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Abstract

There are growing numbers of studies on climate change impacts on forest hydrology but limited
attempts have been made to use current hydroclimaticvariabilities to constrain projections of future
climaticconditions. Here we used historical wetand dry years as a proxy for expected future extreme
conditionsinaboreal catchment. We showed that runoff could be underestimated by atleast 35%
when dry year parameterizations were used for wet year conditions. Uncertainty analysis showed
that behavioural parameter sets from wetand dry years separated mainly on precipitation related
parametersandto a lesserextent on parameters related to landscape processes. While uncertainties
inherentin climate models (as opposed to differences in calibration or performance metrics)
appearedtodrive the overall uncertainty in runoff projections under dry and wet hydroclimatic
conditions. Hydrologicmodel calibration for climate impact studies could be based on years that
closely approximate anticipated conditions to better constrain uncertainty in projecting extreme
conditionsin boreal and temperate regions.

Keyword: Boreal forest, boreal hydrology, climate change, uncertainty assessment, hydroclimatic

extremes
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1 Introduction
There are growing numbers of studies on climate change impacts on watershed hydrology butthese

are usually based onlong-time series that depict average system behaviour (Bonan, 2008; Lindner et
al., 2010: Tetzlaff etal., 2013). As a result, limited attempts have been made to use extremedry and
wet conditions to assess plausible future conditions. Increasing numbers of studies are showing the
importance of ensemble projections to create a matrix of possible futures, where the mean provides
a statistically more reliable estimate than can be obtained from a single realization of possible future
conditions (Bosshard etal., 2013; Dosio and Paruolo, 2011; Onietal., 2014a; Raty et al., 2014).
However, the predictive uncertainty of precipitation projectionsis still larger than that for
temperature (Teutschbein and Siebert, 2012). This inherent uncertainty might furtherincrease inthe
warmer future as precipitation dynamics becomeless consistent due to a shiftin winter precipitation

patternstoward rainfall dominance (Berghuijs et al., 2014; Dore, 2005).

Itisunequivocally believed that climate is afirst order control on watershed hydrology (Onietal.,
2015a, b; Vorosmarty etal., 2000). Although climate change is aglobal phenomenon (IPCC, 2007), it
will likely also alterlocal catchment water balances (Onietal., 2014b; Porporato et al., 2004).
Prolongation of drought regimes orincreasing frequency of storm events observed in different parts
of the world (Dai, 2011; Trenberth, 2012) calls for greaterattention on how to constrain uncertainty
in predictingextremedry and wet conditions. While the frequency of hydroclimaticextremes might
be low underpresentday conditions (Wellen etal., 2014), there could be intensification of
precipitation events globally as climate changes (Chou et al., 2013). Otherwise, preparations forthe
future could be undermined by ourinability to properly simulate or project new conditions outside

our current modelling conditions.

Models are useful toolsin hydrology and runoff has become a central feature in the modelling
community to assess cumulative impacts (Futteretal., 2014; Lindstrém etal., 2010). Hydrological
modelling has benefitted immensely from the use of long term runoff series from monitoring
programs to gain insights on change in fundamental system behaviour (Karlsson etal., 2013) and to
aid our understanding of watershed responses to both short and long term environmental changes
(Wellenetal., 2014). While conceptualization of many of these hydrologic modelsis based on
average natural rainfall-runoff processes derived from long term series, both simple and complex
models still performed wellin simulating long term dynamics at the watershed scale (Breueretal.,
2009; Li etal., 2015; Vansteenkiste etal., (2014a). Growing complexity in hydrologic models has led
to increasing equifinality (Beven, 2006) due to multi-dimensionality of compensatory parameter
spaces. However, extensive explorations of parameter spaces in complex models have also helped to

gain furtherinsights on system behaviour beyond simple models.
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Uncertainty in model predictions depends on the length of time series used for calibration and
validation (Larssen et al., 2007). Despite strong arguments against the use of the term “validation”
(Oreskesetal., 1994), it is still a normin the hydrologicmodelling community to calibrate to one
condition and reevaluate the model on different conditions (Cao et al., 2006; Donigiang, 2002; Wilby,
2005). This has made split-sampletesting a popular way of assessing the internal working process of
amodelinhydrologicstudy (Klemes, 1986) to ensure that model is notover-tuned orover-
parameterized before embarking on future projections. While modelling staged under this
frameworkis usually based on average system conditions depicted by long termseries, it may not
fully reflect processes operating under very dry and wet hydroclimatic conditions. This can also be
duein part toinherentstructural uncertainties in models (Butts et al., 2004; Refsgaard etal., 2006,
Vansteenkisteetal., 2014b) that can stem from conceptualization, scaling and connectivity of
processes between the landscape mosaicpatches of awatershed thatthe models are representing
(Tetzlaff etal., 2008; Ren and Henderson-Seller, 2006). Thisisthe case of Karlsonetal. (2013) that
showedincreasingly large predictive uncertainty when their model was tested on overacenturylong
record due to non-stationarity of the historical series. Itis therefore inevitable that this level of
uncertainty will be amplified when projected into the unknown future where, unlike at present, we
have no data to confirm our findings (Refsgaard et al., 2014). However, no consensus has yet been
reached regarding whetherthe uncertainty due to differencesin hydrologicmodel structures and/or
calibration strategies would be greater than the unresolved uncertainty inherentin climate models

when projecting hydrologicconditionsin boreal ortemperate ecozones.

