
 
 Paper summary: The reviewed paper presents the possibility to evaluate future climate change 
impacts based on current hydro-climatic extremes. The study focused on a boreal headwater catchment 
located within an experimental unit in the North of Sweden. Using a semi-distributed bucket type 
hydrologic model, the authors showed the effects of different parameters sets, obtained calibrating the 
model on wet years, on dry years and on mean long term data. The parameters sets were selected 
based on multi-criteria goodness of fit indexes. They assessed the uncertainty of an analyses based on 
long term series compared to an analyses focused on wet and dry years and provided future hydrologic 
response to an ensemble of climate models using both wet and dry years model parameterizations. 
According to the authors, results demonstrated that future hydrologic projection should be based on 
parameterization obtained in conditions similar to the predicted climatic one. The manuscript also 
stated that, nevertheless, the uncertainties in Regional Climate Models projections remained larger 
than uncertainties due to different model calibration strategies.  
Recommendation: In my opinion the paper, introducing the separation between extreme yearly 
conditions, shows an alternative and interesting way to conduct hydrologic simulations aimed to study 
the effects of climate change at the basin scale. According to me however, before the publication in 
HESS the article should be improved making more clear some aspects. I suggest the authors to address 
some points which are listed in the following.  
 
1) The introduction can be improved. The first paragraph (lines 30-43 on page 2) seems to introduce 
the problem of climate change in northern latitudes and high altitude catchments. Being not the study 
area of the paper an high altitude basin, I would avoid to refer to high altitudes.  

Response: Thank you for calling our attention to this. The introduction has revised as suggested and 
the word ‘high latitude’ removed in the revised manuscript. See line 30-93. The changes made are a lot 
and might not be nice to paste here. I have attached another version of the manuscript with track 
changes for your review.  

 

I do not understand the sentence in lines 33-35 “These trends… continues.”, could you please explain 
and/or better relate it with the rest of the paragraph?  

Response: We have removed the sentence and revised the paragraph. See line 33-36  

 

The second paragraph speaks about uncertainties and conceptualization of hydrologic models. The 
usual methodology when setting the hydrologic models for the evaluation of climate change effects is 
to use different conditions for their calibration and validation (e.g. Klemes, 1986, Wilby, 2005), for 
example calibrate parameters in wet years and verify them in dry years. According to me, this should 
be cited in the paragraph and better related to the presented work.  

Response: Thanks for your suggestion. We found the papers insightful and have been cited in the 
paragraph four of the revised manuscript. Please, see line 66, 68 and 84. 

 

2) I suggest to rename the second section as “Data and methods”. In the description of the study site I 
think it is better to specify the length of the available observed dataset (line 88 page 3).  

Response: The second section of the manuscript has been renamed accordingly (line 96). The length 
of the data is 1981-2012 and has been added to the appropriate place in the manuscript (e.g. line 101). 

 



In the reviewed paper no downscaling seems to be applied hence the title of sub-section 2.2 should be 
“Climate models” instead of “Climate downscaling”. Downscaling (Wilby and Wigley, 1997; Maraun 
et al., 2010) is different from bias correction of regional climate models (Christensen et al., 2008), so 
this term is not appropriate.  

Response: This has been modified in line 115 as suggested. 

 

The rainfall-runoff model PERSiST is cited for the first time at the beginning of sub-section 2.3. 
Maybe a sentence to introduce the model could be added with the meaning of the model acronym.  

Response: The full meaning of the acronym PERSiST has now been added to the line 135.  

 

The second paragraph (from lines 124 page 4 to line 136 page 5) is not clear: maybe Table 3 could be 
introduced before and a sentence to state the adoption of a Monte Carlo approach could be included. In 
paragraph three the reference to Futter et al. (2014) should be added in line 141 to make more clear 
why the Nash-Sutcliff metric must be close to zero instead of 1 as in other works (Senatore et al., 
2011, Mascaro et al., 2013). Furthermore, I think it is better to add some details of the Monte Carlo 
runs (e.g. the total number and the number of model runs in each chain) in this specific case.  

Response: We have revised this section of the manuscript to address your concern (line 166-179). 
Table 3 now introduced earlier in line 157 and statement on Monte Carlo added to the beginning of the 
paragraph in line 156. We found the suggested references useful and were used in lines 171- 172.  

3) In the Results section what does the acronym SI mean and to what does it refer?  

Response: The acronym SI refers to Supplementary Information and this has now been defined in line 
198 where it first appeared for clarity 

 

I think that in Figure 3 it is not enough clear that the patterns in wet and dry year refers to present day 
conditions while the ensemble mean to future ones.  

Response: This has been implemented in Figure 3 caption for clarity.  

 

Maybe, in sub-section 3.2 the words “Results showed” could be paraphrased or written in a different 
way to avoid repetition.  

Response: See line 217-225 for the corrected as suggested correction. 

 

What are the metrics AD and Var mentioned in sub-section 3.3? They were not introduced in the 
revised paper.  

Response: Thank you for calling out attention to this. We realized that these were not introduced in 
the method section before getting to this point. We have now defined them in the method section (line 
182).  



 

Probably, Figure 4 becomes more clear if it is specified that observed series refers to wet years also in 
the caption and legend of the figure.  

Response: This has been updated in both the caption and legend of new figure 4.  

 

The style of Figures 4 and 5 is different from the style of Figures 2 and 3 (see also Minor points). In 
my opinion, it is preferable to use the same style. 

Response: Grid lines have now been removed from Fig 2 and 3 to make them conform to style used in 
Fig. 4 and 5. We hope this change make the figures to be similar now. 

 

I do not understand the sentence in sub-section 3.6 (lines 243-245). Can you explain, please?  

Response: Many studies projected wetter conditions for boreal region. In our analyses, present day 
wet year appeared to be the closest to such future conditions. This suggests that wet years could drive 
the uncertainty in future projections. However, the uncertainty in present day long term simulations is 
mostly driven by processes in dry year conditions as parameterizations in dry year and long term were 
close. We hope that changes made in lines 284-287 clarify the statement. 

 
4) Also the Discussion section should be clarified in some points. The references cited in lines 255-
256 page 8 are some of the authors dealing with climate change impacts on hydrology, hence I suggest 
to add “among the others”. Brown and Robinson (2011) is cited twice in two consecutive sentences, is 
this necessary?  
 
Response: These have now been implemented in the revised manuscript, See line 291. Brown and 
Robinson 2011 now cited once in the paragraph, see line 300. 
 
 
In sentence on lines 279-281 (sub-section 4.1) the authors refer again to downscaling, could you better 
explain, please?  
 
Response: This has been amended. See lines 315-317. 
 
 
I do not understand the reason of the first sentence of paragraph 4.3 lines 325-327 on page 10, could 
you be more clear, please?  
 
Response: This sentence has been removed (see line 361) as we agreed that the paragraph can do 
without the statement. 
 
 
Minor comments:  
1) In line 68 on page 3 I suggest to avoid the repetition of the preposition “to”: “The objectives of this 
study were to…” which is rewritten at the beginning of each following point.  

Response: See line 87-90 for the changes. 

 



2) The word error is missing in line 146 on page 5 and the metric R2 is not defined.  

Response: Corrected as suggested. See line 183. 

 

3) I suggest to add “that” between showed and both in line 221 on page 7. 

Response: Corrected as suggested. See line 256.  

 

4) Please correct “parametrizations” in line 248 on page 8. 

Response: Corrected as suggested. See line 284.  

 

5) A verb like “seen” is missing in line 267 page 9.  

