separate the extreme hydroclimatic 273 

conditions (Fig. 7). Results showed that both dry and wet years separated well in canonical space. 274 

However, the separation was driven mainly on quantitative parameters related to precipitation, 275 

interception and evapotranspiration on canonical axis 1 (Rmult, Int and DDE). The parameters 276 

separated to a lesser extent on processes related to snow parameters on canonical axis 2 (Smult, SM 277 

and DDM). 278 

3.6 Quantification of uncertainty in hydrologic projections  279 
We compared the effects of different performance metrics in wet and dry year regimes to constrain 280 

uncertainty in runoff projections under future hydroclimatic extremes in Svartberget catchment (SI 281 

6). Results showed that differences in model representation of present day conditions might be 282 

minimal (compared to the observed) but a wide range of runoff regimes were projected in the 283 

future. We also observed small difference in the range of runoff projections (derived from minimum 284 

and maximum of behavioural parameter sets) using different model performance metrics.  285 

Uncertainties inherent in climate models (as opposed to differences in calibration or performance 286 

metrics) appeared to drive the overall uncertainty in runoff projections under dry and wet 287 

hydroclimatic conditions. Wet year is the closest to plausible projections of future condition 288 

expected in the boreal ecozone. However, model results suggested that the uncertainty in present 289 

day long term simulations is mostly driven by dry years. We compared the runoff predictions using 290 

dry year parameterization to parameterization based on wet years to quantify our current predictive 291 

uncertainty. Results showed that future runoff could be under predicted by up to 40% (relative to 292 

wet year ensemble mean) if the projections are based on dry year parameterization alone (Fig. 8). 293 

Both parameterizations projected a shift in spring melt from May to April in the future. However, 294 

ensemble projections showed that summer months could be a lot wetter (based on wet year 295 

parameterization compared to dry year) and wet year spring peak could be up to 43% more 296 

compared to projections based on the wet year ensemble mean. 297 
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4 Discussion 298 

4.1 Insights from long term hydroclimatic series 299 
Several studies have evaluated the impact of climate change on surface water resources (Berghuijs et 300 

al., 2014; Chou et al., 2013; Dore, 2005 among the others) but most of these were based on long 301 

term series that depict mean system behaviour. However, present day hydroclimatic extremes, such 302 

as those derived from historical wet and dry years, can be used as simple proxies to gain insights that 303 

will aid our understanding of future hydroclimatic conditions. Using this approach we found that 304 

standard calibrations can result in underestimation of runoff by up to 35% due to high variability of 305 

hydroclimate series in northern boreal catchments. Several explanations can be offered for the high 306 

variability in the long term hydroclimate series at the study site.  First, snowmelt hydrology is 307 

important in understanding the boreal water balances due to their location in the northern 308 

hemisphere (Euskirchen et al., 2007; Dore, 2005; Tetzlaff et al., 2011, 2013). As a result, northern 309 

headwater catchments tend to show high variability (Brown and Robinson, 2011; Burn, 2008).  310 

We observed annual runoff yield to be 63% of total precipitation in the wet years compared to 28% 311 

of total precipitation in dry year. More runoff yield in the wet year regime could be seen as a result of 312 

near field capacity of the soils throughout the year, leading to greater propensity for runoff 313 

generation because hydrological conductivity increases towards soil surface in the catchment 314 

(Nyberg et al., 2001). This can also imply more winter snow accumulation during the long winter 315 

period, resulting in higher spring melt that drives the overall water fluxes (Laudon et al., 2004). Less 316 

runoff yield in dry years could be attributed to higher soil moisture deficit and relatively more 317 

important evapotranspiration rates (Dai, 2013).   318 

We also observed differences in dry/wet year peak summer precipitation and a shift in the lowest 319 

precipitation in late winter/early spring. Despite the differences in precipitation, we observed similar 320 

patterns of runoff responses that only differ in terms of magnitude. This suggested that there was 321 

more effective rainfall (net available water) available to infiltrate, continuously recharge 322 

groundwater systems and generate runoff from upstream sources in wet year. Slightly warmer 323 

temperatures in summer months could drive more of growing season evapotranspiration in dry year. 324 