One way to constrain the uncertainty in hydroclimatic projections is to utilize historical wetand dry
years as a proxy forthe future conditions expected as climate changes. Thisisanalogousto
differential split-sampletest previously used (Coron etal., 2012; Kleme$, 1986; Seibert, 2003;
Refsgaard and Knudsen, 1996) but is less commonly used in hydrology (Andreassian etal., 2014;
Refsgaard etal., 2014). Here we used hydrological and meteorological observationsin dryand wet
yearsin a longterm monitored headwater catchmentin northern Sweden. The objectives of this
study were to: 1) utilize longterm field observationsin Svartberget to gaininsights into hydroclimatic
behaviourindryand wetyears as a proxy to future climate extremes and 2) quantify the uncertainty
inour current predictive practices thatis based on such longtermseries. Such uncertainty
quantification willallow us to assess the limitations and uncertainties in hydrological model based
climate change impactanalysis related to the hydrological model calibration strategies and to

compare these with the uncertainty related to the climate models.
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2 Data and method

2.1 Study site
Thismodeling exercise was carried outin Svartberget (64° 16’N, 19° 46’ E), a 50 ha headwaterboreal

catchmentwithinthe Krycklan experimentalresearch infrastructure in northern Sweden (Fig. 1)
(Laudonetal., 2013). Modellingresults presented here were based onthe long-timeseries of
precipitation, airtemperature and runoff (1981-2012) from a weatherand flow monitoring station at
the outlet of Svartberget. Svartberget hastwo headwater streams, one of which drainsacompletely
forestlandscape whilethe otherdrains aheadwater mire. The catchmenthasa longterm mean
annual temperature of about 1.8°C with minimum (January) and maximum (July) mean monthly
temperatures of -9.5°Cand 14.5°C. The catchmentreceives amean annual precipitation of 610 + 109
mm with more than 30% falling as snow (Laudon and Ottosson-Léfvenius, 2015). Snow cover usually
lasts from Novemberto May (Oni etal., 2013). The catchmenthas a longterm mean annual runoff of
320 97 mm with subsurface pathways dominating runoff delivery to streams. Spring melt
represents the dominantrunoff eventinthe catchmentandlasts 4 to 6 weeks. Forest coverincludes
a century old Norway spruce (Picea abies) and Scot pine (Pinus sylvestris) with some deciduous birch
species (Betula spp). Sphagnum sp dominates the mire landscape andriparian zones (Ledesmaetal.,
2016). Svartbergethas gneissicbedrock overlain by compact till of about 30 m thickness to the
bedrock. The catchmentelevation ranges from 114-405 m above sealevel and was delineated using

DEM and LIDAR (Laudon et al., 2013).

2.2 Climate models
We used 15 different regional climate models (RCMs) from the ENSEMBLES project (VanderLinden

and Mitchell, 2009, Table 1). AllRCMs had a resolution of 25 km and were based on Special Report
on Emission Scenario (SRES) A1B emission scenarios. The SRES A1B represents a balanced growth of
economy and greenhouse gas emission inthe future (IPCC, 2007). The old greenhouse gas scenario
(SRES based) became outdated in the meantime; the new Representative Concentration Pathway
(RCP) based scenarios could have been usedin current climate change impact studies. However,
because the focus of this paper lies on the methodology ratherthan onthe impactresults, itis
acceptable torely on old SRES scenarioin line with our otherrecentstudiesin this region (Jungkvist
et al., 2014; Onietal., 2014, 2015b). Precipitation and temperature values (2061-2090) were
obtained by averagingthe values of the RCM grid cell with center coordinates closest to the center of
the catchmentand of its eight neighboring grid cells. Due to systematic biasesin RCMdata and the

spatial disparity between RCMgrid cell and small catchment like Svartberget, post processing of RCM
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data isrequired Teutschbein and Seibert, 2012; Ehret etal., 2012; Muerth et al., 2013). The
distribution mapping method (Ines and Hansen, 2006; Boe et al., 2007) was used for bias-correction
of the 15 RCM-simulated precipitation and airtemperature series on monthly basis using datafroma
weatherstation (1981-2010) located within the Svartberget catchment. This was achieved by
adjustingthe theoretical cumulative distribution function (CDF) of RCM-simulated control runs
(1981-2010) to match the observed CDF. The same transformation was then applied to adjustthe
RCM-simulated scenario runs forthe future (2061-2090). As some RCMs tend to simulate alarge
number of days with low precipitation (e.g. drizzle) instead of dry conditions, we applied a specific
precipitation threshold to prevent considerable alteration of the distribution. RCMbias corrections

presented here werefully describedin Junggvist etal. (2014) and Oni et al. (2014, 2015b).