Response: See line 302 for the suggested correction. 

 

6) In the second paragraph of section 4.3 (lines 334-343 page 11) the repetition of however could be 
avoided.  

Response: See line 369-378 for the corrections. 

 

7) A point is missing at the end of line 399 page 13.  

Response: Corrected as suggested. See line 434. 

 

8) In references section, line 505 page 15 Peralta-Tapia et al. (2015) should start a new line. 

Response: Thanks for noting this error. The reference now starts on new line. See lines 578-580.  

 

9) In the caption of Table 1 page 17 “List of RCMs from EU ENSEMBLE project used in study and 
their driving GCM.”, this is missing.  

Response: Corrected as suggested. See the new caption of Table 1.  

10) According to me it is better to add Marcov Chain Monte Carlo before its acronym in the caption of 
Table 3 page 19 or to cite this procedure previously in the text .  

Response: See the new table 3 caption for the changes.  

 

11) A point is missing at the end of the caption of Table 4 page 20.  



Response: Corrected as suggested. See Table 4 caption.  

12) Maybe, for a better readability of Figures 2 and 3 also in black and white printed versions of the 
paper, it is better to use not only different colors but also different types of lines. Why there is no the 
ensemble means of the runoff in panel b of Figure 3?  

Response: Figures 2 & 3 have been amended as suggested. Ensemble mean of runoff was not 
introduced into Fig 3b at this point because 1) we are comparing the bias corrected series from RCMs 
here and 2) runoff projection is one of the principal object of discussion from this point onward and 
especially in Fig 8. 

 

13) In the caption of Figure 6 interception is missing after “c) is…”. I would avoid to detail the 
meaning of the soil time constant in the caption.  

Response: The interception is now inserted in the caption. We have also removed the meaning of time 
constant since the term is explained in the method section 

 

14) A point is missing at the end of the caption of Figure 7 page 27.  

Response: Corrected as suggested. Figure 7 caption.  

15) A comma and a space are missing in reference on line 314 page 10.  
Response: Corrected as suggested. See line 350. 
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P. Willems (Referee) 
patrick.willems@bwk.kuleuven.be 
 
This paper describes interesting research work done by the authors on the sensitivity 
of model parameter calibration, when this calibration is based on short time periods or 
based on years which are more wet or more dry than average. The authors further- 
more show the impact of climate change based on an ensemble of climate models, 
and discuss the importance of parameter calibration based on years that are closest 
to the future climate conditions. The semi-distributed conceptual hydrological model 
PERSiST was considered, applied on a headwater boreal catchment in Sweden. Hy- 
drological impacts considered are mean monthly flows. 
I fully agree with the authors that, prior to any hydrological impact analysis of climate 
change, the hydrological model need to be tested for their performance to make extrap- 
olations beyond the range of historical conditions considered during traditional model 
calibration and validation. Climate scenarios indeed most often lead to meteorological 
conditions that are more extreme than the historical ones. Let me propose the paper by 
Refsgaard et al. (2014), for an extensive discussion on that issue and for an overview 
of approaches. The authors may consider that paper for their literature review. 
 
Response: Thank you for your comments and suggestions. The literature was useful to 
further improve the introduction. See line 77-85. 
 
The authors, however, do not explicitly show how this can be done. They show the 
sensitivity of the model parameter calibration to the type of years used for calibration, 
but I am not convinced that calibration based on either more wet years or more dry 
years (or years with other conditions), depending on the future projected conditions, is 
the way to go. Historical periods show strong temporal variability, and, most likely, this 
will also be the case in the future. The climate scenarios lead to changes, but strong 
natural temporal variability (with wet and dry years) will continue to happen also in the 
future. This means that the hydrological impact model needs to be calibrated to long 
time periods such that it is able to deliver accurate results both for wet and dry years. 
Separate calibration for dry years only or wet years only does not appear to be useful 
to me. 
 
Response: We agree with you that calibration to long term periods are still useful (as we 
can see in literature such as Larssen et al., 2007) but our argument here is not against 
the use of long term data in our modelling exercises. However, it is unequivocal that long 
term simulations only give us average system behaviour and in most cases we miss the 
extreme wet and dry conditions. This might mean a lot in snow dominated ecosystems 
such as boreal forest, leading to under-prediction under the present day condition. The 
uncertainties are usually amplified further when projected into the future. What we are 
trying to do here is to use the historical wet and dry years as a proxy to gain further 
insights or quantify the uncertainty in projecting extreme conditions that might even 
become more common in the future. So, there is a need to use modelling analyses 
based long term versus dry/wet years as a way of getting more insights on how to 
quantify predictive uncertainty in hydrologic projections. 
 
Other comments: 
The title, abstract and introduction put a high focus on “extremes”, but it is unclear 
from the paper what exactly is meant by these extremes. I assume that it refers to the 
dry and wet years considered. These are annual averaged conditions, but the term 
extremes is often used in the context of shorter duration rainfall and flows (e.g. daily 
peak flows, low flows). I suggest to clarify this better from the start of the paper. To 



avoid that the reader is misled by the title, I suggest to omit the term extremes and 
revise the title accordingly. 
 
Response: The title is now changed to “Using dry and wet year hydroclimatic 
extremes to guide future hydrologic projections”. The abstract and introduction 
section have also been revised accordingly. However, we disagree with your 
presumption of the term extreme here. We have seen instances in literature (e.g. Borth 
et al., 2016; Tao et al., 2016) where the term extreme was used to depict similar time 
scale like this study. 
 
Climate model simulations were taken from the EU ENSEMBLES project, which be- 
came outdated. This is OK given the methodological focus of this paper, but the paper 
also concludes on the future climate and flow projections for the study catchment. 
 
Since some years, newer generation (CMIP5 based) RCM runs are available, based 
on the latest generation of greenhouse gas scenarios (RCP based; the ENSEMBLES 
RCMs are based on CMIP3 and the more than 15 years old SRES greenhouse gas 
scenarios). In addition, only one SRES scenario (A1B) was considered by the EN- 
SEMBLES project. 
 
Response: The EU ENSEMBLES project only recently started to be replaced by results 
from the CORDEX project. At the time of this study, the CORDEX server was down and 
data had not been available for a while. Nonetheless, ENSEMBLES still remains a valid 
product to be used, and, since the focus of this study is to quantify the uncertainties in 
hydrologic projections using extreme dry and wet conditions, we think this should be ok 
here. We would like to also emphasis that this is a follow up study on other climate 
related studies we recently carried out in the region where we similarly used 
ENSEMBLES based projections (e.g. Oni et al. 2014, 2015; Jungqvist et al., 2014; 
Teutschbein et al., 2015).  
 
A quantile mapping bias correction method was applied. I assume this was done on a 
monthly basis, but this is unclear from the text (the reader is referred to the literature). 
The quantile mapping bias correction method may disturb the temporal sequence (cor- 
relations, persistence) of the time series values. It is unclear whether this type of check 
/ validations were performed by the authors. 
 
Response: Yes, this was done on monthly basis and has been made clearer in the 
revised manuscript (line 126). We have had about four other papers recently (e.g. Oni et 
al. 2014, 2015; Jungqvist et al., 2014; Teutschbein et al., 2015) where we used this data 
and described the bias correction process in greater detail. However, since each study 
appears to be stand alone and independent of others, we have further expanded this 
section for better clarity to readers.  
 
 
Lines 144 – 145: “The best parameter sets (top 100) were selected based on highest 
NS statistics...and other performance metrics...”: It would be useful to indicate how 
this selection was done; how the different metrics were weighted or combined to select 
the best parameter sets. 
 