Small differences in temperature regime between wet and dry year, unlike precipitation, also 325 

explained why larger uncertainty and biases still exist during post-processing of precipitation series in 326 

using any scenario-based GCMs as observed in SI 2. 327 

4.2 Multi-criteria calibration of hydrological models 328 
There has been considerable discussion about the calibrating procedure in the hydrological modelling 329 

community (Andreassian et al., 2012; Boij and Krol, 2010; Efstratiadis and Koutyiannis, 2010; Oreskes 330 
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et al., 1994; Price et al., 2012). One of the key reasons for this is the difference in goodness-of-fit 331 

measures utilized in each model (Krause et al., 2005; Pushpathala et al., 2012). The most common 332 

strategy is to calibrate hydrologic models using the Nash-Sutcliffe (NS) statistic (Nash and Sutcliffe, 333 

1970). However, many modelers believe that the NS-based method alone tends to underestimate 334 

variance in modelled time series as this metric could be biased toward high or low flow periods 335 

(Futter et al., 2014; Jain and Sudheer, 2008; Pushpalatha et al., 2012; Willens, 2009). This is 336 

promoting our use of multi-criteria statistics in model calibrations to constrain predictive uncertainty 337 

in hydrologic projections to extreme dry and wet hydroclimatic conditions. Therefore, multi-criteria 338 

calibration objectives that assessed model performances using different goodness-of-fit metrics 339 

could aid our understanding of hydrologic behaviour in boreal catchments. Our observation of 340 

differences in model performances in terms of NS and other metrics presented here is expected as a 341 

three box model proposed by Seibert and McDonnell (2002) similarly showed good fit for NS but 342 

poor fit using other metrics. However none of these focus on the extremes. Another way to evaluate 343 

model for its performance in describing extremes is the approach presented in Willems (2009) or the 344 

one by Van Steenberger and Willems, (2012). However, lower model performance (based on NS) for 345 

the long term record is explainable as most hydrologic models are based on mean system behaviour 346 

represented by long term rainfall-runoff processes (Futter et al., 2014; Oni et al., 2014b; Wellen et 347 

al., 2014).  348 

The lower range of model performances in calibrating to the observed runoff in dry years is an 349 

indication of variable runoff generation processes associated with this wetness regime. Dry years 350 

cause drought-like conditions (Dai, 2011; Mishra and Singh, 2010) as a result of less water availability 351 

that reduces hydrologic connectivity within the catchment. However, the model performed better 352 

when applied to wet and dry years individually compared to the long term record based on NS 353 

statistics. This suggested that the mechanisms driving hydrologic processes in dry and wet years 354 

might be similar but their relative magnitude differs from long term average conditions (Grayson et 355 

al., 1997). Better performance under dry  conditions (compared to average long term) can also be 356 

attributed to the bias of NS towards  baseflow (Futter et al., 2014; Jain and Sudheer, 2008; 357 

Pushpalatha et al., 2012). Durations of high flows associated with wet years are typically shorter than 358 

the low flow durations; as a result, higher flows receive lower weight because of the squared flow 359 

terms in the NS computation. Therefore the uncertainty is higher in extrapolating low flows 360 

(compared to high flows) and was also shown by others (Bae et al., 2011; Najarafi et al., 2011; 361 

Maurer et al., 2010; Vansteenkiste et al., 2014b; Velazquez et al., 2013). 362 

However, NS statistics alone are not enough to assess model performances in climate-sensitive 363 

boreal headwater streams such as Svartberget. Other metrics such as the RMSE showed that dry 364 



12 
 

years could be a major driver of the uncertainty we observed in simulating the long term record. A 365 

possible explanation could be that the soil moisture deficit is larger in dry year, leading to soil matrix 366 

or vertical flow (Grayson et al., 1997) that can only generate runoff after filling soil pore spaces 367 

(McDonnell, 1990). For example, soil pore spaces are usually not close to saturation under dry 368 

condition due to 1) intermittent precipitation events throughout the year and 2) several patchy 369 

source areas of high water convergence that are characterized by local landscape terrain or soil 370 

properties (Fang and Pomeroy, 2008; Jencso et al., 2009).  Also higher rates of evapotranspiration 371 

coupled with low precipitation can contribute to more spatially decoupled antecedent soil moisture 372 

conditions and thus lower runoff in dry years (Dai, 2013; Vicente-Serrano et al., 2010). Therefore, no 373 

single model performance metric can be effective in simulating the hydrology of dry and wet year 374 

conditions, as our results showed that the mean of behavioural metrics outperformed any individual 375 

metric in dry and wet years under present day conditions.  376 

4.3 Parameter sensitivity in dry and wet year regimes 377 
The robust uncertainty assessment conducted here showed that extensive exploration of model 378 

parameter spaces suggests how hydrologic behaviour differs between wet and dry year regimes. A 379 

possible explanation for the non-sensitivity of the rain multiplier in wet years could be attributed to 380 