2.3 Modelling and analysis
The Precipitation, Evapotranspiraton and Runoff simulator for Solute transport (PERSiST) is asemi-

distributed bucket type rainfall-runoff modelwith aflexibility that allows modelers to specify the
routing of waterfollowing the perceptual understanding of theirlandscapes (Futter et al., 2014). This
feature makes PERSiST a useful tool to simulate streamflow from landscape mosaic patches ata
watershedscale. The model operates on a daily time scale with inputs of precipitation and air
temperature. The spatial interface requires an estimate of area, land cover proportion and reach
length/width of the hydrologicresponse units. In the PERSIST application presented here, we used
three buckets torepresent the hydrology of Svartberget. These include snow, upper soil and lower
soil buckets. Inthe snow routine bucket, the model utilized asimple degree day evapotranspiration
and degree day meltfactor (Futteretal., 2014). Although the maximum rate of evapotranspiration
could be independent of wetand dry years as used in this study, the actual rate of
evapotranspiration could be influenced by the amount of waterin the soil and by an
evapotranspiration (ET) adjustment parameter. The latteris an exponentforlimiting
evapotranspiration that adjusts the rate of evapotranspiration (depending on waterdepthinthe
bucket or how much is evapotranspired). The snow threshold partitions precipitation as eitherrain or
snow. The model also simulates canopy interception for snowfall and rainfall to the uppermost
bucket. Inthe modelling analysis presented here, we used three buckets to generate runoff
processesin Svartberget. The quick flow bucket simulates surface or direct runoffinresponsetothe
inputs of rainfall or snowfall depending on antecedent soil moisture status. The runoff generation
process was partitioned between the quick flow and lower soil buckets (upperand lower) following

the square matrix describedin Table 2.

We utilized Monte Carlo analysis to explore parameter spaces using arange of parametervalues

listedinTable 3. The evapotranspiration adjustment parameter sets the rate at which ET can occur
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whenthe soilis nolongerable to generate runoff and thiswas setto 1in the uppersoil box.
Maximum capacity is the field capacity of the soil that determines the maximum soil water content
held. The time constant specifies the rate of waterdrainage from a bucketand requires avalue of at
least1in PERSIST. Therelative areaindex determines the fraction of area covered by the bucketand
isalso setto 1 forour simulations. Infiltration parameters in each bucket determinethe rate of water
movement through the soil matrix. The modelis based on series of first order differential equations
that are solved sequentially following the bucket orderin the square matrix. More detailed

information about PERSiST parameterization and equationsis provided in Futteretal. (2014).

The model was calibrated against streamflow to generate present day runoff conditions. Initial
manual calibration was performed on the entire time series to minimize the difference between the
simulated and observed runoff based on Nash-Sutcliffe (NS) statistics. The manual calibration also
helpedtoidentify asuite of parametersrangestobe usedinthe Monte Carlo analysis by varying
each parametervalue following steps listed in Futteretal. (2014). The Monte Carlo tool worksin
such a way thatthe model was calibrated on NS-1in line with other works (Senatore etal., 2011;
Mascaro etal., 2013), sothat NS value forthe overall period of simulation tends toward 1. This
helpedtodeterminethe rangesto use inthe subsequent Monte Carlo analysis forthe wetand dry
year simulations. Starting from arandom point, we sampled each parameterspace 500 times before
jumpingto the nextspace (depending on whetherthe model performance was betterorworse). We
specified 100 iterations during the initialization of Monte Carlo tool so that 100 ensemble of credible
parametersets could be generated. This resulted in 50,000 (500 x 100) runs. In addition to Nash-
Sutcliffe statistics, the Monte Carlo tool also takes note of other metrics during sampling. The Monte
Carlotool utilizes the Metropolis-Hasting algorithm and its mode of operation was described in

Futteret al.(2014).

The best parametersets (100 in this case) were selected based on highest NS statistics from
untransformed/log transformed data. The parametersets were also analyzed for other metrics such
as variance of modeled/observed series (Var), absolute volumedifference (AD), root mean square
error (RMSE) and coefficient of determination (R?). These top parameter sets derived from the
Monte Carlotool are referred to as behavioural parameters henceforth. The behavioural parameters
were subjected to furtheranalyses to determine hydrologicbehaviourin dry and wetyears. These
include the cumulativedistribution function (CDF) of behavioural parametersto determinethe
sensitive parameters and discriminant function analysis (DFA)to determine the dominant
parameter(s) that separate the hydrology of wet from dry years. Wet years were defined as
hydrologicyears with runoff exceeding 430 mm/yr or 40% higherthan average annual runoff (1995,

2002, 2005 and 2010). Dry yearswere defined as hydrologicyears with runoffless than 150 mm/yror

6
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less than 50% of average annual runoff (1987, 1992, 2000 and 2001). Hydrologicyear was September
1 of a yearto August 31 of the following calendaryear. The bias corrected future climate series from
the ensemble of climate models (Table 1) were used to drive PERSiST so as to project future

hydrologicconditions underlongterm, as well as dry and wet year conditions.