Response: See line 180-194 for revision on calibration and parameter selection.  
 
 



Lines 156 – 157: “The...projected future climate series from ensemble of climate 
models...were used to project future extremes using different goodness-of-fit met- 
rics.”: I do not understand how the goodness-of-fit of future extremes can be evaluated. 
 
Response: See line 192-194 for revision to this statement. What we’re trying to say here 
is that we drove the hydrological model (PERSiST) calibrated to long term, dry and wet 
year conditions with bias corrected RCM series. 
 
Line 180: “bias correction helped to reduce the uncertainty”: this is true for the historical 
period, but it is not necessarily the case for the future period 
 
Response: Yes, we agree with you here. We were referring to historical period here and 
not necessarily the future. We have revised this statement in the manuscript for better 
clarity (line 215). 
 
For the results considering only dry years and only wet years, such as in Figure 2 and 
Figure 3, I assume these results are shown for all the dry or wet years averaged, but 
this is unclear from the text. 
 
Response: Yes, you are right that they depict averages of dry and wet year. We have 
made this clearer in the caption of those figures in the revised manuscript.  
 
Results shown in Figure 3: It is unclear whether the “Ensemble mean” result is after or 
before bias correction. 
 
Response: This is after the bias correction. See the Figure 3 caption for the correction. 
 
Regarding the validation of the climate model simulation results for historical conditions 
(control runs), next to the cumulative distribution function of monthly values (and related 
bias correction): given the focus of this study on wet and dry years, it would be useful 
to validate the performance of the climate model simulation results in describing the 
wet-dry year variability. 
 
Response: If we understand what you are trying to say here perfectly, we believe this 
has been done on different occasions in the manuscript e.g. Fig. 4 and 8. Any attempts 
to present the result in more formats will only repeat what we are currently presenting in 
this study. 
 
Caption Table 1: change “ENSEMBLE” to “ENSEMBLES” 
 
Response: Thanks for taking note of this omission. See Table 1 caption for the change 
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Abstract 15 
There are growing numbers of studies on climate change impacts on forest hydrology but limited 16 
attempts have been made to use current hydroclimatic variabilities to constrain projections of future 17 
climatic conditions. Here we used historical wet and dry years as a proxy for expected future extreme 18 
conditions in a boreal headwater catchment. We showed that runoff could be underestimated by at 19 
least 35% when dry year parameterizations wereas used for wet year conditions. Uncertainty analysis 20 
showed that behavioural parameter sets from wet and dry years separated mainly on precipitation 21 
related parameters and to a lesser extent on parameters sets related to landscape processes. While 22 
inherent uncertainty in climate models still drives the overall uncertainty in runoff projections, 23 
hydrologic model calibration for climate impact studies should be based on years that best 24 
approximate expected future conditions. 25 
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1 Introduction 29 
There are growing numbers of studies on climate change impacts on  watershedforest hydrology but 30 

these are usually based on long-time series that depict average system behaviour (Bonan, 2008; 31 

Lindner et al., 2010: Tetzlaff et al., 2013). As a result, limited attempts have been made to use 32 

extreme dry and wet conditions current hydroclimatic extremes to assess plausible future conditions. 33 

IThese trends in predictive uncertainty might continue beyond our current projecting capability if the 34 

level of human activities and greenhouse gas emission continues. Increasing numbers of studies are 35 

showing the importance of ensemble projections to create a matrix of possible futures, where the 36 

mean provides a statistically more reliable estimate than can be obtained from a single realization of 37 

possible future conditions (Bosshard et al., 2013; Dosio and Paruolo, 2011; Oni et al., 2014a; Raty et 38 

al., 2014) instead of using a single climate model to represent the future. However, This has helped in 39 

part to constrain the predictive uncertainty and/or uncertainty in of precipitation projections 40 

downscaling that is still larger than that forof temperature  (Teutschbein and Siebert, 2012). This 41 

inherent uncertainty might further increase in the warmer future in northern latitudes and high 42 

altitude catchments as precipitation dynamics become less consistent due to a shift in winter 43 

precipitation patterns toward rainfall dominance (Berghuijs et al., 2014; Dore, 2005).  44 

It is unequivocally believed that climate is a first order control on watershed hydrology (Oni et al., 45 

2015a, b; Vörösmarty et al., 2000). Although climate change is a global phenomenon (IPCC, 2007), it 46 

will likely also alter local catchment water balances (Oni et al., 2014b; Porporato et al., 2004). 47 

Prolongation of drought regimes or increasing frequency of storm events observed in different parts 48 

of the world (Dai, 2011; Trenberth, 2012) calls for greater attention on how to constrain uncertainty 49 

in predicting extreme dry and wet conditions. While the frequency of hydroclimatic extremes might 50 

be low under present day conditions (Wellen et al., 2014), there could be intensification of 51 

precipitation events globally as climate changes (Chou et al., 2013). Otherwise, preparations for the 52 

future could be undermined by our inability to properly simulate or project new conditions outside 53 

our current modelling conditions.  54 

It is unequivocally believed that climate is a first order control on watershed hydrology (Oni et al., 55 

2015; Vörösmarty et al., 2000). Models are useful tools in hydrology and As a result, runoff has 56 

become a central feature in the modelling community to assess cumulative impacts (Futter et al., 57 

2014; Lindström et al., 2010). Hydrological modelling has benefitted immensely from the use of long 58 

term runoff series from monitoring programs to gain insights on change in fundamental system 59 

behaviour (Karlsson et al., 2013) and to  toaid our understanding of watershed responses to both 60 

short and long term environmental changes (Wellen et al., 2014). While cConceptualization of many 61 

of these hydrologic models ishas been based on average long term natural rainfall-runoff processes 62 
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derived from long term series, . both simple and complex models still performed well in simulating 63 

long term dynamics at the watershed scale (Li et al., 2015). Growing complexity in hydrologic models 64 

has led to increasing equifinality (Beven, 2006) due to multi-dimensionality of compensatory 65 

parameter spaces. However, extensive explorations of parameter spaces in complex models have 66 

also helped to gain further insights on system behaviour beyond simple models.   67 

Uncertainty in model predictions depends on the length of time series (Larssen et al., 2007). 68 

Conceptualization of many of these hydrologic models has been based on average long term natural 69 

rainfall-runoff processes. However, average conditions may not best reflect processes operating 70 

under changing conditions. Despite strong arguments against the use of the term “validation” 71 

(Oreskes et al., 1994), it is still a norm in the hydrologic modelling community to calibrate to one 72 

condition and reevaluate the model on different conditions (Cao et al., 2006; Donigiang, 2002; Wilby, 73 

2005). This has made split-sample testing a popular way of assessing the internal working process of 74 

a model in hydrologic study (Klemeš, 1986) before embarking on future projections. While modelling 75 

staged under this framework is usually based on average system conditions depicted by long term 76 

series, it may not fully reflect processes operating under very dry and wet hydroclimatic conditions. 77 

This can also be due in part to inherent structural uncertainties in models (Butts et al., 2004; 78 

Refsgaard et al., 2006) that can stem As a result, all models have their inherent uncertainties that can 79 

be amplified when projecting future conditions. The predictive uncertainties resulted from 80 

hydrologic models is due in part to from issues of conceptualization, scaling and connectivity of 81 

processes between the landscape mosaic patches of a watershed that the models are representing 82 