1) a more consistent or stable precipitation feeding the system throughout the year compared to 381 

intermittent precipitation in dry years (Fang and Pomeroy, 2008; McNamara et al., 2005) or 2) the 382 

effect of rain water collector missing proportionally more rain in dry than wet years. This can explain 383 

the smaller spring peak that characterizes the dry year regime or its non-sensitivity to interception 384 

unlike its role in wet year regimes. 385 

 We observed that sensitivity of the lower soil time constant followed similar patterns in dry and wet 386 

years unlike the upper soil box. Therefore, we could expect faster flow and higher runoff ratio in the 387 

wet years due to rapid response to precipitation events and more macropore flow (Peralta-Tapia et 388 

al., 2015). This can lead to steady runoff generation due to 1) near saturation of soils and 2) greater 389 

connectivity between stream channels and upland areas (Bracken et al., 2013; Ocampo et al., 2006) 390 

that become disconnected in dry years. The patterns of the flow multiplier parameter showed that 391 

both dry and wet year conditions followed similar runoff generation processes. These suggested that 392 

the main physical mechanisms to explain parameter sensitivity and hydroclimatic behaviour to 393 

dry/wet conditions were related to differences in their precipitation patterns rather than landscape-394 

driven hydrologic processes. 395 

4.4 Drivers of hydrologic behaviour in dry and wet year regimes 396 
Even though equifinality limits the use of CDFs alone in identifying all sensitive parameters, DFA of 397 

behavioural parameters gave further holistic insights into plausible differences in wet/dry hydrologic 398 
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behaviour when projected on canonical space. This suggested that hydrological model 399 

parameterizations calibrated to high flow associated with wet years differ from parameterizations for 400 

long term or dry conditions. Therefore, parameter separation primarily on quantitative parameters 401 

(Rmult, Int and DDE) related to rainfall and evapotranspiration on canonical axis 1 suggested that 402 

climate is still a first order control of dry and wet year hydroclimatic regimes in the boreal forest. This 403 

is consistent with Wellen et al. (2014), who showed that extreme conditions could be triggered in a 404 

watershed when precipitation reaches a threshold that can initiate saturation overland flow. This is 405 

because soils are always near saturation capacity under prolonged wet conditions (Grayson et al., 406 

1997). This can explain the increase in hydrologic model uncertainty in capturing the peak runoff 407 

events in wet years unless parameter ranges that combined different performance metrics are 408 

considered. Unfortunately, we might face a new challenge of increased precipitation ranges in the 409 

future as climate changes (Chou et al., 2013; Dore, 2005). The separations of wet and dry years on 410 

snow process-related parameters (Smult, SM and DDM) to a lesser extent on canonical axis 2 411 

suggested that indirect landscape influences on snow processes could be important but are a second 412 

order control on runoff response to dry and wet conditions. This agrees with Jencso et al. (2009), 413 

who showed that landscape mosaic structures with their unique source contribution areas control 414 

the overall watershed response.  415 

4.5 Implications for future climate projections 416 
Climate change in many places of the world leads to more extremes, both high and low flows. This 417 

study is not an exception as all 15 RCMs considered here projected a range of plausible futures in the 418 

Swedish boreal forest. Irrespective of the model performance metrics, results suggested that the 419 

future could be substantially wetter and could make drought conditions less severe in boreal 420 

ecozones. This could explain the large uncertainty in projecting runoff under wet conditions. For 421 

example, dry year and long term parameterizations were similar and runoff was under-predicted by 422 

35% under the present day condition when parameterization in dry years was used for wet years. 423 

This was due to large predictive uncertainty in runoff dynamics (Fig. 4) that resulted from high 424 

evapotranspiration rates during the snow free growing seasons in dry year. This suggests that wet 425 

year calibration could give more credible projections of the future in the boreal ecozone as the 426 

distribution of precipitation in wet years is closer to the precipitation pattern expected in the future.  427 

While our modelling results suggested negligible differences in runoff projections based on either dry 428 

year or long term parameterization, wetter conditions could become a more dominant feature in the 429 

boreal ecozone.  430 

These have implications for future climate change as both dry and wet year parametrization showed 431 

a consistent shift in spring melt patterns from May to April (Fig. 8). This temporal advance in spring 432 
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melt patterns could result from altered distribution of snowfall and rainfall patterns in the winter 433 

(Berghuijs et al., 2014; Dore, 2005), and may likely have effects on soil frost in the upper layer 434 