3 Results

3.1 Long term climate and hydrology series

Preliminary analysis showed that the Svartberget hydroclimate was highly variable and thus helped
partitionthe longtermseriesinto dry and wetyearsas shownin Supplementary Information 1(SI1).
As aresult, dry and wetyear conditions differed in terms of climate and cumulative runoff patterns.
The cumulative distribution of the dry/wet yearseries (Fig 2a) showed that dry year precipitation
(462 + 102 mm) was only 64% of precipitation observed in wetyears (716 £ 56 mm). Similar patterns
were observed in runoff dynamics (Fig. 2b) where total runoffin dry years (129 + 35 mm) was 29% of
total runoff observedin wetyears (449 + 19 mm). Runoff response was 63% of total precipitationin
wetyearsand 28% of precipitationinthe dry yearregime (Table 4). Mean annual temperature was

2.4 °Cinwetversus 1.8 °Cindry years.

When assessed on a seasonal scale, both precipitation and runoff were higherin almostall monthsin
wet comparedto dry year conditions (Fig. 3) but differed in terms of seasonal patterns. While runoff
peakedin May in both wetand dry years reflecting spring snowmelt dynamics that characterize
Svartberget, runoff magnitude differed. Peak precipitation events occurred in summer months with
additional autumn peaksin wetyear. However, there was ashiftin precipitation patterns with lowest
precipitationin February/March in dry years compared to April in wetyears. Winter months were

generally slightly warmerduring wet years and summers slightly warmerin dry years (Fig 3c).

3.2 Future climate projections
There wasless agreementbetween the observed series and uncorrected individual RCMs (Sl 2a, b).

However, bias correction helped to reduce the uncertainty on the historical timescale by providing a
better match for the ensemble mean of the airtemperature and precipitation with their
corresponding observed series (Sl 2c, d). The ensemble mean performed betterin fitting observed air
temperature than precipitation. Thereis also a possible increase in airtemperature by 2.8-5°C
(median of 3.7°C) and possible increase in precipitation by 2-27% (median of 17%). Although
precipitation and temperature were projected toincrease throughout the year, the temperature
changeswould be more pronounced during winter months irrespective of whetheritwasa dry or
wetyear(Fig. 3c). However, projected changes in precipitation followed similar patterns to historical

wetyears with more precipitation expected between late winter months through spring (Fig. 3a).
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Resultalso showed thatthe winter period with temperature below 0°C could be shortened as climate

warmsin the future (SI2).

3.3 Model calibrations and performance statistics
Model behavioural performance followed similar patterns when metrics such as R>, NSand log NS

were used (Sl 3a-c) and metrics could be used interchangeably to measure model performances. The
model performed better when calibrated to wetand dry conditions (compared to long term) using
NS metrics (Sl 3b, c). It may be clarified that thisis|logical because otherwise (using the NS) too much
weightis giventothe central part of the distribution (due to many more valuesin that part).
Although no majorimprovements to model efficiency above NS of 0.79 and 0.81 were obtainedin
dry and wet years, respectively, we obtained a widerrange of model performances in wetrelative to
dry year. The patterns of other performance metrics were different as we observed the highest RMSE
indry yearsand lowest RMSE in wet year condition (Sl 3d). There was minimum ADrange inthe long
term record and maximum range in dry years (Sl 3e). Model performances based on the Var metric
alsoshowed the largestvariability in dry years compared to the longterm record and least Var inthe

wetyear(SI 3f).

3.4 Runoff simulations and behavioural prediction range
Usingthe best performing parametersets based on the NS statisticas an example, the model

performed wellin simulating interannual runoff patterns but underestimated the peaks (Sl 4). When
resolvedtotheirrespective dry and wetyearcomponents, the model performed betterin simulating
runoff conditionsin wetyears despite its larger data spread and higher spring peaks than the dry
yearregime (SI5). When parameterization fordry years was used for runoff prediction in wet years,
runoff was underestimated by 35% due to significant uncertainty that stemmed fromthe growing
season months (Fig. 4). Modelling analysis also showed that no single metriccan be an effective
measure of model performance underdry and wet year conditions (Fig 5a- c). However, utilizinga
behavioural mean of these different performance metrics (Fig. 5d-f) appeared to be a more effective
way of calibrating to extremely dry and wet hydroclimatic conditions. While the behavioural mean
performed betterin simulating runoff dynamicsin winterthrough springin the longtermrecord and
significantly reduced the uncertainty in dry and wetyears, larger uncertainty existed in summer

through autumn monthsindry and wetyears compared to the longterm record.

3.5 Parameter uncertainty assessments
While we observed awide prediction range from behavioural parametersets (Fig. 5), we have limited

information on the underlining processes. Therefore, we subjected the behavioural parameter sets
to furtheranalysis to identify sensitive parameters and plausible patterns of hydrologic processes

that differentiatedry and wetyears (Fig. 6). The cumulative distribution function (CDF) of
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behavioural parametersets showed that both rain and flow multipliers were sensitive parametersin
dry years. The rain multiplier was less sensitivein wetyears unlike the flow multiplier. Long term
simulations showed no sensitivityto the rain multiplier but were sensitive to the flow multiplier. We
observed similar patterns of response to the flow multiplierin all three hydrologicregimes (Fig. 6b).
Result also pointedtothe sensitivityof interceptionin wetyears but all the three hydrologicregimes

showed similar patternsfor the time constant (water residence time) in lower soil.