(Tetzlaff et al., 2008; Ren and Henderson-Seller, 2006).  This is the case of Karlson et al. (2013) that 83 

showed increasingly large predictive uncertainty when their model was tested on over a century long 84 

record due to non-stationarity of the historical series. It is therefore inevitable that this level of 85 

uncertainty will be amplified when projected into the unknown future where, unlike at present, we 86 

have no data to confirm our findings (Refsgaard et al., 2014). However, nNo consensus has yet been 87 

reached regarding whether the uncertainty due to differences in hydrologic model structures and/or 88 

calibration strategies would be greater than the unresolved uncertainty inherent in climate models 89 

when projecting hydrologic conditions in boreal or temperate ecozones. 90 

One way to constrain the uncertainty in hydroclimatic projections is to utilize historical wet and dry 91 

years as a proxy for the future conditions expected as climate changes.  This is analogous to 92 

differential split-sample test previously used (Coron et al., 2012; Klemeš, 1986; Seibert, 2003; 93 

Refsgaard and Knudsen, 1996) but is less commonly used in hydrology (Refsgaard et al., 2014). Here 94 

we used hydrological and meteorological observations in dry and wet years in a long term monitored 95 

headwater catchment in northern Sweden. The objectives of this study were to: 1) utilize long term 96 
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field observations in Svartberget to gain insights into hydroclimatic behaviour in dry and wet years as 97 

a proxy to future climate extremes and 2) quantify the uncertainty in our current predictive practices 98 

that is based on such long term series. Our expectation is that the  uncertainty assessment 99 

conducted in this study will help to  test whether  our current predictive uncertainty regarding future 100 

extremes could be attributed to inherent uncertainties in climate models or is driven by differences 101 

in hydrologic model calibration strategies. 102 

 103 

 104 

2 Data and mMethod 105 

2.1 Study site 106 
This modeling exercise was carried out in Svartberget (64o 16’N, 19o 46’ E), a 50 ha headwater boreal 107 

catchment withinpart of the Krycklan experimental research infrastructure in northern Sweden (Fig. 108 

1) (Laudon et al., 2013). Modelling results presented here were based on the long-time series of 109 

precipitation, air temperature and runoff (1981-2012) from a weather and flow monitoring station at 110 

the outlet of Svartberget. Svartberget has two headwater streams, one of which drains a completely 111 

forest landscape while the other drains a headwater mire. The catchment has a long term mean 112 

annual temperature of about 1.8oC with minimum (January) and maximum (July) mean monthly 113 

temperatures of -9.5°C and 14.5°C. The catchment receives a mean annual precipitation of 610 ± 109 114 

mm with more than 30% falling as snow (Laudon and Ottosson-Löfvenius, 2015). Snow cover usually 115 

lasts frombetween November toand May (Oni et al., 2013). The catchment has a long term mean 116 

annual runoff of 320 ± 97 mm with subsurface pathways dominating the runoff delivery of runoff to 117 

streams. Spring melt represents the dominant runoff event in the catchment and lasts 4 to 6 weeks. 118 

Forest cover includes a century old Norway spruce (Picea abies) and Scot pine (Pinus sylvestris) with 119 

some deciduous bBirch species (Betula spp). Sphagnum sp dominates the mire landscape and 120 

riparian zones (Ledesma et al., 2016). Svartberget has gneissic bedrock overlain by compact till of 121 

about 30 m thickness to the bedrock. The catchment elevation ranges from 114235-405310 m above 122 

sea level and was delineated using DEM and LIDAR (Laudon et al., 20131).   123 

2.2 Climate modelsdownscaling 124 
We used 15 different regional climate models (RCMs) from the ENSEMBLES project (Van der Linden 125 

and Mitchell, 2009) in the downscaling and a, Table 1).  All the RCMs had a resolution of 25 km and 126 

were based onunder Special Report on Emission A1B emission Sscenario (SRES) A1Bs emission 127 

scenarios. The SRES A1B represents a balanced growth of economy and greenhouse gas emission in 128 
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the future (IPCC, 2007). PPrecipitation and temperature values (2061-2090) were obtained by 129 

averaging the values of the RCM grid cell with center coordinates closest to the center of the 130 

catchment and of its eight neighboring grid cells. Due to systematic biases in RCM data and the 131 

spatial disparity between RCM grid cell and small catchment like Svartberget, post processing of RCM 132 

data is required Teutschbein and Seibert, 2012; Ehret et al., 2012; Muerth et al., 2013). The 133 

distribution mapping method (Ines and Hansen, 2006; Boe et al., 2007) was used for bias-correction 134 

of the 15 RCM-simulated we bias-corrected each RCM using precipitation and air temperature series 135 

on monthly basis using data from a weather station (1981-20102) located within the Svartberget 136 

catchment. This was achieved by adjusting the theoretical cumulative distribution function (CDF) of 137 

RCM-simulated control runs (1981-2010) to match the observed CDF.  The same transformation was 138 

se were then applied to adjust the RCM-simulated scenario runs for the future (2061-2090). As some 139 

RCMs tend to simulate a large number of days with low precipitation (e.g. drizzle) instead of dry 140 

conditions, we applied a specific precipitation threshold to prevent considerable alteration of the 141 

distribution. Downscaling or RCM bias corrections presented here were fully described in Jungqvist et 142 

al. (2014) and Oni et al. (2014, 2015b).  143 

2.3 Modelling and analysis 144 
The Precipitation, Evapotranspiraton and Runoff simulator for Solute transport (PERSiST) is a semi-145 

distributed bucket type rainfall-runoff model with a flexibility that allows modelers to specify the 146 

routing of water following the perceptual understanding of their landscapes (Futter et al., 2014). This 147 

feature makes PERSiST a useful tool to simulate streamflow from landscape mosaic patches at a 148 

watershed scale.  The model operates on a daily time scale with inputs of precipitation and air 149 

temperature. The spatial interface requires an estimate of area, land cover proportion and reach 150 

length/width of the hydrologic response units. In the PERSiST application presented here, we used 151 

three buckets to represent the hydrology of Svartberget. These include snow, upper soil and lower 152 

soil buckets. In the snow routine bucket, the model utilized a simple degree day evapotranspiration 153 

and degree day melt factor (Futter et al., 2014). Although the maximum rate of evapotranspiration 154 

could be independent of wet and dry years as used in this study, the actual rate of 155 

evapotranspiration could be influenced by the amount of water in the soil and by an 156 

evapotranspiration (ET) adjustment parameter. The latter is an exponent for limiting 157 

evapotranspiration that adjusts the rate of evapotranspirationET (depending on water depth in the 158 

bucket or how much is evapotranspired). The snow threshold partitions precipitation as either rain or 159 

snow. The model also simulates canopy interception for snowfall and rainfall to the uppermost 160 

bucket. In the modelling analysis presented here, we used three buckets to generate runoff 161 

processes in Svartberget. The quick flow bucket simulates surface or direct runoff in response to the 162 
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inputs of rainfall or snowfall depending on as a function of antecedent soil moisture statussaturation. 163 

The rPartitioning of the runoff generation process was partitioned between the quick flow and lower 164 

soil buckets (upper and lower) following the is defined in the square matrix described in  (Table 2).  165 