(Jungkvist et al., 2014) or change in evapotranspiration rates (Jung et al., 2010; Vicente-Serrano et al., 435 

2010). Therefore, intensification of hydroclimatic regimes as climate changes in the future (Kunkel et 436 

al., 2013) could drive water quality issues to a new level in the boreal forest due to changes in the 437 

flux of organic carbon and aquatic pollutants. Furthermore, precipitation has been shown to have 438 

much larger biogeochemical implications for the boreal carbon balance than previously anticipated 439 

(Öquist et al., 2014).  440 

The large spread of mean annual runoff projected by each RCM in wet years is an indication of less 441 

agreement between RCMs when predicting future conditions. This suggested that inherent 442 

uncertainty in climate models, rather than differences in model calibrations, drive the overall 443 

uncertainty in runoff projections. However, hydrologic model calibration for climate impact studies 444 

should be based on years that closely approximate anticipated conditions to better constrain 445 

uncertainty in projecting extremely dry and wet conditions in boreal and temperate regions. 446 
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Table 1: List of RCMs from EU ENSEMBLES project used in this study and their respective driving 
GCM. 

 

No. Institute RCM Driving 
GCM 

1 C4I RCA3 HadCM3Q16 

2 CNRM Aladin ARPEGE 

3 DMI HIRHAM5 ARPEGE 

4 DMI HIRHAM5 BCM 

5 DMI HIRHAM5 ECHAM5 

6 ETHZ CLM HadCM3Q0 

7 HC HadRM3Q0 HadCM3Q0 

8 HC HadRM3Q16 HadCM3Q16 

9 HC HadRM3Q3 HadCM3Q3 

10 ICTP RegCM ECHAM5 

11 KNMI RACMO ECHAM5 

12 MPI REMO ECHAM5 

13 SMHI RCA BCM 

14 SMHI RCA ECHAM5 

15 SMHI RCA HadCM3Q3 

  



Table 2: Square matrix used to partition runoff generation between buckets in PERSiST application 
presented here. For example, we conceptualized that 40% of the precipitation inputs are retained in 
the upper box, 60% are transferred to the lower box and 0% are transferred to the groundwater (row 
1) 

 

 Upper box Lower box Groundwater 
Upper box 0.4 0.6 0 
Lower box 0 0.5 0.5 
Groundwater 0 0 1 
 

  



 

Table 3: Parameter notations, descriptions and ranges used in the Chain Monte Carlo  analyses in this 
study   

 Notation Parameter description Min Max Units 

SN
O

W
 

     
SMt Snowmelt temperature -3 5 oC 
ISD Initial snow depth 40 120 mm SWE 
DDM Degree day melt factor 1 4 mm oC day-1 
DDE Degree day evapotranspiration 0.05 0.3 mm oC day-1 
GDT Growing degree threshold -3 3 oC 
Smult Snow multiplier 0.5 1.5 - 
RM Rain multiplier 0.5 1.5 - 
CI Canopy interception 0 4 mm day-1 

U
PP

ER
 B

O
X 

     
IWD_1 Initial water depth 40 100 mm 
RWD_1 Retain water depth 100 250 mm 
Infilt_1 Infiltration 1 15 mm day-1 
DRF Drought runoff fraction 0 0.5 - 
REI Relative evapotranspiration index 1 1 - 
EA_1 Evapotranspiration adjustment 1 10 - 

LO
W

ER
 B

O
X 

     
IWD_2 Initial water depth 80 250 mm 
Infil_2 Infiltration 1 15 mm day-1 
RWD_2 Retain water depth 200 200 mm 
TC_2 Time constant 2 50 days 
EA_2 Evapotranspiration adjustment 0 0 - 
InunT_2 Inundation threshold 80 150 mm 
     

G
RO

U
N

DW
AT

ER
      

IWD_3 Initial water depth 80 250 mm 
Infilt_3 Infiltration 0.1 10 mm day-1 
EA_3 Evapotranspiration adjustment 0 0 - 
RWD_3 Retain water depth 250 250 mm 
TC_3 Time constant 2 50 days 
     

RE
AC

H 

     
a Flow multiplier 0.004 0.762 - 
b Streamflow exponent 0.01 0.98 - 
ST Snow threshold temperature -2 3 oC 



Table 4: Quantification of runoff and precipitation dynamics in wet and dry year using the observed 
series and simulated series from PERSiST. 