We subjected the pool of behavioural parametersin dryand wetyear regimes to discriminant
function analysis (DFA) to identify the key parameters that separate the extreme hydroclimatic
conditions (Fig. 7). Results showed that both dry and wet years separated well in canonical space.
However, the separation was driven mainly on quantitative parameters related to precipitation,
interception and evapotranspiration on canonical axis 1 (Rmult, Intand DDE). The parameters
separatedtoa lesserextenton processes related to snow parameters on canonical axis 2 (Smult, SM

and DDM).

3.6 Quantification of uncertainty in hydrologic projections
We compared the effects of different performance metricsin wetand dry year regimes to constrain

uncertainty in runoff projections under future hydroclimaticextremes in Svartberget catchment (SI
6). Results showed that differencesin modelrepresentation of present day conditions might be
minimal (compared tothe observed) butawide range of runoff regimes were projectedin the
future. We also observed small difference in the range of runoff projections (derived from minimum
and maximum of behavioural parameter sets) using different model performance metrics.
Uncertaintiesinherentin climate models (as opposed to differencesin calibration or performance
metrics) appeared to drive the overall uncertainty in runoff projections under dry and wet
hydroclimaticconditions. Wet yearis the closest to plausible projections of future condition
expectedinthe boreal ecozone. However, model results suggested that the uncertainty in present
day longtermsimulationsis mostly driven by dry years. We compared the runoff predictions using
dry year parameterization to parameterization based on wet years to quantify our current predictive
uncertainty. Results showed that future runoff could be under predicted by up to 40% (relativeto
wetyearensemble mean)if the projections are based on dry year parameterization alone (Fig. 8).
Both parameterizations projected ashiftin spring melt from May to April in the future. However,
ensemble projections showed that summer months could be alot wetter (based on wetyear
parameterization compared to dry year) and wetyearspring peak could be up to 43% more

compared to projections based on the wetyearensemble mean.
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4 Discussion

4.1 Insights from long term hydroclimatic series
Several studies have evaluated the impact of climate change on surface waterresources (Berghuijs et

al., 2014; Chouetal., 2013; Dore, 2005 among the others) but most of these were based onlong
termseriesthat depict mean system behaviour. However, present day hydroclimatic extremes, such
as those derived from historical wet and dry years, can be used as simple proxies to gaininsights that
will aid our understanding of future hydroclimatic conditions. Using this approach we found that
standard calibrations can resultin underestimation of runoff by up to 35% due to high variability of
hydroclimate seriesin northern boreal catchments. Several explanations can be offered forthe high
variability inthe long term hydroclimate series at the study site. First, snowmelthydrologyis
importantinunderstandingthe boreal water balances due to theirlocationinthe northern
hemisphere (Euskirchen etal., 2007; Dore, 2005; Tetzlaff etal., 2011, 2013). As a result, northern

headwater catchments tend to show high variability (Brown and Robinson, 2011; Burn, 2008).

We observed annual runoffyield to be 63% of total precipitationinthe wetyears compared to 28%
of total precipitationindryyear. More runoff yield in the wetyearregime could be seen as aresult of
near field capacity of the soils throughout the year, leading to greater propensity for runoff
generation because hydrological conductivity increases towards soil surface in the catchment
(Nybergetal., 2001). This can alsoimply more wintersnow accumulation during the long winter
period, resultingin higherspring melt that drives the overall waterfluxes (Laudon etal., 2004). Less
runoff yieldin dry years could be attributed to higher soil moisture deficitand relatively more

important evapotranspiration rates (Dai, 2013).

We also observed differencesin dry/wetyear peak summer precipitation and ashiftin the lowest
precipitationin late winter/early spring. Despite the differences in precipitation, we observed similar
patterns of runoff responses that only differin terms of magnitude. This suggested that there was
more effectiverainfall (netavailable water) available to infiltrate, continuously recharge
groundwater systems and generate runofffrom upstream sourcesin wetyear. Slightly warmer
temperaturesin summer months could drive more of growing season evapotranspirationin dry year.
Small differencesintemperature regime between wetand dry year, unlike precipitation, also
explained why larger uncertainty and biases still exist during post-processing of precipitation series in

using any scenario-based GCMs as observedin Sl 2.