We utilized Monte Carlo analysis to explore parameter spaces using a range of parameter Parameter 166 

values and ranges used in the Monte Carlo analysis are  values listed in Table 3. The 167 

evapotranspiration adjustment parameter sets the rate at which ET can occur when the soil is no 168 

longer able to generate runoff and this was set to 1 in the upper soil box. Maximum capacity is the 169 

field capacity of the soil that determines the maximum soil water content held. The time constant 170 

specifies the rate of water drainage from a bucket and requires a value of at least 1 in PERSiST. The 171 

relative area index determines the fraction of area covered by the bucket and is also set to 1 for our 172 

simulations. Infiltration parameters in each bucket determine the rate of water movement through 173 

the soil matrix. The model is based on series of first order differential equations that are solved 174 

sequentially following the bucket order in the square matrix. More detailed information about 175 

PERSiST parameterization and equations is provided in Futter et al. (2014). Parameter values and 176 

ranges used in the Monte Carlo analysis are listed in Table 3. 177 

The model was calibrated against streamflow to generate present day runoff conditions. Initial 178 

manual calibration was performed on the entire time series to minimize the difference between the 179 

simulated and observed runoff. The manual calibration also helpeds to identify a suite of parameters 180 

and their ranges to be used in the Monte onte Carlo arlo analysis by varying each parameter value 181 

following steps listed in Futter et al. (2014). The Monte Carlo tool works in such a way that the Nash-182 

Sutcliffe (NS) value for the overall period of simulation dropped close to zero instead of 1 similar to 183 

other works (Senatore et al., 2011; Mascaro et al., 2013). This helped to determine the ranges to use 184 

in the subsequent Markov Chain Monte Carlo (Monte CarloMC) analysis for the wet and dry year 185 

simulations. Starting from a random point, we sampled each parameter space 500 times before 186 

jumping to the next space (depending on whether the model performance was better or worse). We 187 

specified 100 iterations during the initialization of Monte Carlo tool so that 100 ensemble of credible 188 

parameter sets could be generated. This resulted in 50,000 (500 x 100) runs. In addition to Nash-189 

Sutcliffe statistics, the Monte Carlo tool also takes note of other metrics during sampling. The Monte 190 

CarloMCMC tool utilizes the Metropolis-Hasting algorithm and its mode of operation was described 191 

in Futter et al. (2014).  192 

The best parameter sets (top 100 in this case) were selected based on highest NS statistics from 193 

untransformed/log transformed data. The parameter sets were also analyzed for other metrics and 194 

other performance metrics such as (e.g. variance of modeled/observed series (Var), absolute volume 195 
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difference (AD), root mean square error (RMSE) and coefficient of determination (R2). These top 196 

parameter sets derived from the Monte Carlo tool are referred to as behavioural parameters 197 

henceforth. The behavioural parameters were subjected to further analyses to determine hydrologic 198 

behaviour in dry and wet years. These include the cumulative distribution function (CDF) of 199 

behavioural parameters to determine the sensitive parameters and discriminant function analysis 200 

(DFA) to determine the dominant parameter(s) that separate the hydrology of wet from dry years. 201 

Wet years were defined as the hydrologic years with runoff exceeding 430 mm/yr or 40% higher than 202 

average annual runoff (1995, 2002, 2005 and 2010). Dry years were defined as the hydrologic years 203 

with runoff less than 150 mm/yr or less than 50% of average annual runoff (1987, 1992, 2000 and 204 

2001). Hydrologic year was September 1 of a year to August 31 of the following calendar year. The 205 

bias corrected future climate series from the ensemble of climate models (Table 1) were used to 206 

drive PERSiST so as to project future hydrologic conditions under long term, as well as dry and wet 207 

year conditionsproject future extremes using different goodness of fit metrics.  208 

3 Results 209 

3.1 Long term climate and hydrology series 210 
Preliminary analysis showed that the Svartberget hydroclimate was highly variable and thus helped 211 

to partition the long term series into dry and wet years as shown in (Supplementary Information 1 (SI 212 

1). As a result, both ddry and wet year conditions were differedent in terms of climate and 213 

cumulative runoff patterns. The cumulative distribution of the dry/wet year series (Fig 2a) showed 214 

that dry year precipitation (462 ± 102 mm) was only 64% of precipitation observed in wet years (716 215 

± 56 mm). Similar patterns were observed in runoff dynamics (Fig. 2b) where total runoff in dry years 216 

(129 ± 35 mm) was 29% of total runoff observed in wet years (449 ± 19 mm). Runoff response was 217 

63% of total precipitation that fell in wet years and 28% of precipitation in the dry year regime (Table 218 

4). These were summarized in Table 4. Mean annual temperature was 2.4 oC in wet versus 1.8 oC in 219 

dry years.  220 

When assessed on a seasonal scale, both precipitation and runoff were higher in almost all months in 221 

wet compared to dry year conditions (Fig. 3) but differed in terms of seasonal patterns. While runoff 222 

peaked in May in both wet and dry years reflecting spring snowmelt dynamics that characterize 223 

Svartberget, runoff magnitude differed. Peak precipitation events occurred in summer months with 224 

additional autumn peaks in wet year. However, there was a shift in precipitation patterns with lowest 225 

precipitation depth occurringin between February/March in dry years compared to April in wet 226 

years. Winter months were generally slightly warmer during wet years and summers slightly warmer 227 

in dry years (Fig 3c). 228 
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3.2 Future climate projections 229 
Results showed that tThere was less agreement between the observed series and uncorrected 230 

individual RCMs (SI 2a, b). However, bias correction helped to reduce the uncertainty on the 231 

historical time scale by providing a better match for the ensemble meandian of the air temperature 232 

and precipitation with their corresponding observed series (SI 2c, d). The eResults showed that 233 

ensemble meandian performed better in fitting the observed air temperature than precipitation. 234 

There is also Results also showed a possible increase in air temperature by 2.8-5oC (median of 3.7oC) 235 

and possible increase in precipitation by 2-27% (median of 17%). Although precipitation and 236 

temperature were projected to increase throughout the year, the temperature changes would be 237 

more pronounced during winter months irrespective of whether it was a dry or wet year (Fig. 3c). 238 

However, projected changes in precipitation followed similar patterns to historical wet years with 239 

more precipitation expected between late winter months through spring (Fig. 3a). Result also 240 

showed that the winter period with temperature below 0oC could be shortened as climate warms in 241 

the future (SI 2). 242 

3.3 Model calibrations and performance statistics 243 
Model behavioural performance followed similar patterns when metrics such as R2, NS and log NS 244 

were used (SI 3a-c) and metrics could be used interchangeably to measure model performances. The 245 

model performed better when calibrated to wet and dry conditions (compared to long term) using 246 

NS metrics (SI 3b, c). Although no major improvements to model efficiency above NS of 0.79 and 0.81 247 

were obtained in dry and wet years, respectively, we obtained a wider range of model performances 248 

in wet relative to dry year. The patterns of other performance metrics were different as we observed 249 

the highest RMSE in dry years and lowest RMSE in wet year condition (SI 3d). There was minimum AD 250 

range in the long term record and maximum range in dry years (SI 3e). Model performances based on 251 

the Var metric also showed the largest variability in dry years compared to the long term record and 252 

least Var in the wet year (SI 3f).  253 

3.4 Runoff simulations and behavioural prediction range 254 
Using the best performing parameter sets based on the NS statistic as an example, the model 255 

performed well in simulating the interannual runoff patterns but underestimated the peaks (SI 4). 256 