 

 Observed series (%) Simulated series (%) 
Precipitation proportion (dry:wet year) 64  
Runoff proportion (dry:wet year) 29 29 
Runoff response to precipitation events   

Dry year 28 30 
Wet year 63 66 



Figure 1: Svartberget, a long term monitored headwater catchment in the northern boreal ecozone 
of Sweden. The catchment (50ha) drains terrestrial area consisting of forest (82%) and upland mire 
(18%). Streamflow measurements were taken at the downstream confluence point . 

  



Figure 2: Cumulative plots of (a) precipitation and (b) runoff in dry (1995, 2002, 2005 and 2010) and 
wet (1987, 1992, 2000 and 2001) hydrologic years. Hydrologic year is September 1 (day 1) to August 
31 of the following year (day 365). The cumulative plots shown here represent average for all the dry 
and wet years noted above. 
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Figure 3: Seasonal patterns of (a) present day precipitation in dry and wet years versus ensemble 
mean (bias-corrected) of future precipitation projections, (b) present day  runoff dynamics in dry and 
wet year and (c) present day temperature in dry and wet years relative to ensemble mean (bias 
corrected) of future temperature projections. Note that the dry and wet years in these plots 
represent average of all the individual dry and wet years respectively. 
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Figure 4: Quantification of predictive uncertainty in runoff simulations when best parameter set 
(based on NS) calibrated for dry year was used for wet year observed series.  
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Figure 5: Summary plots showing prediction range of seasonal runoff dynamics of behavioural 
parameter sets using different performance metrics in a) dry year, b) wet year and c) long term. (d) 
to (f) show the corresponding model performances using behavioural mean of the metrics in (a) to 
(c). 

 

 

 

 

 

 

 

 

 

 

  

0

5

10

15

20

25

30

35

40

45

Jan Feb Mar Apr Maj Jun Jul Aug Sep Oct Nov Dec

Ru
no

ff
 (m

m
)

Dry year
NS min

NS max

RMSE min

RMSE max

VAR min

VAR max

AD min

AD max

Observed
0

5

10

15

20

25

30

35

40

45

Jan Feb Mar Apr Maj Jun Jul Aug Sep Oct Nov Dec
Ru

no
ff

 (m
m

)

Dry year

Observed

Mean

0

20

40

60

80

100

120

Jan Feb Mar Apr Maj Jun Jul Aug Sep Oct Nov Dec

Ru
no

ff
 (m

m
)

Wet year
NS min

NS max

RMSE min

RMSE max

VAR min

VAR max

AD min

AD max

Observed
0

20

40

60

80

100

120

Jan Feb Mar Apr Maj Jun Jul Aug Sep Oct Nov Dec

Ru
no

ff
 (m

m
)

Wet year

Observed

Mean

0

20

40

60

80

100

120

Jan Feb Mar Apr Maj Jun Jul Aug Sep Oct Nov Dec

Ru
no

ff
 (m

m
)

Long term
Observed

NS min

NS max

RMSE min

RMSE max

VAR min

VAR max

AD min

AD max 0

20

40

60

80

100

120

Jan Feb Mar Apr Maj Jun Jul Aug Sep Oct Nov Dec

Ru
no

ff
 (m

m
)

Long term

Observed

Mean

a 

b 

c 

d 

e 

f 



Figure 6:  Cumulative distribution function (CDF) of behavioural parameters (top 100 iterations from 
the MCMC) in wet and dry years versus long term record. (a) is the rain multiplier, b) is the flow 
multiplier, c) is the interception and d) is the lower soil time constant in the lower soil box. A 
rectangular distribution (straight line plot) defines parameter behaviours that were not sensitive (not 
left- or right-skewed).  
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Figure 7: Separation of the behavioural parameter sets (top 100 iterations from MCMC) in the dry 
and wet year hydrologic regimes using Discriminant Function Analysis (DFA). Wet and dry year 
hydrology separated mainly on parameters related to evapotranspiration (DDE), interception (Int) 
and rain multiplier (Rmult) on canonical 1. Parameters were separated on snow multiplier (Smult), 
snowmelt (SM) and degree day melt factor (DDM) on canonical 2. The circles represent normal 50% 
contours. Parameters are defined in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Figure 8: Example of range of runoff projection using wet year parameterization that closely depicts 
the future versus projected range based on dry year parameterization. The projected range was 
simulated to constrain uncertainty in extreme wet and dry conditions in the future using the 
behavioural parameter sets (top 100 iterations from MCMC) for each of the 15 RCM scenarios (100 
parameters by 15 RCMs = 1500 runs each for dry and wet year).Ensemble mean represents the mean 
of the 1500 realizations while long term depicts mean of the long term series.  
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