4.2 Multi-criteria calibration of hydrological models
There has been considerable discussion about the calibrating procedure in the hydrological modelling

community (Andreassian etal., 2012; Boij and Krol, 2010; Efstratiadisand Koutyiannis, 2010; Oreskes

10
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et al.,1994; Price etal., 2012). One of the key reasons forthisis the differencein goodness-of-fit
measures utilized in each model (Krause etal., 2005; Pushpathalaetal., 2012). The most common
strategyisto calibrate hydrologic models using the Nash-Sutcliffe (NS) statistic (Nash and Sutcliffe,
1970). However, many modelers believe that the NS-based method alonetends to underestimate
variance inmodelled timeseries as this metriccould be biased toward high orlow flow periods
(Futteretal., 2014; Jainand Sudheer, 2008; Pushpalathaetal., 2012; Willens, 2009). Thisis
promoting our use of multi-criteria statisticsin model calibrations to constrain predictive uncertainty
in hydrologic projections to extreme dry and wet hydroclimatic conditions. Therefore, multi-criteria
calibration objectives that assessed model performances using different goodness-of-fit metrics
could aid our understanding of hydrologicbehaviourin boreal catchments. Ourobservation of
differencesin model performancesinterms of NS and other metrics presented here is expected asa
three box model proposed by Seibert and McDonnell (2002) similarly showed good fit for NS but
poor fitusing other metrics. However none of these focus on the extremes. Another way to evaluate
model forits performance in describing extremesis the approach presented in Willems (2009) or the
one by Van Steenbergerand Willems, (2012). However, lower model performance (based on NS) for
the longterm recordis explainable as most hydrologic models are based on mean system behaviour
represented by long term rainfall-runoff processes (Futteretal., 2014; Oni et al., 2014b; Wellenet

al., 2014).

The lowerrange of model performancesin calibratingto the observed runoffindry yearsisan
indication of variable runoffgeneration processes associated with this wetness regime. Dry years
cause drought-like conditions (Dai, 2011; Mishra and Singh, 2010) as a result of less wateravailability
that reduces hydrologicconnectivity within the catchment. However, the model performed better
when appliedtowetand dry yearsindividually compared tothe longtermrecord based on NS
statistics. This suggested that the mechanisms driving hydrologic processesin dry and wet years
might be similar but theirrelative magnitude differs from long term average conditions (Grayson et
al., 1997). Better performance underdry conditions (compared to average longterm) can also be
attributed to the bias of NStowards baseflow (Futteretal., 2014; Jainand Sudheer, 2008;
Pushpalathaetal., 2012). Durations of high flows associated with wetyears are typically shorterthan
the low flow durations; as a result, higher flows receive lower weight because of the squared flow
termsin the NS computation. Therefore the uncertainty is higherin extrapolating low flows
(comparedto high flows) and was also shown by others (Bae etal., 2011; Najarafietal., 2011,

Maurer et al., 2010; Vansteenkiste etal., 2014b; Velazquezetal., 2013).

However, NS statistics alone are not enough to assess model performances in climate-sensitive

boreal headwaterstreams such as Svartberget. Other metrics such as the RMSE showed thatdry
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years could be a majordriver of the uncertainty we observed in simulating the longtermrecord. A
possible explanation could be that the soil moisture deficitis largerin dry year, leading to soil matrix
or vertical flow (Grayson etal., 1997) that can only generate runoff afterfilling soil pore spaces
(McDonnell, 1990). For example, soil pore spaces are usually not close to saturation underdry
condition due to 1) intermittent precipitation events throughout the yearand 2) several patchy
source areas of high water convergence thatare characterized by local landscape terrain or soil
properties (Fangand Pomeroy, 2008; Jencso et al., 2009). Also higherrates of evapotranspiration
coupled with low precipitation can contribute to more spatially decoupled antecedent soil moisture
conditions and thus lower runoffin dry years (Dai, 2013; Vicente-Serrano etal., 2010). Therefore, no
single model performance metriccan be effectivein simulating the hydrology of dry and wet year
conditions, as our results showed that the mean of behavioural metrics outperformed any individual

metricindry and wetyears under present day conditions.

4.3 Parameter sensitivity in dry and wet year regimes
The robust uncertainty assessment conducted here showed that extensive exploration of model

parameter spaces suggests how hydrologicbehaviour differs between wetand dry yearregimes. A
possible explanation forthe non-sensitivity of the rain multiplierin wetyears could be attributed to
1) a more consistentorstable precipitation feeding the system throughout the year compared to
intermittent precipitation in dry years (Fangand Pomeroy, 2008; McNamara etal., 2005) or 2) the
effect of rain water collector missing proportionally more rainin dry than wetyears. This can explain
the smallerspring peak that characterizesthe dry year regime orits non-sensitivity tointerception

unlikeitsrole inwetyearregimes.

We observed that sensitivity of the lower soil time constant followed similar patternsin dry and wet
years unlike the uppersoil box. Therefore, we could expect faster flow and higher runoff ratioin the
wetyears due to rapid response to precipitation events and more macropore flow (Peralta-Tapia et
al., 2015). This can lead to steady runoff generation due to 1) near saturation of soils and 2) greater
connectivity between stream channels and upland areas (Bracken et al., 2013; Ocampo etal., 2006)
that become disconnected in dry years. The patterns of the flow multiplier parametershowed that
both dry and wet year conditions followed similar runoff generation processes. These suggested that
the main physical mechanismsto explain parametersensitivity and hydroclimaticbehaviourto
dry/wet conditions were related to differencesin their precipitation patterns ratherthan landscape-

driven hydrologicprocesses.