When resolved to their respective dry and wet year components, the model performed better in 257 

simulating runoff conditions in wet years despite its larger data spread and higher spring peaks than 258 

the dry year regime (SI 5). When parameterization for dry years was used for runoff prediction in wet 259 

years, runoff was underestimated by 35% due to significant uncertainty that stemmed from the 260 

growing season months (Fig. 4). Modelling analysis presented here also showed that no single metric 261 

can be an effective measure of model performance under extreme conditions depicted in  dry and 262 
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wet year conditions (Fig 5a- c). However, utilizing a behavioural mean of these different performance 263 

metrics (Fig. 5d-f) appeared to be a more effective way of calibrating to extremely dry and wet 264 

hydroclimatic conditions.  While the behavioural mean performed better in simulating runoff 265 

dynamics in winter through spring in the long term record and significantly reduced the uncertainty 266 

in dry and wet years, larger uncertainty existed in summer through autumn months in dry and wet 267 

years compared to the long term record.  268 

3.5 Parameter uncertainty assessments 269 
While we observed a wide prediction range from behavioural parameter sets (Fig. 5), we have limited 270 

information on the underlining processes. Therefore, we subjected the behavioural parameter sets 271 

to further analysis to identify sensitive parameters and plausible patterns of hydrologic processes 272 

that differentiate dry and wet years (Fig. 6). The cumulative distribution function (CDF) of 273 

behavioural parameter sets showed that both rain and flow multipliers were sensitive parameters in 274 

dry years and tended toward lower ranges. The rain multiplier was less sensitive in wet years unlike 275 

the flow multiplier. Long term simulations showed no sensitivity to the rain multiplier but were 276 

sensitive to the flow multiplier. We observed similar patterns of response to the behaviour to flow 277 

multiplier in all the three hydrologic regimes (Fig. 6b). Result also pointed to the sensitivity of 278 

interception in wet years but all the three hydrologic regimes showed similar patterns for  the time 279 

constant (water residence time) in lower soil.  280 

We subjected the pool of behavioural parameters in dry and wet year regimes to discriminant 281 

function analysis (DFA) to identify the key parameters that separate the extreme hydroclimatic 282 

conditions (Fig. 7). Results showed that both dry and wet years separated well in canonical space. 283 

However, the separation was driven mainly on quantitative parameters related to precipitation, 284 

interception and evapotranspiration on canonical axis 1 (Rmult, Int and DDE). The parameters 285 

separated to a lesser extent on processes related to snow parameters on canonical axis 2 (Smult, SM 286 

and DDM). 287 

3.6 Quantification of uncertainty in hydrologic projections  288 
We compared the effects of different performance metrics in wet and dry year regimes to constrain 289 

uncertainty in runoff projections under future hydroclimatic extremes in Svartberget catchment (SI 290 

6). Results showed that differences in model representation of present day conditions might be 291 

minimal (compared to the observed) but a wide range of runoff regimes were projected in the 292 

future. We also observed small difference in the range of runoff projections (derived from minimum 293 

and maximum of behavioural parameter sets) using different model performance metrics.  294 

Uncertainties inherent in climate models (as opposed to differences in calibration or performance 295 

metrics) appeared to drive the overall uncertainty in runoff projections tounder dry andextreme wet 296 
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hydroclimatic conditions. As wWet year is the closest to appeared to give more plausible projections 297 

of future condition expected in the boreal ecozone. However, model results suggested that the , and 298 

uncertainty in present day long term simulations is mostly driven by dry years. We compared the 299 

runoff predictions using dry year parameterization to parameterization based on wet years to 300 

quantify our current predictive uncertainty. Results showed that future runoff could be under 301 

predicted by up to 40% (relative to wet year ensemble mean) if the projections are based on dry year 302 

parameterization alone (Fig. 8). Both parameterizationparametrizations projected a shift in spring 303 

melt from May to April in the future. However, ensemble projections showed that summer months 304 

could be a lot wetter (based on wet year parameterization compared to dry year) and wet year 305 

spring peak could be up to 43% more compared to projections based on the wet year ensemble 306 

mean. 307 

4 Discussion 308 

4.1 Insights from long term hydroclimatic series 309 
Several studies have evaluated the impact of climate change on surface water resources (Berghuijs et 310 

al., 2014; Chou et al., 2013; Dore, 2005 among the others) but most of these were based on long 311 

term series that depict average system behaviour. However, present day hydroclimatic extremes, 312 

such as those derived from historical wet and dry years, can be used as simple proxies to gain insights 313 

that will aid our understanding of future hydroclimatic conditions. Using this approach we found that 314 

standard calibrations can result in underestimation of runoff by up to 35% due to high variability of 315 

hydroclimate series in northern boreal catchments. Several explanations can be offered for the high 316 

variability in the long term hydroclimate series at the study site.  First, snowmelt hydrology is 317 

important in understanding the boreal water balances due to their location in the northern 318 

hemispherea high latitude environment (Brown and Robinson, 2011; Euskirchen et al., 2007; Dore, 319 

2005; Tetzlaff et al., 2011, 2013). As a result, northern headwater catchments tend to show high 320 

variability (Brown and Robinson, 2011; Burn, 2008).  321 

We observed annual runoff yield to be 63% of total precipitation that fell in the wet years compared 322 

to 28% of total precipitation in dry year. More runoff yield in the wet year regime could be seen as a 323 

result of near field capacity of the soils throughout the year, leading to greater propensity for runoff 324 

generation because hydrological conductivity increases towards soil surface in the catchment 325 

(Nyberg et al., 2001). This can also imply more winter snow accumulation during the long winter 326 

period, resulting in higher spring melt that drives the overall water fluxes (Laudon et al., 2004). Less 327 

runoff yield in dry years could be attributed to higher soil moisture deficit and relatively more 328 

important evapotranspiration rates (Dai, 2013).   329 
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We also observed differences in dry/wet year peak summer precipitation and a shift in the lowest 330 

precipitation in late winter/early spring. Despite the differences in precipitation, we observed similar 331 

patterns of runoff responses that only differ in terms of magnitude. This suggested that there was 332 

more effective rainfall (net available water) available to infiltrate, continuously recharge 333 

groundwater systems and generate runoff from upstream sources in wet year. Slightly warmer 334 

temperatures in summer months could drive more of growing season evapotranspiration in dry year. 335 

Small differences in temperature regime betweenin wet and dry year, unlike precipitation, also 336 

explained why larger uncertainty and biases still exists during post-processing of in precipitation 337 

seriesdownscaling in using any scenario-based GCMs as observed in SI 2. 338 

4.2 Multi-criteria calibration of hydrological models 339 
There has been considerable discussion about the calibrating procedure in the hydrological modelling 340 

community (Andreassian et al., 2012; Boij and Krol, 2010; Efstratiadis and Koutyiannis, 2010; Oreskes 341 

et al., 1994; Price et al., 2012). One of the key reasons for this is the difference in goodness-of-fit 342 

measures utilized in each model (Krause et al., 2005; Pushpathala et al., 2012). The most common 343 

strategy is to calibrate hydrologic models using the Nash- and Sutcliffe (NS) statistic (Nash and 344 

Sutcliffe, 1970). However, many modelers believe that the NS-based method alone tends to 345 

underestimate variance in modelled time series as this metric could be biased toward high or low 346 

flow periods (Futter et al., 2014; Jain and Sudheer, 2008; Pushpalatha et al., 2012). This is 347 

promotingleading us our to use of multi-criteria statistics in model calibrations to constrain predictive 348 

uncertainty in our hydrologic projections to extreme dry and wet hydroclimatic conditionsevents. 349 