4.4 Drivers of hydrologic behaviour in dry and wet year regimes
Eventhough equifinality limits the use of CDFs alone inidentifying all sensitive parameters, DFA of

behavioural parameters gave further holisticinsights into plausible differences in wet/dry hydrologic
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behaviourwhen projected on canonical space. This suggested that hydrological model
parameterizations calibrated to high flow associated with wet years differ from parameterizations for
longterm or dry conditions. Therefore, parameter separation primarily on quantitative parameters
(Rmult, Intand DDE) related to rainfall and evapotranspiration on canonical axis 1suggested that
climate isstill afirst order control of dry and wet year hydroclimaticregimesinthe boreal forest. This
isconsistentwith Wellen et al. (2014), who showed that extreme conditions could be triggeredina
watershed when precipitation reaches athreshold that caninitiate saturation overland flow. Thisis
because soils are always near saturation capacity under prolonged wet conditions (Grayson et al.,
1997). This can explainthe increasein hydrologic model uncertainty in capturing the peak runoff
eventsinwetyearsunless parameterrangesthat combined different performance metrics are
considered. Unfortunately, we might face anew challenge of increased precipitation rangesinthe
future as climate changes (Chou etal., 2013; Dore, 2005). The separations of wetand dry yearson
snow process-related parameters (Smult, SMand DDM) to a lesser extent on canonical axis 2
suggested thatindirectlandscape influences on snow processes could be important butare a second
ordercontrol on runoff response todry and wet conditions. This agrees with Jencso et al. (2009),
who showed thatlandscape mosaicstructures with theirunique source contribution areas control

the overall watershed response.

4.5 Implications for future climate projections
Climate change in many places of the world leads to more extremes, both high and low flows. This

studyis not an exceptionasall 15 RCMs considered here projected arange of plausible futuresin the
Swedish boreal forest. Irrespective of the model performance metrics, results suggested that the
future could be substantiallywetterand could make drought conditions less severein boreal
ecozones. This could explain the large uncertainty in projecting runoff under wet conditions. For
example, dryyearandlongterm parameterizations were similar and runoff was under-predicted by
35% underthe presentday condition when parameterizationin dry years was used for wetyears.
Thiswas due to large predictive uncertainty in runoff dynamics (Fig. 4) that resulted from high
evapotranspiration rates duringthe snow free growing seasonsin dry year. This suggests that wet
yearcalibration could give more credible projections of the future in the boreal ecozone as the
distribution of precipitationin wetyearsis closerto the precipitation pattern expectedin the future.
While our modelling results suggested negligible differences in runoff projections based on eitherdry
yearor longterm parameterization, wetter conditions could becomeamore dominant feature in the

boreal ecozone.

These have implications for future climate change as both dry and wetyear parametrization showed

a consistent shiftin spring melt patterns from May to April (Fig. 8). Thistemporal advance in spring
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melt patterns could result from altered distribution of snowfall and rainfall patternsin the winter
(Berghuijs etal., 2014; Dore, 2005), and may likely have effects on soil frostin the upperlayer
(Jungkvistetal., 2014) or change in evapotranspiration rates (Jungetal., 2010; Vicente-Serranoetal,,
2010). Therefore, intensification of hydroclimaticregimes as climate changesin the future (Kunkel et
al., 2013) could drive water qualityissuestoa new level inthe boreal forest due to changesinthe
flux of organiccarbon and aquatic pollutants. Furthermore, precipitation has been shown to have
much largerbiogeochemical implications for the boreal carbon balance than previously anticipated

(Oquistetal., 2014).

The large spread of mean annual runoff projected by each RCM in wetyearsisan indication of less
agreement between RCMs when predicting future conditions. This suggested thatinherent
uncertainty in climate models, ratherthan differencesin model calibrations, drive the overall
uncertainty in runoff projections. However, hydrologic model calibration for climate impact studies
should be based on years that closely approximate anticipated conditions to better constrain

uncertaintyin projecting extremelydry and wet conditionsin boreal and temperate regions.
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Table 1: List of RCMs from EU ENSEMBLES project used in this study and theirrespectivedriving

GCM.
No. Institute RCM Driving
GCM
1 C4l RCA3 HadCM3Q16
2 CNRM Aladin ARPEGE
3 DMI HIRHAMS ARPEGE
4 DMI HIRHAM5 BCM
5 DMI HIRHAMS ECHAMS5
6 ETHZ CLM HadCM 3Q0
7 HC HadRM3Q0 HadCM3QO0
8 HC HadRM3Q16 HadCM3Q16
9 HC HadRM3Q3 HadCM3Q3
10 ICTP RegCM ECHAM5
11 KNMI RACMO ECHAM5
12 MPI REMO ECHAM5
13 SMHI RCA BCM
14 SMHI RCA ECHAM5
15 SMHI RCA HadCM3Q3




Table 2: Square matrix used to partition runoff generation between buckets in PERSiIST application
presented here. Forexample, we conceptualized that 40% of the precipitationinputs are retainedin

the upperbox, 60% are transferred to the lowerbox and 0% are transferred to the groundwater (row
1)