Therefore, multi-criteria calibration objectives that assessed model performances using different 350 

goodness-of-fit metrics could aid our understanding of hydrologic behaviour to extreme 351 

hydroclimatic conditions in boreal catchments. Our observation of differences in model 352 

performances in terms of NS and other metrics presented here is expected as a three box model 353 

proposed by Seibert and McDonnell (2002) similarly showed good fit for NS but poor fit using other 354 

metrics. However, lower model performance (based on NS) for the long term record is explainable as 355 

most hydrologic models are based on average system behaviour represented by long term rainfall-356 

runoff processes (Futter et al., 2014; Oni et al., 2014b; Wellen et al., 2014).  357 

The lower range of model performances in calibrating to the observed runoff in dry years is an 358 

indication of variable runoff generation processes associated with this wetness regime. Dry years 359 

cause drought-like conditions (Dai, 2011; Mishra and Singh, 2010) as a result of less water availability 360 

that reduces hydrologic connectivity within the catchment. However, the model performed better 361 

when applied to wet and dry years individually compared to the long term record based on NS 362 

statistics. This suggested that the mechanisms driving hydrologic processes in dry and wet years 363 
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might be similar but their relative magnitude differs from long term average conditions (Grayson et 364 

al., 1997). Better performance underto dry and wetextreme conditions (compared to average long 365 

term) can also be attributed to the bias of fact that NS andor log NS are believed to be biased 366 

towards high flows and baseflow, respectively (Futter et al., 2014; Jain and Sudheer, 2008; 367 

Pushpalatha et al., 2012).  368 

However, NS statistics alone are not enough to assess model performances in climate-sensitive 369 

boreal headwater streams such as Svartberget. Other metrics such as the RMSE showed that dry 370 

years could be a major driver of the uncertainty we observed in simulating the long term record. A 371 

possible explanation could be that the soil moisture deficit is larger in dry year, leading to soil matrix 372 

or vertical flow (Grayson et al., 1997) that can only generate runoff after filling soil pore spaces 373 

(McDonnell, 1990). For example, soil pore spaces are usually not close to saturation under dry 374 

condition due to 1) intermittent precipitation events throughout the year and 2) several patchy 375 

source areas of high water convergence that are characterized by local landscape terrain or soil 376 

properties (Fang and Pomeroy, 2008; Jencso et al., 2009).  Also higher rates of evapotranspiration 377 

coupled with low precipitation can contribute to a more spatially decoupled runoff and antecedent 378 

soil moisture conditions and thus lower runoff in dry years (Dai, 2013; Vicente-Serrano et al., 2010). 379 

Therefore, no single model performance metric can be effective in simulating the hydrology of dry 380 

and wet extreme year conditions, as our results showed that the mean of behavioural metrics 381 

outperformed any individual metric in dry and wet years under present day conditions.  382 

4.3 Parameter sensitivity in dry and wet year regimes 383 
Despite the fundamental issues of parameter equifinality (Beven, 2006) in models like PERSiST, more 384 

complex models have been shown to perform better in simulating runoff dynamics at the watershed 385 

scale (Li et al., 2015). The robust uncertainty assessment conducted here showed that extensive 386 

exploration of model parameter spaces could give some hints as to suggests how hydrologic 387 

behaviour differs between wet and dry year regimes. A possible explanation for the non-sensitivity of 388 

the rain multiplier in wet years could be attributed to 1) a more consistent or stable precipitation 389 

feeding the system throughout the year compared to intermittent precipitation in dry years (Fang 390 

and Pomeroy, 2008; McNamara et al., 2005) or 2) the effect of rain water collector missing 391 

proportionally more rain in dry than wet years. This can explain the smaller spring peak that 392 

characterizes the dry year regime or its non-sensitivity to interception unlike its role inwhat 393 

characterize wet year regimes. 394 

However, s We observed that sensitivity of the lower soil time constant followed similar patterns in 395 

dry and wet years unlike the upper soil box. Therefore, we could expect faster flow and higher runoff 396 
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ratio in the wet years due to rapid response to precipitation events and more macropore flow 397 

(Peralta-Tapia et al., 2015). This can lead to steady runoff generation due to 1) near saturation of 398 

soils and 2) greater connectivity between stream channels and upland areas (Bracken et al., 2013; 399 

Ocampo et al., 2006) that become disconnected in dry years. However, tThe patterns of the flow 400 

multiplier parameter showeduggested that both dry and extreme wet year conditions followed 401 

similar runoff generation processes. These suggested that the main physical mechanisms to explain 402 

parameter sensitivity and hydroclimatic behaviour to dry/wetextreme conditions were related to 403 

differences in their precipitation patterns rather than landscape-driven hydrologic processes. 404 

4.4 Drivers of hydrologic behaviour in dry and wet year regimes 405 
Even though equifinality limits the use of CDFs alone in identifying all sensitive parameters, DFA of 406 

behavioural parameters gave further holistic insights intoon plausible differences in wet/dry 407 

hydrologic behaviour when projected on canonical space. This suggested that hydrological model 408 

parameterizations calibrated to high flow associated with wet years differ from parameterizations for 409 

long term or dry conditions. Therefore, parameter separation primarily on quantitative parameters 410 

(Rmult, Int and DDE) related to rainfall and evapotranspiration on canonical axis 1 suggested that 411 

climate is still a first order control of dry and wet year hydroclimatic regimesextremes in the boreal 412 

forest. This is consistent with Wellen et al. (2014), who showed that extreme conditions could be 413 

triggered in a watershed when precipitation reaches a threshold that can initiate saturation overland 414 

flow. This is because soils are always near saturation capacity under prolonged wet conditions 415 

(Grayson et al., 1997). This can explain the increase in hydrologic model uncertainty in capturing the 416 

peak runoff events in wet years unless parameter ranges that combined different performance 417 

metrics are considered. Unfortunately, we might face a new challenge of increased precipitation 418 

ranges in the future as climate changes (Chou et al., 2013; Dore, 2005). The separations of wet and 419 

dry years on snow process- related parameters (Smult, SM and DDM) to a lesser extent on canonical 420 

axis 2 suggested that indirect landscape influences on snow processes could be important but isare a 421 

second order control on runoff response to dry and wet conditionshydroclimatic extremes. This 422 

agrees with Jencso et al. (2009), who showed that landscape mosaic structures with their unique 423 

source contribution areas control the overall watershed response.  424 

4.5 Implications for future climate projections 425 
All the 15 RCMs considered in this study projected a range of plausible futures in the Swedish boreal 426 

forest. Irrespective of the model performance metrics, results suggested that the future could be 427 

substantially wetter and could make drought conditions less severe in boreal ecozones. This could 428 

explain the large uncertainty in projecting runoff under extreme wet conditions. For example, dry 429 

year and long term parameterizations were similar and runoff was under-predicted by 35% under the 430 
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present day condition when parameterization in dry years was used for wet years. This was due to 431 

large predictive uncertainty in runoff dynamics (Fig. 4) that resulted from high evapotranspiration 432 

rates during the snow free growing seasons in dry year. This suggests that wet year calibration could 433 

give more credible projections of the future in the boreal ecozone as the distribution of precipitation 434 

in wet years is closer to the precipitation pattern expected in the future.  While our modelling results 435 

suggested negligible differences in runoff projections based on either dry year or long term 436 

parameterization, extreme hydrologic events related to wetter conditions could become a more 437 

dominant feature in the boreal ecozone.  438 

These have implications foron future climate change as both dry and wet year parametrization 439 

showed a consistent shift in spring melt patterns from May to April (Fig. 8). This temporal advance in 440 

spring melt patterns could result from altered distribution of snowfall and rainfall patterns in the 441 

winter (Berghuijs et al., 2014; Dore, 2005), and may likely have effects on soil frost in the upper layer 442 

(Jungkvist et al., 2014) or change in evapotranspiration rates (Jung et al., 2010; Vicente-Serrano et al., 443 

2010). Therefore, intensification of hydroclimatic regimes as climate changes in the future (Kunkel et 444 

al., 2013) could drive water quality issues to a new level in the boreal forest due to changes in the 445 

flux of organic carbon and aquatic pollutants. Furthermore, precipitation has been shown to have 446 

much larger biogeochemical implications for the boreal carbon balance than previously anticipated 447 

(Öquist et al., 2014).  448 

The large spread of mean annual runoff projected by each RCM in wet years is an indication of less 449 

agreement between RCMs when predicting future conditions. This suggested that inherent 450 

uncertainty in climate models, rather than differences in model calibrations, drive the overall 451 

uncertainty in runoff projections. However, hydrologic model calibration for climate impact studies 452 

should be based on years that closely approximate anticipatedfuture conditions to betterst constrain 453 

uncertainty in projectingpredicting extremely dry and wet conditions in boreal and temperate 454 

regions. 455 
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Table 1: List of RCMs from EU ENSEMBLES project used in this study and their respective driving 
GCM. 

 

No. Institute RCM Driving 
GCM 

1 C4I RCA3 HadCM3Q16 

2 CNRM Aladin ARPEGE 

3 DMI HIRHAM5 ARPEGE 

4 DMI HIRHAM5 BCM 

5 DMI HIRHAM5 ECHAM5 

6 ETHZ CLM HadCM3Q0 

7 HC HadRM3Q0 HadCM3Q0 

8 HC HadRM3Q16 HadCM3Q16 

9 HC HadRM3Q3 HadCM3Q3 

10 ICTP RegCM ECHAM5 

11 KNMI RACMO ECHAM5 

12 MPI REMO ECHAM5 

13 SMHI RCA BCM 

14 SMHI RCA ECHAM5 

15 SMHI RCA HadCM3Q3 

  



Table 2: Square matrix used to partition runoff generation between buckets in PERSiST application 
presented here. For example, we conceptualized that 40% of the precipitation inputs are retained in 
the upper box, 60% are transferred to the lower box and 0% are transferred to the groundwater (row 
1) 

 

 Upper box Lower box Groundwater 
Upper box 0.4 0.6 0 
Lower box 0 0.5 0.5 
Groundwater 0 0 1 
 

  



 

Table 3: Parameter notations, descriptions and ranges used in the Chain Monte Carlo MCMC analyses 
in this studyanalysis   

 Notation Parameter description Min Max Units 

SN
O

W
 

     
SMt Snowmelt temperature -3 5 oC 
ISD Initial snow depth 40 120 mm SWE 
DDM Degree day melt factor 1 4 mm oC day-1 
DDE Degree day evapotranspiration 0.05 0.3 mm oC day-1 
GDT Growing degree threshold -3 3 oC 
Smult Snow multiplier 0.5 1.5 - 
RM Rain multiplier 0.5 1.5 - 
CI Canopy interception 0 4 mm day-1 

U
PP

ER
 B

O
X 

     
IWD_1 Initial water depth 40 100 mm 
RWD_1 Retain water depth 100 250 mm 
Infilt_1 Infiltration 1 15 mm day-1 
DRF Drought runoff fraction 0 0.5 - 
REI Relative evapotranspiration index 1 1 - 
EA_1 Evapotranspiration adjustment 1 10 - 

LO
W

ER
 B

O
X 

     
IWD_2 Initial water depth 80 250 mm 
Infil_2 Infiltration 1 15 mm day-1 
RWD_2 Retain water depth 200 200 mm 
TC_2 Time constant 2 50 days 
EA_2 Evapotranspiration adjustment 0 0 - 
InunT_2 Inundation threshold 80 150 mm 
     

G
RO

U
N

DW
AT

ER
      

IWD_3 Initial water depth 80 250 mm 
Infilt_3 Infiltration 0.1 10 mm day-1 
EA_3 Evapotranspiration adjustment 0 0 - 
RWD_3 Retain water depth 250 250 mm 
TC_3 Time constant 2 50 days 
     

RE
AC

H 

     
a Flow multiplier 0.004 0.762 - 
b Streamflow exponent 0.01 0.98 - 
ST Snow threshold temperature -2 3 oC 



Table 4: Quantification of runoff and precipitation dynamics in wet and dry year using the observed 
series and simulated series from PERSiST. 

 

 Observed series (%) Simulated series (%) 
Precipitation proportion (dry:wet year) 64  
Runoff proportion (dry:wet year) 29 29 
Runoff response to precipitation events   

Dry year 28 30 
Wet year 63 66 



Figure 1: Map of Svartberget,; a long term monitored headwater catchment in the northern boreal 
ecozone of Sweden. The catchment (50ha) drains terrestrial area that consisting of forest (820%) and 
upland mire (1820%). Streamflow measurements were taken at the downstream confluence point . 

  



Figure 2: Cumulative plots of (a) precipitation and (b) runoff in dry (1995, 2002, 2005 and 2010) and 
wet (1987, 1992, 2000 and 2001) hydrologic years. Hydrologic year isrepresent September 1 (day 1) 
to August 31 of the following year (day 365). The cumulative plots shown here represent average for 
all the dry and wet years noted above. 
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Figure 3: Seasonal patterns of (a) present day precipitation in dry and wet years versus ensemble 
mean (bias-corrected) of future precipitation projections, (b) present day  runoff dynamics in dry and 
wet year and (c) present day temperature in dry and wet years relative to ensemble mean (bias 
corrected) of future temperature projections. Note that the dry and wet years in these plots 
represent average of all the individual dry and wet years respectively. 
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Figure 4: Quantification of predictive uncertainty in runoff simulations when best parameter set 
(based on NS) calibrated for dry year was used for wet year observed series.  
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Figure 5: Summary plots showing prediction range of seasonal runoff dynamics of behavioural 
parameter sets using different performance metrics in a) dry year, b) wet year and c) long term. (d) 
to (f) show the corresponding model performances using behavioural mean of the metrics in (a) to 
(c). 
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Figure 6:  Cumulative distribution function (CDF) of behavioural parameters (top 100 iterations from 
the MCMC) in wet and dry years versus long term record. (a) is the rain multiplier, b) is the flow 
multiplier, c) is the interception and d) is the lower soil time constant that defines water residence 
time in the lower soil box. A rectangular distribution (straight line plot) defines parameter behaviours 
that were not sensitive (not left- or right-skewed).  
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Figure 7: Separation of the behavioural parameter sets (top 100 iterations from MCMC) in the dry 
and wet year hydrologic regimes using Discriminant Function Analysis (DFA). Wet and dry year 
hydrology separated mainly on parameters related to evapotranspiration (DDE), interception (Int) 
and rain multiplier (Rmult) on canonical 1. Parameters were separated on snow multiplier (Smult), 
snowmelt (SM) and degree day melt factor (DDM) on canonical 2. The circles represent normal 50% 
contours. Parameters are defined in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Figure 8: Example of range of runoff projection using wet year parameterization that closely depicts 
the future versus projected range based on dry year parameterization. The projected range was 
simulated to constrain uncertainty in extreme wet and dry conditions in the future using the 
behavioural parameter sets (top 100 iterations from MCMC) for each of the 15 RCM scenarios 
considered here (100 parameters by 15 RCMs = 1500 runs each for dry and wet year).Ensemble mean 
represents the mean of the 1500 realizations while long term depicts mean of the long term series.  
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