Upperbox | Lowerbox | Groundwater

Upper box 0.4 0.6 0

Lowerbox 0 0.5 0.5

Groundwater | O 0 1




Table 3: Parameter notations, descriptions and ranges used in the Chain Monte Carlo analysesin this

study
Notation Parameter description Min Max Units
SMt Snowmelttemperature -3 5 °C
ISD Initial snow depth 40 120 mm SWE
= DDM Degree day melt factor 1 4 mm °C day™
g DDE Degree day evapotranspiration 0.05 0.3 mm °C day™
w GDT Growingdegree threshold -3 3 °C
Smult Snow multiplier 0.5 1.5 -
RM Rain multiplier 0.5 1.5 -
Cl Canopy interception 0 4 mm day™
< IWD_1 Initial waterdepth 40 100 mm
8 RWD_1 Retain waterdepth 100 250 mm
= Infilt_1 Infiltration 1 15 mm day™
& DRF Drought runoff fraction 0 0.5 -
> REI Relative evapotranspirationindex | 1 1 -
EA 1 Evapotranspiration adjustment 1 10 -
IWD_2 Initial waterdepth 80 250 mm
é Infil_2 Infiltration 1 15 mm day™
2 RWD_2 Retain waterdepth 200 200 mm
§ TC 2 Time constant 2 50 days
Q EA 2 Evapotranspiration adjustment 0 0 -
InunT_2 Inundation threshold 80 150 mm
& IWD_3 Initial water depth 80 250 mm
< Infilt_3 Infiltration 0.1 10 mm day™
E EA 3 Evapotranspiration adjustment 0 0 -
% RWD_3 Retain waterdepth 250 250 mm
Q TC 3 Time constant 2 50 days
(U]
5 a Flow multiplier 0.004 0.762 -
E b Streamflow exponent 0.01 0.98 -
ST Snow threshold temperature -2 3 °C




Table 4: Quantification of runoff and precipitation dynamicsin wetand dry year using the observed
seriesand simulated series from PERSIiST.

Observedseries (%)

Simulated series (%)

Precipitation proportion (dry:wet year)

64

Runoff proportion (dry:wetyear) 29 29
Runoff response to precipitation events

Dry year | 28 30

Wet year | 63 66




Figure 1: Svartberget, alongterm monitored headwater catchmentin the northern boreal ecozone
of Sweden. The catchment (50ha) drains terrestrial area consisting of forest (82%) and upland mire
(18%). Streamflow measurements were taken at the downstream confluence point.
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Figure 2: Cumulative plots of (a) precipitation and (b) runoffin dry (1995, 2002, 2005 and 2010) and
wet (1987, 1992, 2000 and 2001) hydrologicyears. Hydrologicyearis September1(day 1) to August
31 of the following year (day 365). The cumulative plots shown here represent average forall the dry
and wet years noted above.
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Figure 3: Seasonal patterns of (a) present day precipitation in dry and wetyears versus ensemble
mean (bias-corrected) of future precipitation projections, (b) present day runoff dynamicsindryand
wetyearand (c) presentday temperatureindry and wetyears relative to ensemble mean (bias
corrected) of future temperature projections. Note that the dry and wetyears inthese plots
representaverage of all the individual dry and wet years respectively.
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Figure 4: Quantification of predictive uncertainty in runoff simulations when best parameterset
(based on NS) calibrated fordry yearwas used for wetyear observed series.
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Figure 5: Summary plots showing prediction range of seasonal runoff dynamics of behavioural
parameter sets using different performance metricsin a) dry year, b) wetyearand c) longterm. (d)
to (f) show the corresponding model performances using behavioural mean of the metricsin (a) to

(c).
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Figure 6: Cumulative distribution function (CDF) of behavioural parameters (top 100 iterations from
the MCMC) inwetand dry yearsversus longtermrecord. (a) is the rain multiplier, b) is the flow
multiplier, c) isthe interception and d) is the lower soil time constantin the lowersoil box. A
rectangular distribution (straightline plot) defines parameter behaviours that were not sensitive (not
left- orright-skewed).
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Figure 7: Separation of the behavioural parameter sets (top 100 iterations from MCMC) in the dry
and wetyear hydrologicregimes using Discriminant Function Analysis (DFA). Wet and dry year
hydrology separated mainly on parameters related to evapotranspiration (DDE), interception (Int)
and rain multiplier (Rmult) on canonical 1. Parameters were separated on snow multiplier (Smult),
snowmelt (SM) and degree day meltfactor (DDM) on canonical 2. The circles represent normal 50%
contours. Parameters are defined in Table 3.
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Figure 8: Example of range of runoff projection using wet year parameterization that closely depicts
the future versus projected range based on dry year parameterization. The projected range was
simulated to constrain uncertainty in extreme wet and dry conditions in the future using the
behavioural parametersets (top 100 iterations from MCMC) for each of the 15 RCM scenarios (100

parameters by 15 RCMs = 1500 runs each for dry and wet year).Ensemble mean represents the mean
of the 1500 realizations whilelong term depicts mean of the longterm series.
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